Bab II Teori Pendukung

Ukuran: px
Mulai penontonan dengan halaman:

Download "Bab II Teori Pendukung"

Transkripsi

1 Bab II Teori Pendukung II.1 Sistem Autonomous Tinjau sistem persamaan differensial berikut, = dy = f(x, y), g(x, y), (2.1) dengan asumsi f dan g adalah fungsi kontinu yang mempunyai turunan yang kontinu pula dalam domain D. Misalkan (x 0, y 0 ) adalah titik dalam domain D, maka terdapat sebuah solusi tunggal x = φ(t), y = ψ(t) dari sistem (2.1) yang terdefenisi pada interval I yang memuat t 0 dan memenuhi syarat awal x(t 0 ) = x 0, y(t 0 ) = y 0. (2.2) Misalkan masalah nilai awal (2.1), (2.2) ditulis dalam bentuk vektor = f(x), x(t 0) = x 0, (2.3) dimana x = xi + yj, f(x) = f(x, y)i + g(x, y)j dan x 0 = x 0 i + y 0 j. Dalam kasus ini solusinya dapat ditulis dalam bentuk x = Φ(t) = φ(t)i + ψ(t)j. Solusi x = Φ(t) dapat direpresentasikan sebagai sebuah kurva dalam bidang xy. Kurva ini disebut sebagai trajektori (trajectory) dan bidang xy disebut sebagai bidang fase (phase plane). Kumpulan dari semua trajektori tersebut akan membentuk sebuah potret fase (phase portrait). Ruas kanan pada persamaan (2.1) tidak secara eksplisit memuat variabel t. Sistem dengan sifat tersebut disebut sebagai sistem autonomous. Sebaliknya, jika ruas kanan pada persamaan (2.1) secara eksplisit memuat variabel t maka sistem tersebut disebut sebagai sistem yang nonautonomous. Contoh sederhana dari sistem autonomous adalah sistem linier ẋ = Ax dengan A adalah

2 7 sebuah matriks konstan. Jika terdapat satu atau lebih elemen dari matriks A yang merupakan fungsi dari variabel bebas t maka sistem tersebut menjadi sistem yang nonautonomous [1]. II.2 Pelinieran Sistem Tak linier Tinjau kembali sistem dalam persamaan (2.1). Suatu titik dimana f(x, y) = g(x, y) = 0 disebut sebagai titik kritis atau titik tetap (steady state) atau titik kesetimbangan (equilibrium point) dari sistem (2.1). Titik tersebut bersesuaian dengan solusi konstan sistem atau solusi ekuilibrium (equilibrium solution) sistem. Misalkan (x, y ) merupakan titik tetap dari sistem (2.1). Karena f dan g adalah fungsi kontinu dan mempunyai turunan parsial yang kontinu pula maka sistem tersebut hampir linier (almost linear) di sekitar titik tetap (x, y ). Ini dapat dilihat dari ekspansi fungsi tersebut (dengan menggunakan ekspansi Taylor) di sekitar titik tetap (x, y ), yaitu f(x, y) = g(x, y) = f(x, y ) + f x (x, y )(x x ) + f y (x, y )(y y ) + η 1 (x, y), g(x, y ) + g x (x, y )(x x ) + g y (x, y )(y y ) + η 2 (x, y), dimana dan η 1 (x, y) [(x x ) 2 + (y y ) 2 ] 1 2 η 2 (x, y) [(x x ) 2 + (y y ) 2 ] 1 2 0, 0, untuk (x, y) (x, y ). Karena f(x, y ) = g(x, y ) = 0, = d(x x ) dy = d(y y ) d x x y y maka sistem (2.1) dapat direduksi menjadi = f x(x, y ) f y (x, y ) g x (x, y ) g y (x, y ) x x y y + η 1(x, y) η 2 (x, y) dan, atau dalam bentuk vektor = df (x )x + Θ(x), (2.4)

3 8 dimana x = (x, y ), x T = (x x, y y ) dan Θ T = (η 1, η 2 ). Bagian linier dari persamaan (2.4) mempunyai koefisien berupa matriks yang entrinya terdiri dari turunan parsial f dan g yang dievaluasi pada titik tetap (x, y ). Matriks ini disebut sebagai matriks Jacobi. Ini merupakan metode yang umumnya digunakan untuk mendapatkan bentuk linier dari sistem yang tak linier di sekitar titik tetap sistem (untuk pembahasan lebih lanjut, lihat [1]). II.3 Kestabilan Sistem Tinjau sistem tak linier = f(x). (2.5) Misalkan x adalah titik tetap dari sistem (2.5) yang memenuhi f(x ) = 0. Jika sistem tersebut diaproksimasi di sekitar titik tetap x maka diperoleh persamaan = Ax + g(x), (2.6) dengan g(x) merupakan bagian tak linier dari sistem (2.5). Perilaku kestabilan secara lokal dari sistem tak linier (2.5) di sekitar titik tetap x secara kualitatif akan ditentukan oleh perilaku kestabilan dari sistem liniernya, yaitu = Ax. (2.7) Hal ini disebabkan karena bentuk tak linier g(x) cukup kecil jika dibandingkan dengan bentuk liniernya yaitu Ax untuk x yang cukup kecil. Ini mengakibatkan trajektori sistem linier (2.7) menjadi hampiran terbaik untuk mendekati trajektori sistem tak linier (2.5) disekitar titik tetap x. Konsep kestabilan, stabil asimtotik dan ketidakstabilan ditentukan melalui koefisien bagian linier sistem yaitu matriks A. Berikut diberikan definisi yang berkaitan dengan konsep kestabilan di sekitar titik tetap dan sifat dari nilai eigen matriks A. Definisi Misalkan A adalah matriks yang berukuran n n dan memenuhi persamaan Ax = λx, (2.8)

4 9 dengan λ adalah skalar yang tidak diketahui dan x adalah vektor yang tidak diketahui. Nilai λ yang mengakibatkan (2.8) mempunyai solusi x 0 disebut sebagai nilai karakteristik atau nilai eigen, dan solusi x 0 dari (2.8) disebut sebagai vektor karakteristik atau vektor eigen yang bersesuaian dengan nilai karakteristik λ. Definisi Titik tetap x disebut sebagai titik tetap hiperbolik jika tidak ada nilai eigen dari matriks A yang bagian realnya bernilai nol. Titik tetap hiperbolik mempunyai beberapa macam jenis dimana pembagian jenis titik tersebut bergantung pada nilai karakteristik sistem. Titik tetap hiperbolik disebut titik pelana (saddle point) jika terdapat nilai eigen dari matriks Jacobi A yang bagian realnya bernilai negatif dan positif sehingga titik dengan jenis ini tidak stabil. Jika semua nilai eigen tersebut mempunyai bagian real yang negatif maka titik tetap hiperbolik disebut stabil node (sink). Sebaliknya jika semua nilai eigen tersebut mempunyai bagian real yang positif maka titik tetap hiperbolik disebut tidak stabil node (source). Jika nilai eigen tersebut bagian realnya bernilai nol maka titik tetap tersebut merupakan titik tetap tak hiperbolik yang biasa disebut dengan center (untuk pembahasan lebih lanjut lihat [7]). Definisi (Stabil, stabil asimtotik, tidak stabil) Titik tetap x dikatakan stabil jika untuk setiap ɛ > 0 terdapat δ > 0 sedemikian sehingga setiap solusi x(t) dari ẋ = f(x) memenuhi kondisi, jika x 0 x < δ, untuk t = 0, maka x(t) x < ɛ, untuk setiap t 0. Titik tetap x dikatakan stabil secara asimtotik jika x stabil dan terdapat δ 0, 0 < δ 0 < δ, sedemikian sehingga jika sebuah solusi x(t) memenuhi x 0 x < δ 0, untuk t = 0, maka lim t x(t) = x. Titik tetap yang tidak memenuhi kedua kondisi di atas dikatakan tidak stabil. Ilustrasi dari definisi di atas dapat dilihat dalam Gambar II.1.

5 10 (a) (b) Gambar II.1: (a) Stabil (b) Stabil asimtotik. Metode lain yang lebih sederhana dalam menentukan kestabilan titik tetap sistem linear telah diperkenalkan oleh Hurwitz ( ). Metode kestabilan tersebut dinamakan kriteria kestabilan Routh-Hurwitz. Tinjau sistem linier dalam persamaan (2.7) dengan A merupakan matriks Jacobi yang berukuran n n. Persamaan karakteristik dari matriks A adalah A λi = 0, (2.9) dengan I adalah matriks Identitas dan λ adalah skalar yang berupa nilai karakteristik matriks A yang akan menentukan kestabilan sistem. Persamaan tersebut dapat ditulis dalam bentuk polinom karakteristik, yaitu P (λ) = λ n + a 1 λ n 1 + a 2 λ n a n = 0, (2.10) dengan a k R, k = 1,..., n. Berdasarkan kriteria kestabilan Routh-Hurwitz, P (λ) akan menghasilkan akar-akar atau nilai karakteristik atau nilai eigen yang real dan negatif atau kompleks dengan bagian real yang negatif jika dan hanya jika setiap koefisien dari P (λ) memenuhi syarat, a 1, a n > 0 dan setiap nilai dari a 1 a 3 a 5 a 7... a 2n 1 1 a a a 1 a 3 1 a 3 a 5 2 a 4 a 6... a 2n 2 1 a 2 > 0, 0 a 1 a 2 a 4 > 0,..., 1 a 3 a 5... a 2n 3 > 0, 0 1 a 0 a 1 a 3 2 a 4... a 2n a 2n n dimana a k = 0, k > n; k, n N (untuk pembahasan lanjut, lihat [1] dan [8]).

6 11 II.4 II.4.1 Model Epidemiologi Model Dasar Epidemiologi Model epidemiologi pada umumnya berfokus pada dinamik dari transmisi atau perpindahan ciri atau karakter antara individu dengan individu, populasi dengan populasi, komunitas dengan komunitas, daerah dengan daerah bahkan negara dengan negara. Ciri atau karakter tersebut dapat berbentuk penyakit (malaria, tuberkulosis, HIV), karakteristik genetik (gender, ras, penyakit genetik) dan bentuk lain seperti kultur (bahasa, kepercayaan) [2]. Beberapa istilah yang sering kita dengar dalam model epidemiologi diantaranya adalah epidemik dan endemik. Epidemik merupakan sebuah fenomena dimana sebuah penyakit tiba-tiba muncul dalam suatu populasi dan menjangkit secara cepat sebelum penyakit tersebut menghilang dan kemudian akan muncul kembali dalam interval waktu tertentu (penyakit yang muncul secara temporal). Sedangkan endemik merupakan sebuah fenomena dimana sebuah penyakit yang muncul akan selalu ada dalam suatu populasi [5]. Dalam membentuk model epidemiologi ke bentuk persamaan differensial kita mengasumsikan bahwa setiap fungsi dalam kompartemen merupakan fungsi yang kontinu. Selain itu diasumsikan pula bahwa proses epidemik yang terjadi merupakan bentuk yang deterministik yaitu kelakukan dari populasi dan aturan yang membangun perkembangan model seluruhnya ditentukan dari latar belakang epidemik tersebut. Dalam memodelkan fenomena epidemik tersebut, kita dapat membagi populasi menjadi beberapa kelas populasi. Pembagian tersebut pertamakali diperkenalkan oleh Kermack-Mckendrick, 1927, yang disebut sebagai model kompartemen (compartmental model). Pada model dasar epidemiologi, kelas populasi umumnya dibagi menjadi tiga kompartemen yaitu susceptible population, dilambangkan dengan S(t), yaitu populasi sehat dan dapat terinfeksi penyakit, infective population, dilambangkan dengan I(t), yaitu populasi yang terinfeksi pada saat t dan dapat menularkan penyakit melalui kontak dengan populasi sehat dan removed population, dilambang-

7 12 kan dengan R(t) yaitu populasi yang pernah terinfeksi dan kemudian sembuh dari kemungkinan terinfeksi kembali atau menularkan penyakit. Metode removal merupakan suatu proses perpindahan populasi yang terinfeksi menjadi populasi yang sehat yang dilakukan melalui isolasi, imunisasi, recovery atau melalui kematian [2]. Gambar II.2 berikut menjelaskan periode terjadinya infeksi penyakit dalam suatu populasi. Gambar II.2: Periode infeksi suatu penyakit. II.4.2 Metode Pendekatan Operator The Next Generation Penentuan kestabilan sistem untuk model epidemiologi, selain dengan cara yang telah dibahas sebelumnya, juga dapat ditentukan melalui nilai atau besaran yang disebut sebagai basic reproductive number yang dilambangkan dengan R 0. Besaran R 0 didefinisikan sebagai jumlah kasus kedua (kasus sekunder) yang dihasilkan oleh satu orang penderita (orang yang terinfeksi dan dapat menularkan penyakit) selama masa menularnya (masa infeksi) pada saat ia masuk dalam sebuah populasi yang sehat. Dengan kata lain besaran tersebut berupa faktor kelipatan (multiplication factor) dari kasus awal (kasus primer) sehingga R 0 mempunyai nilai ambang yaitu 1. Jika diperoleh nilai R 0 > 1, ini berarti bahwa selama masa infeksi telah dihasilkan lebih dari satu kasus sekunder dari satu kasus primer. Tetapi sebaliknya, jika R 0 < 1 maka selama masa infeksi terjadi, interaksi tidak menghasilkan kasus sekunder dari kasus primer tersebut [5]. Basic reproductive number (R 0 ) merupakan besaran yang tidak berdimensi dan umumnya merupakan titik bifurkasi (transcritical bifurcation) dari suatu

8 13 sistem. Perubahan kestabilan ini terjadi pada nilai ambang (threshold value) R 0 = 1 dimana kestabilan lokal berubah dari kondisi tak endemik (bebas infeksi) menjadi kondisi yang endemik. Nilai R 0 sendiri dapat diperoleh melalui pencarian titik tetap endemik atau analisis kestabilan titik tetap tak endemik (bebas penyakit). Metode lain yang dapat digunakan untuk menentukan nilai R 0 yaitu dengan menggunakan pendekatan operator the next generation [3]. Metode pendekatan operator the next generation merupakan sebuah teknik pencarian nilai R 0 yang pertamakali diperkenalkan oleh Diekmann et al. pada tahun 1990 dimana mereka mendefenisikan R 0 sebagai jari-jari spektral (spectral radius) dari operator the next generation [5]. Misalkan diberikan suatu sistem persamaan differensial: dx dy dz = f(x, Y, Z), (2.11) = g(x, Y, Z), (2.12) = h(x, Y, Z), (2.13) dengan X R r, Y R s, Z R n, r, s, n 0 dan h(x, 0, 0) = 0. Komponen X memuat subpopulasi individu yang sehat (susceptible) atau sembuh (recover), komponen Y memuat subpopulasi individu yang terinfeksi (dalam masa inkubasi) dan komponen Z memuat subpopulasi individu yang terinfeksi dan dapat mentransmisikan penyakit (dalam masa menular). Penentuan nilai R 0 dilakukan dengan cara mencari matriks the next generation dari sistem (2.11)-(2.13) melalui langkah berikut. 1. Misalkan E 0 = (X, 0, 0) R r+s+n adalah titik tetap tak endemik dari sistem (2.11)-(2.13) yang memenuhi f(x, 0, 0) = g(x, 0, 0) = h(x, 0, 0) = 0. (2.14) 2. Asumsikan g(x, Y, Z) = 0 yang secara implisit menentukan fungsi Y = g(x, Z). (2.15)

9 14 3. Subtitusi persamaan (2.15) dan titik tetap tak endemik ke persamaan (2.13), diperoleh dz = h(x, g(x, Z), Z). (2.16) 4. Turunkan persamaan (2.16) terhadap variabel Z dan kemudian dievaluasi di Z = 0, diperoleh D Z h(x, g(x, Z), Z) Z=0. (2.17) 5. Misalkan A := D Z h(x, g(x, Z), Z) Z=0. Asumsikan matriks A dapat ditulis dalam bentuk A = M D, dengan M adalah matriks tak negatif, M 0 (m i,j 0), dan D > 0 suatu matriks diagonal. Dari matriks M dan D diperoleh matriks the next generation dari sistem (2.11)-(2.13) yaitu matriks MD 1 dimana matriks M dapat diartikan sebagai ratarata infeksi per satuan waktu dan D 1 merupakan periode infeksi. 6. Misalkan m(a) = sup{r(λ) : λ σ(a)} didefinisikan sebagai batas spektral dari matriks A dengan R(λ) merupakan bagian real dari nilai eigen λ. Misalkan pula ρ(a) = lim n A n 1 n yang didefinisikan sebagai radius spektral (dominant eigenvalue) dari matriks A, maka m(a) < 0 ρ(md 1 ) < 1, atau m(a) > 0 ρ(md 1 ) > 1, (pembuktiannya dapat dilihat di [6]). 7. Karena basic reproductive number (R 0 ) dinyatakan sebagai radius spektral dari matriks MD 1, maka diperoleh R 0 = ρ(md 1 ), dengan MD 1 disebut matriks (operator) the next generation [3].

10 15 Sebagai ilustrasi, berikut akan diberikan contoh penerapan metode tersebut. Tinjau model (generik) oleh Kermack dan Mckendrick, dengan faktor kelahiran dan kematian sebagai berikut: ds di dr = Λ βs I µs, N (2.18) = βs I (µ + γ)i, N (2.19) = γi µr, (2.20) dengan N = S + I + R. Misalkan X = (S, R), Z = (I) dan h(x, Z) = βs I N (µ+γ)i. Dari persamaan (2.18)-(2.20) diperoleh titik tetap tak endemik sistem yaitu E 0 = ( Λ, 0, 0). Subtitusi titik tersebut ke persamaan (2.19) kemudian µ turunkan terhadap Z = (I) sehingga diperoleh dengan Λ µ A = D Z h(x, g(x, Z), Z) Z=0 = h(x, Z) Z Z=0 = [β Λ I (µ + γ)i] µ N I I=0 = β (µ + γ), = N dimana subpopulasi sehat (belum terinfeksi) sama dengan total populasi N. Misalkan M = β dan D = (µ + γ) maka diperoleh R 0 = β (µ+γ).

BAB II LANDASAN TEORI. dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta

BAB II LANDASAN TEORI. dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta BAB II LANDASAN TEORI Pada bab ini akan diuraikan beberapa teori-teori yang digunakan sebagai acuan dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta teorema-teorema

Lebih terperinci

BAB II KAJIAN TEORI. representasi pemodelan matematika disebut sebagai model matematika. Interpretasi Solusi. Bandingkan Data

BAB II KAJIAN TEORI. representasi pemodelan matematika disebut sebagai model matematika. Interpretasi Solusi. Bandingkan Data A. Model Matematika BAB II KAJIAN TEORI Pemodelan matematika adalah proses representasi dan penjelasan dari permasalahan dunia real yang dinyatakan dalam pernyataan matematika (Widowati dan Sutimin, 2007:

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Pada bab ini akan dibahas tinjauan pustaka yang akan digunakan untuk tesis ini, yang selanjutnya akan di perlukan pada Bab 3. Tinjauan pustaka yang dibahas adalah mengenai yang mendukung

Lebih terperinci

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai definisi-definisi dan teorema-teorema

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai definisi-definisi dan teorema-teorema BAB II LANDASAN TEORI Pada bab ini akan dibahas mengenai definisi-definisi dan teorema-teorema yang akan menjadi landasan untuk pembahasan pada bab III nanti, di antaranya model matematika penyebaran penyakit,

Lebih terperinci

BAB II LANDASAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi

BAB II LANDASAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi BAB II LANDASAN TEORI Pada bab ini akan dibahas tentang landasan teori yang digunakan pada bab selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi yang diuraikan berupa definisi-definisi

Lebih terperinci

Bab III Model Awal Kecanduan Terhadap Rokok

Bab III Model Awal Kecanduan Terhadap Rokok Bab III Model Awal Kecanduan Terhadap Rokok III.1 Pembentukan Model Model kecanduan terhadap rokok dibentuk menggunakan model dasar dalam epidemiologi yaitu model SIR (Susceptible, Infective, Removed)

Lebih terperinci

Created By Aristastory.Wordpress.com BAB I PENDAHULUAN. Teori sistem dinamik adalah bidang matematika terapan yang digunakan untuk

Created By Aristastory.Wordpress.com BAB I PENDAHULUAN. Teori sistem dinamik adalah bidang matematika terapan yang digunakan untuk BAB I PENDAHULUAN 1.1 Latar Belakang Teori sistem dinamik adalah bidang matematika terapan yang digunakan untuk memeriksa kelakuan sistem dinamik kompleks, biasanya dengan menggunakan persamaan diferensial

Lebih terperinci

BAB II LANDASAN TEORI. pada bab pembahasan. Materi-materi yang akan dibahas yaitu pemodelan

BAB II LANDASAN TEORI. pada bab pembahasan. Materi-materi yang akan dibahas yaitu pemodelan BAB II LANDASAN TEORI Pada bab ini akan dijelaskan mengenai landasan teori yang akan digunakan pada bab pembahasan. Materi-materi yang akan dibahas yaitu pemodelan matematika, teorema Taylor, nilai eigen,

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Pada bab ini dibahas mengenai tinjauan pustaka yang digunakan dalam penelitian ini, khususnya yang diperlukan dalam Bab 3. Teori yang dibahas adalah teori yang mendukung pembentukan

Lebih terperinci

II. LANDASAN TEORI. Definisi 1 (Sistem Persamaan Diferensial Biasa Linear) Definisi 2 (Sistem Persamaan Diferensial Biasa Taklinear)

II. LANDASAN TEORI. Definisi 1 (Sistem Persamaan Diferensial Biasa Linear) Definisi 2 (Sistem Persamaan Diferensial Biasa Taklinear) 3 II. LANDASAN TEORI 2.1 Sistem Persamaan Diferensial Biasa Definisi 1 (Sistem Persamaan Diferensial Biasa Linear) Misalkan suatu sistem persamaan diferensial biasa dinyatakan sebagai = + ; =, R (1) dengan

Lebih terperinci

BAB II KAJIAN TEORI. digunakan pada bab pembahasan. Teori-teori ini digunakan sebagai bahan acuan

BAB II KAJIAN TEORI. digunakan pada bab pembahasan. Teori-teori ini digunakan sebagai bahan acuan BAB II KAJIAN TEORI Pada bab ini akan dijelaskan mengenai landasan teori yang akan digunakan pada bab pembahasan. Teori-teori ini digunakan sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi

Lebih terperinci

BAB II LANDASAN TEORI. eigen dan vektor eigen, persamaan diferensial, sistem persamaan diferensial, titik

BAB II LANDASAN TEORI. eigen dan vektor eigen, persamaan diferensial, sistem persamaan diferensial, titik BAB II LANDASAN TEORI Pada bab ini, akan dijelaskan landasan teori yang akan digunakan dalam bab selanjutnya sebagai bahan acuan yang mendukung dan memperkuat tujuan penelitian. Landasan teori yang dimaksud

Lebih terperinci

BAB III HASIL DAN PEMBAHASAN. ekuilibrium bebas penyakit beserta analisis kestabilannya. Selanjutnya dilakukan

BAB III HASIL DAN PEMBAHASAN. ekuilibrium bebas penyakit beserta analisis kestabilannya. Selanjutnya dilakukan BAB III HASIL DAN PEMBAHASAN Pada bab ini akan dijelaskan mengenai model matematika penyakit campak dengan pengaruh vaksinasi, diantaranya formulasi model penyakit campak, titik ekuilibrium bebas penyakit

Lebih terperinci

BAB II KAJIAN TEORI. Persamaan diferensial sangat penting dalam pemodelan matematika khususnya

BAB II KAJIAN TEORI. Persamaan diferensial sangat penting dalam pemodelan matematika khususnya BAB II KAJIAN TEORI 2.1 Persamaan Diferensial Persamaan diferensial sangat penting dalam pemodelan matematika khususnya untuk pemodelan yang membutuhkan solusi dari sebuah permasalahan. Pemodelan matematika

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Persamaan diferensial Persamaan diferensial merupakan persamaan yang melibatkan turunanturunan dari fungsi yang tidak diketahui (Waluya, 2006). Contoh 2.1 : Diberikan persamaan

Lebih terperinci

Persamaan Diferensial Biasa

Persamaan Diferensial Biasa Persamaan Diferensial Biasa Titik Tetap dan Sistem Linear Toni Bakhtiar Departemen Matematika IPB Oktober 2012 Toni Bakhtiar (m@thipb) PDB Oktober 2012 1 / 31 Titik Tetap SPD Mandiri dan Titik Tetap Tinjau

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Sistem Persamaan Diferensial Definisi 2.1.1 Persamaan Diferensial Persamaan diferensial adalah persamaan yang memuat variabel bebas, variabel tak bebas dan derivative-derivatif

Lebih terperinci

BIFURKASI PADA MODEL SUSCEPTIBLE INFECTED RECOVERED (SIR) DENGAN WAKTU TUNDA DAN LAJU PENULARAN BILINEAR SKRIPSI

BIFURKASI PADA MODEL SUSCEPTIBLE INFECTED RECOVERED (SIR) DENGAN WAKTU TUNDA DAN LAJU PENULARAN BILINEAR SKRIPSI BIFURKASI PADA MODEL SUSCEPTIBLE INFECTED RECOVERED (SIR) DENGAN WAKTU TUNDA DAN LAJU PENULARAN BILINEAR SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta

Lebih terperinci

BAB IV PEMBAHASAN. 4.1 Analisis Kestabilan Model Matematika AIDS dengan Transmisi. atau Ibu menyusui yang positif terinfeksi HIV ke anaknya.

BAB IV PEMBAHASAN. 4.1 Analisis Kestabilan Model Matematika AIDS dengan Transmisi. atau Ibu menyusui yang positif terinfeksi HIV ke anaknya. BAB IV PEMBAHASAN Pada bab ini dilakukan analisis model penyebaran penyakit AIDS dengan adanya transmisi vertikal pada AIDS. Dari model matematika tersebut ditentukan titik setimbang dan kemudian dianalisis

Lebih terperinci

Oleh Nara Riatul Kasanah Dosen Pembimbing Drs. Sri Suprapti H., M.Si

Oleh Nara Riatul Kasanah Dosen Pembimbing Drs. Sri Suprapti H., M.Si Oleh Nara Riatul Kasanah 1209100079 Dosen Pembimbing Drs. Sri Suprapti H., M.Si JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2014 PENDAHULUAN

Lebih terperinci

BAB II KAJIAN TEORI. dinamik, sistem linear, sistem nonlinear, titik ekuilibrium, analisis kestabilan

BAB II KAJIAN TEORI. dinamik, sistem linear, sistem nonlinear, titik ekuilibrium, analisis kestabilan BAB II KAJIAN TEORI Pada bab ini akan dibahas mengenai nilai eigen dan vektor eigen, sistem dinamik, sistem linear, sistem nonlinear, titik ekuilibrium, analisis kestabilan sistem dinamik, kriteria Routh-Hurwitz,

Lebih terperinci

Dinamik Model Epidemi SIRS dengan Laju Kematian Beragam

Dinamik Model Epidemi SIRS dengan Laju Kematian Beragam Jurnal Matematika Integratif ISSN 1412-6184 Volume 10 No 1, April 2014, hal 1-7 Dinamik Model Epidemi SIRS dengan Laju Kematian Beragam Ni matur Rohmah, Wuryansari Muharini Kusumawinahyu Jurusan Matematika,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 7 BAB II TINJAUAN PUSTAKA Dalam bab ini akan dibahas beberapa poin tentang sistem dinamik, kestabilan sistem dinamik, serta konsep bifurkasi. A. Sistem Dinamik Secara umum Sistem dinamik didefinisikan

Lebih terperinci

Karena v merupakan vektor bukan nol, maka A Iλ = 0. Dengan kata lain, Persamaan (2.2) dapat dipenuhi jika dan hanya jika,

Karena v merupakan vektor bukan nol, maka A Iλ = 0. Dengan kata lain, Persamaan (2.2) dapat dipenuhi jika dan hanya jika, BAB II KAJIAN TEORI Pada bab ini akan dibahas mengenai definisi-definisi dan teorema-teorema dari nilai eigen, vektor eigen, dan diagonalisasi, sistem persamaan differensial, model predator prey lotka-voltera,

Lebih terperinci

KESTABILAN TITIK TETAP MODEL PENULARAN PENYAKIT TIDAK FATAL

KESTABILAN TITIK TETAP MODEL PENULARAN PENYAKIT TIDAK FATAL Jurnal Matematika UNAND Vol. 2 No. 3 Hal. 58 65 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND KESTABILAN TITIK TETAP MODEL PENULARAN PENYAKIT TIDAK FATAL AKHIRUDDIN Program Studi Matematika, Fakultas

Lebih terperinci

II LANDASAN TEORI 2.1 Sistem Persamaan Diferensial Definisi 1 [Sistem Persamaan Diferensial Linear (SPDL)]

II LANDASAN TEORI 2.1 Sistem Persamaan Diferensial Definisi 1 [Sistem Persamaan Diferensial Linear (SPDL)] II LANDASAN TEORI 2.1 Sistem Persamaan Diferensial Definisi 1 [Sistem Persamaan Diferensial Linear (SPDL)] Suatu sistem persamaan diferensial dinyatakan sebagai berikut: A adalah matriks koefisien konstan

Lebih terperinci

III PEMBAHASAN. μ v. r 3. μ h μ h r 4 r 5

III PEMBAHASAN. μ v. r 3. μ h μ h r 4 r 5 III PEMBAHASAN 3.1 Perumusan Model Model yang akan dibahas dalam karya ilmiah ini adalah model SIDRS (Susceptible Infected Dormant Removed Susceptible) dari penularan penyakit malaria dalam suatu populasi.

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN Pada Bab I Pendahuluan ini dijelaskan mengenai latar belakang yang mendasari penelitian yang kemudian dirumuskan dalam rumusan masalah. Berdasarkan latar belakang dan rumusan masalah

Lebih terperinci

Bab III Model Matematika Transmisi Filariasis Tanpa Pengobatan

Bab III Model Matematika Transmisi Filariasis Tanpa Pengobatan Bab III Model Matematika Transmisi Filariasis Tanpa Pengobatan Situasi filariasis dalam kehidupan nyata telah dijelaskan di Bab I dan II Selanjunya, penyederhanaan masalah untuk memudahkan pembentukan

Lebih terperinci

SISTEM DINAMIK KONTINU LINEAR. Oleh: 1. Meirdania Fitri T 2. Siti Khairun Nisa 3. Grahani Ayu Deca F. 4. Fira Fitriah 5.

SISTEM DINAMIK KONTINU LINEAR. Oleh: 1. Meirdania Fitri T 2. Siti Khairun Nisa 3. Grahani Ayu Deca F. 4. Fira Fitriah 5. SISTEM DINAMIK KONTINU LINEAR Oleh: 1. Meirdania Fitri T 2. Siti Khairun Nisa 3. Grahani Ayu Deca F. 4. Fira Fitriah 5. Lisa Risfana Sari Sistem Dinamik D Sistem dinamik adalah sistem yang dapat diketahui

Lebih terperinci

PEMODELAN MATEMATIKA DAN ANALISIS STABILITAS DARI PENYEBARAN PENYAKIT FLU BURUNG

PEMODELAN MATEMATIKA DAN ANALISIS STABILITAS DARI PENYEBARAN PENYAKIT FLU BURUNG PEMODELAN MATEMATIKA DAN ANALISIS STABILITAS DARI PENYEBARAN PENYAKIT FLU BURUNG Dinita Rahmalia Universitas Islam Darul Ulum Lamongan, Abstrak. Di Indonesia terdapat banyak peternak unggas sebagai matapencaharian

Lebih terperinci

Bab 3 MODEL DAN ANALISIS MATEMATIKA

Bab 3 MODEL DAN ANALISIS MATEMATIKA Bab 3 MODEL DAN ANALISIS MATEMATIKA Pada bab ini akan dimodelkan permasalahan penyebaran virus flu burung yang bergantung pada ruang dan waktu. Pada bab ini akan dibahas pula analisis dari model hingga

Lebih terperinci

APLIKASI METODE MATRIKS GENERASI DALAM MENENTUKAN NILAI MATEMATIKA PENYEBARAN VIRUS HIV/AIDS. 10 Makassar, kode Pos 90245

APLIKASI METODE MATRIKS GENERASI DALAM MENENTUKAN NILAI MATEMATIKA PENYEBARAN VIRUS HIV/AIDS. 10 Makassar, kode Pos 90245 APLIKASI METODE MATRIKS GENERASI DALAM MENENTUKAN NILAI MATEMATIKA PENYEBARAN VIRUS HIV/AIDS MODEL Septiangga Van Nyek Perdana Putra 1), Kasbawati 2), Syamsuddin Toaha 3) 1) Mahasiswa Jurusan Matematika,

Lebih terperinci

BAB II LANDASAN TEORI. Pada bab ini, akan diuraikan definisi-definisi dan teorema-teorema yang

BAB II LANDASAN TEORI. Pada bab ini, akan diuraikan definisi-definisi dan teorema-teorema yang BAB II LANDASAN TEORI Pada bab ini, akan diuraikan definisi-definisi dan teorema-teorema yang akan digunakan sebagi landasan pembahasan untuk bab III. Materi yang akan diuraikan antara lain persamaan diferensial,

Lebih terperinci

Model Matematika Penyebaran Internal Demam Berdarah Dengue dalam Tubuh Manusia

Model Matematika Penyebaran Internal Demam Berdarah Dengue dalam Tubuh Manusia BAB IV Model Matematika Penyebaran Internal Demam Berdarah Dengue dalam Tubuh Manusia Bab ini menjelaskan model penyebaran virus Dengue dalam tubuh manusia, atau dikenal sebagai model internal. Bagian

Lebih terperinci

BAB II TINJAUAN PUSTAKA. kestabilan model predator-prey tipe Holling II dengan faktor pemanenan.

BAB II TINJAUAN PUSTAKA. kestabilan model predator-prey tipe Holling II dengan faktor pemanenan. BAB II TINJAUAN PUSTAKA Dalam bab ini akan dibahas mengenai dasar teori untuk menganalisis simulasi kestabilan model predator-prey tipe Holling II dengan faktor pemanenan. 2.1 Persamaan Diferensial Biasa

Lebih terperinci

BAB III PEMBAHASAN. Ebola. Setelah model terbentuk, akan dilanjutkan dengan analisa bifurkasi pada

BAB III PEMBAHASAN. Ebola. Setelah model terbentuk, akan dilanjutkan dengan analisa bifurkasi pada BAB III PEMBAHASAN Pada bab ini akan dibentuk model matematika dari penyebaran penyakit virus Ebola. Setelah model terbentuk, akan dilanjutkan dengan analisa bifurkasi pada parameter laju transmisi. A.

Lebih terperinci

ANALISIS STABILITAS SISTEM DINAMIK UNTUK MODEL MATEMATIKA EPIDEMIOLOGI TIPE-SIR (SUSCEPTIBLES, INFECTION, RECOVER)

ANALISIS STABILITAS SISTEM DINAMIK UNTUK MODEL MATEMATIKA EPIDEMIOLOGI TIPE-SIR (SUSCEPTIBLES, INFECTION, RECOVER) Jurnal Euclid, Vol.4, No.1, pp.646 ANALISIS STABILITAS SISTEM DINAMIK UNTUK MODEL MATEMATIKA EPIDEMIOLOGI TIPE-SIR (SUSCEPTIBLES, INFECTION, RECOVER) Herri Sulaiman Program Studi Pendidikan Matematika

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Hama adalah organisme yang mengganggu atau merusak tanaman sehingga pertumbuhan dan perkembangannya terganggu. Secara umum, organisme tersebut adalah mikroorganisme

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Aljabar Linear Definisi 2.1.1 Matriks Matriks A adalah susunan persegi panjang yang terdiri dari skalar-skalar yang biasanya dinyatakan dalam bentuk berikut: [ ] Definisi 2.1.2

Lebih terperinci

Model Matematika SIV Untuk Penyebaran Virus Tungro Pada Tanaman Padi

Model Matematika SIV Untuk Penyebaran Virus Tungro Pada Tanaman Padi Seminar Matematika dan Pendidikan Matematika UNY 2017 Model Matematika SIV Untuk Penyebaran Virus Tungro Pada Tanaman Padi Sischa Wahyuning Tyas 1, Dwi Lestari 2 Universitas Negeri Yogyakarta 1 Universitas

Lebih terperinci

Kestabilan dan Bifurkasi Model Epidemik SEIR dengan Laju Kesembuhan Tipe Jenuh

Kestabilan dan Bifurkasi Model Epidemik SEIR dengan Laju Kesembuhan Tipe Jenuh Kestabilan dan Bifurkasi Model Epidemik SEIR dengan Laju Kesembuhan Tipe Jenuh Khoiril Hidayati, Setijo Winarko, I Gst Ngr Rai Usadha Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam,

Lebih terperinci

II. TINJAUAN PUSTAKA. Sistem dinamik adalah sistem yang berubah dari waktu ke waktu (Farlow,et al.,

II. TINJAUAN PUSTAKA. Sistem dinamik adalah sistem yang berubah dari waktu ke waktu (Farlow,et al., II. TINJAUAN PUSTAKA 2.1 Sistem Dinamik Sistem dinamik adalah sistem yang berubah dari waktu ke waktu (Farlow,et al., 2002). Salah satu tujuan utama dari sistem dinamik adalah mempelajari perilaku dari

Lebih terperinci

BIFURKASI SADDLE-NODE PADA SISTEM INTERAKSI NONLINEAR SEPASANG OSILATOR TANPA PERTURBASI

BIFURKASI SADDLE-NODE PADA SISTEM INTERAKSI NONLINEAR SEPASANG OSILATOR TANPA PERTURBASI BIFURKASI SADDLE-NODE PADA SISTEM INTERAKSI NONLINEAR SEPASANG OSILATOR TANPA PERTURBASI Yolpin Durahim 1 Novianita Achmad Hasan S. Panigoro Diterima: xx xxxx 20xx, Disetujui: xx xxxx 20xx o Abstrak Dalam

Lebih terperinci

DINAMIKA PERKEMBANGAN HIV/AIDS DI SULAWESI UTARA MENGGUNAKAN MODEL PERSAMAAN DIFERENSIAL NONLINEAR SIR (SUSCEPTIBLE, INFECTIOUS AND RECOVERED)

DINAMIKA PERKEMBANGAN HIV/AIDS DI SULAWESI UTARA MENGGUNAKAN MODEL PERSAMAAN DIFERENSIAL NONLINEAR SIR (SUSCEPTIBLE, INFECTIOUS AND RECOVERED) DINAMIKA PERKEMBANGAN HIV/AIDS DI SULAWESI UTARA MENGGUNAKAN MODEL PERSAMAAN DIFERENSIAL NONLINEAR SIR (SUSCEPTIBLE, INFECTIOUS AND RECOVERED) Amir Tjolleng 1), Hanny A. H. Komalig 1), Jantje D. Prang

Lebih terperinci

Analisis Kestabilan Global Model Epidemik SIRS menggunakan Fungsi Lyapunov

Analisis Kestabilan Global Model Epidemik SIRS menggunakan Fungsi Lyapunov Analisis Kestabilan Global Model Epidemik SIRS menggunakan Fungsi Lyapunov Yuni Yulida 1, Faisal 2, Muhammad Ahsar K. 3 1,2,3 Program Studi Matematika FMIPA Unlam Universitas Lambung Mangkurat Jl. Jend.

Lebih terperinci

ADLN PERPUSTAKAAN UNIVERSITAS AIRLANGGA BAB IV PEMBAHASAN. optimal dari model untuk mengurangi penyebaran polio pada dengan

ADLN PERPUSTAKAAN UNIVERSITAS AIRLANGGA BAB IV PEMBAHASAN. optimal dari model untuk mengurangi penyebaran polio pada dengan BAB IV PEMBAHASAN Pada bab ini akan dilakukan analisis model dan kontrol optimal penyebaran polio dengan vaksinasi. Dari model matematika penyebaran polio tersebut akan ditentukan titik setimbang dan kemudian

Lebih terperinci

Model Deterministik Masalah Kecanduan Narkoba dengan Faktor Kontrol Terhadap Pemakai dan Pengedar Narkoba

Model Deterministik Masalah Kecanduan Narkoba dengan Faktor Kontrol Terhadap Pemakai dan Pengedar Narkoba Vol. 7 No. 3-22 Juli 2 Model Deterministik Masalah Kecanduan Narkoba dengan Faktor Kontrol Terhadap Pemakai dan Pengedar Narkoba Kasbawati Syamsuddin Toaha Abstrak Salah satu epidemi yang sedang mengancam

Lebih terperinci

Model Matematika Penyebaran Eksternal Demam Berdarah Dengue

Model Matematika Penyebaran Eksternal Demam Berdarah Dengue BAB II Model Matematika Penyebaran Eksternal Demam Berdarah Dengue Bab ini terbagi menjadi tiga bagian. Bagian pertama berisi penurunan model matematika penyebaran penyakit DBD yang selanjutnya akan disebut

Lebih terperinci

ANALISIS STABILITAS PENYEBARAN VIRUS EBOLA PADA MANUSIA

ANALISIS STABILITAS PENYEBARAN VIRUS EBOLA PADA MANUSIA ANALISIS STABILITAS PENYEBARAN VIRUS EBOLA PADA MANUSIA Mutholafatul Alim 1), Ari Kusumastuti 2) 1) Mahasiswa Jurusan Matematika, Universitas Islam Negeri Maulana Malik Ibrahim Malang 1) mutholafatul@rocketmail.com

Lebih terperinci

Suatu sistem persamaan diferensial dinyatakan sebagai berikut : Misalkan suatu sistem persamaan diferensial (SPD) dinyatakan sebagai

Suatu sistem persamaan diferensial dinyatakan sebagai berikut : Misalkan suatu sistem persamaan diferensial (SPD) dinyatakan sebagai 11. TINJAUAN PUSTAKA 2.1 Sistem Persamaan Diferensial Definisi 1 [ Sistem Persamaan Diferensial Linear (SPDL) ] Jika suatu sistem persamaan diferensial dinyatakan sebagai berikut : x=ax+b,x(0)=x0,x~%"

Lebih terperinci

ANALISIS STABILITAS MODEL MATEMATIKA DARI PENYEBARAN PENYAKIT MENULAR MELALUI TRANSPORTASI ANTAR DUA KOTA

ANALISIS STABILITAS MODEL MATEMATIKA DARI PENYEBARAN PENYAKIT MENULAR MELALUI TRANSPORTASI ANTAR DUA KOTA ANALISIS STABILITAS MODEL MATEMATIKA DARI PENYEBARAN PENYAKIT MENULAR MELALUI TRANSPORTASI ANTAR DUA KOTA ANALYSIS OF STABILITY OF SPREADING DISEASE MATHEMATICAL MODEL WITH TRANSPORT-RELATED INFECTION

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Persamaan diferensial Persamaan diferensial adalah suatu persamaan yang di dalamnya terdapat turunan-turunan. Jika terdapat variabel bebas tunggal, turunannya merupakan

Lebih terperinci

ANALISIS KESTABILAN MODEL DINAMIK PENYEBARAN VIRUS INFLUENZA

ANALISIS KESTABILAN MODEL DINAMIK PENYEBARAN VIRUS INFLUENZA ANALISIS KESTABILAN MODEL DINAMIK PENYEBARAN VIRUS INFLUENZA SKRIPSI Oleh Elok Faiqotul Himmah J2A413 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS DIPONEGORO SEMARANG 28

Lebih terperinci

IV HASIL DAN PEMBAHASAN

IV HASIL DAN PEMBAHASAN IV HASIL DAN PEMBAHASAN 4.1 Penentuan Titik Tetap Analisis titik tetap pada sistem persamaan diferensial sering digunakan untuk menentukan suatu solusi yang tidak berubah menurut waktu, yaitu pada saat

Lebih terperinci

BAB III PEMBAHASAN. tenggorokan, batuk, dan kesulitan bernafas. Pada kasus Avian Influenza, gejala

BAB III PEMBAHASAN. tenggorokan, batuk, dan kesulitan bernafas. Pada kasus Avian Influenza, gejala BAB III PEMBAHASAN A. Permasalahan Nyata Flu Burung (Avian Influenza) Avian Influenza atau yang lebih dikenal dengan flu burung adalah suatu penyakit menular yang disebabkan oleh virus influenza tipe A.

Lebih terperinci

BAB III MODEL KAPLAN. 3.1 Model Kaplan

BAB III MODEL KAPLAN. 3.1 Model Kaplan BAB III MODEL KAPLAN Pada bab ini akan dipaparkan model Kaplan secara terperinci sebelum memodifikasinya menjadi model yang lebih realistis pada bab selanjutnya. Kaplan memberikan suatu model deterministik

Lebih terperinci

ANALISIS KESTABILAN DAN PROSES MARKOV MODEL PENYEBARAN PENYAKIT EBOLA

ANALISIS KESTABILAN DAN PROSES MARKOV MODEL PENYEBARAN PENYAKIT EBOLA Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 04, No. 3 (2015), hal 163-172 ANALISIS KESTABILAN DAN PROSES MARKOV MODEL PENYEBARAN PENYAKIT EBOLA Auliah Arfani, Nilamsari Kusumastuti, Shantika

Lebih terperinci

MODEL SIR UNTUK PENYEBARAN PENYAKIT FLU BURUNG

MODEL SIR UNTUK PENYEBARAN PENYAKIT FLU BURUNG MODEL SIR UNTUK PENYEBARAN PENYAKIT FLU BURUNG MANSYUR A. R.1 TOAHA S.2 KHAERUDDIN3 Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Hasanuddin Jln. Perintis Kemerdekaan Km.

Lebih terperinci

Analisis Kestabilan Pada Model Transmisi Virus Hepatitis B yang Dipengaruhi Oleh Migrasi

Analisis Kestabilan Pada Model Transmisi Virus Hepatitis B yang Dipengaruhi Oleh Migrasi Analisis Kestabilan Pada Model Transmisi Virus Hepatitis B yang Dipengaruhi Oleh Migrasi 1 Firdha Dwishafarina Zainal, Setijo Winarko, dan Lukman Hanafi Jurusan Matematika, Fakultas MIPA, Institut Teknologi

Lebih terperinci

Teori Bifurkasi (3 SKS)

Teori Bifurkasi (3 SKS) Teori Bifurkasi (3 SKS) Department of Mathematics Faculty of Mathematics and Natural Sciences Gadjah Mada University E-mail : f_adikusumo@gadjahmada.edu Sistem Dinamik PENGERTIAN UMUM : - Formalisasi matematika

Lebih terperinci

BIFURKASI HOPF PADA SISTEM PREDATOR PREY DENGAN FUNGSI RESPON TIPE II

BIFURKASI HOPF PADA SISTEM PREDATOR PREY DENGAN FUNGSI RESPON TIPE II BIFURKASI HOPF PADA SISTEM PREDATOR PREY DENGAN FUNGSI RESPON TIPE II SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk Memenuhi Sebagian Persyaratan

Lebih terperinci

PENYELESAIAN NUMERIK DAN ANALISA KESTABILAN PADA MODEL EPIDEMIK SEIR DENGAN PENULARAN PADA PERIODE LATEN

PENYELESAIAN NUMERIK DAN ANALISA KESTABILAN PADA MODEL EPIDEMIK SEIR DENGAN PENULARAN PADA PERIODE LATEN PENYELESAIAN NUMERIK DAN ANALISA KESTABILAN PADA MODEL EPIDEMIK SEIR DENGAN PENULARAN PADA PERIODE LATEN Oleh: Labibah Rochmatika (12 09 100 088) Dosen Pembimbing: Drs. M. Setijo Winarko M.Si Drs. Lukman

Lebih terperinci

BIFURKASI TRANSKRITIKAL PADA SISTEM DINAMIK SKRIPSI

BIFURKASI TRANSKRITIKAL PADA SISTEM DINAMIK SKRIPSI BIFURKASI TRANSKRITIKAL PADA SISTEM DINAMIK SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk memenuhi sebagian persyaratan guna memperoleh gelar

Lebih terperinci

MODEL MATEMATIKA SACR PENYEBARAN VIRUS HEPATITIS C PADA PENGGUNA NARKOBA SUNTIK SKRIPSI. memperoleh gelar Sarjana Sains

MODEL MATEMATIKA SACR PENYEBARAN VIRUS HEPATITIS C PADA PENGGUNA NARKOBA SUNTIK SKRIPSI. memperoleh gelar Sarjana Sains MODEL MATEMATIKA SACR PENYEBARAN VIRUS HEPATITIS C PADA PENGGUNA NARKOBA SUNTIK SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk memenuhi sebagian

Lebih terperinci

Variabel Banyak Bernilai Real 1 / 1

Variabel Banyak Bernilai Real 1 / 1 Fungsi Variabel Banyak Bernilai Real Turunan Parsial dan Turunan Wono Setya Budhi KK Analisis dan Geometri, FMIPA ITB Variabel Banyak Bernilai Real 1 / 1 Turunan Parsial dan Turunan Usaha pertama untuk

Lebih terperinci

BAB 4 MODEL DINAMIKA NEURON FITZHUGH-NAGUMO

BAB 4 MODEL DINAMIKA NEURON FITZHUGH-NAGUMO BAB 4 MODEL DINAMIKA NEURON FITZHUGH-NAGUMO 4.1 Model Dinamika Neuron Fitzhugh-Nagumo Dalam papernya pada tahun 1961, Fitzhugh mengusulkan untuk menerangkan model Hodgkin-Huxley menjadi lebih umum, yang

Lebih terperinci

KESTABILAN DAN BIFURKASI MODEL EPIDEMIK SEIR DENGAN LAJU KESEMBUHAN TIPE JENUH. Oleh: Khoiril Hidayati ( )

KESTABILAN DAN BIFURKASI MODEL EPIDEMIK SEIR DENGAN LAJU KESEMBUHAN TIPE JENUH. Oleh: Khoiril Hidayati ( ) KESTABILAN DAN BIFURKASI MODEL EPIDEMIK SEIR DENGAN LAJU KESEMBUHAN TIPE JENUH Oleh: Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi Sepuluh Nopember Surabaya 2013 Latar

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Alam, Universitas Lampung pada semester genap tahun akademik 2011/2012.

BAB III METODOLOGI PENELITIAN. Alam, Universitas Lampung pada semester genap tahun akademik 2011/2012. BAB III METODOLOGI PENELITIAN 3.1 Tempat dan Waktu Penelitian Penelitian ini dilakuakan di Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Lampung pada semester genap tahun

Lebih terperinci

Bab V Model Dengan Faktor Denda Bagi Para Perokok

Bab V Model Dengan Faktor Denda Bagi Para Perokok Bab V Model Dengan Faktor Denda Bagi Para Perokok V.1 Pembentukan Model Model ketiga ini merupakan pengembangan dari model kedua yaitu dengan memasukkan faktor yang dapat menekan laju pertambahan jumlah

Lebih terperinci

UNIVERSITAS INDONESIA PENGARUH STRATEGI PULSE VACCINATION TERHADAP PENCEGAHAN PENYEBARAN PENYAKIT CAMPAK TESIS DEWI PUTRIE LESTARI

UNIVERSITAS INDONESIA PENGARUH STRATEGI PULSE VACCINATION TERHADAP PENCEGAHAN PENYEBARAN PENYAKIT CAMPAK TESIS DEWI PUTRIE LESTARI UNIVERSITAS INDONESIA PENGARUH STRATEGI PULSE VACCINATION TERHADAP PENCEGAHAN PENYEBARAN PENYAKIT CAMPAK TESIS DEWI PUTRIE LESTARI 1006786070 FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sekilas Mengenai Tuberkulosis 2.1.1 Pengertian dan Sejarah Tuberkulosis Tuberkulosis TB adalah penyakit menular yang disebabkan oleh bakteri Mycobacterium Tuberculosis. Bakteri

Lebih terperinci

THE ANALYSIS OF SEIR EPIDEMIC MODELS STABILITY ON SMALLPOX (VARICELLA / CHICKENPOX) WITH IMMUNE SYSTEM. By:

THE ANALYSIS OF SEIR EPIDEMIC MODELS STABILITY ON SMALLPOX (VARICELLA / CHICKENPOX) WITH IMMUNE SYSTEM. By: THE AALYSIS OF SEIR EPIDEMIC MODELS STABILITY O SMALLPOX (VARICELLA / CHICKEPOX) WITH IMMUE SYSTEM By: makadisebut Pandemik. Model epidemik adalah model matematika yang digunakan untuk mengetahui isfa

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam kehidupan makhluk hidup ini banyak permasalahan yang muncul seperti diantaranya banyak penyakit menular yang mengancam kehidupan. Sangat diperlukan sistem untuk

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Beberapa teori yang dibutuhkan untuk membahas pemodelan matematika pada tugas akhir ini adalah: 2.1 Persamaan Diferansial Persamaan diferensial muncul dari masalah-masalah nyata dalam

Lebih terperinci

ANALISIS DINAMIK MODEL EPIDEMI SIRS DENGAN MODIFIKASI TINGKAT KEJADIAN INFEKSI NONMONOTON DAN PENGOBATAN

ANALISIS DINAMIK MODEL EPIDEMI SIRS DENGAN MODIFIKASI TINGKAT KEJADIAN INFEKSI NONMONOTON DAN PENGOBATAN ANALISIS DINAMIK MODEL EPIDEMI SIRS DENGAN MODIFIKASI TINGKAT KEJADIAN INFEKSI NONMONOTON DAN PENGOBATAN Suryani, Agus Suryanto, Ratno Bagus E.W Pelaksana Akademik Mata Kuliah Universitas, Universitas

Lebih terperinci

KALKULUS MULTIVARIABEL II

KALKULUS MULTIVARIABEL II Pada Bidang Bentuk Vektor dari KALKULUS MULTIVARIABEL II (Minggu ke-9) Andradi Jurusan Matematika FMIPA UGM Yogyakarta, Indonesia Pada Bidang Bentuk Vektor dari 1 Definisi Daerah Sederhana x 2 Pada Bidang

Lebih terperinci

MODEL PERTUMBUHAN EKONOMI MANKIW ROMER WEIL DENGAN PENGARUH PERAN PEMERINTAH TERHADAP PENDAPATAN

MODEL PERTUMBUHAN EKONOMI MANKIW ROMER WEIL DENGAN PENGARUH PERAN PEMERINTAH TERHADAP PENDAPATAN MODEL PERTUMBUHAN EKONOMI MANKIW ROMER WEIL DENGAN PENGARUH PERAN PEMERINTAH TERHADAP PENDAPATAN Desi Oktaviani, Kartono 2, Farikhin 3,2,3 Departemen Matematika, Fakultas Sains dan Matematika, Universitas

Lebih terperinci

Simulasi Model Mangsa Pemangsa Di Wilayah yang Dilindungi untuk Kasus Pemangsa Tergantung Sebagian pada Mangsa

Simulasi Model Mangsa Pemangsa Di Wilayah yang Dilindungi untuk Kasus Pemangsa Tergantung Sebagian pada Mangsa Simulasi Model Mangsa Pemangsa Di Wilayah yang Dilindungi untuk asus Pemangsa Tergantung Sebagian pada Mangsa Ipah Junaedi 1, a), Diny Zulkarnaen 2, b) 3, c), dan Siti Julaeha 1, 2, 3 Jurusan Matematika,

Lebih terperinci

BAB IV PENGEMBANGAN MODEL KAPLAN

BAB IV PENGEMBANGAN MODEL KAPLAN BAB IV PENGEMBANGAN MODEL KAPLAN Pada bab ini akan dibahas model yang dikembangkan dari model Kaplan. Terdapat beberapa asumsi Kaplan yang akan dimodifikasi. Selain itu, pada bab ini juga diberikan analisis

Lebih terperinci

BAB III BASIC REPRODUCTION NUMBER

BAB III BASIC REPRODUCTION NUMBER BAB III BASIC REPRODUCTIO UMBER Dalam kaitannya dengan kejadian luar biasa, dalam epidemiologi matematika dikenal suatu besaran ambang batas (threshold) yang menjadi indikasi apakah dalam suatu populasi

Lebih terperinci

Abstrak: Makalah ini bertujuan untuk mengkaji model SIR dari penyebaran

Abstrak: Makalah ini bertujuan untuk mengkaji model SIR dari penyebaran ANALISIS KESTABILAN PENYEBARAN PENYAKIT CAMPAK (MEASLES) DENGAN VAKSINASI MENGGUNAKAN MODEL ENDEMI SIR Marhendra Ali Kurniawan Fitriana Yuli S, M.Si Jurdik Matematika FMIPA UNY Abstrak: Makalah ini bertujuan

Lebih terperinci

ANALISIS KESTABILAN PADA MODEL TRANSMISI VIRUS HEPATITIS B YANG DIPENGARUHI OLEH MIGRASI

ANALISIS KESTABILAN PADA MODEL TRANSMISI VIRUS HEPATITIS B YANG DIPENGARUHI OLEH MIGRASI ANALISIS KESTABILAN PADA MODEL TRANSMISI VIRUS HEPATITIS B YANG DIPENGARUHI OLEH MIGRASI STABILITY ANALYSIS OF THE HEPATITIS B VIRUS TRANSMISSION MODELS ARE AFFECTED BY MIGRATION Oleh : Firdha Dwishafarina

Lebih terperinci

MODEL MATEMATIKA PENYAKIT DIABETES DENGAN PENGARUH TRANSMISI VERTIKAL

MODEL MATEMATIKA PENYAKIT DIABETES DENGAN PENGARUH TRANSMISI VERTIKAL MODEL MATEMATIKA PENYAKIT DIABETES DENGAN PENGARUH TRANSMISI VERTIKAL T - 5 Debby Agustine Jurusan Matematika, Universitas Negeri Jakarta, Indonesia debbyagustine@gmail.com Abstrak Diabetes merupakan salah

Lebih terperinci

KALKULUS MULTIVARIABEL II

KALKULUS MULTIVARIABEL II KALKULUS MULTIVARIABEL II Integral Garis Medan Vektor dan (Minggu ke-8) Andradi Jurusan Matematika FMIPA UGM Yogyakarta, Indonesia 1 Integral Garis Medan Vektor 2 Terkait Lintasan Teorema Fundamental untuk

Lebih terperinci

BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL

BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL Pendahuluan Persamaan diferensial adalah persamaan yang memuat diferensial Kita akan membahas tentang Persamaan Diferensial Biasa yaitu

Lebih terperinci

KAJIAN PERILAKU MODEL MATEMATIKA PENYEBARAN PENYAKIT SIFILIS

KAJIAN PERILAKU MODEL MATEMATIKA PENYEBARAN PENYAKIT SIFILIS Jurnal Matematika UNAND Vol 3 No Hal 40 45 ISSN : 2303 290 c Jurusan Matematika FMIPA UNAND KAJIAN PERILAKU MODEL MATEMATIKA PENYEBARAN PENYAKIT SIFILIS ARDIANSYAH Program Studi Magister Matematika Fakultas

Lebih terperinci

ANALISIS KESTABILAN MODEL DINAMIKA PENYEBARAN PENYAKIT FLU BURUNG

ANALISIS KESTABILAN MODEL DINAMIKA PENYEBARAN PENYAKIT FLU BURUNG Buletin Ilmiah Math. Stat. Dan Terapannya (Bimaster) Volume 03, No. 3 (2014), hal 235-244 ANALISIS KESTABILAN MODEL DINAMIKA PENYEBARAN PENYAKIT FLU BURUNG Hidayu Sulisti, Evi Noviani, Nilamsari Kusumastuti

Lebih terperinci

BAB III PEMBAHASAN. genetik (genom) yang mengandung salah satu asam nukleat yaitu asam

BAB III PEMBAHASAN. genetik (genom) yang mengandung salah satu asam nukleat yaitu asam BAB III PEMBAHASAN A. Formulasi Model Matematika Secara umum virus merupakan partikel yang tersusun atas elemen genetik (genom) yang mengandung salah satu asam nukleat yaitu asam deoksiribonukleat (DNA)

Lebih terperinci

SISTEM DINAMIK DISKRET. Anggota Kelompok: 1. Inggrid Riana C. 2. Kharisma Madu B. 3. Solehan

SISTEM DINAMIK DISKRET. Anggota Kelompok: 1. Inggrid Riana C. 2. Kharisma Madu B. 3. Solehan SISTEM DINAMIK DISKRET Anggota Kelompok: 1. Inggrid Riana C. 2. Kharisma Madu B. 3. Solehan SISTEM DINAMIK Kontinu Sistem Dinamik Diskret POKOK BAHASAN SDD OTONOMUS NON-OTONOMUS 1-D MULTI-D LINEAR NON-LINEAR

Lebih terperinci

Studi Penyebaran Penyakit Flu Burung Melalui Kajian Dinamis Revisi Model Endemik SIRS Dengan Pemberian Vaksinasi Unggas. Jalan Sukarno-Hatta Palu,

Studi Penyebaran Penyakit Flu Burung Melalui Kajian Dinamis Revisi Model Endemik SIRS Dengan Pemberian Vaksinasi Unggas. Jalan Sukarno-Hatta Palu, Studi Penyebaran Penyakit Flu Burung Melalui Kajian Dinamis Revisi Model Endemik SIRS I. Murwanti 1, R. Ratianingsih 1 dan A.I. Jaya 1 1 Jurusan Matematika FMIPA Universitas Tadulako, Jalan Sukarno-Hatta

Lebih terperinci

KAJIAN MODEL EPIDEMIK SIR DETERMINISTIK DAN STOKASTIK PADA WAKTU DISKRIT. Oleh: Arisma Yuni Hardiningsih

KAJIAN MODEL EPIDEMIK SIR DETERMINISTIK DAN STOKASTIK PADA WAKTU DISKRIT. Oleh: Arisma Yuni Hardiningsih KAJIAN MODEL EPIDEMIK SIR DETERMINISTIK DAN STOKASTIK PADA WAKTU DISKRIT Oleh: Arisma Yuni Hardiningsih 126 1 5 Dosen Pembimbing: Dra. Laksmi Prita Wardhani, M.Si Jurusan Matematika Fakultas Matematika

Lebih terperinci

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2014

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2014 JURUSAN MATEMATIKA Nurlita Wulansari (1210100045) Dosen Pembimbing: Drs. M. Setijo Winarko, M.Si Drs. Lukman Hanafi, M.Sc FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER

Lebih terperinci

OLEH : IKHTISHOLIYAH DOSEN PEMBIMBING : Dr. subiono,m.sc

OLEH : IKHTISHOLIYAH DOSEN PEMBIMBING : Dr. subiono,m.sc OLEH : IKHTISHOLIYAH 1207 100 702 DOSEN PEMBIMBING : Dr. subiono,m.sc JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2011 Pemodelan matematika

Lebih terperinci

BAB 2 PDB Linier Order Satu 2

BAB 2 PDB Linier Order Satu 2 BAB Konsep Dasar BAB 2 PDB Linier Order Satu 2 BAB 3 Aplikasi PDB Order Satu 3 BAB 4 PDB Linier Order Dua 4 BAB 5 Aplikasi PDB Order Dua 5 BAB 6 Sistem PDB 6 BAB 7 PDB Nonlinier dan Kesetimbangan Dalam

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Bab ini terdiri dari 3 bagian. Pada bagian pertama diberikan tinjauan pustaka dari penelitian-penelitian sebelumnya. Pada bagian kedua diberikan teori penunjang untuk mencapai tujuan

Lebih terperinci

Analisis Kestabilan Model MSEIR Penyebaran Penyakit Difteri Dengan Saturated Incidence Rate

Analisis Kestabilan Model MSEIR Penyebaran Penyakit Difteri Dengan Saturated Incidence Rate Analisis Kestabilan Model MSEIR Penyebaran Penyakit Difteri Dengan Saturated Incidence Rate I Suryani 1 Mela_YuenitaE 2 12 Jurusan Matematika Fakultas Sains dan Teknologi UIN Sultan Syarif Kasim Riau Jl

Lebih terperinci

III MODEL MATEMATIKA S I R. δ δ δ

III MODEL MATEMATIKA S I R. δ δ δ 9 III MODEL MATEMATIKA 3.1 Model SIRS Model dasar yang digunakan untuk menggambarkan penyebaran pengguna narkoba adalah model SIRS. Model ini dikemukakan oleh Kermac dan McKendric (1927) sebagai model

Lebih terperinci

T 23 Center Manifold Dari Sistem Persamaan Diferensial Biasa Nonlinear Yang Titik Ekuilibriumnya Mengalami Bifurkasi Contoh Kasus Untuk Bifurkasi Hopf

T 23 Center Manifold Dari Sistem Persamaan Diferensial Biasa Nonlinear Yang Titik Ekuilibriumnya Mengalami Bifurkasi Contoh Kasus Untuk Bifurkasi Hopf T 23 Center Manifold Dari Sistem Persamaan Diferensial Biasa Nonlinear Yang Titik Ekuilibriumnya Mengalami Bifurkasi Contoh Kasus Untuk Bifurkasi Hopf Rubono Setiawan Prodi Pendidikan Matematika, F.KIP

Lebih terperinci

Bab 2 TEORI DASAR. 2.1 Linearisasi Persamaan Air Dangkal

Bab 2 TEORI DASAR. 2.1 Linearisasi Persamaan Air Dangkal Bab 2 TEORI DASAR 2.1 Linearisasi Persamaan Air Dangkal Persamaan air dangkal merupakan persamaan untuk gelombang permukaan air yang dipengaruhi oleh kedalaman air tersebut. Kedalaman air dapat dikatakan

Lebih terperinci