BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya"

Transkripsi

1 5 BAB II LANDASAN TEORI Dalam tugas akhir ii aka dibahas megeai peaksira besarya koefisie korelasi atara dua variabel radom kotiu jika data yag teramati berupa data kategorik yag terbetuk dari kedua variabel kotiu tersebut, dega megguaka koefisie korelasi polychoric. Oleh sebab itu, dalam bab ii aka dijelaska beberapa hal yag aka diguaka utuk mecari taksira koefisie korelasi polychoric (yag aka dijelaska dalam bab III) yaitu, koefisie korelasi, koefisie korelasi pearso, taksira maksimum likelihood serta koefisie korelasi kedall s tau yag aka dibadigka dega koefisie korelasi polychoric relatif terhadap koefisie korelasi (yag aka dijelaska dalam bab IV).. Koefisie Korelasi Misalka terdapat dua variabel radom X da Y dega mea µ da µ serta variasi σ da σ maka kekuata hubuga liear atara kedua variabel radom ii dapat diukur dega suatu koefisie yag disebut koefisie korelasi. Koefisie korelasi dari dua variabel radom X da Y diberika dega : Meaksir koefisie kolerasi..., Siska Wuladari, FMIPA UI, 008

2 6 cov( X, Y ) ρ = = σ σ E[( X µ )( Y µ )] E( X µ ) E( Y µ ) (..) Koefisie korelasi tidak bergatug pada satua pegukura da dapat dibadigka dega koefisie korelasi dari pasaga variablel radom laiya. Koefisie korelasi berilai atara sampai dega + (hal ii dapat dibuktika pada lampira ). Jika ρ = + maka terdapat hubuga liier positif yag sempura atara variabel radom X da Y. Kodisi ketika ilai ρ = + dapat digambarka pada bidag dimesi dua sebagai berikut : Gambar.. Koefisie Korelasi Berilai + ( ρ = + ). Meaksir koefisie kolerasi..., Siska Wuladari, FMIPA UI, 008

3 7 Jika ρ + maka terdapat hubuga liier positif yag cukup kuat atara variabel X da Y. Kodisi ketika ilai ρ + dapat digambarka pada bidag dimesi dua sebagai berikut : Gambar.. Koefisie Korelasi Medekati + ( ρ + ). Jika ρ = maka terdapat hubuga liier egatif yag sempura atara variabel X da Y. Kodisi ketika ilai ρ = dapat digambarka pada bidag dimesi dua sebagai berikut : Meaksir koefisie kolerasi..., Siska Wuladari, FMIPA UI, 008

4 8 Gambar..3 Koefisie Korelasi Berilai - ( ρ = - ). Jika ρ maka terdapat hubuga liier egatif yag cukup kuat atara variabel X da Y. Kodisi ketika ilai ρ dapat digambarka pada bidag dimesi dua sebagai berikut : Meaksir koefisie kolerasi..., Siska Wuladari, FMIPA UI, 008

5 9 Gambar..4 Koefisie Korelasi Medekati - ( ρ - ). Jika ρ = 0 atau ρ 0 maka dapat dikataka tidak terdapat hubuga liier atara variabel X da Y. Kodisi ketika ilai ρ = 0 atau ρ 0 dapat digambarka pada bidag dimesi dua sebagai berikut : Meaksir koefisie kolerasi..., Siska Wuladari, FMIPA UI, 008

6 0 Gambar..5 Koefisie Korelasi Berilai 0 ( ρ = 0 ) atau Medekati 0 ( ρ 0 ). Dalam sub bab ii aka dijelaska beberapa taksira koefisie korelasi yag aka diguaka dalam pembahasa bab berikutya yaitu, koefisie korelasi pearso, da koefisie korelasi kedall s tau... Koefisie Korelasi Pearso Korelasi atara variabel radom X da Y dapat ditaksir dega beberapa cara, jika variabel X da Y berskala rasio atau iterval maka salah satu taksira koefisie korelasi yag serig diguaka adalah koefisie korelasi pearso. Meaksir koefisie kolerasi..., Siska Wuladari, FMIPA UI, 008

7 Jika terdapat buah observasi berpasaga ( X, Y ), ( X, Y ),, ( X, Y ) maka taksira koefisie korelasi pearso utuk variabel radom X da Y diberika dega : r = i= i= ( x x)( y y) ( x x) i i i i= ( y y) i (...) Seperti halya koefisie korelasi populasi, koefisie korelasi pearso pu berilai atara sampai dega + (hal ii aka dibuktika pada lampira ). Nilai r = + meujukka adaya dugaa bahwa terdapat hubuga liier positif yag sempura atara variabel X da Y. Jika r + maka terdapat dugaa bahwa ada hubuga liier positif yag cukup kuat atara variabel X da Y. Nilai r = meujukka adaya dugaa bahwa terdapat hubuga liier egatif yag sempura atara variabel X da Y. Jika r maka terdapat dugaa bahwa ada hubuga liier egatif yag cukup kuat atara variabel X da Y. Nilai r 0 meujukka adaya dugaa bahwa terdapat hubuga liier yag sagat lemah atara variabel X da Y. Apabila r = 0 maka terdapat dugaa bahwa tidak ada hubuga liier atara variabel X da Y. Koefisie korelasi pearso serig diguaka utuk meaksir koefisie korelasi dari dua variabel kotiu berskala iterval atau rasio karea dalam Meaksir koefisie kolerasi..., Siska Wuladari, FMIPA UI, 008

8 perhituga besarya koefisie korelasi pearso data sampel yag diguaka berupa variabel kotiu berskala iterval atau rasio sehigga iformasi megeai data populasi dapat dilihat secara keseluruha... Koefisie Korelasi Kedall s Tau Misalka variabel radom X da Y adalah dua variabel ordial, salah satu taksira koefisie korelasi utuk dua variabel ordial yag serig diguaka adalah koefisie korelasi kedall s tau, yag dapat dibedaka mejadi koefisie korelasi kedall s tau a da koefisie korelasi kedall s tau b.... Koefisie Korelasi Kedall s Tau - a Misalka ( X, Y ), ( X, Y ),, ( X, Y ) adalah buah observasi berpasaga. Suatu pasaga ( X i, Y i ) da ( X j, Y j ) disebut cocordat, jika X i < X j da Y i < Y j atau jika X i > X j da Y i >Y j. Suatu pasaga ( X i, Y i ) da ( X j, Y j ) disebut discordat,. jika X i > X j da Y i < Y j atau jika X i < X j da Y i >Y j. Sedagka, suatu pasaga ( X i, Y i ) da ( X j, Y j ) disebut tied jika pasaga observasi ii buka cocordat maupu discordat. Karea terdapat = ( ) pasaga observasi yag mugki maka total bayakya pasaga yag cocordat (C), ditambah total bayakya pasaga yag Meaksir koefisie kolerasi..., Siska Wuladari, FMIPA UI, 008

9 3 discordat (D), ditambah total bayakya pasaga yag tied aka sama dega = ( ). Bayakya pasaga yag cocordat da discordat dari observasi berpasaga ( X i, Y i ), i =,, dapat dihitug melalui tabel kotigesi dari variabel X da Y. Misalka variabel X memiliki I kategori da variabel Y memiliki J kategori maka dapat dibetuk tabel kotigesi dari variabel X da Y sebagai berikut : Tabel. Tabel Kotigesi dari Variabel X da Y. X... J total Y... J.... J I I I... IJ I. total J Meaksir koefisie kolerasi..., Siska Wuladari, FMIPA UI, 008

10 4 dimaa ij = bayakya observasi yag jatuh pada sel (i, j), i =,...,I; j =,...J. i. = total bayakya observasi pada kategori ke - i dari variabel. j = total bayakya observasi pada kategori ke - j dari variabel X. Y. Perhatika pasaga observasi yag dibetuk dari suatu observasi yag ada di sel (, ) dega suatu observasi yag ada di sel (, ), pasaga ii adalah pasaga yag cocordat. Setiap observasi yag ada yag ada di sel (, ) dapat dipasagka dega setiap observasi yag ada di sel (, ) maka dari kedua sel ii aka diperoleh pasaga cocordat. Setiap observasi pada sel (, ) juga dapat dipasagka dega setiap observasi yag ada di sel..., 3, 4,..., J, 3,..., 3J,..., I, IJ utuk membetuk pasaga yag cocordat, begitu pula dega observasi yag ada di sel (i, j) dapat dipasagka dega setiap observasi di sel yag kategoriya lebih tiggi atau lebih redah dariya pada kedua variabel gua membetuk pasaga cocordat. Dega demikia, dari suatu tabel kotigesi variabel X da Y dapat diperoleh pasaga cocordat sebayak : C = + ( ( I J + 3 ( IJ IJ ) ) J J I J ( J 3J IJ ) IJ I I IJ ( ) ) I (...) Meaksir koefisie kolerasi..., Siska Wuladari, FMIPA UI, 008

11 5 Selajutya, perhatika pasaga observasi yag dibetuk dari observasi observasi yag ada di sel (, ) dega observasi observasi yag berada pada sel (, ), (3,),.., da sel (I, ), passaga pasaga observasi ii merupaka pasaga discordat. Oleh sebab itu, dari suatu tabel kotigesi variabel X da Y aka diperoleh pasaga discordat sebayak : D = ( J ( I J ( + I I I ) + J ( I J ) + I I + I J I ) ) (...) Jika dalam pegamata diasumsika tidak ada observasi yag tied, maka hubuga atara variabel X da variabel Y dapat diukur dega koefisie korelasi kedall s tau a yag didefiisika dega : τ a = C D ( ) / (...3) Karea diasumsika tidak ada pasaga yag tied maka ( ) = C + D sehigga jika tidak ada pasaga yag discordat ( D = 0 ) maka koefisie korelasi kedall s tau a aka berilai +, sebalikya jika tidak ada pasaga yag cocordat maka koefisie korelasi kedall s tau a aka Meaksir koefisie kolerasi..., Siska Wuladari, FMIPA UI, 008

12 6 berilai. Dega demikia, dapat disimpulka koefisie korelasi kedall s tau a aka berilai atara sampai dega +. Nilai τ a = meadaka adaya dugaa bahwa terdapat hubuga liier positif yag sempura atara variabel radom X da Y. Jika τ a maka terdapat dugaa bahwa ada hubuga liier positif yag cukup kuat atara variabel radom X da Y. Nilai τ a = - meadaka adaya dugaa bahwa terdapat hubuga liier egatif yag sempura atara variabel radom X da Y. Jika τ a - maka terdapat dugaa bahwa ada hubuga liier egatif yag cukup kuat atara variabel radom X da Y. Utuk ilai τ a 0 meujukka adaya dugaa bahwa terdapat hubuga liier yag sagat lemah atara kedua variabel ordial X da Y. Jika τ a = 0 maka ada dugaa bahwa tidak ada hubuga liier atara variabel ordial X da Y.... Koefisie Korelasi Kedall s Tau - b Jika dalam pegamata diasumsika terdapat pasaga yag tied maka hubuga atara variabel X da variabel Y dapat diukur dega koefisie korelasi kedall s tau b yag didefiisika dega : τ b = C D {[ ) / T ][ ( ) / T ]} ( X Y / (...) Meaksir koefisie kolerasi..., Siska Wuladari, FMIPA UI, 008

13 7 dimaa : T X = bayakya pasaga yag tied pada variabel X. dega T X = i. ( i. ) / ; i. adalah total bayakya observasi pada kategori ke i dari variabel X. T Y = bayakya pasaga yag tied pada variabel Y. dega T Y =. j (. j ) / ;. j adalah total bayakya observasi pada kategori ke j dari variabel Y. Jika τ b maka terdapat dugaa bahwa ada hubuga liier positif yag cukup kuat atara variabel radom X da Y. Jika τ b - maka terdapat dugaa bahwa ada hubuga liier egatif yag cukup kuat atara variabel radom X da Y. Utuk ilai τ b 0 meujukka adaya dugaa bahwa terdapat hubuga liier yag sagat lemah atara kedua variabel ordial X da Y.. Taksira Maksimum Likelihood Defiisi... Misalka X, X,...., X suatu sampel radom dari distribusi dega p.d.f. f ( x; θ ). P.d.f. gabuga dari X, X,...., X adalah Meaksir koefisie kolerasi..., Siska Wuladari, FMIPA UI, 008

14 8 f x; θ ) f ( x ; θ )... f ( x ; θ ). P.d.f gabuga ii dapat dipadag sebagai ( suatu fugsi dari parameter θ. Fugsi dari parameter θ ii disebut sebagai fugsi likelihood dari suatu sampel radom X, X,...., X. Fugsi likelihood dari suatu sampel radom X.,, X,... X dapat ditulis sebagai berikut : L ( θ ; x, x,..., x ) = f ( x; θ ) f ( x; θ )... f ( x; θ ) (..) Nilai dari θ yag memaksimumka fugsi likelihood ii dapat dicari. Karea fugsi likelihood ii dapat mejelaska probabilitas suatu kejadia X = x, X = x,, X = x. maka ilai dari θ yag memaksimumka fugsi likelihood ii adalah ilai θ yag memaksimumka probabilitas X = x, X = x,, X = x. Oleh sebab itu, ilai θ tersebut merupaka taksira yag baik utuk ilai parameter θ yag sesugguhya. Defiisi... Misalka terdapat suatu fugsi dari x x,..., x, yaitu, u x, x,..., x ) sedemikia sehigga ketika θ digati dega ( u ( x, x,..., x ), fugsi likelihood L maksimum. Dega kata lai [ u( x, x x )] lebih besar atau sama dega L ( ; x, x,..., x ) L,..., θ utuk Meaksir koefisie kolerasi..., Siska Wuladari, FMIPA UI, 008

15 9 setiap θ, maka statistik u x, x,..., x ) disebut sebagai taksira maksimum ( likelihood dari θ da diotasika dega θˆ ( Hogg da Craig, 995). Utuk mecari θ yag memaksimumka fugsi likelihood L (θ ) maka fugsi likelihood L (θ ) harus dituruka terhadap θ da disamaka dega ol. Gua mempermudah perhituga dalam pecaria θ, fugsi likelihood L (θ ) dapat ditrasformasika ke betuk fugsi yag lai, dega syarat ilai θ yag memaksimumka fugsi hasil trasformasi juga harus memaksimumka fugsi likelihood L (θ ) awal. Salah satu fugsi yag serig diguaka utuk metrasformasika fugsi likelihood L (θ ) adalah fugsi l L ( θ ). Meaksir koefisie kolerasi..., Siska Wuladari, FMIPA UI, 008

BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP. Permasalahan dalam tugas akhir ini dibatasi hanya pada penaksiran

BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP. Permasalahan dalam tugas akhir ini dibatasi hanya pada penaksiran BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP Permasalaha dalam tugas akhir ii dibatasi haya pada peaksira besarya koefisie korelasi polychoric da tidak dilakuka peguia terhadap koefisie korelasi

Lebih terperinci

BAB II LANDASAN TEORI. Pada bagian ini akan dibahas tentang teori-teori dasar yang. digunakan untuk dalam mengestimasi parameter model.

BAB II LANDASAN TEORI. Pada bagian ini akan dibahas tentang teori-teori dasar yang. digunakan untuk dalam mengestimasi parameter model. BAB II LANDASAN TEORI Pada bagia ii aka dibahas tetag teori-teori dasar yag diguaka utuk dalam megestimasi parameter model.. MATRIKS DAN VEKTOR Defiisi : Trace dari matriks bujur sagkar A a adalah pejumlaha

Lebih terperinci

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan REGRESI LINIER DAN KORELASI Variabel dibedaka dalam dua jeis dalam aalisis regresi: Variabel bebas atau variabel prediktor -> variabel yag mudah didapat atau tersedia. Dapat diyataka dega X 1, X,, X k

Lebih terperinci

Statistika dibagi menjadi dua, yaitu: 1. Statistika Deskriftif 2. Statistik Inferensial Penarikan kesimpulan dapat dilakukan dengan dua cara, yaitu:

Statistika dibagi menjadi dua, yaitu: 1. Statistika Deskriftif 2. Statistik Inferensial Penarikan kesimpulan dapat dilakukan dengan dua cara, yaitu: Peaksira Parameter Statistika dibagi mejadi dua yaitu:. Statistika Deskriftif 2. Statistik Iferesial Pearika kesimpula dapat dilakuka dega dua cara yaitu:. Peaksira Parameter 2. Pegujia Hipotesis Peaksira

Lebih terperinci

BAB III PENGGUNAAN METODE EMPIRICAL BEST LINEAR UNBIASED PREDICTION (EBLUP) PADA GENERAL LINEAR MIXED MODEL

BAB III PENGGUNAAN METODE EMPIRICAL BEST LINEAR UNBIASED PREDICTION (EBLUP) PADA GENERAL LINEAR MIXED MODEL BAB III PENGGUNAAN MEODE EMPIRICAL BES LINEAR UNBIASED PREDICION (EBLUP PADA GENERAL LINEAR MIXED MODEL Pada Bab III ii aka dibahas megeai taksira parameter pada Geeral Liear Mixed Model berdasarka asumsi

Lebih terperinci

Definisi Integral Tentu

Definisi Integral Tentu Defiisi Itegral Tetu Bila kita megedarai kedaraa bermotor (sepeda motor atau mobil) selama 4 jam dega kecepata 50 km / jam, berapa jarak yag ditempuh? Tetu saja jawabya sagat mudah yaitu 50 x 4 = 200 km.

Lebih terperinci

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP STATISTICS Haug N. Prasetyo Week 11 PENDAHULUAN Regresi da korelasi diguaka utuk megetahui hubuga dua atau lebih kejadia (variabel) yag dapat diukur secara matematis. Ada dua hal yag diukur atau diaalisis,

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Statistika iferesi merupaka salah satu cabag statistika yag bergua utuk meaksir parameter. Peaksira dapat diartika sebagai dugaa atau perkiraa atas sesuatu yag aka terjadi

Lebih terperinci

LANDASAN TEORI. Secara umum, himpunan kejadian A i ; i I dikatakan saling bebas jika: Ruang Contoh, Kejadian, dan Peluang

LANDASAN TEORI. Secara umum, himpunan kejadian A i ; i I dikatakan saling bebas jika: Ruang Contoh, Kejadian, dan Peluang 2 LANDASAN TEORI Ruag Cotoh, Kejadia, da Peluag Percobaa acak adalah suatu percobaa yag dapat diulag dalam kodisi yag sama, yag hasilya tidak dapat diprediksi secara tepat tetapi dapat diketahui semua

Lebih terperinci

9 Departemen Statistika FMIPA IPB

9 Departemen Statistika FMIPA IPB Supleme Resposi Pertemua ANALISIS DATA KATEGORIK (STK351 9 Departeme Statistika FMIPA IPB Pokok Bahasa Sub Pokok Bahasa Referesi Waktu Pegatar Aalisis utuk Data Respo Kategorik Data respo kategorik Sebara

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Aalisis Regresi Istilah regresi pertama kali diperkealka oleh seorag ahli yag berama Facis Galto pada tahu 1886. Meurut Galto, aalisis regresi berkeaa dega studi ketergatuga dari suatu

Lebih terperinci

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR Nur Aei Prodi Matematika, FST-UINAM uraeiatullah@gmail.com Ifo: Jural MSA Vol. 3 No. 2 Edisi: Juli Desember

Lebih terperinci

REGRESI LINIER GANDA

REGRESI LINIER GANDA REGRESI LINIER GANDA Secara umum, data hasil pegamata Y bisa terjadi karea akibat variabelvariabel bebas,,, k. Aka ditetuka hubuga atara Y da,,, k sehigga didapat regresi Y atas,,, k amu masih meujukka

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 3 BAB II TINJAUAN PUSTAKA.1 Ruag Cotoh, Kejadia da Peluag Defiisi.1 (Ruag cotoh da kejadia) Suatu percobaa yag dapat diulag dalam kodisi yag sama, yag hasilya tidak bisa diprediksi secara tepat tetapi

Lebih terperinci

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR Nur Aei Prodi Matematika, FST-UINAM uraeiatullah@gmail.com Ifo: Jural MSA Vol. 3 No. 2 Edisi: Juli Desember

Lebih terperinci

B a b 1 I s y a r a t

B a b 1 I s y a r a t 34 TKE 315 ISYARAT DAN SISTEM B a b 1 I s y a r a t (bagia 3) Idah Susilawati, S.T., M.Eg. Program Studi Tekik Elektro Fakultas Tekik da Ilmu Komputer Uiversitas Mercu Buaa Yogyakarta 29 35 1.5.2. Isyarat

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Didalam melakuka kegiata suatu alat atau mesi yag bekerja, kita megeal adaya waktu hidup atau life time. Waktu hidup adalah lamaya waktu hidup suatu kompoe atau uit pada

Lebih terperinci

BAB 6: ESTIMASI PARAMETER (2)

BAB 6: ESTIMASI PARAMETER (2) Bab 6: Estimasi Parameter () BAB 6: ESTIMASI PARAMETER (). ESTIMASI PROPORSI POPULASI Proporsi merupaka perbadiga atara terjadiya suatu peristiwa dega semua kemugkiaa peritiwa yag bisa terjadi. Besara

Lebih terperinci

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI Utuk lebih memahami megeai etropi, pada bab ii aka diberika perhituga etropi utuk beberapa distribusi diskrit da kotiu. 3. Distribusi Diskrit Pada sub bab ii dibahas

Lebih terperinci

I. DERET TAKHINGGA, DERET PANGKAT

I. DERET TAKHINGGA, DERET PANGKAT I. DERET TAKHINGGA, DERET PANGKAT. Pedahulua Pembahasa tetag deret takhigga sebagai betuk pejumlaha suku-suku takhigga memegag peraa petig dalam fisika. Pada bab ii aka dibahas megeai pegertia deret da

Lebih terperinci

terurut dari bilangan bulat, misalnya (7,2) (notasi lain 2

terurut dari bilangan bulat, misalnya (7,2) (notasi lain 2 Bab Bilaga kompleks BAB BILANGAN KOMPLEKS Defiisi Bilaga Kompleks Sebelum medefiisika bilaga kompleks, pembaca diigatka kembali pada permasalah dalam sistem bilaga yag telah dikeal sebelumya Yag pertama

Lebih terperinci

REGRESI DAN KORELASI

REGRESI DAN KORELASI REGRESI DAN KORELASI Pedahulua Dalam kehidupa sehari-hari serig ditemuka masalah/kejadia yagg salig berkaita satu sama lai. Kita memerluka aalisis hubuga atara kejadia tersebut Dalam bab ii kita aka membahas

Lebih terperinci

III PEMBAHASAN. λ = 0. Ly = 0, maka solusi umum dari persamaan diferensial (3.3) adalah

III PEMBAHASAN. λ = 0. Ly = 0, maka solusi umum dari persamaan diferensial (3.3) adalah III PEMBAHASAN Pada bagia ii aka diformulasika masalah yag aka dibahas. Solusi masalah aka diselesaika dega Metode Dekomposisi Adomia. Selajutya metode ii aka diguaka utuk meyelesaika model yag diyataka

Lebih terperinci

Pengantar Statistika Matematika II

Pengantar Statistika Matematika II Pegatar Statistika Matematika II Metode Evaluasi Atia Ahdika, S.Si., M.Si. Prodi Statistika FMIPA Uiversitas Islam Idoesia April 11, 2017 atiaahdika.com Pegguaa metode estimasi yag berbeda dapat meghasilka

Lebih terperinci

BAB 4. METODE ESTIMASI PARAMETER DARI DISTRIBUSI WAKTU KERUSAKAN

BAB 4. METODE ESTIMASI PARAMETER DARI DISTRIBUSI WAKTU KERUSAKAN BAB 4 METODE ESTIMASI PARAMETER DARI DISTRIBUSI WAKTU KERUSAKAN Estimasi reliabilitas membutuhka pegetahua distribusi waktu kerusaka yag medasari dari kompoe atau sistem yag dimodelka Utuk memprediksi

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 31-41, April 2004, ISSN :

JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 31-41, April 2004, ISSN : Vol. 7. No. 1, 31-41, April 24, ISSN : 141-8518 Peetua Kestabila Sistem Kotrol Lup Tertutup Waktu Kotiu dega Metode Trasformasi ke Betuk Kaoik Terkotrol Robertus Heri Jurusa Matematika FMIPA UNDIP Abstrak

Lebih terperinci

BAB III METODE PENELITIAN. penelitian yaitu PT. Sinar Gorontalo Berlian Motor, Jl. H. B Yassin no 28

BAB III METODE PENELITIAN. penelitian yaitu PT. Sinar Gorontalo Berlian Motor, Jl. H. B Yassin no 28 5 BAB III METODE PENELITIAN 3.1 Lokasi Peelitia da Waktu Peelitia Sehubuga dega peelitia ii, lokasi yag dijadika tempat peelitia yaitu PT. Siar Gorotalo Berlia Motor, Jl. H. B Yassi o 8 Kota Gorotalo.

Lebih terperinci

Distribusi Pendekatan (Limiting Distributions)

Distribusi Pendekatan (Limiting Distributions) Distribusi Pedekata (Limitig Distributios) Ada 3 tekik utuk meetuka distribusi pedekata: 1. Tekik Fugsi Distribusi Cotoh 2. Tekik Fugsi Pembagkit Mome Cotoh 3. Tekik Teorema Limit Pusat Cotoh Fitriai Agustia,

Lebih terperinci

PEMODELAN COPULA: STUDI BANDING KUANTIFIKASI AUTOKORELASI

PEMODELAN COPULA: STUDI BANDING KUANTIFIKASI AUTOKORELASI PEMODELAN COPULA: STUDI BANDING KUANTIFIKASI AUTOKORELASI Fachrur Rozi Jurusa Matematika, Fakultas Sais da Tekologi Uiversitas Islam Negeri (UIN) Maulaa Malik Ibrahim Malag e-mail: fachrurkibar@yahoo.com

Lebih terperinci

TINJAUAN PUSTAKA Pengertian

TINJAUAN PUSTAKA Pengertian TINJAUAN PUSTAKA Pegertia Racaga peelitia kasus-kotrol di bidag epidemiologi didefiisika sebagai racaga epidemiologi yag mempelajari hubuga atara faktor peelitia dega peyakit, dega cara membadigka kelompok

Lebih terperinci

REGRESI LINIER SEDERHANA

REGRESI LINIER SEDERHANA REGRESI LINIER SEDERHANA REGRESI, KAUSALITAS DAN KORELASI DALAM EKONOMETRIKA Regresi adalah salah satu metode aalisis statistik yag diguaka utuk melihat pegaruh atara dua atau lebih variabel Kausalitas

Lebih terperinci

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu BAB 4 UKURAN PENYEBARAN DATA Pada Bab sebelumya kita telah mempelajari beberapa ukura pemusata data, yaitu ukura yag memberika iformasi tetag bagaimaa data-data ii megumpul atau memusat Pada bagia Bab

Lebih terperinci

REGRESI DAN KORELASI SEDERHANA

REGRESI DAN KORELASI SEDERHANA REGRESI DAN KORELASI SEDERHANA Apa yag disebut Regresi? Korelasi? Aalisa regresi da korelasi sederhaa membahas tetag keterkaita atara sebuah variabel (variabel terikat/depede) dega (sebuah) variabel lai

Lebih terperinci

HUBUNGAN ANTARA KONVERGEN HAMPIR PASTI, KONVERGEN DALAM PELUANG, DAN KONVERGEN DALAM SEBARAN

HUBUNGAN ANTARA KONVERGEN HAMPIR PASTI, KONVERGEN DALAM PELUANG, DAN KONVERGEN DALAM SEBARAN Jural Matematika UNAND Vol. 2 No. 2 Hal. 0 6 ISSN : 2303 290 c Jurusa Matematika FMIPA UNAND HUBUNGAN ANTARA KONVERGEN HAMPIR PASTI, KONVERGEN DALAM PELUANG, DAN KONVERGEN DALAM SEBARAN VIRA AGUSTA, DODI

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang Masalah

BAB I PENDAHULUAN. A. Latar Belakang Masalah BAB I PENDAHULUAN A. Latar Belakag Masalah Struktur alabar adalah suatu himpua yag di dalamya didefiisika suatu operasi bier yag memeuhi aksioma-aksioma tertetu. Gelaggag ( Rig ) merupaka suatu struktur

Lebih terperinci

Kestabilan Rangkaian Tertutup Waktu Kontinu Menggunakan Metode Transformasi Ke Bentuk Kanonik Terkendali

Kestabilan Rangkaian Tertutup Waktu Kontinu Menggunakan Metode Transformasi Ke Bentuk Kanonik Terkendali Jural Tekika ISSN : 285-859 Fakultas Tekik Uiversitas Islam Lamoga Volume No.2 Tahu 29 Kestabila Ragkaia Tertutup Waktu Kotiu Megguaka Metode Trasformasi Ke Betuk Kaoik Terkedali Suhariyato ) Dose Fakultas

Lebih terperinci

BAB III RUANG HAUSDORFF. Pada bab ini akan dibahas mengenai ruang Hausdorff, kekompakan pada

BAB III RUANG HAUSDORFF. Pada bab ini akan dibahas mengenai ruang Hausdorff, kekompakan pada 8 BAB III RUANG HAUSDORFF Pada bab ii aka dibahas megeai ruag Hausdorff, kekompaka pada ruag Hausdorff da ruag regular legkap. Pembahasa diawali dega medefiisika Ruag Hausdorff da beberapa sifatya kemudia

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakag Dalam keadaa dimaa meghadapi persoala program liier yag besar, maka aka berusaha utuk mecari peyelesaia optimal dega megguaka algoritma komputasi, seperti algoritma

Lebih terperinci

PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT

PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT Prosidig Semiar Nasioal Matematika da Terapaya 06 p-issn : 0-0384; e-issn : 0-039 PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT Liatus

Lebih terperinci

DISTRIBUSI SAMPEL PENAKSIRAN UJI HIPOTESIS MA5182 Topik dalam Statistika I: Statistika Spasial 6 September 2012 Utriweni Mukhaiyar

DISTRIBUSI SAMPEL PENAKSIRAN UJI HIPOTESIS MA5182 Topik dalam Statistika I: Statistika Spasial 6 September 2012 Utriweni Mukhaiyar INFERENSI STATISTIKA DISTRIBUSI SAMPEL PENAKSIRAN UJI HIPOTESIS MA518 Topik dalam Statistika I: Statistika Spasial 6 September 01 Utriwei Mukhaiyar DISTRIBUSI SAMPEL Beberapa defiisi Suatu populasi terdiri

Lebih terperinci

Pendugaan Parameter. Debrina Puspita Andriani /

Pendugaan Parameter. Debrina Puspita Andriani    / Pedugaa Parameter 7 Debria Puspita Adriai E-mail : debria.ub@gmail.com / debria@ub.ac.id Outlie Pedahulua Pedugaa Titik Pedugaa Iterval Pedugaa Parameter: Kasus Sampel Rataa Populasi Pedugaa Parameter:

Lebih terperinci

ANALISIS TABEL INPUT OUTPUT PROVINSI KEPULAUAN RIAU TAHUN Erie Sadewo

ANALISIS TABEL INPUT OUTPUT PROVINSI KEPULAUAN RIAU TAHUN Erie Sadewo ANALISIS TABEL INPUT OUTPUT PROVINSI KEPULAUAN RIAU TAHUN 2010 Erie Sadewo Kodisi Makro Ekoomi Kepulaua Riau Pola perekoomia suatu wilayah secara umum dapat diyataka meurut sisi peyediaa (supply), permitaa

Lebih terperinci

A. Pengertian Hipotesis

A. Pengertian Hipotesis PENGUJIAN HIPOTESIS A. Pegertia Hipotesis Hipotesis statistik adalah suatu peryataa atau dugaa megeai satu atau lebih populasi Ada macam hipotesis:. Hipotesis ol (H 0 ), adalah suatu hipotesis dega harapa

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 6 BAB 2 LANDASAN TEORI 2.1. Metode Kuadrat Terkecil Aalisis regresi merupaka aalisis utuk medapatka hubuga da model matematis atara variabel depede (Y) da satu atau lebih variabel idepede (X). Hubuga atara

Lebih terperinci

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL BAB VIII MASAAH ESTIMASI SAT DAN DA SAMPE 8.1 Statistik iferesial Statistik iferesial suatu metode megambil kesimpula dari suatu populasi. Ada dua pedekata yag diguaka dalam statistik iferesial. Pertama,

Lebih terperinci

BAB III ESTIMASI PARAMETER MODEL DENGAN GS2SLS. Pada bab ini akan dibahas tentang bentuk model spasial lag sekaligus

BAB III ESTIMASI PARAMETER MODEL DENGAN GS2SLS. Pada bab ini akan dibahas tentang bentuk model spasial lag sekaligus BAB III ESTIMASI PARAMETER MODEL DENGAN GS2SLS Pada bab ii aka dibahas tetag betuk model spasial lag sekaligus spasial error da prosedur Geeralized Spatial Two Stage Least Squares (GS2SLS) utuk megestimasi

Lebih terperinci

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X Pedugaa Selag: Metode Pivotal Lagkah-lagkahya 1. Adaika X1, X,..., X adalah cotoh acak dari populasi dega fugsi kepekata f( x; ), da parameter yag tidak diketahui ilaiya. Adaika T adalah peduga titik bagi..

Lebih terperinci

PENAKSIRAN M A S T A T I S T I K A D A S A R 1 7 M A R E T 2014 U T R I W E N I M U K H A I Y A R

PENAKSIRAN M A S T A T I S T I K A D A S A R 1 7 M A R E T 2014 U T R I W E N I M U K H A I Y A R PENAKSIRAN P E N A K S I R A N T I T I K P E N A K S I R A N S E L A N G S E L A N G K E P E R C A Y A A N U N T U K R A T A A N S E L A N G K E P E R C A Y A A N U N T U K V A R I A N S I M A 0 8 S T

Lebih terperinci

Hendra Gunawan. 12 Februari 2014

Hendra Gunawan. 12 Februari 2014 MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2013/2014 12 Februari 2014 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 82 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg

Lebih terperinci

STATISTIKA NON PARAMETRIK

STATISTIKA NON PARAMETRIK . PENDAHULUAN STATISTIKA NON PARAMETRIK Kelebiha Uji No Parametrik: - Perhituga sederhaa da cepat - Data dapat berupa data kualitatif (Nomial atau Ordial) - Distribusi data tidak harus Normal Kelemaha

Lebih terperinci

DISTRIBUSI SAMPLING. Oleh : Dewi Rachmatin

DISTRIBUSI SAMPLING. Oleh : Dewi Rachmatin DISTRIBUSI SAMPLING Oleh : Dewi Rachmati Distribusi Rata-rata Misalka sebuah populasi berukura higga N dega parameter rata-rata µ da simpaga baku. Dari populasi ii diambil sampel acak berukura, jika tapa

Lebih terperinci

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa istilah, definisi serta konsep-konsep yang

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa istilah, definisi serta konsep-konsep yang II. LANDASAN TEORI Pada bab ii aka diberika beberapa istilah, defiisi serta kosep-kosep yag medukug dalam peelitia ii. 2.1 Kosep Dasar Teori Graf Berikut ii aka diberika kosep dasar teori graf yag bersumber

Lebih terperinci

TEORI PENAKSIRAN. Bab 8. A. Pendahuluan. Kompetensi Mampu menjelaskan dan menganalisis teori penaksiran

TEORI PENAKSIRAN. Bab 8. A. Pendahuluan. Kompetensi Mampu menjelaskan dan menganalisis teori penaksiran Bab 8 TEORI PENAKSIRAN Kompetesi Mampu mejelaska da megaalisis teori peaksira Idikator 1. Mejelaska da megaalisis data dega megguaka peaksira titik 2. Mejelaska da megaalisis data dega megguaka peaksira

Lebih terperinci

PENAKSIRAN. Penaksiran Titik. Selang Kepercayaan untuk VARIANSI. MA2181 ANALISIS DATA Utriweni Mukhaiyar 17 Oktober 2011

PENAKSIRAN. Penaksiran Titik. Selang Kepercayaan untuk VARIANSI. MA2181 ANALISIS DATA Utriweni Mukhaiyar 17 Oktober 2011 PENAKSIRAN Peaksira Titik Peaksira Selag Selag Kepercayaa utuk RATAAN Selag Kepercayaa utuk VARIANSI MA8 ANALISIS DATA Utriwei Mukhaiyar 7 Oktober 0 Metode Peaksira Peaksira Titik Peaksira Selag Nilai

Lebih terperinci

Tri Handhika Pusat Studi Komputasi Matematika (PSKM), Kampus D 139 Universitas Gunadarma Abstrak

Tri Handhika Pusat Studi Komputasi Matematika (PSKM), Kampus D 139 Universitas Gunadarma Abstrak PENGGUNAAN MEODE EMPIRICAL BES LINEAR UNBIASED PREDICION (EBLUP) PADA GENERAL LINEAR MIXED MODEL ri Hadhika Pusat Studi Komputasi Matematika (PSKM), Kampus D 139 Uiversitas Guadarma trihadika@staff.guadarma.ac.id

Lebih terperinci

II. LANDASAN TEORI. Sampling adalah proses pengambilan atau memilih n buah elemen dari populasi yang

II. LANDASAN TEORI. Sampling adalah proses pengambilan atau memilih n buah elemen dari populasi yang II. LANDASAN TEORI Defiisi 2.1 Samplig Samplig adalah proses pegambila atau memilih buah eleme dari populasi yag berukura N (Lohr, 1999). Dalam melakuka samplig, terdapat teori dasar yag disebut teori

Lebih terperinci

PETA KONSEP RETURN dan RISIKO PORTOFOLIO

PETA KONSEP RETURN dan RISIKO PORTOFOLIO PETA KONSEP RETURN da RISIKO PORTOFOLIO RETURN PORTOFOLIO RISIKO PORTOFOLIO RISIKO TOTAL DIVERSIFIKASI PORTOFOLIO DENGAN DUA AKTIVA PORTOFOLIO DENGAN BANYAK AKTIVA DEVERSIFIKASI DENGAN BANYAK AKTIVA DEVERSIFIKASI

Lebih terperinci

BAB II TEORI DASAR. Definisi Grup G disebut grup komutatif atau grup abel jika berlaku hukum

BAB II TEORI DASAR. Definisi Grup G disebut grup komutatif atau grup abel jika berlaku hukum BAB II TEORI DASAR 2.1 Aljabar Liier Defiisi 2. 1. 1 Grup Himpua tak kosog G disebut grup (G, ) jika pada G terdefiisi operasi, sedemikia rupa sehigga berlaku : a. Jika a, b eleme dari G, maka a b eleme

Lebih terperinci

Semigrup Matriks Admitting Struktur Ring

Semigrup Matriks Admitting Struktur Ring Semigrup Matriks dmittig Struktur ig K a r y a t i Jurusa Pedidika Matematika FMIP, Uiversitas Negeri Yogyakarta Email: yatiuy@yahoo.com bstrak Diberika adalah rig komutatif dega eleme satua da adalah

Lebih terperinci

ANALISIS REGRESI DAN KORELASI SEDERHANA

ANALISIS REGRESI DAN KORELASI SEDERHANA LATAR BELAKANG DAN KORELASI SEDERHANA Aalisis regresi da korelasi megkaji da megukur keterkaita seara statistik atara dua atau lebih variabel. Keterkaita atara dua variabel regresi da korelasi sederhaa.

Lebih terperinci

4.7 TRANSFORMASI UNTUK MENDEKATI KENORMALAN

4.7 TRANSFORMASI UNTUK MENDEKATI KENORMALAN 4.7 TRANSFORMASI UNTUK MENDEKATI KENORMALAN Saat asumsi keormala tidak dipuhi maka kesimpula yag kita buat berdasarka suatu metod statistik yag mesyaratka asumsi keormala meadi tidak baik, sehigga mucul

Lebih terperinci

III. METODE PENELITIAN. Variabel X merupakan variabel bebas adalah kepemimpinan dan motivasi,

III. METODE PENELITIAN. Variabel X merupakan variabel bebas adalah kepemimpinan dan motivasi, 7 III. METODE PENELITIAN 3.1 Idetifikasi Masalah Variabel yag diguaka dalam peelitia ii adalah variabel X da variabel Y. Variabel X merupaka variabel bebas adalah kepemimpia da motivasi, variabel Y merupaka

Lebih terperinci

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak:

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak: PENGUJIAN HIPOTESIS A. Lagkah-lagkah pegujia hipotesis Hipotesis adalah asumsi atau dugaa megeai sesuatu. Jika hipotesis tersebut tetag ilai-ilai parameter maka hipotesis itu disebut hipotesis statistik.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Distribusi Ekspoesial Fugsi ekspoesial adalah salah satu fugsi yag palig petig dalam matematika. Biasaya, fugsi ii ditulis dega otasi exp(x) atau e x, di maa e adalah basis logaritma

Lebih terperinci

Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai

Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai PENGUJIAN HIPOTESIS Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai ilai-ilai parameter populasi,

Lebih terperinci

PENYELESAIAN PERSAMAAN GELOMBANG DENGAN METODE D ALEMBERT

PENYELESAIAN PERSAMAAN GELOMBANG DENGAN METODE D ALEMBERT Buleti Ilmiah Math. Stat. da Terapaya (Bimaster) Volume 02, No. 1(2013), hal 1-6. PENYELESAIAN PERSAMAAN GELOMBANG DENGAN METODE D ALEMBERT Demag, Helmi, Evi Noviai INTISARI Permasalaha di bidag tekik

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, , Agustus 2003, ISSN : METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, , Agustus 2003, ISSN : METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT Vol. 6. No., 97-09, Agustus 003, ISSN : 40-858 METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT Robertus Heri Jurusa Matematika FMIPA UNDIP Abstrak Tulisa ii membahas peetua persamaa ruag

Lebih terperinci

Universitas Gadjah Mada Fakultas Teknik Departemen Teknik Sipil dan Lingkungan REGRESI DAN KORELASI. Statistika dan Probabilitas

Universitas Gadjah Mada Fakultas Teknik Departemen Teknik Sipil dan Lingkungan REGRESI DAN KORELASI. Statistika dan Probabilitas Uiversitas Gadjah Mada Fakultas Tekik Departeme Tekik Sipil da Ligkuga REGRESI DAN KORELASI Statistika da Probabilitas Kurva Regresi Mecari garis/kurva yag mewakili seragkaia titik data Ada dua cara utuk

Lebih terperinci

PENGANTAR MODEL LINEAR Oleh: Suryana

PENGANTAR MODEL LINEAR Oleh: Suryana PENGANTAR MODEL LINEAR Oleh: Suryaa Model liear meyagkut masalah statistik yag ketergatugaya terhadap parameter secara liear. Betuk umum model liear adalah 0 1X1... px p, dega = Variabel respo X i = Variabel

Lebih terperinci

BAB III MENENTUKAN MODEL KERUSAKAN DAN INTERVAL WAKTU PREVENTIVE MAINTENANCE OPTIMUM SISTEM AXIS PADA MESIN CINCINNATI MILACRON DOUBLE GANTRY TIPE-F

BAB III MENENTUKAN MODEL KERUSAKAN DAN INTERVAL WAKTU PREVENTIVE MAINTENANCE OPTIMUM SISTEM AXIS PADA MESIN CINCINNATI MILACRON DOUBLE GANTRY TIPE-F BAB III MENENUKAN MODEL KERUSAKAN DAN INERVAL WAKU PREVENIVE MAINENANCE OPIMUM SISEM AXIS PADA MESIN CINCINNAI MILACRON DOUBLE GANRY IPE-F 3.1 Pedahulua Pada Bab II telah dijelaska beberapa teori yag diguaka

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN A. Jeis peelitia Peelitia ii merupaka jeis peelitia eksperime. Karea adaya pemberia perlakua pada sampel (siswa yag memiliki self efficacy redah da sagat redah) yaitu berupa layaa

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang. Universitas Sumatera Utara

BAB I PENDAHULUAN. 1.1 Latar Belakang. Universitas Sumatera Utara BAB I PENDAHULUAN 1.1 Latar Belakag Salah satu pera da fugsi statistik dalam ilmu pegetahua adalah sebagai. alat aalisis da iterpretasi data kuatitatif ilmu pegetahua, sehigga didapatka suatu kesimpula

Lebih terperinci

Biostatistics UJI CHI-SQUARE UJI HIPOTESIS CHI-SQUARE

Biostatistics UJI CHI-SQUARE UJI HIPOTESIS CHI-SQUARE Biostatistics UJI CHI-SQUARE I N T A N Y U S U F H A B I B I E, S. G Z - Ilmu statistik tidak haya membatu kita utuk medeskripsika data secara rigkas, tapi juga dapat diguaka utuk meguji hipotesa. - Hipotesa

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN JURAL MATEMATKA DA KOMPUTER Vol. 6. o., 77-85, Agustus 003, SS : 40-858 DSTRBUS WAKTU BERHET PADA PROSES PEMBAHARUA Sudaro Jurusa Matematika FMPA UDP Abstrak Dalam proses stokhastik yag maa kejadia dapat

Lebih terperinci

BAB III PEMBAHASAN. Pada BAB III ini akan dibahas mengenai bentuk program linear fuzzy

BAB III PEMBAHASAN. Pada BAB III ini akan dibahas mengenai bentuk program linear fuzzy BAB III PEMBAHASAN Pada BAB III ii aka dibahas megeai betuk program liear fuzzy dega koefisie tekis kedala berbetuk bilaga fuzzy da pembahasa peyelesaia masalah optimasi studi kasus pada UD FIRDAUS Magelag

Lebih terperinci

Mata Kuliah: Statistik Inferensial

Mata Kuliah: Statistik Inferensial PENGUJIAN HIPOTESIS SAMPEL KECIL Prof. Dr. H. Almasdi Syahza, SE., MP Email: asyahza@yahoo.co.id DEFINISI Pegertia Sampel Kecil Sampel kecil yag jumlah sampel kurag dari 30, maka ilai stadar deviasi (s)

Lebih terperinci

MANAJEMEN RISIKO INVESTASI

MANAJEMEN RISIKO INVESTASI MANAJEMEN RISIKO INVESTASI A. PENGERTIAN RISIKO Resiko adalah peyimpaga hasil yag diperoleh dari recaa hasil yag diharapka Besarya tigkat resiko yag dimasukka dalam peilaia ivestasi aka mempegaruhi besarya

Lebih terperinci

PERTEMUAN 13. VEKTOR dalam R 3

PERTEMUAN 13. VEKTOR dalam R 3 PERTEMUAN VEKTOR dalam R Pegertia Ruag Vektor Defiisi R Jika adalah sebuah bilaga bulat positif, maka tupel - - terorde (ordered--tuple) adalah sebuah uruta bilaga riil ( a ),a,..., a. Semua tupel - -terorde

Lebih terperinci

Penaksiran Titik Penaksiran Selang. Selang Kepercayaan untuk VARIANSI MA2081 STATISTIKA DASAR

Penaksiran Titik Penaksiran Selang. Selang Kepercayaan untuk VARIANSI MA2081 STATISTIKA DASAR PENAKSIRAN Peaksira Titik Peaksira Selag Selag Kepercayaa utuk RATAAN Selag Kepercayaa utuk VARIANSI MA08 STATISTIKA DASAR MA08 STATISTIKA DASAR Utriwei Mukhaiyar 5 Oktober 0 Metode Peaksira Peaksira Titik

Lebih terperinci

TUGAS ANALISIS REAL LANJUT. a b < a + A. b + B < A B.

TUGAS ANALISIS REAL LANJUT. a b < a + A. b + B < A B. TUGAS ANALISIS REAL LANJUT NOVEMBER 207 () (a) Jika b > 0, B > 0, da a b < A, buktika ab < ba. Kemudia buktika B a b < a + A b + B < A B. (b) Buktika [ 2 (a + b)] 2 2 (a2 + b 2 ). Kemudia tujukka bahwa

Lebih terperinci

Bab 7 Penyelesaian Persamaan Differensial

Bab 7 Penyelesaian Persamaan Differensial Bab 7 Peelesaia Persamaa Differesial Persamaa differesial merupaka persamaa ag meghubugka suatu besara dega perubahaa. Persamaa differesial diataka sebagai persamaa ag megadug suatu besara da differesiala

Lebih terperinci

RESPONSI 2 STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 2015

RESPONSI 2 STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 2015 RESPONSI STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 015 A. PENYAJIAN DAN PERINGKASAN DATA 1. PENYAJIAN DATA a. Sebutka tekik peyajia data utuk data kualitatif! Diagram kueh, diagram batag, distribusi

Lebih terperinci

KEKONVERGENAN MODEL BINOMIAL UNTUK PENENTUAN HARGA OPSI EROPA. Fitriani Agustina, Math, UPI

KEKONVERGENAN MODEL BINOMIAL UNTUK PENENTUAN HARGA OPSI EROPA. Fitriani Agustina, Math, UPI KEKONVERGENAN MODEL BINOMIAL UNTUK PENENTUAN HARGA OPSI EROPA Fitriai Agustia, Math, UPI 1 Fiacial Derivative Opsi Mafaat Opsi Opsi Eropa Peetua Harga Opsi Kekovergea Model Biomial Fitriai Agustia, Math,

Lebih terperinci

1 Persamaan rekursif linier non homogen koefisien konstan tingkat satu

1 Persamaan rekursif linier non homogen koefisien konstan tingkat satu Secara umum persamaa rekursif liier tigkat-k bisa dituliska dalam betuk: dega C 0 0. C 0 x + C 1 x 1 + C 2 x 2 + + C k x k = b, Jika b = 0 maka persamaa rekursif tersebut diamaka persamaa rekursif liier

Lebih terperinci

Fungsi. Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B.

Fungsi. Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B. Fugsi Misalka A da B himpua. Relasi bier f dari A ke B merupaka suatu fugsi jika setiap eleme di dalam A dihubugka dega tepat satu eleme di dalam B. Jika f adalah fugsi dari A ke B kita meuliska f : A

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di SMA Negeri 1 Way Jepara Kabupaten Lampung Timur

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di SMA Negeri 1 Way Jepara Kabupaten Lampung Timur III. METODOLOGI PENELITIAN A. Lokasi da Waktu Peelitia Peelitia ii dilakuka di SMA Negeri Way Jepara Kabupate Lampug Timur pada bula Desember 0 sampai dega Mei 03. B. Populasi da Sampel Populasi dalam

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 7 BAB LANDASAN TEORI. Kosep Dasar Peaksira Parameter Statistik iferesi adalah Statistik yag dega segala iformasi dari sampel diguaka utuk mearik kesimpula megeai karakteristik populasi dari maa sampel

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret Program Perkuliaha Dasar Umum Sekolah Tiggi Tekologi Telkom Barisa da Deret Barisa Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) a Fugsi tersebut

Lebih terperinci

oleh hasil kali Jika dan keduanya fungsi yang dapat didiferensialkan, maka

oleh hasil kali Jika dan keduanya fungsi yang dapat didiferensialkan, maka Itegral etu Jika fugsi kotiu yag didefiisika utuk, kita bagi selag mejadi selag bagia berlebar sama Misalka berupa titik ujug selag bagia ii da pilih titik sampel di dalam selag bagia ii, sehigga terletak

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 1, 41-48, April 2003, ISSN : MATRIKS STOKASTIK GANDA DAN SIFAT-SIFATNYA

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 1, 41-48, April 2003, ISSN : MATRIKS STOKASTIK GANDA DAN SIFAT-SIFATNYA JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No., 4-48, April 00, ISSN : 40-858 MATRIKS STOKASTIK GANDA DAN SIFAT-SIFATNYA Suryoto Jurusa Matematika F-MIPA Uiversas Dipoegoro Semarag Abstrak Suatu matriks tak

Lebih terperinci

1 Departemen Statistika FMIPA IPB

1 Departemen Statistika FMIPA IPB Supleme Resposi Pertemua ANALISIS DATA KATEGORIK (STK351) 1 Departeme Statistika FMIPA IPB Pokok Bahasa Sub Pokok Bahasa Referesi Waktu Metode Noparametrik Skala Pegukura Metode Noparameterik Uji Hipotesis

Lebih terperinci

II. TINJAUAN PUSTAKA. Secara umum apabila a bilangan bulat dan b bilangan bulat positif, maka ada tepat = +, 0 <

II. TINJAUAN PUSTAKA. Secara umum apabila a bilangan bulat dan b bilangan bulat positif, maka ada tepat = +, 0 < II. TINJAUAN PUSTAKA 2.1 Keterbagia Secara umum apabila a bilaga bulat da b bilaga bulat positif, maka ada tepat satu bilaga bulat q da r sedemikia sehigga : = +, 0 < dalam hal ii b disebut hasil bagi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Saham Saham adalah surat berharga yag dapat dibeli atau dijual oleh peroraga atau lembaga di pasar tempat surat tersebut diperjualbelika. Sebagai istrumet ivestasi, saham memiliki

Lebih terperinci

II. LANDASAN TEORI. dihitung. Nilai setiap statistik sampel akan bervariasi antar sampel.

II. LANDASAN TEORI. dihitung. Nilai setiap statistik sampel akan bervariasi antar sampel. II. LANDASAN TEORI Defiisi 2.1 Distribusi Samplig Distribusi samplig adalah distribusi probibilitas dari suatu statistik. Distribusi tergatug dari ukura populasi, ukura sampel da metode memilih sampel.

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 5. No. 1, 39-46, April 2002, ISSN :

JURNAL MATEMATIKA DAN KOMPUTER Vol. 5. No. 1, 39-46, April 2002, ISSN : JURNAL MATEMATKA DAN KOMPUTER Vol 5 No, 39-46, April 22, SSN : 4-858 MENCAR SOLUS PENAKSR PARAMETER PADA ANALSS VARANS DENGAN PENDEKATAN GENERAL NVERS Sukestiaro Jurusa Matematika FMPA Uiversitas Negeri

Lebih terperinci

3 METODE PENELITIAN 3.1 Kerangka Pemikiran 3.2 Lokasi dan Waktu Penelitian

3 METODE PENELITIAN 3.1 Kerangka Pemikiran 3.2 Lokasi dan Waktu Penelitian 19 3 METODE PENELITIAN 3.1 Keragka Pemikira Secara rigkas, peelitia ii dilakuka dega tiga tahap aalisis. Aalisis pertama adalah megaalisis proses keputusa yag dilakuka kosume dega megguaka aalisis deskriptif.

Lebih terperinci

Fungsi. Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B.

Fungsi. Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B. Fugsi Misalka A da B himpua. Relasi bier f dari A ke B merupaka suatu fugsi jika setiap eleme di dalam A dihubugka dega tepat satu eleme di dalam B. Jika f adalah fugsi dari A ke B kita meuliska f : A

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1.Tempat da Waktu Peelitia ii dilakuka di ligkuga Kampus Aggrek da Kampus Syahda Uiversitas Bia Nusatara Program Strata Satu Reguler. Da peelitia dilaksaaka pada semester

Lebih terperinci

Perbandingan Power of Test dari Uji Normalitas Metode Bayesian, Uji Shapiro-Wilk, Uji Cramer-von Mises, dan Uji Anderson-Darling

Perbandingan Power of Test dari Uji Normalitas Metode Bayesian, Uji Shapiro-Wilk, Uji Cramer-von Mises, dan Uji Anderson-Darling Jural Gradie Vol No Juli 5 : -5 Perbadiga Power of Test dari Uji Normalitas Metode Bayesia, Uji Shapiro-Wilk, Uji Cramer-vo Mises, da Uji Aderso-Darlig Dyah Setyo Rii, Fachri Faisal Jurusa Matematika,

Lebih terperinci

III. METODE PENELITIAN. Lokasi penelitian dilakukan di Provinsi Sumatera Barat yang terhitung

III. METODE PENELITIAN. Lokasi penelitian dilakukan di Provinsi Sumatera Barat yang terhitung 42 III. METODE PENELITIAN 3.. Lokasi da Waktu Peelitia Lokasi peelitia dilakuka di Provisi Sumatera Barat yag terhitug mulai miggu ketiga bula April 202 higga miggu pertama bula Mei 202. Provisi Sumatera

Lebih terperinci