JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN"

Transkripsi

1 JURAL MATEMATKA DA KOMPUTER Vol. 6. o., 77-85, Agustus 003, SS : DSTRBUS WAKTU BERHET PADA PROSES PEMBAHARUA Sudaro Jurusa Matematika FMPA UDP Abstrak Dalam proses stokhastik yag maa kejadia dapat mucul kembali membetuk proses pembahaurua. Proses pembaharua adalah proses meghitug dega variabel acakya berilai itejer da kejadiaya dapat terulag lagi. Pada proses pembaharua aka mucul waktu berheti, yaitu waktu suatu proses selesai da disambug dega proses yag baru berikutya. Distribusi waktu berheti merupaka selisih kovolusi dari distribusiya. Meurut persamaa Wald bahwa ilai harapa waktu berheti sama dega ekspektasi waktu tuggu dibagi dega rataaya. Sedagka persamaa Wald dapat dipakai bilamaa rataaya berhigga. Kata kuci : Proses pembaharua, Waktu berheti, Persamaa Wald.. PEDAHULUA Serig dijumpai dalam kehidupa sehari-hari adaya proses atria. Cotohya pada Bak, Jala Tol, Swalaya, da sebagaiya. Dalam proses atria terdapat orag yag megatri. Hal pokok yag perlu diperhatika dalam proses atria da khususya yag berhubuga dega proses pembaharua adalah waktu atar kedataga da waktu tuggu pegatri. Dalam Ross (997), dikataka bahwa waktu atar kedataga merupaka variabel acak berdistribusi idetik ekspoesial da salig bebas yag mempuyai rataa /λ. Sedagka waktu tuggu adalah berdistribusi gamma dega parameter da λ. Pada proses Poisso diyataka bahwa waktu atar kedataga merupaka variabel acak salig bebas da berdistribusi idetik ekspoesial (Ross, 996). Masalah ii aka dikembagka utuk proses pembaharua, yaitu proses meghitug dega waktu atar kedataga salig bebas da berdistribusi idetik, tetapi utuk sembarag distribusi. Proses pembaharua merupaka proses 77

2 Distribusi Waktu Berheti (Sudaro) stokhastik yag maa distribusiya sembarag da terdapat pembaharua setelah terjadi waktu berheti. 78 Tujua dari tulisa ii adalah utuk megetahui distribusi waktu berheti da ilai harapa waktu berheti utuk suatu proses stokhastik. Sehigga waktu berheti dari suatu proses stokhastik aka dapat ditaksir.. HUKUM KUAT BLAGA BESAR DA KOVOLUS Hukum kuat bilaga besar merupaka teorema peluag, yag meyataka bahwa rata-rata barisa dari variabel acak yag berdistribusi sama, dega peluag aka koverge ke rataa dari distribusi tersebut. Secara formal ditulis sebagai berikut: Jika, adalah barisa variabel acak berdistribusi idetik da salig bebas dega rataa µ, maka P lim µ. Sedagka misal da Y adalah variabel radom yag salig bebas, masig-masig berdistribusi F da G. Maka distribusi + Y yag diyataka dega F*G, disebut kovolusi dari F da G diberika dega ( F * G)( a) + Y a} + Y a Y y} dg( y) P { + y a} Y y} dg( y) F( a y) dg( y). otasi F*F ditulis dega F, sehigga secara umum dapat diyataka bahwa F*F - F yag merupaka kovolusi kali dari F dega diriya sediri, yaitu distribusi jumlah dari variabel radom salig bebas masig-masig berdistribusi F. 3. DSTRBUS WAKTU BERHET Misal {,,, } merupaka barisa variabel acak oegatif salig bebas berdistribusi F. Aggap F ( 0) P{ 0} <. Diiterpretasika bahwa sebagai waktu atara kejadia ke-(-) da ke-. Misal

3 JURAL MATEMATKA DA KOMPUTER Vol. 6. o., 77-85, Agustus 003, SS : µ ] x df( x) meyataka rataa waktu atar kejadia yag berturuta da diasumsika bahwa 0 da F ( 0) <, maka 0 < µ. Dega megambil S 0, 0 S i, i, maka S adalah waktu kejadia ke-. Karea bayakya kejadia sampai waktu t aka sama dega ilai terbesar sedemikia higga kejadia ke- terjadi sebelum atau pada waktu t, maka yaitu bayakya kejadia sampai waktu t, diberika dega Defiisi sup { : S t}. () Proses meghitug { (, t 0} disebut proses pembaharua. Dalam proses meghitug, istilah kejadia sama dega pembaharua. Sehigga dapat dikataka bahwa pembaharua ke- terjadi pada waktu S. Apakah tak higga bayak pembaharua dapat terjadi dalam waktu yag berhigga? Utuk meujukka bahwa ii tidak mugki terjadi, dega megguaka hukum kuat bilaga besar, bahwa dega peluag, S µ utuk. Tetapi karea µ > 0, ii berarti bahwa S harus meuju tak higga utuk meuju tak higga. Dega demikia S dapat kurag dari atau sama dega t utuk palig bayak sejumlah berhigga ilai dari. Makaya, meurut (), harus berhigga, da dapat ditulis mak{ : S t}. Distribusi dapat diperoleh dega memperhatika hubuga bahwa bayakya pembaharua sampai dega waktu t lebih besar atau sama dega 79

4 Distribusi Waktu Berheti (Sudaro) jika da haya jika pembaharua ke- terjadi sebelum atau pada waktu t. Peryataa ii dapat ditulis dega S t () Meurut () diperoleh P { } } P{ + } S t} P{ S + t}. (3) Karea variabel acak i, i i, adalah salig bebas da berdistribusi F, maka S i i adalah berdistribusi F, yag merupaka kovolusi -kali F dega diriya sediri. Oleh sebab itu, meurut (3) didapat P { ( t ) } F ( t ) F ( t ). + Jika m ( ], maka m( disebut fugsi pembaharua. Hubuga atara m( da F diberika oleh proposisi berikut ii. Proposisi m ( Bukti : F (. Ambil (, dega Sehigga,, jika pembaharua ke - terjadi dalam[0, t], 0, yag laiya. ] ] Karea adalah oegatif. P{ } P{ S t} ] F ( Utuk proposisi berikut ii meujukka bahwa mempuyai ilai harapa yag berhigga. 80

5 JURAL MATEMATKA DA KOMPUTER Vol. 6. o., 77-85, Agustus 003, SS : Proposisi Bukti : m ( <, utuk semua 0 t <. Karea P { 0} <, maka meurut sifat kotiuitas dari peluag bahwa terdapat α > 0 sedemikia higga P { α} > 0. Selajutya didefiisika proses pembaharua yag berhubuga dega masalah ii, yaitu {, } dega 0, jika α, jika < α α, da misal ( sup{ : + + t}. Maka utuk proses tersebut, pembaharua haya terjadi pada waktu t α, 0,,,, da juga bayakya pembaharua pada tiap-tiap waktu merupaka variabel acak berdistribusi geometrik yag salig bebas dega rataa. P{ α} Sehigga t / α + E [ ( ] <, karea yag berarti (. Jika P{ α} diambil harga ekspektasiya, maka E [ ] ( ] <. Selajutya aka dibahas teorema limit tetag itesitas proses pembaharua da persamaa Wald. Misal ) lim meyataka bayakya keseluruha pembaharua yag t terjadi, maka ( ), dega peluag. Karea bayakya keseluruha pembaharua yag terjadi dapat berhigga utuk waktu atar kedataga tak higga. Oleh karea itu, P{ ) < } utuk suatu } P { } P [ } 0. Dega demikia euju tak higga utuk t meuju tak higga. Aka dicari itesitas dari proses pembaharua pada saat meuju tak higga, yaitu lim, dalam proposisi berikut. t t 8

6 Distribusi Waktu Berheti (Sudaro) Proposisi 3 Dega peluag, utuk t. t µ Bukti : Karea S t < S, maka ( ( + S ( t S ( + < (4) Karea S ( t ) / adalah rataa waktu atar kedataga pertama, maka meurut hukum kuat bilaga besar bahwa S ( t ) / µ utuk (. Karea S ( t ) ( bila t, maka µ utuk t. Lebih lajut, dega meulis S ( + S ( + +, dega alasa yag + S ( t ) + sama didapat µ utuk t. Sehigga meurut (4), t/ diapit oleh dua bilaga yag koverge ke µ utuk t. Maka utuk t. t µ Cotoh Suatu kotak berisi tak higga koi. Setiap koi jika dilemparka mempuyai peluag utuk mucul gambar. ilai dari peluag merupaka variabel acak yag salig bebas berdistribusi seragam atas (0,). Jika koi-koi tersebut dilemparka terus-meerus, bagaimaa prosesya memaksimalka peluag mucul gambar, utuk waktu yag lama? Peyelesaia : Misal ) meyataka bayakya mucul agka dalam lempara pertama. Sehigga peluag jagka pajag mucul gambar, disebut P h, diberika dega P h ) ) lim lim. Caraya dega megambil koi terus dilemparka, demikia seterusya sampai mucul agka. Jika sudah demikia, maka koi-koi itu dibuag da utuk proses 8

7 JURAL MATEMATKA DA KOMPUTER Vol. 6. o., 77-85, Agustus 003, SS : selajutya dega megambil koi-koi yag baru. Proses diulag terusmeerus. Utuk meetuka P h dega cara ii, maka waktu koi dilemparka sampai mucul agka aka membetuk pembaharua. Sehigga, meurut Proposisi 3, ) lim / bayakya lempara atara mucul agka yag beruruta]. Jika diberika peluag mucul gambar adalah p, maka bayakya lempara koi sampai mucul agka merupaka distribusi geometric dega rataa /(-p). Jadi, bayakya lempara diatara mucul agka yag beruruta] ) dp, yag berarti, dega peluag, lim 0. Sehigga peluag p 0 utuk jagka pajag mucul gambar sama dega. Dega demikia Proposisi 3 meyataka bahwa dega peluag, itesitas jagka pajag yag maa pembaharua terjadi aka sama dega /µ. Utuk alasa ii /µ disebut itesitas proses pembaharua. Misal, meyataka barisa variabel acak salig bebas. Aka disajika defiisi berikut ii. Defiisi Variabel acak berilai itejer disebut waktu berheti utuk barisa, jika kejadia { } adalah salig bebas dari,, utuk semua,. + + Secara ituitif, memperlihatka barisa terurut da meyataka bayakya pegamata sebelum proses berheti. Jika, maka proses berheti sesudah pegamata, da sebelum pegamata,,. + + Teorema (Persamaa Wald) Jika, adalah variabel acak salig bebas da berdistribusi idetik yag mempuyai ekspektasi berhigga, da jika adalah waktu berheti utuk, sedemikia higga E [ ] <, maka E ] ]. 83

8 Distribusi Waktu Berheti (Sudaro) Bukti : Dega megambil, jika 0, jika <, didapat. Sehigga E E ]. (5) Tetapi, jika da haya jika proses belum berheti sesudah pegamata beruruta,,. Oleh sebab itu, ditetuka dega, da dega demikia salig bebas dari. Meurut (5), diperoleh E ] ] ] ] P{ } ] ]. ] Cotoh Misal,,,, adalah salig bebas sedemikia higga P{ 0} },,. Jika diambil mi{ : + + 0}, maka adalah waktu berheti. dapat dipadag sebagai waktu berheti dari suatu percobaa melempar koi secara jujur da berheti bilamaa jumlah gambar yag mucul telah mecapai 0. Meurut Persamaa Wald didapat + + ] ]. Tetapi, + + 0, meurut defiisi dari. Sehigga ] 0. Cotoh 3 Misal,,,, adalah salig bebas sedemikia higga P { } }. Maka mi{ : + + } adalah waktu berheti. i dapat dipadag sebagai waktu berheti utuk pemai yag tiap-tiap pemai berkemugkia sama utuk meag atau kalah uit da memutuska berheti bermai bilamaa meag uit. Meurut Persamaa Wald 84

9 JURAL MATEMATKA DA KOMPUTER Vol. 6. o., 77-85, Agustus 003, SS : meghasilka + + ] ] ]. Tetapi, + da ] + 0. Sehigga kotradiksi. Dega demikia Persamaa Wald tidak berlaku, utuk ]. 4. KESMPULA Distribusi waktu berheti merupaka selisih kovolusi dari distribusiya. Fugsi pembaharua berhigga utuk waktu yag berhigga. Sedagka itesitas proses pembaharua aka koverge berbadig terbalik dega rataya utuk waktu jagka pajag. Meurut persamaa Wald bahwa ilai harapa waktu berheti sama dega ekspektasi waktu tuggu dibagi dega rataaya. Sedagka persamaa Wald dapat dipakai bilamaa rataaya berhigga. DAFTAR PUSTAKA. Feller, S., A troductio to Probability Theory ad ts Applicatios, Volume, Joh Wiley & Sos, c., ew York, Karli, S. ad H. Taylor, A First Course i Stochastic Processes, Secod Editio, Academic, ew York, Ross, S.M., troductio to Probability Models, Sixth Editio, Academic Press, ew York, Ross, S.M., Stochastic Processes, Secod Editio, Joh Wiley & Sos, c., ew York, Tijms, H.C., Stochastic Models, A Algorithmic Approach, Joh Wiley & Sos, c., ew York,

DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN. Sudarno Jurusan Matematika FMIPA UNDIP. Abstrak

DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN. Sudarno Jurusan Matematika FMIPA UNDIP. Abstrak DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN Sudarno Jurusan Matematika FMIPA UNDIP Abstrak Dalam proses stokhastik yang mana kejadian dapat muncul kembali membentuk proses pembahauruan. Proses pembaharuan

Lebih terperinci

I. DERET TAKHINGGA, DERET PANGKAT

I. DERET TAKHINGGA, DERET PANGKAT I. DERET TAKHINGGA, DERET PANGKAT. Pedahulua Pembahasa tetag deret takhigga sebagai betuk pejumlaha suku-suku takhigga memegag peraa petig dalam fisika. Pada bab ii aka dibahas megeai pegertia deret da

Lebih terperinci

HUBUNGAN ANTARA KONVERGEN HAMPIR PASTI, KONVERGEN DALAM PELUANG, DAN KONVERGEN DALAM SEBARAN

HUBUNGAN ANTARA KONVERGEN HAMPIR PASTI, KONVERGEN DALAM PELUANG, DAN KONVERGEN DALAM SEBARAN Jural Matematika UNAND Vol. 2 No. 2 Hal. 0 6 ISSN : 2303 290 c Jurusa Matematika FMIPA UNAND HUBUNGAN ANTARA KONVERGEN HAMPIR PASTI, KONVERGEN DALAM PELUANG, DAN KONVERGEN DALAM SEBARAN VIRA AGUSTA, DODI

Lebih terperinci

Distribusi Pendekatan (Limiting Distributions)

Distribusi Pendekatan (Limiting Distributions) Distribusi Pedekata (Limitig Distributios) Ada 3 tekik utuk meetuka distribusi pedekata: 1. Tekik Fugsi Distribusi Cotoh 2. Tekik Fugsi Pembagkit Mome Cotoh 3. Tekik Teorema Limit Pusat Cotoh Fitriai Agustia,

Lebih terperinci

LANDASAN TEORI. Secara umum, himpunan kejadian A i ; i I dikatakan saling bebas jika: Ruang Contoh, Kejadian, dan Peluang

LANDASAN TEORI. Secara umum, himpunan kejadian A i ; i I dikatakan saling bebas jika: Ruang Contoh, Kejadian, dan Peluang 2 LANDASAN TEORI Ruag Cotoh, Kejadia, da Peluag Percobaa acak adalah suatu percobaa yag dapat diulag dalam kodisi yag sama, yag hasilya tidak dapat diprediksi secara tepat tetapi dapat diketahui semua

Lebih terperinci

1 n MODUL 5. Peubah Acak Diskret Khusus

1 n MODUL 5. Peubah Acak Diskret Khusus ODUL 5 Peubah Acak Diskret Khusus Terdapat beberapa peubah acak diskret khusus yag serig mucul dalam aplikasi. Peubah Acak Seragam ( Uiform) Bila X suatu peubah acak diskret dimaa setiap eleme dari X mempuyai

Lebih terperinci

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n LIMIT 4.. FUNGSI LIMIT Defiisi 4.. A R Titik c R adalah titik limit dari A, jika utuk setiap δ > 0 ada palig sedikit satu titik di A, c sedemikia sehigga c < δ. Defiisi diatas dapat disimpulka dega cara

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 3 BAB II TINJAUAN PUSTAKA.1 Ruag Cotoh, Kejadia da Peluag Defiisi.1 (Ruag cotoh da kejadia) Suatu percobaa yag dapat diulag dalam kodisi yag sama, yag hasilya tidak bisa diprediksi secara tepat tetapi

Lebih terperinci

2 BARISAN BILANGAN REAL

2 BARISAN BILANGAN REAL 2 BARISAN BILANGAN REAL Di sekolah meegah barisa diperkealka sebagai kumpula bilaga yag disusu meurut "pola" tertetu, misalya barisa aritmatika da barisa geometri. Biasaya barisa da deret merupaka satu

Lebih terperinci

II. TINJAUAN PUSTAKA. Secara umum apabila a bilangan bulat dan b bilangan bulat positif, maka ada tepat = +, 0 <

II. TINJAUAN PUSTAKA. Secara umum apabila a bilangan bulat dan b bilangan bulat positif, maka ada tepat = +, 0 < II. TINJAUAN PUSTAKA 2.1 Keterbagia Secara umum apabila a bilaga bulat da b bilaga bulat positif, maka ada tepat satu bilaga bulat q da r sedemikia sehigga : = +, 0 < dalam hal ii b disebut hasil bagi

Lebih terperinci

Statistika Matematika. Soal dan Pembahasan. M. Samy Baladram

Statistika Matematika. Soal dan Pembahasan. M. Samy Baladram Statistika Matematika Soal da embahasa M Samy Baladram Bab 4 Ubiasedess, Cosistecy, ad Limitig istributios Ubiasedess, Cosistecy, ad Limitig istributios 41 Ekspektasi Fugsi Key oits Ṫeorema 411 Jika T

Lebih terperinci

SIFAT-SIFAT FUNGSI EKSPONENSIAL BERBASIS BILANGAN NATURAL YANG DIDEFINISIKAN SEBAGAI LIMIT

SIFAT-SIFAT FUNGSI EKSPONENSIAL BERBASIS BILANGAN NATURAL YANG DIDEFINISIKAN SEBAGAI LIMIT Jural Matematika UNAND Vol. 4 No. 1 Hal. 12 22 ISSN : 2303 2910 c Jurusa Matematika FMIPA UNAND SIFAT-SIFAT FUNGSI EKSPONENSIAL BERBASIS BILANGAN NATURAL YANG DIDEFINISIKAN SEBAGAI LIMIT ENIVA RAMADANI

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Didalam melakuka kegiata suatu alat atau mesi yag bekerja, kita megeal adaya waktu hidup atau life time. Waktu hidup adalah lamaya waktu hidup suatu kompoe atau uit pada

Lebih terperinci

Hendra Gunawan. 12 Februari 2014

Hendra Gunawan. 12 Februari 2014 MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2013/2014 12 Februari 2014 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 82 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg

Lebih terperinci

BAB VIII KONSEP DASAR PROBABILITAS

BAB VIII KONSEP DASAR PROBABILITAS BAB VIII KONSEP DASAR PROBABILITAS 1.1. Pedahulua Dalam pertemua ii Ada aka mempelajari beberapa padaga tetag permutasi da kombiasi, fugsi da metode perhituga probabilitas, da meghitug probabilitas. Pada

Lebih terperinci

BAB II LANDASAN TEORI. Pada bagian ini akan dibahas tentang teori-teori dasar yang. digunakan untuk dalam mengestimasi parameter model.

BAB II LANDASAN TEORI. Pada bagian ini akan dibahas tentang teori-teori dasar yang. digunakan untuk dalam mengestimasi parameter model. BAB II LANDASAN TEORI Pada bagia ii aka dibahas tetag teori-teori dasar yag diguaka utuk dalam megestimasi parameter model.. MATRIKS DAN VEKTOR Defiisi : Trace dari matriks bujur sagkar A a adalah pejumlaha

Lebih terperinci

REPRESENTASI KANONIK UNTUK FUNGSI KARAKTERISTIK DARI SEBARAN TERBAGI TAK HINGGA

REPRESENTASI KANONIK UNTUK FUNGSI KARAKTERISTIK DARI SEBARAN TERBAGI TAK HINGGA Jural Matematika UNAND Vol. 3 No. Hal. 7 34 ISSN : 33 9 c Jurusa Matematika FMIPA UNAND REPRESENTASI KANONIK UNTUK FUNGSI KARAKTERISTIK DARI SEBARAN TERBAGI TAK HINGGA EKA RAHMI KAHAR, DODI DEVIANTO Program

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang. Universitas Sumatera Utara

BAB I PENDAHULUAN. 1.1 Latar Belakang. Universitas Sumatera Utara BAB I PENDAHULUAN 1.1 Latar Belakag Salah satu pera da fugsi statistik dalam ilmu pegetahua adalah sebagai. alat aalisis da iterpretasi data kuatitatif ilmu pegetahua, sehigga didapatka suatu kesimpula

Lebih terperinci

BARISAN TAK HINGGA DAN DERET TAK HINGGA

BARISAN TAK HINGGA DAN DERET TAK HINGGA BARIAN TAK HINGGA DAN DERET TAK HINGGA Bajar/Barisa Tak Higga Barisa tak higga { } adalah suatu fugsi dari dimaa daerah domaiya adalah himpua bilaga bulat positif (bilaga asli). Cotoh: Bila.. maka fugsi

Lebih terperinci

,n N. Jelas barisan ini terbatas pada dengan batas M =: 1, dan. barisan ini kovergen ke 0.

,n N. Jelas barisan ini terbatas pada dengan batas M =: 1, dan. barisan ini kovergen ke 0. PROGRAM STUDI PENDIDIKAN MATEMATIKA FKIP UNMUH PONOROGO SOAL UJIAN TENGAH SEMESTER GENAP TA 03/04 Mata Ujia : Aalisis Real Tipe Soal : REGULER Dose : Dr. Jula HERNADI Waktu : 90 meit Hari, Taggal : Selasa,

Lebih terperinci

BAB VII RANDOM VARIATE DISTRIBUSI DISKRET

BAB VII RANDOM VARIATE DISTRIBUSI DISKRET BAB VII RANDOM VARIATE DISTRIBUSI DISKRET Diskret radom variabel dapat diguaka utuk berbagai radom umber yag diambil dalam betuk iteger. Pola kebutuha ivetori (persediaa) merupaka cotoh yag serig diguaka

Lebih terperinci

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X Pedugaa Selag: Metode Pivotal Lagkah-lagkahya 1. Adaika X1, X,..., X adalah cotoh acak dari populasi dega fugsi kepekata f( x; ), da parameter yag tidak diketahui ilaiya. Adaika T adalah peduga titik bagi..

Lebih terperinci

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang 5. DERET

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang 5. DERET Pertemua 7. BAHAN AJAR ANALISIS REAL Matematika STKIP Tuaku Tambusai Bagkiag 5. da kekovergeaya 5. DERET Diberika sebuah barisa a, dapat didefeisika barisa bilaga real S N dega S N := N a = a + a 2 +...

Lebih terperinci

DISTRIBUSI KHUSUS YANG DIKENAL

DISTRIBUSI KHUSUS YANG DIKENAL 0 DISTRIBUSI KHUSUS YANG DIKENAL Kita sudah membahas fugsi peluag atau fugsi desitas, baik defiisiya maupu sifatya. Fugsi peluag atau fugsi desitas ii merupaka ciri dari sebuah distribusi, artiya fugsi

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2016/2017 3 Februari 2017 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg Batas

Lebih terperinci

BAB I PENDAHULUAN. Integral adalah salah satu konsep penting dalam Matematika yang

BAB I PENDAHULUAN. Integral adalah salah satu konsep penting dalam Matematika yang BAB I PENDAHULUAN 1.1 Latar Belakag Masalah Itegral adalah salah satu kosep petig dalam Matematika yag dikemukaka pertama kali oleh Isac Newto da Gottfried Wilhelm Leibiz pada akhir abad ke-17. Selajutya

Lebih terperinci

STATISTIKA SMA (Bag.1)

STATISTIKA SMA (Bag.1) SMA - STATISTIKA SMA (Bag. A. DATA TUNGGAL. Ukura Pemusata : Terdapat ilai statistika yag dapat dimiliki oleh sekumpula data yag diperoleh yaitu : a. Rata-rata Rata-rata jumlah seluruh data bayakya data

Lebih terperinci

HALAMAN Dengan definisi limit barisan buktikan limit berikut ini : = 0. a. lim PENYELESAIAN : jadi terbukti bahwa lim = 0 = 5. b.

HALAMAN Dengan definisi limit barisan buktikan limit berikut ini : = 0. a. lim PENYELESAIAN : jadi terbukti bahwa lim = 0 = 5. b. Didowload dari ririez.blog.us.ac.id HALAMAN 36 37 5. Dega defiisi limit barisa buktika limit berikut ii : a. lim = 0 lim 1 2 + 3 = 0 > 0 h 1 = 2 + 3 0 = 1 2 + 3 1 2 1 2 1 2 < jadi terbukti bahwa lim =

Lebih terperinci

Distribusi Sampel, Likelihood dan Penaksir

Distribusi Sampel, Likelihood dan Penaksir BAB 1 Distribusi Sampel, Likelihood da Peaksir 1.1 Sampel Acak Misalka X 1, X 2,..., X sampel acak berukura (radom sample of size ). Fugsi peluag -variat ya adalah f X1,X 2,,X (x 1, x 2,..., x ) = f Xi

Lebih terperinci

Definisi Integral Tentu

Definisi Integral Tentu Defiisi Itegral Tetu Bila kita megedarai kedaraa bermotor (sepeda motor atau mobil) selama 4 jam dega kecepata 50 km / jam, berapa jarak yag ditempuh? Tetu saja jawabya sagat mudah yaitu 50 x 4 = 200 km.

Lebih terperinci

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya 5 BAB II LANDASAN TEORI Dalam tugas akhir ii aka dibahas megeai peaksira besarya koefisie korelasi atara dua variabel radom kotiu jika data yag teramati berupa data kategorik yag terbetuk dari kedua variabel

Lebih terperinci

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4 Program Studi : Tekik Iformatika Miggu ke : 4 INDUKSI MATEMATIKA Hampir semua rumus da hukum yag berlaku tidak tercipta dega begitu saja sehigga diraguka kebearaya. Biasaya, rumus-rumus dapat dibuktika

Lebih terperinci

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR Nur Aei Prodi Matematika, FST-UINAM uraeiatullah@gmail.com Ifo: Jural MSA Vol. 3 No. 2 Edisi: Juli Desember

Lebih terperinci

Pendiferensialan. Modul 1 PENDAHULUAN

Pendiferensialan. Modul 1 PENDAHULUAN Modul Pediferesiala Prof R Soematri D PENDAHULUAN alam modul ii dibahas fugsi berilai real yag didefiisika pada suatu iterval Defiisi derivatif suatu fugsi dimulai dega derivatif di suatu titik, kemudia

Lebih terperinci

b. Penyajian data kelompok Contoh: Berat badan 30 orang siswa tercatat sebagai berikut:

b. Penyajian data kelompok Contoh: Berat badan 30 orang siswa tercatat sebagai berikut: Statistik da Peluag A. Statistik Statistik adalah metode ilmiah yag mempelajari cara pegumpula, peyusua, pegolaha, da aalisis data, serta cara pegambila kesimpula berdasarka data-data tersebut. Data ialah

Lebih terperinci

ARTIKEL. Menentukan rumus Jumlah Suatu Deret dengan Operator Beda. Markaban Maret 2015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN

ARTIKEL. Menentukan rumus Jumlah Suatu Deret dengan Operator Beda. Markaban Maret 2015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN ARTIKEL Meetuka rumus Jumlah Suatu Deret dega Operator Beda Markaba 191115198801005 Maret 015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN PUSAT PENGEMBANGAN DAN PEMBERDAYAAN PENDIDIK DAN TENAGA KEPENDIDIKAN

Lebih terperinci

MENENTUKAN PELUANG RUIN DENGAN METODE KOMBINASI EKSPONENSIAL

MENENTUKAN PELUANG RUIN DENGAN METODE KOMBINASI EKSPONENSIAL MENENTUKAN PELUANG RUIN DENGAN METODE KOMBINASI EKSPONENSIAL Karmila 1*, Hasriati 2, Haposa Sirait 2 1 Mahasiswa Program S1 Matematika 2 Dose Jurusa Matematika Fakultas Matematika da Ilmu Pegetahua Alam

Lebih terperinci

Barisan Aritmetika dan deret aritmetika

Barisan Aritmetika dan deret aritmetika BARISAN DAN DERET BILANGAN Peyusu: Atmii Dhoruri, MS Kode: Jejag: SMP T/P: / A. Kompetesi yag diharapka. Meetuka suku ke- barisa aritmatika da barisa geometri. Meetuka jumlah suku pertama deret aritmatika

Lebih terperinci

Barisan Dan Deret Arimatika

Barisan Dan Deret Arimatika Barisa Da Deret Arimatika A. Barisa Aritmatika Niko etera memiliki sebuah peggaris ukura 0 cm. Ia megamati bilaga-bilaga pada peggarisya ii. Bilaga-bilaga tersebut beruruta 0, 1,, 3,, 0. etiap bilaga beruruta

Lebih terperinci

III BAB BARISAN DAN DERET. Tujuan Pembelajaran. Pengantar

III BAB BARISAN DAN DERET. Tujuan Pembelajaran. Pengantar BAB III BARISAN DAN DERET Tujua Pembelajara Setelah mempelajari materi bab ii, Ada diharapka dapat:. meetuka suku ke- barisa da jumlah suku deret aritmetika da geometri,. meracag model matematika dari

Lebih terperinci

RESPONSI 2 STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 2015

RESPONSI 2 STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 2015 RESPONSI STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 015 A. PENYAJIAN DAN PERINGKASAN DATA 1. PENYAJIAN DATA a. Sebutka tekik peyajia data utuk data kualitatif! Diagram kueh, diagram batag, distribusi

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 1, 41-48, April 2003, ISSN : MATRIKS STOKASTIK GANDA DAN SIFAT-SIFATNYA

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 1, 41-48, April 2003, ISSN : MATRIKS STOKASTIK GANDA DAN SIFAT-SIFATNYA JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No., 4-48, April 00, ISSN : 40-858 MATRIKS STOKASTIK GANDA DAN SIFAT-SIFATNYA Suryoto Jurusa Matematika F-MIPA Uiversas Dipoegoro Semarag Abstrak Suatu matriks tak

Lebih terperinci

BAB III PERUMUSAN PENDUGA DAN SIFAT SIFAT STATISTIKNYA

BAB III PERUMUSAN PENDUGA DAN SIFAT SIFAT STATISTIKNYA BAB III PERUMUSAN PENDUGA DAN SIFAT SIFAT STATISTIKNYA 3. Perumusa Peduga Misalka N adala proses Poisso o omoge pada iterval [, dega fugsi itesitas yag tidak diketaui. Fugsi ii diasumsika teritegralka

Lebih terperinci

9 Departemen Statistika FMIPA IPB

9 Departemen Statistika FMIPA IPB Supleme Resposi Pertemua ANALISIS DATA KATEGORIK (STK351 9 Departeme Statistika FMIPA IPB Pokok Bahasa Sub Pokok Bahasa Referesi Waktu Pegatar Aalisis utuk Data Respo Kategorik Data respo kategorik Sebara

Lebih terperinci

InfinityJurnal Ilmiah Program Studi Matematika STKIP Siliwangi Bandung, Vol 2, No.1, Februari 2013

InfinityJurnal Ilmiah Program Studi Matematika STKIP Siliwangi Bandung, Vol 2, No.1, Februari 2013 IfiityJural Ilmiah Program Studi Matematika STKIP Siliwagi Badug, Vol 2, No.1, Februari 2013 KEKONTINUAN FUNGSI PADA RUANG METRIK Oleh: Cece Kustiawa Jurusa Pedidika Matematika FPMIPA UPI, cecekustiawa@yahoo.com

Lebih terperinci

Modul Kuliah statistika

Modul Kuliah statistika Modul Kuliah statistika Dose: Abdul Jamil, S.Kom., MM SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER MUHAMMADIYAH JAKARTA Bab 2 Populasi da Sampel 2.1 Populasi Populasi merupaka keseluruha pegamata

Lebih terperinci

Distribusi Peluang BERBAGAI MACAM DISTRIBUSI SAMPEL. Distribusi Peluang 5/6/2012

Distribusi Peluang BERBAGAI MACAM DISTRIBUSI SAMPEL. Distribusi Peluang 5/6/2012 5/6/0 Distribusi Peluag BERBAGAI MACAM DISTRIBUSI SAMPEL Distribusi peluag, P( x), adalah kumpula pasaga ilai-ilai variabel acak Cotoh: Jika dua buah koi dilempar bersamaa. Kejadia bayakya mucul agka.

Lebih terperinci

Kompetisi Statistika Tingkat SMA

Kompetisi Statistika Tingkat SMA . Arya da Bombom melakuka tos koikoi yag seimbag yag mempuyai sisi, agka da gambar Arya melakuka tos terhadap 6 koi, sedagka Bombom melakuka tos terhadap koi, maka peluag Arya medapatka hasil tos muka

Lebih terperinci

BAB VI BARISAN TAK HINGGA DAN DERET TAK HINGGA

BAB VI BARISAN TAK HINGGA DAN DERET TAK HINGGA BAB VI BARIAN TAK HINGGA DAN DERET TAK HINGGA Bajar/Barisa Tak Higga Barisa tak higga { },,,,, adalah suatu fugsi dari dimaa daerah domaiya adalah himpua bilaga bulat positif (bilaga asli). Cotoh: Bila,,,..,

Lebih terperinci

Distribusi Sampel & Statistitik Terurut

Distribusi Sampel & Statistitik Terurut Distribusi Sampel & Statistitik Terurut Sampel Acak, Rataa sampel, X-bar, Variasi sampel, S, Teorema Limit Pusat, Distribusi t,, F Statistik Terurut MA 3181 Teori Peluag 11 November 014 Utriwei Mukhaiyar

Lebih terperinci

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL BAB VIII MASAAH ESTIMASI SAT DAN DA SAMPE 8.1 Statistik iferesial Statistik iferesial suatu metode megambil kesimpula dari suatu populasi. Ada dua pedekata yag diguaka dalam statistik iferesial. Pertama,

Lebih terperinci

Model SIR Penyakit Tidak Fatal

Model SIR Penyakit Tidak Fatal Model SIR Peyakit Tidak Fatal Husi Tamri, M. Zaki Riyato *, Akhid, Ardhi Ardhia Jurusa Matematika FMIPA UGM Yogyakarta 2007 Itisari Model SIR dapat diguaka utuk memodelka peyebara suatu peyakit yag tidak

Lebih terperinci

TINJAUAN PUSTAKA Pengertian

TINJAUAN PUSTAKA Pengertian TINJAUAN PUSTAKA Pegertia Racaga peelitia kasus-kotrol di bidag epidemiologi didefiisika sebagai racaga epidemiologi yag mempelajari hubuga atara faktor peelitia dega peyakit, dega cara membadigka kelompok

Lebih terperinci

Pengertian Secara Intuisi

Pengertian Secara Intuisi Pegertia Secara Ituisi Coba Gambarka grafik fugsi-fugsi berikut.. f ( ) +, pada [0,].. ) pada [0, ] da.. Dari grafik fugsi yag kamu peroleh, apa yag dapat kamu kataka tetag ilai-ilai ketiga fugsi tersebut

Lebih terperinci

PENGGGUNAAN ALGORITMA GAUSS-NEWTON UNTUK MENENTUKAN SIFAT-SIFAT PENAKSIR PARAMETER DAN

PENGGGUNAAN ALGORITMA GAUSS-NEWTON UNTUK MENENTUKAN SIFAT-SIFAT PENAKSIR PARAMETER DAN PENGGGUNAAN ALGORITMA GAUSS-NEWTON UNTUK MENENTUKAN SIFAT-SIFAT PENAKSIR PARAMETER DAN DALAM SUATU MODEL NON-LINIER Abstrak Nur ei 1 1, Jurusa Matematika FMIPA Uiversitas Tadulako Jl. Sukaro-Hatta Palu,

Lebih terperinci

II LANDASAN TEORI. Sebuah bilangan kompleks dapat dinyatakan dalam bentuk. z = x jy. (2.4)

II LANDASAN TEORI. Sebuah bilangan kompleks dapat dinyatakan dalam bentuk. z = x jy. (2.4) 3 II LANDASAN TEORI 2.1 Peubah Kompleks da Fugsi Kompleks Sebuah bilaga kompleks dapat diyataka dalam betuk z = x + jy, (2.1) dega x da y adalah bilaga-bilaga real da j = 1. Bilaga x disebut bagia real

Lebih terperinci

TEORI ANTRIAN. Gambar 1 Proses antrian pada suatu sistem antrian

TEORI ANTRIAN. Gambar 1 Proses antrian pada suatu sistem antrian TEORI ANTRIAN Teori atria merupaka studi matematis megeai atria atau waitig lies yag di dalamya disediaka beberapa alteratif model matematika yag dapat diguaka utuk meetuka beberapa karakteristik da optimasi

Lebih terperinci

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI Utuk lebih memahami megeai etropi, pada bab ii aka diberika perhituga etropi utuk beberapa distribusi diskrit da kotiu. 3. Distribusi Diskrit Pada sub bab ii dibahas

Lebih terperinci

PEMBUKTIAN TEOREMA HUKUM LEMAH BILANGAN BESAR DENGAN MENGGUNAKAN FUNGSI KARAKTERISTIK

PEMBUKTIAN TEOREMA HUKUM LEMAH BILANGAN BESAR DENGAN MENGGUNAKAN FUNGSI KARAKTERISTIK Jural Matematika UNAND Vol. 2 No. 2 Hal. 71 75 ISSN : 2303 2910 c Jurusa Matematika FMIPA UNAND PEMBUKTIAN TEOREMA HUKUM LEMAH BILANGAN BESAR DENGAN MENGGUNAKAN FUNGSI KARAKTERISTIK SUCI SARI WAHYUNI,

Lebih terperinci

DERET Matematika Industri 1

DERET Matematika Industri 1 DERET TIP FP UB Pokok Bahasa Barisa Deret Deret aritmetik Deret geometrik Deret pagkat dari bilaga-bilaga asli Deret tak berhigga Nilai-ilai limit Deret koverge da deret diverge Uji kovergesi Deret secara

Lebih terperinci

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi 6. Pecacaha Lajut Relasi Rekuresi Relasi rekuresi utuk dereta {a } adalah persamaa yag meyataka a kedalam satu atau lebih suku sebelumya, yaitu a 0, a,, a -, utuk seluruh bilaga bulat, dega 0, dimaa 0

Lebih terperinci

BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan

BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan BAB III METODE PENELITAN. Tempat Da Waktu Peelitia Peelitia dilakuka di SMP Negeri Batudaa Kab. Gorotalo dega subject Peelitia adalah siswa kelas VIII. Pemiliha SMP Negeri Batudaa Kab. Gorotalo. Adapu

Lebih terperinci

ANALISIS TENTANG GRAF PERFECT

ANALISIS TENTANG GRAF PERFECT Aalisis Tetag Graf Perfect ANALISIS TENTANG GRAF PERFET Nurul Imamah AH Fakultas Matematika da Ilmu Pegetahua Alam Uiversitas Pesatre Tiggi Darul Ulum Jombag urul.imamah86@gmail.com Abstrak Seirig perkembaga

Lebih terperinci

Semigrup Matriks Admitting Struktur Ring

Semigrup Matriks Admitting Struktur Ring Semigrup Matriks dmittig Struktur ig K a r y a t i Jurusa Pedidika Matematika FMIP, Uiversitas Negeri Yogyakarta Email: yatiuy@yahoo.com bstrak Diberika adalah rig komutatif dega eleme satua da adalah

Lebih terperinci

BAB III RUANG HAUSDORFF. Pada bab ini akan dibahas mengenai ruang Hausdorff, kekompakan pada

BAB III RUANG HAUSDORFF. Pada bab ini akan dibahas mengenai ruang Hausdorff, kekompakan pada 8 BAB III RUANG HAUSDORFF Pada bab ii aka dibahas megeai ruag Hausdorff, kekompaka pada ruag Hausdorff da ruag regular legkap. Pembahasa diawali dega medefiisika Ruag Hausdorff da beberapa sifatya kemudia

Lebih terperinci

- Yadi Nurhayadi - M O D U L S T A T I S T I K A BAB 2 DISTRIBUSI FREKUENSI

- Yadi Nurhayadi - M O D U L S T A T I S T I K A BAB 2 DISTRIBUSI FREKUENSI - Yadi Nurhayadi - M O D U L S T A T I S T I K A BAB DISTRIBUSI FREKUENSI A. Review Pelajara SMA A. Pegumpula Data. Peelitia lapaga (Pegamata Lagsug). Wawacara (Iterview). Agket (Kuisioer) 4. Berdasarka

Lebih terperinci

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan REGRESI LINIER DAN KORELASI Variabel dibedaka dalam dua jeis dalam aalisis regresi: Variabel bebas atau variabel prediktor -> variabel yag mudah didapat atau tersedia. Dapat diyataka dega X 1, X,, X k

Lebih terperinci

PERTEMUAN 13. VEKTOR dalam R 3

PERTEMUAN 13. VEKTOR dalam R 3 PERTEMUAN VEKTOR dalam R Pegertia Ruag Vektor Defiisi R Jika adalah sebuah bilaga bulat positif, maka tupel - - terorde (ordered--tuple) adalah sebuah uruta bilaga riil ( a ),a,..., a. Semua tupel - -terorde

Lebih terperinci

Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai

Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai PENGUJIAN HIPOTESIS Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai ilai-ilai parameter populasi,

Lebih terperinci

mempunyai sebaran yang mendekati sebaran normal. Dalam hal ini adalah PKM (penduga kemungkinan maksimum) bagi, ˆ ˆ adalah simpangan baku dari.

mempunyai sebaran yang mendekati sebaran normal. Dalam hal ini adalah PKM (penduga kemungkinan maksimum) bagi, ˆ ˆ adalah simpangan baku dari. Selag Kepercayaa Cotoh Besar Jika ukura cotoh (sample size) besar, maka meurut Teorema Limit Pusat, bayak statistik megikuti/mempuyai sebara yag medekati ormal (dapat diaggap ormal). Artiya jika adalah

Lebih terperinci

B a b 1 I s y a r a t

B a b 1 I s y a r a t 34 TKE 315 ISYARAT DAN SISTEM B a b 1 I s y a r a t (bagia 3) Idah Susilawati, S.T., M.Eg. Program Studi Tekik Elektro Fakultas Tekik da Ilmu Komputer Uiversitas Mercu Buaa Yogyakarta 29 35 1.5.2. Isyarat

Lebih terperinci

Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1

Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1 Barisa Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 9/0/06 Matematika Barisa Tak Higga Secara sederhaa, barisa merupaka susua dari bilaga bilaga yag urutaya berdasarka bilaga

Lebih terperinci

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak:

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak: PENGUJIAN HIPOTESIS A. Lagkah-lagkah pegujia hipotesis Hipotesis adalah asumsi atau dugaa megeai sesuatu. Jika hipotesis tersebut tetag ilai-ilai parameter maka hipotesis itu disebut hipotesis statistik.

Lebih terperinci

METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc.

METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc. METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/0 SUGENG00 Copyright 996-98 Dale Caregie & Associates, Ic. Kesalaha ERROR: Selisih atara ilai perkiraa dega ilai eksakilai

Lebih terperinci

UKURAN PEMUSATAN UKURAN PENYEBARAN

UKURAN PEMUSATAN UKURAN PENYEBARAN UKURAN PEMUSATAN DATA TUNGGAL DATA KELOMPOK. MEAN / RATA-RATA. MODUS 3. MEDIAN 4. KUARTIL. MEAN / RATA-RATA. MODUS 3. MEDIAN 4. KUARTIL UKURAN PENYEBARAN JANGKAUAN HAMPARAN RAGAM / VARIANS SIMPANGAN BAKU

Lebih terperinci

MATHunesa (Volume 3 No 3) 2014

MATHunesa (Volume 3 No 3) 2014 MATHuesa (Volume 3 No 3) 014 MINIMUM PENUTUP TITIK DAN MINIMUM PENUTUP SISI PADA GRAF KOMPLIT DAN GRAF BIPARTIT KOMPLIT Yessi Riskiada Kusumawardai Program Studi S1 Matematika, Fakultas Matematika da Ilmu

Lebih terperinci

BAB 6: ESTIMASI PARAMETER (2)

BAB 6: ESTIMASI PARAMETER (2) Bab 6: Estimasi Parameter () BAB 6: ESTIMASI PARAMETER (). ESTIMASI PROPORSI POPULASI Proporsi merupaka perbadiga atara terjadiya suatu peristiwa dega semua kemugkiaa peritiwa yag bisa terjadi. Besara

Lebih terperinci

MINGGU KE-12 TEOREMA LIMIT PUSAT DAN TERAPANNYA

MINGGU KE-12 TEOREMA LIMIT PUSAT DAN TERAPANNYA MINGGU KE-12 TEOREMA LIMIT PUSAT DAN TERAPANNYA TEOREMA LIMIT PUSAT DAN TERAPANNYA Telah dikeal bahwa X 1, X 2...X sampel radom dari distribusi ormal dega mea µ da variasi σ 2, maka x µ σ/ atau xi µ σ

Lebih terperinci

Kombinatorial dan Peluang. Adri Priadana ilkomadri.com

Kombinatorial dan Peluang. Adri Priadana ilkomadri.com Kombiatorial da Peluag Adri Priadaa ilkomadri.com Pedahulua Sebuah kata-sadi (password) pajagya 6 sampai 8 karakter. Karakter boleh berupa huruf atau agka. Berapa bayak kemugkia kata-sadi yag dapat dibuat?

Lebih terperinci

MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR. Dosen Pengampu : Darmadi, S.Si, M.Pd

MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR. Dosen Pengampu : Darmadi, S.Si, M.Pd MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR Dose Pegampu : Darmadi, S.Si, M.Pd Disusu : Kelas 5A / Kelompok 5 : Dia Dwi Rahayu (084. 06) Hefetamala (084. 4) Khoiril Haafi (084. 70) Liaatul Nihayah (084. 74)

Lebih terperinci

PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT

PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT Prosidig Semiar Nasioal Matematika da Terapaya 06 p-issn : 0-0384; e-issn : 0-039 PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT Liatus

Lebih terperinci

UKURAN PEMUSATAN DATA

UKURAN PEMUSATAN DATA Malim Muhammad, M.Sc. UKURAN PEMUSATAN DATA J U R U S A N A G R O T E K N O L O G I F A K U L T A S P E R T A N I A N U N I V E R S I T A S M U H A M M A D I Y A H P U R W O K E R T O DEFINISI UKURAN PEMUSATAN

Lebih terperinci

Projek. Contoh Menemukan Konsep Barisan dan Deret Geometri a. Barisan Geometri. Perhatikan barisan bilangan 2, 4, 8, 16,

Projek. Contoh Menemukan Konsep Barisan dan Deret Geometri a. Barisan Geometri. Perhatikan barisan bilangan 2, 4, 8, 16, Projek Himpulah miimal tiga masalah peerapa barisa da deret aritmatika dalam bidag fisika, tekologi iformasi, da masalah yata di sekitarmu. Ujilah berbagai kosep da atura barisa da deret aritmatika di

Lebih terperinci

BAB II TEORI DASAR. Definisi Grup G disebut grup komutatif atau grup abel jika berlaku hukum

BAB II TEORI DASAR. Definisi Grup G disebut grup komutatif atau grup abel jika berlaku hukum BAB II TEORI DASAR 2.1 Aljabar Liier Defiisi 2. 1. 1 Grup Himpua tak kosog G disebut grup (G, ) jika pada G terdefiisi operasi, sedemikia rupa sehigga berlaku : a. Jika a, b eleme dari G, maka a b eleme

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah BAB ENDAHULUAN. Latar Belakag Masalah Dalam kehidupa yata, hampir seluruh feomea alam megadug ketidak pastia atau bersifat probabilistik, misalya pergeraka lempega bumi yag meyebabka gempa, aik turuya

Lebih terperinci

Elemen Dasar Model Antrian. Aktor utama customer dan server. Elemen dasar : 1.distribusi kedatangan customer. 2.distribusi waktu pelayanan. 3.

Elemen Dasar Model Antrian. Aktor utama customer dan server. Elemen dasar : 1.distribusi kedatangan customer. 2.distribusi waktu pelayanan. 3. Eleme Dasar Model Atria. Aktor utama customer da server. Eleme dasar :.distribusi kedataga customer. 2.distribusi waktu pelayaa. 3.disai fasilitas pelayaa (seri, paralel atau jariga). 4.disipli atria (pertama

Lebih terperinci

Himpunan. Himpunan 3/28/2012. Semesta Pembicaraan Semua mobil di Indonesia

Himpunan. Himpunan 3/28/2012. Semesta Pembicaraan Semua mobil di Indonesia Himpua Suatu himpua atau gugus adalah merupaka sekumpula obyek. Pada umumya aggota dari gugus tersebut memiliki suatu sifat yag sama. Suatu himpua bagia atau aak gugus merupaka sekumpula obyek yag aggotaya

Lebih terperinci

PELUANG KEJADIAN. 3. Permutasi siklis adalah permutasi yang susunannya melingkar.

PELUANG KEJADIAN. 3. Permutasi siklis adalah permutasi yang susunannya melingkar. PELUANG KEJADIAN A. Atura Perkalia/Pegisia Tempat Jika kejadia pertama dapat terjadi dalam a cara berbeda, kejadia kedua dapat terjadi dalam b cara berbeda, kejadia ketiga dapat terjadi dalam c cara berbeda,

Lebih terperinci

Batas Bilangan Ajaib Pada Graph Caterpillar

Batas Bilangan Ajaib Pada Graph Caterpillar J. Math. ad Its Appl. ISSN: 189-605X Vol. 3, No., Nov 006, 49 56 Batas Bilaga Ajaib Pada Graph Caterpillar Chairul Imro Jurusa Matematika FMIPA ITS Surabaya imro-its@matematika.its.ac.id Abstrak Jika suatu

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Statistika iferesi merupaka salah satu cabag statistika yag bergua utuk meaksir parameter. Peaksira dapat diartika sebagai dugaa atau perkiraa atas sesuatu yag aka terjadi

Lebih terperinci

PENDUGAAN PARAMETER DARI DISTRIBUSI POISSON DENGAN MENGGUNAKAN METODE MAXIMUM LIKEHOOD ESTIMATION (MLE) DAN METODE BAYES

PENDUGAAN PARAMETER DARI DISTRIBUSI POISSON DENGAN MENGGUNAKAN METODE MAXIMUM LIKEHOOD ESTIMATION (MLE) DAN METODE BAYES Jural Matematika UNAND Vol. 3 No. 4 Hal. 52 59 ISSN : 233 29 c Jurusa Matematika FMIPA UNAND PENDUGAAN PARAMETER DARI DISTRIBUSI POISSON DENGAN MENGGUNAKAN METODE MAXIMUM LIKEHOOD ESTIMATION (MLE) DAN

Lebih terperinci

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa istilah, definisi serta konsep-konsep yang

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa istilah, definisi serta konsep-konsep yang II. LANDASAN TEORI Pada bab ii aka diberika beberapa istilah, defiisi serta kosep-kosep yag medukug dalam peelitia ii. 2.1 Kosep Dasar Teori Graf Berikut ii aka diberika kosep dasar teori graf yag bersumber

Lebih terperinci

III PEMBAHASAN. λ = 0. Ly = 0, maka solusi umum dari persamaan diferensial (3.3) adalah

III PEMBAHASAN. λ = 0. Ly = 0, maka solusi umum dari persamaan diferensial (3.3) adalah III PEMBAHASAN Pada bagia ii aka diformulasika masalah yag aka dibahas. Solusi masalah aka diselesaika dega Metode Dekomposisi Adomia. Selajutya metode ii aka diguaka utuk meyelesaika model yag diyataka

Lebih terperinci

EKSPANSI MULTINOMIAL, KOMBINASI, DAN PERMUTASI

EKSPANSI MULTINOMIAL, KOMBINASI, DAN PERMUTASI EKSPANSI MULTINOMIAL, KOMBINASI, DAN PERMUTASI Oleh: Sutopo Jurusa Fisika FMIPA UM sutopo@fisika.um.ac.id Ditulis pada sekitar bula Maret 2011. Diuggah pada 3 Desember 2011 PROBLEM Gambar di bawah ii meyataka

Lebih terperinci

BAB III PEMBAHASAN. Pada BAB III ini akan dibahas mengenai bentuk program linear fuzzy

BAB III PEMBAHASAN. Pada BAB III ini akan dibahas mengenai bentuk program linear fuzzy BAB III PEMBAHASAN Pada BAB III ii aka dibahas megeai betuk program liear fuzzy dega koefisie tekis kedala berbetuk bilaga fuzzy da pembahasa peyelesaia masalah optimasi studi kasus pada UD FIRDAUS Magelag

Lebih terperinci

BARISAN DAN DERET. 05/12/2016 Matematika Teknik 1 1

BARISAN DAN DERET. 05/12/2016 Matematika Teknik 1 1 BARISAN DAN DERET 05//06 Matematika Tekik BARISAN Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 05//06 Matematika Tekik Barisa Tak Higga Secara sederhaa, barisa merupaka

Lebih terperinci

PEMBUKTIAN SIFAT RUANG BANACH PADA B 1/4 (K) Malahayati

PEMBUKTIAN SIFAT RUANG BANACH PADA B 1/4 (K) Malahayati Jural Matematika Muri da Terapa εpsilo Vol. 07, No.01, (2013), Hal. 33 44 PEMBUKTIAN SIFAT RUANG BANACH PADA B 1/4 (K) Malahayati Program Studi Matematika Fakultas Sais da Tekologi UIN Sua Kalijaga Yogyakarta

Lebih terperinci

BARISAN PANGKAT TERURUT MATRIKS PADA ALJABAR MAX PLUS

BARISAN PANGKAT TERURUT MATRIKS PADA ALJABAR MAX PLUS BRISN PNGKT TERURUT MTRIKS PD LJBR MX PLUS Nurwa Jurusa Matematika FMIP Uiversitas Negeri Gorotalo E-mail: urwa_mat@ug.ac.id bstrak Diberika matriks R yag memeuhi = λ. Matriks adalah k + c c k taktereduksi

Lebih terperinci

theresiaveni.wordpress.com NAMA : KELAS :

theresiaveni.wordpress.com NAMA : KELAS : theresiaveiwordpresscom NAMA : KELAS : 1 theresiaveiwordpresscom BARISAN DAN DERET Barisa da deret dapat diguaka utuk memudahka peyelesaia perhituga, misalya buga bak, keaika produksi, da laba/rugi suatu

Lebih terperinci

Peubah Acak. Peubah Acak Diskrit dan Distribusi Peluang. Peubah Acak. Peubah Acak

Peubah Acak. Peubah Acak Diskrit dan Distribusi Peluang. Peubah Acak. Peubah Acak Peubah Acak Peubah Acak Diskrit da Distribusi Peluag Peubah Acak (Radom Variable): Sebuah keluara umerik yag merupaka hasil dari percobaa (eksperime) Utuk setiap aggota dari ruag sampel percobaa, peubah

Lebih terperinci