PENJADWALAN JOBS PADA SINGLE MACHINE DENGAN MEMINIMUMKAN VARIANS WAKTU PENYELESAIAN JOBS (Studi Kasus di P.T. XYZ )

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "PENJADWALAN JOBS PADA SINGLE MACHINE DENGAN MEMINIMUMKAN VARIANS WAKTU PENYELESAIAN JOBS (Studi Kasus di P.T. XYZ )"

Transkripsi

1 (Fey Nilawati Kusuma et al.) PENJADWALAN JOBS PADA SINGLE MACHINE DENGAN MEMINIMUMKAN VARIANS WAKTU PENYELESAIAN JOBS (Studi Kasus di P.T. XYZ ) I Gede Agus Widyadaa I Nyoma Sutapa Dose Faultas Teologi Idustri, Jurusa Tei Idustri, Uiversitas Kriste Petra Fey Nilawati Kusuma Alumus Faultas Teologi Idustri, Jurusa Tei Idustri, Uiversitas Kriste Petra ABSTRAK Maalah ii membahas pejadwala jobs pada sigle machie dega tujua memiimuma varias watu peyelesaia job, yaitu utu memberia osume atau jobs urag lebih perlaua yag sama. Data yag diambil dalam pembahasa ii berasal dari perusahaa P.T. XYZ, di maa departeme yag mejadi fous pembahasa adalah Departeme LB/KB (Leather Board/Karto Board) dega litasa produsi arto board yag meghasila produ carto board uura 50 x 0 cm, dega etebala 0,6 mm sampai dega 2,5 mm. Dalam maalah ii dilaua aalisis perbadiga jadwal jobs pada proses produsi di perusahaa yag telah ada dega jadwal jobs megguaa metode heuristic, yaitu megguaa persetase peyimpaga V h (varias watu peyelesaia jobs metode heuristic) dari V p (varias watu peyelesaia jobs perusahaa). Dari hasil aalisis didapata bahwa persetase peyimpaga V h dari V p sebesar 50,36%, hal ii meujua bahwa performace metode heuristic lebih bai, yaitu varias watu peyelesaia jobs-ya lebih ecil daripada metode perusahaa. Selai itu, dalam maalah juga diaalisis elemaha da euggula metode heuristic yag diguaa dalam pejadwala pada sigle machie. Kata uci : pejadwala sigle-machie, varias watu peyelesaia, prosedur heuristic. ABSTRACT This paper discusses a jobs schedulig o a sigle machie to miimize variace of job completio time. The objective is especially importat i situatios where it is desirable to provide customers or jobs with approximately the same treatmet. I this case, data are collected from P.T. XYZ. The focus of discussio is LB/KB Departemet (Leather Board/Carto Board) with carto board s productio lie, which produces carto board. Carto board s size is 50 x 0 cm ad its thicess from 0,6 mm to 2,5 mm. I this paper a compariso aalysis, the deviatio of the objective value give by a heuristic (V h ) method from the objective value give by P.T. XYZ (V p ), is made. The percetage of deviatio V h from V p is 50,36 %, which shows that the performace of heuristic is better, that is variace of job completio time by heuristic method smaller tha by P.T. XYZ. Besides the above discussio, the weaess da superiority of heuristic are aalyzed too. Keywords: sigle-machie schedulig, completio time variace, heuristic procedure. 35

2 JURNAL TEKNIK INDUSTRI VOL. 3, NO., JUNI 200: PENDAHULUAN Dalam maalah ii dibahas masalah pejadwala jobs yag diproses pada sigle machie, dega tujua memiimuma varias watu peyelesaia job. Masud dari memiimuma varias watu peyelesaia job yaitu utu memberia osume atau jobs urag lebih perlaua yag sama. Selama proses produsi diasumsia bahwa tida ada job pre-emptio atau iterupsi, haya dapat memproses satu job pada suatu watu, setiap job tersedia pada awal proses, da watu proses job dietahui. Data yag dipaai dalam pembahasa diambil dari P.T. XYZ, sebuah perusahaa yag memprodusi berbagai jeis ertas dega megguaa desai proses produsi flowshop. Strategi persediaa produ jadi di perusahaa ii merupaa gabuga atara mae to order da mae to stoc. Departeme yag mejadi fous pembahasa adalah departeme LB/KB dega litasa produsi arto board, yag meghasila produ carto board dega etebala atara 0,6 mm da 2,5 mm. Selama ii, metode pejadwala yag dipaai megacu pada tigat persediaa barag jadi di gudag, iformasi jumlah permitaa dari bagia maretig, da esiapa litasa produsi. Dalam maalah ii aa dilaua aalisis perbadiga atara pejadwala perusahaa yag ada dega hasil perhituga dega metode heuristic, yag diembaga oleh Maa da Prasad (999), sehigga diharapa dapat dietahui metode pejadwala yag lebih bai di atara edua metode tersebut, yaitu jadwal optimal yag memiimuma varias watu peyelesaia jobs. 2. TEORI DASAR Beriut adalah otasi-otasi da defiisi-defiisi yag diguaa dalam perumusa model matematis masalah pejadwala jobs: = jumlah jobs, p j = watu proses job e-j, dimaa j =,, dega p p 2 p 3... p, π = (π, π 2,, π ) merupaa jadwal jobs, C j (π) = watu peyelesaia job e-j pada jadwal job π, C( π ) = rata-rata watu peyelesaia jadwal job i π, C[ ]( π ) = C dega ð = (ð, ð,...,ð,ð,ð,...,ð ), V(π) i j 2 i i i+ j= = varias watu peyelesaia C j (π). 2. Pejadwala dega Metode Heuristic Pejadwala jobs pada sigle machie, dega asumsi tapa job pre-emptio, haya satu job yag dapat memproses pada suatu watu da setiap job tersedia pada awal proses, serta watu proses job dietahui, dega tujua memiimuma varias watu peyelesaia dapat dirumusa dega V [ j ] ( ð) = C ( ð) C( ð ) j= 2 () 36

3 (Fey Nilawati Kusuma et al.) Formulasi ii pertama ali diembaga oleh Merte da Muller dalam maalahya: Variace miimizatio i sigle machie sequecig problems pada jural Maagemet Sciece, No.8, tahu 972. Pada tahu 993, Kubia dalam maalahya: Completio time variace miimizatio o a sigle machie is difficult pada jural Operatios Research Letters, No. 4, membutia bahwa persamaa () merupaa NPhard. Selajutya, beberapa peeliti seperti Bagchi, Sulliva, da Chag (987), De, Ghosh, da Wells (990 da 992), Maa da Prasad (994 da 995) da Kubia (995), telah megembaga beberapa optimal algorithm. Seperti dietahui bahwa pejadwala jobs pada sigle machie, dega tujua memiimuma varias watu peyelesaia job, merupaa NP-hard, maa diguaa metode heuristic utu memperoleh pemecaha yag medeati optimal. Metode heuristic bagi masalah ii diusula pertama ali oleh Eilo da Chowdhury dalam: Miimizig waitig time variace i sigle machie problem pada jural Maagemet Sciece, No. 23, tahu 977. Selajutya, beberapa peeliti megembaga metode heuristic, diataraya adalah Kaet (98), Vai da Raghavachari (987), Gupta, Gupta, da Bector (990), Mittethal, Raghavachari, da Raa (993), Gupta, Gupta, da Kumar (993), Maa da Prasad (999). Schrage (975) megembaga jadwal optimal utu jumlah jobs 5. Tabel beriut ii meyajia jadwal optimal utu jobs 5. Tabel. Jadwal Optimal utu 5 Jadwal Optimal atau atau atau Maa da Prasad (999) megembaga metode heuristic utu 6 da meghasila batas bawah da atas utu edudua job dega watu proses terecil dalam jadwal optimal berbetu-v. Metode heuristic yag diusulaya membutuha beberapa asumsi da syarat, yaitu:. Jumlah jobs yag diproses pada awal proses palig sediit 6 jobs ( 6 jobs). 2. Jobs diuruta mulai dari job dega watu proses terbesar sampai dega watu proses terecil (p p 2 p ). 3. Jadwal π = (π, π 2,, π ) diataa berbetu-v, jia p π p πr p π, dega r. Selajutya, Eilo da Chowdhury (977) meujua bahwa betu-v merupaa syarat perlu utu memperoleh jadwal optimal, di maa pecaria jadwal optimal dibatasi sampai dega Jadwal optimal berbetu-v ada dalam betu (, 3,, 2). Hal tersebut telah dibutia oleh Hall da Kubia dalam maalah: Proof of a cojecture of Schrage about the completio time variace problem pada jural Operatios Research Letters, No.0, tahu 993, dega megguaa hasil yag diperoleh Eilo da Chowdhury (977). Dari peelitia ami, didapata bahwa metode heuristic tersebut diatas haya dapat diguaa utu 8, sehigga jadwal optimal utu =6 da =7 ditetua di atara 37

4 JURNAL TEKNIK INDUSTRI VOL. 3, NO., JUNI 200: jadwal-jadwal alteratif, di maa varias watu peyelesaia job-ya palig miimum. Jadwal-jadwal alteratif diperoleh dega megguaa syarat yag dijelasa di atas da beberapa Teorema, yag telah dibutia oleh Maa da Prasad (999). Tabel 2. Jadwal-jadwal Alteratif utu = 6 da = 7 jobs Jadwal-jadwal Alteratif jobs Jadwal-jadwal Alteratif = = = Metode heuristic yag diembaga ii megguaa jadwal jobs berbetu barisa (, 3,,,, 2), di maa job terecil job e-, meempati posisi e-, L+ U-, da selajutya diciptaa sejumlah 4 hypothetical jobs yag meempati semua posisi, ecuali posisi, 2,, da. Hypothetical jobs dilambaga dega + da watu proses hypothetical jobs sama dega p - sedemiia higga p + = p -. Apabila dalam jadwal, ada posisi yag ditempati oleh hypothetical jobs, maa posisi dalam jadwal tersebut diamaa uscheduled. Dega meletaa actual job (4, 5,, -) dalam posisi uscheduled berarti meggatia hypothetical jobs dega actual job. Metode heuristic meghasila (U L ) jadwal berbetu V yaitu diperoleh jadwal π () da di atara jadwal π () aa dipilih jadwal dega varias watu peyelesaia job palig miimum, yaitu π*. Beriut ii adalah lagah-lagah metode heuristic : Lagah: Hitug u utu = 4,, 2 u = p + ( r 2) p r + ( ) p - 3 ( ) r= 4 = p + r + p r + 2 p r p 2 (2) Lagah 2: Tetua batas bawah (L) dimaa L = max : u { } Artiya dimulai dari ilai yag masimum (=-2,,4), emudia dipilih apabila memeuhi odisi u 0. Lagah 3: Hitug v utu = 5,, v = p3 + r 2 r= + 3 r= 4 ( ) p p { r ( + ) } p p + ( + ) p + ( r 2) p Lagah 4: Tetua batas atas (U) dimaa U = mi : v 0. 5 { } Artiya dimulai dari ilai yag miimum (=5,, ), emudia dipilih apabila memeuhi odisi v 0. Lagah 5: Tetapa p + = p -. r (3) 38

5 (Fey Nilawati Kusuma et al.) Lagah 6: Tetapa = L. Lagah 7: Tetapa = +. Lagah 8: Tetua jadwal π () = (π,...,π ) dega π =, π 2 =3, π =, π = 2 da π r = + utu r, 2,,. Lagah 9: Tetapa I = 3. Lagah 0: Tetapa I = I +. Lagah : Jia bua posisi uscheduled pada sebelah iri posisi pada π (), maa letaa job I pada posisi uscheduled palig terahir dalam π () da uruta job yag terbetu diamaa π. Lajuta e Lagah 3. Jia laiya, lajuta e Lagah 2. Lagah 2: Jia terdapat posisi uscheduled pada sebelah iri posisi pada π (), maa letaa job I pada posisi palig pertama uscheduled. Uruta job yag terbetu diamaa π. Lajuta e Lagah 3. Lagah 3: Hitug V(π ). Lagah 4: Jia bua posisi uscheduled pada sebelah aa posisi pada π (), maa letaa job I pada posisi uscheduled palig pertama dalam π () da uruta job yag terbetu diamaa π. Lajuta e Lagah 6. Jia laiya, lajuta e Lagah 5. Lagah 5: Jia terdapat posisi uscheduled pada sebelah aa posisi pada π (), maa letaa job I pada posisi palig terahir uscheduled. Uruta job yag terbetu diamaa π. Lajuta e Lagah 6. Lagah 6: Hitug V(π ). Lagah 7: Jia V(π ) V(π ), maa π () = π. Lajuta e Lagah 9. Jia laiya, lajuta e Lagah 8. Lagah 8: Jia V(π ) > V(π ), maa π () = π. Lajuta e Lagah 9. Lagah 9: Jia I <, maa embali e Lagah 0. Jia laiya, lajuta e Lagah 20. Lagah 20: Jia I, maa diperoleh uruta job π (). Kemudia hitug V(π () ). Lagah 2: Jia < U, maa embali e Lagah 7. Jia laiya, lajuta e Lagah 22. Lagah 22: Tetua uruta job π* di atara π (), dimaa V(π*) = mi π () V(π () ) 2.2 Performace Metode Heuristic Performace varias watu peyelesaia jobs metode heuristic V h, terhadap varias watu peyelesaia jobs metode pejadwala yag diguaa perusahaa V p dihitug dega megguaa rumusa persetase peyimpaga V h dari V p, dapat diyataa sebagai beriut : E V = V p h h V p 00 dega V p = varias watu peyelesaia jobs perusahaa, V h = varias watu peyelesaia jobs metode heuristic, E h = ides performace metode heuristic terhadap metode perusahaa, diyataa dalam persetase. (4) 39

6 JURNAL TEKNIK INDUSTRI VOL. 3, NO., JUNI 200: PENGOLAHAN DAN ANALISA DATA Varias watu peyelesaia jobs utu jadwal perusahaa disimulasia dega program Turbo Pascal versi 7.0. Data masuaya berupa jumlah jobs yag dijadwala, watu proses setiap jobs da uruta jadwal. Beriut ii tabel hasil perhitugaya. Tabel 3. Varias Watu Peyelesaia Jobs P.T. XYZ Taggal Jadwal Produsi Varias Watu Pejadwala P.T. 'XYZ' Peyelesaia Jobs -Nov ,4 6-Nov , Nov ,806 8-Dec ,365 Tabel 4 memuat hasil pejadwala jobs da varias watu peyelesaia jobs dega metode heuristic, diolah dega program Turbo Pascal versi 7.0. Data masuaya berupa jumlah jobs yag aa dijadwala da watu proses setiap jobs yag sudah diuruta dari terbesar e terecil. Selajutya, pada Tabel 5 dimuat persetase peyimpaga V h dari V p. Tabel 4. Pejadwala dega Metode Heuristic Tgl. Pejadwala Pejadwala Jobs Variace Watu Peyelesaia Jobs -Nov , Nov , Nov ,606 8-Dec ,574 Tabel 5. Persetase Peyimpaga V h dari V p Taggal V p V h % Peyimpaga (E h ) -Nov , , ,36 6-Nov , , ,8 23-Nov , ,606 28,57 8-Dec , ,574 28,26 Persetase peyimpaga V h dari V p yag berisar atara 28,26 % da 50,36 % meujua bahwa performace metode heuristic cuup bai. Dari hasil pegolaha data, metode heuristic meghasila varias watu peyelesaia job yag lebih ecil daripada metode perusahaa, mesipu watu peyelesaia jobs (completio time) yag dihasila sama besar. Peyimpaga V h dari V p yag cuup besar, disebaba metode pejadwala perusahaa lebih megutamaa uruta watu pemesaa da bua watu proses jobsya. Jadi job dega watu proses terecil mugi saja diproses terlebih dahulu. Sedaga metode heuristic aa meghasila jadwal jobs berbetu-v dalam betu 40

7 (Fey Nilawati Kusuma et al.) (, 3,..., 2), di maa job dega watu proses terbesar aa dijadwala terlebih dahulu. Seperti dirumusa didepa, bahwa jadwal berbetu-v adalah suatu jadwal di maa jobs diletaa dalam uruta yag meuru berdasara watu prosesya, jia jobs terleta sebelum job terecil. Sebaliya, jobs aa diletaa dalam uruta yag meai berdasara watu prosesya, jia jobs terleta sesudah job terecil. Keuggula metode heuristic dalam pemecaha masalah pejadwala ii adalah pecaria jadwal yag medeati optimal dibatasi haya sampai U 4 jadwal = r L+ r 3 berbetu-v dalam (, 3,..., 2). Sedaga, elemaha metode ii, yaitu haya dapat diguaa utu mejadwala jobs 8 da tida berlau utu = 6 da = 7. Utu 8, metode heuristic tida dapat diguaa utu mecari jadwal optimal, jia semua u, yag diguaa utu meetua batas bawah (L), berada pada odisi lebih besar dari ol, atau ada suatu odisi di maa semua v, yag diguaa utu meetua batas atas (U), berada pada odisi lebih ecil dari ol. Kelemaha metode heuristic laiya, yaitu apabila job terecil tida tuggal maa metode heuristic di atas tida berlau. 4. KESIMPULAN Dega megacu pada persetase peyimpaga V h dari V p, dapat diyataa bahwa performace metode heuristic terhadap metode perusahaa cuup bai, di maa metode heuristic meghasila varias watu peyelesaia jobs lebih ecil daripada metode perusahaa. Metode heuristic yag dibahas dalam maalah ii, mempuyai beberapa elemaha, sehigga metode ii perlu diembaga lebih lajut utu megatasi beberapa elemaha tersebut. DAFTAR PUSTAKA Eilo, Samuel, ad Chowdhury, I.G., 977. Miimizig Waitig Time Variace i The Sigle Machie Problem, Maagemet Sciece, Vol. 23, No. 6, pp H.M., Jogiyato, 994. Turbo Pascal jilid I, Yogyaarta, Adi Offset. Maa, D.K., ad Prasad, V. Rajedra, 999. Bouds For The Positio of The Smallest Job I Completio Time Variace Miimizatio, Europea Joural of Operatioal Research, No.4, pp Piedo, Michael, 995. Schedulig Theory, Algorithms ad Systems. Schrage, Lius, 975. Miimizig The Time-I-System Variace For A Fiite Jobset, Maagemet Sciece, Vol. 2, No. 5, pp

Gambar 3.1Single Channel Multiple Phase

Gambar 3.1Single Channel Multiple Phase BAB III MODEL ANTRIAN PADA PEMBUATAN SIM C. Sigle Chael Multiple Phase Sistem atria sigle chael multiple phase merupaa sistem atria dimaa pelagga yag tiba, dapat memasui sistem dega megatri di tempat yag

Lebih terperinci

MACAM-MACAM TEKNIK MEMBILANG

MACAM-MACAM TEKNIK MEMBILANG 0 MACAM-MACAM TEKNIK MEMBILANG ATURAN PERKALIAN Beriut ii diberia sebuah dalil tetag peetua baya susua yag palig sederhaa dalam suatu permasalaha yag beraita dega peluag. Dalil 2.1: ATURAN PERKALIAN SECARA

Lebih terperinci

Representasi sinyal dalam impuls

Representasi sinyal dalam impuls Represetasi siyal dalam impuls Represetasi siyal dalam impuls adalah siyal yag diyataa sebagai fugsi dari impuls atau sebagai umpula dari impuls-impuls. Sembarag siyal disret dapat diyataa sebagai pejumlaha

Lebih terperinci

MODUL BARISAN DAN DERET

MODUL BARISAN DAN DERET MODUL BARISAN DAN DERET SEMESTER 2 Muhammad Zaial Abidi Persoal Blog http://meetabied.wordpress.com BAB I. PENDAHULUAN A. Desripsi Dalam modul ii, ada aa mempelajari pola bilaga, barisa, da deret diidetifiasi

Lebih terperinci

BAB III TAKSIRAN PROPORSI POPULASI JIKA TERJADI NONRESPON. Dalam bab ini akan dibahas penaksiran proporsi populasi jika terjadi

BAB III TAKSIRAN PROPORSI POPULASI JIKA TERJADI NONRESPON. Dalam bab ini akan dibahas penaksiran proporsi populasi jika terjadi BAB III TAKSIRA PROPORSI POPULASI JIKA TERJADI ORESPO Dalam bab ii aa dibaas peasira proporsi populasi jia terjadi orespo da dilaua allba sebaya t ali. Selai itu, juga aa dibaas peetua uura sampel yag

Lebih terperinci

Aplikasi Sistem Orthonormal Di Ruang Hilbert Pada Deret Fourier

Aplikasi Sistem Orthonormal Di Ruang Hilbert Pada Deret Fourier Apliasi Sistem Orthoormal Di Ruag Hilbert Pada Deret Fourier A 7 Fitriaa Yuli S. FMIPA UNY Abstra Ruag hilbert aa dibahas pada papper ii. Apliasi system orthoormal aa diaji da aa diapliasia pada ruahg

Lebih terperinci

BARISAN DAN DERET. U n = suku ke-n Contoh: Barisan bilangan asli, bilangan genap, bilangan ganjil, dan lain-lain.

BARISAN DAN DERET. U n = suku ke-n Contoh: Barisan bilangan asli, bilangan genap, bilangan ganjil, dan lain-lain. BARIAN DAN DERET A. Barisa Barisa adalah uruta bilaga yag memilii atura tertetu. etiap bilaga pada barisa disebut suu barisa yag dipisaha dega lambag, (oma). Betu umum barisa:,, 3, 4,, dega: = suu pertama

Lebih terperinci

PEMBUKTIAN SIFAT RUANG BANACH PADA D(K)

PEMBUKTIAN SIFAT RUANG BANACH PADA D(K) JMP : Volume 4 Nomor 1, Jui 2012, hal. 41-50 PEMBUKTIAN SIFAT RUANG BANACH PADA D(K) Malahayati Program Studi Matematia Faultas Sais da Teologi UIN Sua Kalijaga malahayati_01@yahoo.co.id ABSTRACT. I this

Lebih terperinci

STUDI TENTANG PETA KENDALI p YANG DISTANDARISASI UNTUK PROSES PENDEK KUALITAS

STUDI TENTANG PETA KENDALI p YANG DISTANDARISASI UNTUK PROSES PENDEK KUALITAS STUDI TENTANG PETA KENDALI p YANG DISTANDARISASI UNTUK PROSES PENDEK KUALITAS (Tati Octavia et al.) STUDI TENTANG PETA KENDALI p YANG DISTANDARISASI UNTUK PROSES PENDEK KUALITAS Tati Octavia Dose Faultas

Lebih terperinci

Perluasan Uji Kruskal Wallis untuk Data Multivariat

Perluasan Uji Kruskal Wallis untuk Data Multivariat Statistia, Vol. No., Mei Perluasa Uji Krusal Wallis utu Data Multivariat TETI SOFIA YANTI Program Studi Statistia, Uiversitas Islam Badug, Jl. Purawarma No. Badug. E-mail: buitet@yahoo.com ABSTAK Adaia

Lebih terperinci

MODUL 1.03 DINAMIKA PROSES. Oleh : Ir. Tatang Kusmara, M.Eng

MODUL 1.03 DINAMIKA PROSES. Oleh : Ir. Tatang Kusmara, M.Eng MODUL 1.03 DINMIK PROSES Ole : Ir. Tatag Kusmara, M.Eg LBORTORIUM OPERSI TEKNIK KIMI JURUSN TEKNIK KIMI UNIVERSITS SULTN GENG TIRTYS CILEGON BNTEN 2008 2 Modul 1.03 DINMIK PROSES I. Pedaulua Dalam bidag

Lebih terperinci

PEMBAHASAN SOAL OSN MATEMATIKA SMP TINGKAT PROPINSI 2011 OLEH :SAIFUL ARIF, S.Pd (SMP NEGERI 2 MALANG)

PEMBAHASAN SOAL OSN MATEMATIKA SMP TINGKAT PROPINSI 2011 OLEH :SAIFUL ARIF, S.Pd (SMP NEGERI 2 MALANG) PEMBAHASAN SOAL OLIMPIADE SAINS NASIONAL SMP A. ISIAN SINGKAT SELEKSI TINGKAT PROPINSI TAHUN 011 BIDANG STUDI MATEMATIKA WAKTU : 150 MENIT 1. Jia x adalah jumlah 99 bilaga gajil terecil yag lebih besar

Lebih terperinci

PERBANDINGAN PENDEKATAN SEPARABLE PROGRAMMING DENGAN THE KUHN-TUCKER CONDITIONS DALAM PEMECAHAN MASALAH NONLINEAR

PERBANDINGAN PENDEKATAN SEPARABLE PROGRAMMING DENGAN THE KUHN-TUCKER CONDITIONS DALAM PEMECAHAN MASALAH NONLINEAR Jural Tei da Ilmu Komputer PERBANDINGAN PENDEKATAN SEPARABLE PROGRAMMING DENGAN THE KUHN-TUCKER CONDITIONS DALAM PEMECAHAN MASALAH NONLINEAR Budi Marpaug Faultas Tei da Ilmu Komputer Jurusa Tei Idustri

Lebih terperinci

BAB V RANDOM VARIATE GENERATOR (PEMBANGKIT RANDOM VARIATE)

BAB V RANDOM VARIATE GENERATOR (PEMBANGKIT RANDOM VARIATE) BAB V RANDOM VARIATE GENERATOR (PEMBANGKIT RANDOM VARIATE) 5.1. Pembagit Radom Variate Disrit Suatu Radom Variate diartia sebagai ilai suatu radom variate yag mempuyai distribusi tertetu. Utu megambil

Lebih terperinci

BAHAN AJAR DIKLAT GURU MATEMATIKA

BAHAN AJAR DIKLAT GURU MATEMATIKA BAHAN AJAR DIKLAT GURU MATEMATIKA DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN 005 DAFTAR ISI Kata Pegatar.. i Daftar Isi...

Lebih terperinci

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka oi eswa (fmipa-itb) Deret Positif Deret (ta berhigga) adalah ugapa berbetu a + a + a 3 + a 4 + dega a i disebut suu. Pejumlaha ii berbeda dega pejumlaha dua, tiga, atau berhigga bilaga. Maa, ita perlu

Lebih terperinci

STUDI PERBANDINGAN PERFORMANCE ALGORITMA HEURISTIK POUR TERHADAP MIXED INTEGER PROGRAMMING DALAM MENYELESAIKAN PENJADWALAN FLOWSHOP

STUDI PERBANDINGAN PERFORMANCE ALGORITMA HEURISTIK POUR TERHADAP MIXED INTEGER PROGRAMMING DALAM MENYELESAIKAN PENJADWALAN FLOWSHOP STUDI PERBANDINGAN PERFORMANCE ALGORITMA HEURISTIK POUR TERHADAP. (Tessa Vaia Soetato, et al.) STUDI PERBANDINGAN PERFORMANCE ALGORITMA HEURISTIK POUR TERHADAP MIXED INTEGER PROGRAMMING DALAM MENYELESAIKAN

Lebih terperinci

IV. METODE PENELITIAN

IV. METODE PENELITIAN IV. METODE PENELITIAN 4.1. Tempat da Watu Peelitia Peelitia megeai Kepuasa Kosume Restora Gampoeg Aceh, dilasaaa pada bula Mei 2011 higga Jui 2011. Restora Gampoeg Aceh, bertempat di Jl Pajajara, Batarjati,

Lebih terperinci

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka oi eswa (fmipa-itb) Deret Positif Deret (ta berhigga) adalah ugapa berbetu a + a + a 3 + a 4 + dega a i disebut suu. Pejumlaha ii berbeda dega pejumlaha dua, tiga, atau berhigga bilaga. Maa, ita perlu

Lebih terperinci

Sinyal dan Sistem Waktu Diskrit ET 3005 Pengolahan Sinyal Waktu Diskrit EL 5155 Pengolahan Sinyal Waktu Diskrit

Sinyal dan Sistem Waktu Diskrit ET 3005 Pengolahan Sinyal Waktu Diskrit EL 5155 Pengolahan Sinyal Waktu Diskrit Siyal da Sistem Watu Disrit ET 35 Pegolaha Siyal Watu Disrit EL 5155 Pegolaha Siyal Watu Disrit Effria Yati Hamid 1 2 Siyal da Sistem Watu Disrit 2.1 Siyal Watu Disrit 2.1.1 Pegertia Siyal Watu Disrit

Lebih terperinci

BAB 6 NOTASI SIGMA, BARISAN DAN DERET

BAB 6 NOTASI SIGMA, BARISAN DAN DERET BAB 6 NOTASI SIGMA, BARISAN DAN DERET A RINGKASAN MATERI. Notasi Sigma Diberia suatu barisa bilaga, a, a,..., a. Lambag deret tersebut, yaitu: a = a + a +... + a a meyataa jumlah suu pertama barisa Sifat-sifat

Lebih terperinci

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 5

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 5 Mata Kuliah : Matematia Disrit Program Studi : Tei Iformatia Miggu e : 5 KOMBINATORIAL PENDAHULUAN Persoala ombiatori bua merupaa persoala baru dalam ehidupa yata. Baya persoala ombiatori sederhaa telah

Lebih terperinci

1) Leptokurtik Merupakan distribusi yang memiliki puncak relatif tinggi

1) Leptokurtik Merupakan distribusi yang memiliki puncak relatif tinggi Statisti Desriptif Keruciga atau Kurtosis Pegertia Kurtosis Peguura urtosis (peruciga) sebuah distribusi teoritis adaalaya diamaam peguura eses (excess) dari sebuah distribusi Sebearya urtosis bisa diaggap

Lebih terperinci

Bab 16 Integral di Ruang-n

Bab 16 Integral di Ruang-n Catata Kuliah MA3 Kalulus Elemeter II Oi Neswa,Ph.D., Departeme Matematia-ITB Bab 6 Itegral di uag- Itegral Gada atas persegi pajag Itegral Berulag Itegral Gada atas Daerah sebarag Itegral Gada Koordiat

Lebih terperinci

PENJADWALAN FLOWSHOP DUA KRITERIA DENGAN SETUP TIME TERPISAH DAN DETERIORASI LINIER

PENJADWALAN FLOWSHOP DUA KRITERIA DENGAN SETUP TIME TERPISAH DAN DETERIORASI LINIER Prosidig Semiar Nasioal Maaeme Teologi VIII PENJADWALAN FLOWSHOP DUA KRITERIA DENGAN SETUP TIME TERPISAH DAN DETERIORASI LINIER Ceria Farela Mada Tatria, Patdoo Suwigo da Stefaus Eo Wirato Jurusa Tei Idustri

Lebih terperinci

SIFAT ALJABAR BANACH KOMUTATIF DAN ELEMEN IDENTITAS PADA

SIFAT ALJABAR BANACH KOMUTATIF DAN ELEMEN IDENTITAS PADA SIFAT ALJABAR BANACH KOMUTATIF DAN ELEMEN IDENTITAS PADA KELAS D(K) Malahayati Program Studi Matematia Faultas Sais da Teologi UIN Sua Kalijaga Yogyaarta e-mail: malahayati_01@yahoo.co.id ABSTRAK Himpua

Lebih terperinci

Konvolusi pada Distribusi dengan Support Kompak

Konvolusi pada Distribusi dengan Support Kompak Prosidig SI MaNIs (Semiar Nasioal Itegrasi Matematia da Nilai Islami) Vol1, No1, Juli 2017, Hal 453-457 p-issn: 2580-4596; e-issn: 2580-460X Halama 453 Kovolusi pada Distribusi dega Support Kompa Cythia

Lebih terperinci

BAB II LANDASAN TEORI. gamma, fungsi likelihood, dan uji rasio likelihood. Misalkan dilakukan percobaan acak dengan ruang sampel C.

BAB II LANDASAN TEORI. gamma, fungsi likelihood, dan uji rasio likelihood. Misalkan dilakukan percobaan acak dengan ruang sampel C. BAB II LANDASAN TEORI Pada bab ii aa dibahas teori teori yag meduug metode upper level set sca statistics, atara lai peubah aca, distribusi gamma, fugsi gamma, fugsi lielihood, da uji rasio lielihood.

Lebih terperinci

MODEL MATEMATIS PERSEDIAAN TERINTEGRASI ANTARA SUATU PERUSAHAAN DAN DISTRIBUTORNYA

MODEL MATEMATIS PERSEDIAAN TERINTEGRASI ANTARA SUATU PERUSAHAAN DAN DISTRIBUTORNYA MOEL MAEMAI PEREIAAN ERIEGRAI ANARA UAU PERUAAAN AN IRIBUORNYA (Nyoma utapa & Frasisa) MOEL MAEMAI PEREIAAN ERINEGRAI ANARA UAU PERUAAAN AN IRIBUORNYA Nyoma utapa ose Faultas ei Jurusa ei Idustri Uiersitas

Lebih terperinci

BAB 2 LANDASAN TEORI. lebar pita sinyal tersebut. Pada kebanyakan aplikasi, termasuk kamera digital video dan

BAB 2 LANDASAN TEORI. lebar pita sinyal tersebut. Pada kebanyakan aplikasi, termasuk kamera digital video dan BAB LADASA TEORI Teorema Shao-yquist meyataa agar tida ada iformasi yag hilag etia pecuplia siyal, maa ecepata pecuplia harus miimal dua ali dari lebar pita siyal tersebut. Pada ebayaa apliasi, termasu

Lebih terperinci

3. Integral (3) (Integral Tentu)

3. Integral (3) (Integral Tentu) Darublic www.darublic.com. Itegral () (Itegral Tetu).. Luas Sebagai Suatu Itegral. Itegral Tetu Itegral tetu meruaa itegral ag batas-batas itegrasia jelas. Kose dasar dari itegral tertetu adalah luas bidag

Lebih terperinci

Gerak Brown Fraksional dan Sifat-sifatnya

Gerak Brown Fraksional dan Sifat-sifatnya SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 06 S - 3 Gera Brow Frasioal da Sifat-sifatya Chataria Ey Murwaigtyas, Sri Haryatmi, Guardi 3, Herry P Suryawa 4,,3 Uiversitas Gadjah Mada,4 Uiversitas

Lebih terperinci

Penggunaan Transformasi z

Penggunaan Transformasi z Pegguaa Trasformasi pada Aalisa Respo Freuesi Sistem FIR Oleh: Tri Budi Satoso E-mail:tribudi@eepis-its.eduits.edu Lab Siyal,, EEPIS-ITS ITS /3/6 osep pemiira domais of represetatio Domai- discrete time:

Lebih terperinci

Pemilihan Kapasitas Dan Lokasi Optimal Kapasitor Paralel Pada Sistem Distribusi Daya Listrik

Pemilihan Kapasitas Dan Lokasi Optimal Kapasitor Paralel Pada Sistem Distribusi Daya Listrik ELECTRICIAN Jural Reayasa da Teologi Eletro 0 Pemiliha Kapasitas Da Loasi Optimal Paralel Pada Sistem Distribusi Daya Listri Osea Zebua Jurusa Tei Eletro, Faultas Tei, Uiversitas Lampug Jl. Prof. Sumatri

Lebih terperinci

BAB II TINJAUAN PUSTAKA. membahas distribusi normal dan distribusi normal baku, penaksir takbias μ dan σ,

BAB II TINJAUAN PUSTAKA. membahas distribusi normal dan distribusi normal baku, penaksir takbias μ dan σ, BAB II TINJAUAN PUSTAKA.1 Pedahulua Dalam peulisa materi poo dari sripsi ii diperlua beberapa teori-teori yag meduug, yag mejadi uraia poo pada bab ii. Uraia dimulai dega membahas distribusi ormal da distribusi

Lebih terperinci

PENYELESAIAN PERSAMAAN DIFERENSIAL LANE-EMDEN MENGGUNAKAN METODE TRANSFORMASI DIFERENSIAL

PENYELESAIAN PERSAMAAN DIFERENSIAL LANE-EMDEN MENGGUNAKAN METODE TRANSFORMASI DIFERENSIAL PENYELESAIAN PERSAMAAN DIFERENSIAL LANE-EMDEN MENGGUNAKAN METODE TRANSFORMASI DIFERENSIAL Ahma Sya roi, M Natsir, Eag Lily E-mail: Arolativa@yahoocom Mahasiswa Program S Matematia Dose Jurusa Matematia

Lebih terperinci

Metode Perhitungan Grafik Dalam Geolistrik Tahanan Jenis Bumi Dengan Derajat Pendekatan Satu

Metode Perhitungan Grafik Dalam Geolistrik Tahanan Jenis Bumi Dengan Derajat Pendekatan Satu Metode Perhituga Grafi.. P. Maurug Metode Perhituga Grafi Dalam Geolistri Tahaa Jeis Bumi Dega Derajat Pedeata Satu Posma Maurug Jurusa Fisia, FMIPA Uiversitas Lampug Jl. S. Brojoegoro No. Badar Lampug

Lebih terperinci

PROSIDING ISSN:

PROSIDING ISSN: PROSIDING ISSN: 5-656 OPTIMISASI BERKENDALA MENGGUNAKAN METODE GRADIEN TERPROYEKSI Nida Sri Uami Uiversias Muhammadiyah Suraara idaruwiyai@gmailcom ABSTRAK Dalam ulisa ii dibahas eag meode gradie erproyesi

Lebih terperinci

GRAFIKA

GRAFIKA 6 5 7 3 6 3 3 GRAFIKA 3 6 57 08 0 9 5 9 385 946 5 3 30 0 8 9 5 9 3 85 946 5 ANALISA REAL Utu uliah (pegatar) aalisa real yag dilegapi dega program MATLAB Dr. H.A. Parhusip G R A F I K A Peerbit Tisara

Lebih terperinci

Penerapan Algoritma Dijkstra dalam Pemilihan Trayek Bus Transjakarta

Penerapan Algoritma Dijkstra dalam Pemilihan Trayek Bus Transjakarta Peerapa Algoritma Dijstra dalam Pemiliha Traye Bus Trasjaarta Muhammad Yafi 504 Program Studi Tei Iformatia Seolah Tei Eletro da Iformatia Istitut Teologi Badug, Jl. Gaesha 0 Badug 40, Idoesia 504@std.stei.itb.ac.id

Lebih terperinci

Aproksimasi Terbaik dalam Ruang Metrik Konveks

Aproksimasi Terbaik dalam Ruang Metrik Konveks Aprosimasi Terbai dalam Ruag etri Koves Oleh : Suharsoo S Jurusa atematia FIPA Uiversitas Lampug Abstra asalah esistesi da etuggala aprosimasi terbai suatu titi dalam ruag berorm telah dipelajari oleh

Lebih terperinci

Penulis: Penilai: Editor: Ilustrator: Dra. Puji Iryanti, M.Sc. Ed. Al. Krismanto, M.Sc. Sri Purnama Surya, S.Pd, M.Si. Fadjar N. Hidayat, S.Si.,M.Ed.

Penulis: Penilai: Editor: Ilustrator: Dra. Puji Iryanti, M.Sc. Ed. Al. Krismanto, M.Sc. Sri Purnama Surya, S.Pd, M.Si. Fadjar N. Hidayat, S.Si.,M.Ed. PAKET FASILITASI PEMBERDAYAAN KKG/MGMP MATEMATIKA Pembelajara Barisa, Deret Bilaga da Notasi Sigma di SMA Peulis: Dra. Puji Iryati, M.Sc. Ed. Peilai: Al. Krismato, M.Sc. Editor: Sri Purama Surya, S.Pd,

Lebih terperinci

Model Antrian Multi Layanan

Model Antrian Multi Layanan Jural Gradie Vol. No. Juli : 8- Model Atria Multi Layaa Sisa Yosmar Jurusa Matematia, Faultas Matematia da Ilmu egetahua Alam, Uiversitas Begulu, Idoesia Diterima 9 April; Disetujui 8 Jui Abstra - Salah

Lebih terperinci

STATISTIKA: UKURAN PENYEBARAN DATA. Tujuan Pembelajaran

STATISTIKA: UKURAN PENYEBARAN DATA. Tujuan Pembelajaran KTSP & K-3 matemata K e l a s XI STATISTIKA: UKURAN PENYEBARAN DATA Tujua Pembelajara Setelah mempelajar mater, amu dharapa meml emampua berut.. Memaham defs uura peyebara data da jes-jesya.. Dapat meetua

Lebih terperinci

TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL HENSTOCK- KURZWEIL SERENTAK DAN FUNGSI BERSIFAT LOCALLY SMALL RIEMANN SUMS (LSRS) DARI RUANG EUCLIDE

TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL HENSTOCK- KURZWEIL SERENTAK DAN FUNGSI BERSIFAT LOCALLY SMALL RIEMANN SUMS (LSRS) DARI RUANG EUCLIDE Teorema Keovergea Fugsi Teritegral Hestoc(Aiswita) TORMA KKONVRGNAN FUNGSI TRINTGRAL HNSTOCK- KURZWIL SRNTAK DAN FUNGSI BRSIFAT LOCALLY SMALL RIMANN SUMS (LSRS) DARI RUANG UCLID K RUANG BARISAN Aiswita,

Lebih terperinci

MODEL DISTRIBUSI BAHAN AJAR UNIVERSITAS TERBUKA DAN IMPLEMENTASINYA

MODEL DISTRIBUSI BAHAN AJAR UNIVERSITAS TERBUKA DAN IMPLEMENTASINYA MODEL DISTRIBUSI BAHAN AAR UNIVERSITAS TERBUKA DAN IMPLEMENTASINYA Sitta Alief Farihati (sitta@mail.ut.ac.id) Uiversitas Terbua Amril Ama I. N. Kutha Ardaa Pascasarjaa Istitut Pertaia Bogor ABSTRACT Uiversitas

Lebih terperinci

UNIVERSITAS INDONESIA META-ANALISIS UNTUK RELIABILITAS SUATU ALAT UKUR BERDASARKAN KOEFISIEN ALPHA CRONBACH SKRIPSI JANUARINA ANGGRIANI

UNIVERSITAS INDONESIA META-ANALISIS UNTUK RELIABILITAS SUATU ALAT UKUR BERDASARKAN KOEFISIEN ALPHA CRONBACH SKRIPSI JANUARINA ANGGRIANI UNIVERSITAS INDONESIA META-ANALISIS UNTUK RELIABILITAS SUATU ALAT UKUR BERDASARKAN KOEFISIEN ALHA CRONBACH SKRISI JANUARINA ANGGRIANI 080655 FAKULTAS MATEMATIKA DAN ILMU ENGETAHUAN ALAM ROGRAM STUDI SARJANA

Lebih terperinci

BAB III METODE PENELITIAN. Penelitian ini bertujuan untuk mengetahui ada tidaknya peningkatan

BAB III METODE PENELITIAN. Penelitian ini bertujuan untuk mengetahui ada tidaknya peningkatan BAB III METODE PENELITIAN A. Desai Peelitia Peelitia ii bertujua utu megetahui ada tidaya peigata emampua siswa dalam pealara setelah megguaa model pembelajara berbasis masalah terstrutur dalam pembelajara

Lebih terperinci

7. Perbaikan Kualitas Citra

7. Perbaikan Kualitas Citra 7. Perbaia Kualitas Citra Perbaia ualitas citra (image ehacemet) merupaa salah satu proses awal dalam pegolaha citra (image preprocessig). Perbaia ualitas diperlua area serigali citra yag diadia obe pembahasa

Lebih terperinci

Pemodelan Matematis Beban Tersebar Sebagai Beban Terpusat pada Sistem Distribusi 20 kv untuk Studi Aliran Daya

Pemodelan Matematis Beban Tersebar Sebagai Beban Terpusat pada Sistem Distribusi 20 kv untuk Studi Aliran Daya Pemodela Matematis Beba Tersebar Sebagai Beba Terpusat pada Sistem Distribusi 0 V utu Studi Alira Daya I Made Giarsa da I Made Ari Nrartha Dose Jurusa Tei Eletro Faultas Tei Uiversitas Mataram Tel. +6-30-63616

Lebih terperinci

PEMODELAN MINIMIZE TOTAL BIAYA PENGENDALIAN KUALITAS TERHADAP PROSES MANUFAKTURING PRODUK FURNITURE

PEMODELAN MINIMIZE TOTAL BIAYA PENGENDALIAN KUALITAS TERHADAP PROSES MANUFAKTURING PRODUK FURNITURE PEMODELAN MINIMIZE TOTAL BIAYA PENGENDALIAN KUALITAS TERHADAP PROSES MANUFAKTURING PRODUK FURNITURE Sutriso B., Abd. Haris, Romadho Jurusa Maajeme - Fakultas Ekoomi, Uiversitas Widya Dharma Klate Jl. Ki

Lebih terperinci

Bab III Metoda Taguchi

Bab III Metoda Taguchi Bab III Metoda Taguchi 3.1 Pedahulua [2][3] Metoda Taguchi meitikberatka pada pecapaia suatu target tertetu da meguragi variasi suatu produk atau proses. Pecapaia tersebut dilakuka dega megguaka ilmu statistika.

Lebih terperinci

PROBLEM ELIMINASI CUT PADA LOGIKA LBB I nk

PROBLEM ELIMINASI CUT PADA LOGIKA LBB I nk Jural Mateatia, Vol. 10 No. 3, Deseber 007, ISSN 1410-8518 PROBLEM ELIMINASI CUT PADA LOGIKA LBB I Bayu Surarso Jurusa Mateetia FMIPA UNDIP Jl. Prof. H. Soedarto, SH Tebalag Searag 5075 Abstract. I the

Lebih terperinci

Anova (analysis of varian)

Anova (analysis of varian) ova (aalysis of varia) Ui hipotesis perbedaa ilai rata-rata dari atau lebih elompo idepede Cotoh: daah perbedaa berat bayi lahir dari eluarga E tiggi dega E sedag atau E redah sumsi Ui ova: 1. ube diambil

Lebih terperinci

OPTIMASI PENEMPATAN DISTRIBUTED GENERATION PADA IEEE 30 BUS SYSTEM MENGGUNAKAN BEE COLONY ALGORITHM

OPTIMASI PENEMPATAN DISTRIBUTED GENERATION PADA IEEE 30 BUS SYSTEM MENGGUNAKAN BEE COLONY ALGORITHM OPTIMASI PENEMPATAN DISTRIBUTED GENERATION PADA IEEE 30 BUS SYSTEM MENGGUNAKAN BEE COLONY ALGORITHM Nur Ilham Luthfi *), Yuigtyastuti, ad Susatyo Hadoo Jurusa Tei Eletro, Uiversitas Dipoegoro Semarag Jl.

Lebih terperinci

UJI STATISTIK PENGARUH PERLAKUAN PERMUKAAN TERHADAP UMUR FATIK DENGAN DATA TERBATAS

UJI STATISTIK PENGARUH PERLAKUAN PERMUKAAN TERHADAP UMUR FATIK DENGAN DATA TERBATAS Uji Statisti Pegaruh Perlaua Permuaa terhadap dega Data Terbatas (Agus Suhartoo) Areditasi LIPI omor : 536/D/007 Taggal 6 Jui 007 UJI STATISTIK PEGARUH PERLAKUA PERMUKAA TERHADAP UMUR FATIK DEGA DATA TERBATAS

Lebih terperinci

Jurnal Ilmiah Universitas Batanghari Jambi Vol.8 N0. 2 Juli 2008 ANALISIS PERENCANAAN PERSEDIAAN BAHAN BAKU (STUDY KASUS PD.

Jurnal Ilmiah Universitas Batanghari Jambi Vol.8 N0. 2 Juli 2008 ANALISIS PERENCANAAN PERSEDIAAN BAHAN BAKU (STUDY KASUS PD. Jural Ilmiah Uiversitas Bataghari Jambi Vol.8 N0. 2 Juli 2008 ANALISIS PERENCANAAN PERSEDIAAN BAHAN BAKU (STUDY KASUS PD. GUNUNG MAS JAMBI) PENDAHULUAN Perusahaa yag didirika pada umumya mempuyai tujua

Lebih terperinci

Makalah Tugas Akhir. Abstract

Makalah Tugas Akhir. Abstract Maalah Tugas Ahir IDENTIFIKASI JENIS PENYAKIT KULIT BERDASARKAN ANALISIS WARNA DAN TEKSTUR PADA CITRA KULIT MENGGUNAKAN KLASIFIKASI K-NEAREST NEIGHBOR Faris Fitriato 1, R Rizal Isato 2, Ajub Ajulia Zahra.

Lebih terperinci

Bab 5 Sinyal dan Sistem Waktu Diskrit. Oleh: Tri Budi Santoso Laboratorium Sinyal, EEPIS-ITS

Bab 5 Sinyal dan Sistem Waktu Diskrit. Oleh: Tri Budi Santoso Laboratorium Sinyal, EEPIS-ITS Bab 5 Siyal da Sistem Watu Disrit Oleh: Tri Budi Satoso Laboratorium Siyal, EEPIS-ITS Materi: Represetasi matemati pada siyal watu disrit, domai watu da freuesi pada suatu siyal watu disrit, trasformasi

Lebih terperinci

BAB III ECONOMIC ORDER QUANTITY MULTIITEM DENGAN MEMPERTIMBANGKAN WAKTU KADALUARSA DAN FAKTOR DISKON

BAB III ECONOMIC ORDER QUANTITY MULTIITEM DENGAN MEMPERTIMBANGKAN WAKTU KADALUARSA DAN FAKTOR DISKON BAB III ECONOMIC ORDER QUANTITY MULTIITEM DENGAN MEMPERTIMBANGKAN WAKTU KADALUARA DAN FAKTOR DIKON 3.1 Ecoomic Order Quatity Ecoomic Order Quatity (EOQ) merupaka suatu metode yag diguaka utuk megedalika

Lebih terperinci

I PENDAHULUAN II LANDASAN TEORI. mandiri jika tidak mengandung t secara eksplisit di dalamnya. (Kreyszig, 1983)

I PENDAHULUAN II LANDASAN TEORI. mandiri jika tidak mengandung t secara eksplisit di dalamnya. (Kreyszig, 1983) I PENDAHULUAN Latar Belaag Permasalaha ebiaa pemaea ia yag memberia eutuga masimum da berelauta (tida teradi epuaha dari populasi ia yag dipae) adalah hal yag sagat petig bagi idustri periaa Para ilmuwa

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Risio Operasioal.1.1 Defiisi Dewasa ii risio operasioal semai diaui sebagai salah satu fator uci yag perlu dielola da dicermati oleh para pelau usaha, hususya di bidag jasa euaga.

Lebih terperinci

FUNCTIONALLY SMALL RIEMANN SUMS (FSRS) DAN ESSENTIALLY SMALL RIEMANN SUMS (ESRS) FUNGSI TERINTEGRAL HENSTOCKn. p )

FUNCTIONALLY SMALL RIEMANN SUMS (FSRS) DAN ESSENTIALLY SMALL RIEMANN SUMS (ESRS) FUNGSI TERINTEGRAL HENSTOCKn. p ) βeta -ISSN: 85-5893 e-issn: 54-458 Vol. 3 No. (Noember), Hal. 79-89 βeta DOI: htt://dx.doi.org/.44/betajtm.v9i.7 FUNCTIONALLY SMALL RIMANN SUMS (FSRS) DAN SSNTIALLY SMALL RIMANN SUMS (SRS) FUNGSI TRINTGRAL

Lebih terperinci

Pendekatan Teori Antrian : Kasus Nasabah Bank pada Pukul WIB di Bank BNI 46 Cabang Bengkulu

Pendekatan Teori Antrian : Kasus Nasabah Bank pada Pukul WIB di Bank BNI 46 Cabang Bengkulu Jural Gradie Vol. No. Juli 5 : 9-97 edeata Teori Atria : Kasus Nasabah Ba pada uul 8.-. WIB di Ba BNI 46 Cabag Begulu Fahri Faisal Jurusa Matematia, Faultas Matematia da Ilmu egetahua Alam, Uiversitas

Lebih terperinci

Peluang Suatu Kejadian, Kaidah Penjumlahan, Peluang Bersyarat, Kaidah Perkalian dan Kaidah Baiyes

Peluang Suatu Kejadian, Kaidah Penjumlahan, Peluang Bersyarat, Kaidah Perkalian dan Kaidah Baiyes eluag uatu Kejadia, Kaidah ejumlaha, eluag ersyarat, Kaidah eralia da Kaidah aiyes.eluag uatu Kejadia Defiisi : eluag suatu ejadia adalah jumlah peluag semua titi otoh dalam. Dega demiia : 0 (), ( ) =

Lebih terperinci

Bab 6: Analisa Spektrum

Bab 6: Analisa Spektrum BAB Aalisa Spetrum Bab : Aalisa Spetrum Aalisa Spetrum Dega DFT Tujua Belajar Peserta dapat meghubuga DFT dega spetrum dari sial hasil samplig sial watu otiue. -poit DFT dari sial x adalah Xω ag diealuasi

Lebih terperinci

1.1 METODE PENGEMBANGAN PENDEKATAN RATA- RATA SAMPEL UNTUK PROGRAM STOKASTIK DUA TAHAP. Faridawaty Marpaung. Abstrak

1.1 METODE PENGEMBANGAN PENDEKATAN RATA- RATA SAMPEL UNTUK PROGRAM STOKASTIK DUA TAHAP. Faridawaty Marpaung. Abstrak METODE PEGEMBAGA PEDEKATA RATA- RATA SAMPEL UTUK PROGRAM STOKASTIK DUA TAHAP Faridawaty Marpaug Abstra Peelitia ii megemuaa metode pegembaga pedeata rata rata sampel utu program stoasti dua tahap. Metodologi

Lebih terperinci

MENGUJI KEMAKNAAN SAMPEL TUNGGAL

MENGUJI KEMAKNAAN SAMPEL TUNGGAL MENGUJI KEMAKNAAN SAMPEL TUNGGAL 1.1 Uji Biomial 1. Uji esesuaia Chi Kuadrat 1.3 Uji Kesesuaia K-S 1.4 Uji Ideedesi Chi Kuadrat 1.5 Uji Pasti Fisher UJI BINOMIAL Meruaa uji roorsi dalam suatu oulasi Poulasi

Lebih terperinci

MODUL BARISAN DAN DERET

MODUL BARISAN DAN DERET MODUL BARISAN DAN DERET KELAS XII. IPS SEMESTER I Oleh : Drs. Pudjul Prijoo ( http://vidyagata.wordpress.co ) SMA NEGERI 6 Jala Mayje Sugoo 58 Malag Telp./Fax : (034) 75036 E-Mail : sa6_alag@yahoo.co.id

Lebih terperinci

IV METODE PENELITIAN 4.1 Lokasi dan waktu 4.2. Jenis dan Sumber Data 4.3 Metode Pengumpulan Data

IV METODE PENELITIAN 4.1 Lokasi dan waktu 4.2. Jenis dan Sumber Data 4.3 Metode Pengumpulan Data IV METODE PENELITIAN 4.1 Lokasi da waktu Peelitia ii dilakuka di PD Pacet Segar milik Alm Bapak H. Mastur Fuad yag beralamat di Jala Raya Ciherag o 48 Kecamata Cipaas, Kabupate Ciajur, Propisi Jawa Barat.

Lebih terperinci

PENJADWALAN DUA MESIN FLOW SHOP UNTUK MEMINIMASI TOTAL TARDINESS DENGAN MEMPERHATIKAN KETIDAKTERSEDIAAN PADA KEDUA MESIN

PENJADWALAN DUA MESIN FLOW SHOP UNTUK MEMINIMASI TOTAL TARDINESS DENGAN MEMPERHATIKAN KETIDAKTERSEDIAAN PADA KEDUA MESIN PENJDWLN DU MESIN FLOW SHOP UNTUK MEMINIMSI TOTL TRDINESS DENGN MEMPERHTIKN KETIDKTERSEDIN PD KEDU MESIN Rr.Orifia Pitrasari, Stefaus Eo Wirato, Patdoo Suwigo Jurusa Tei Idustri Istitut Teologi Sepulu

Lebih terperinci

Volume 8 Nomor 1 Maret 2014m

Volume 8 Nomor 1 Maret 2014m Volume 8 Nomor Maret 04m Volume 8 Nomor Maret 04 PENANGGUNG JAWAB Ketua Jurusa Matematia FMIPA - Uiversitas Pattimura KETUA DEWAN REDAKSI H. J. Wattimaela, S.Si, M.Si PENYUNTING AHLI Prof. Drs. Subaar,

Lebih terperinci

IV. METODE PENELITIAN

IV. METODE PENELITIAN IV. METODE PENELITIAN 4.1 Lokasi da Waktu peelitia Peelitia dilakuka pada budidaya jamur tiram putih yag dimiliki oleh usaha Yayasa Paguyuba Ikhlas yag berada di Jl. Thamri No 1 Desa Cibeig, Kecamata Pamijaha,

Lebih terperinci

KLASIFIKASI KARAKTERISTIK KECELAKAAN LALU LINTAS DI KOTA DENPASAR DENGAN PENDEKATAN CLASSIFICATION AND REGRESSION TREES (CART)

KLASIFIKASI KARAKTERISTIK KECELAKAAN LALU LINTAS DI KOTA DENPASAR DENGAN PENDEKATAN CLASSIFICATION AND REGRESSION TREES (CART) E-Jural Matematia Vol. 4 (4), November 2015, pp. 146-151 ISSN: 2303-1751 KLASIFIKASI KAAKTEISTIK KECELAKAAN LALU LINTAS DI KOTA DENPASA DENGAN PENDEKATAN CLASSIFICATION AND EGESSION TEES (CAT) I Gede Agus

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 6 BAB III METODE PENELITIAN 3.1 Desai Peelitia Meurut Kucoro (003:3): Peelitia ilmiah merupaka usaha utuk megugkapka feomea alami fisik secara sistematik, empirik da rasioal. Sistematik artiya proses yag

Lebih terperinci

KINETIKA REAKSI PIROLISIS PLASTIK LOW DENSITY POLIETHYLENE (LDPE)

KINETIKA REAKSI PIROLISIS PLASTIK LOW DENSITY POLIETHYLENE (LDPE) KINETIKA REAKSI PIROLISIS PLASTIK LOW DENSITY POLIETHYLENE (LDPE) Sumari 1, Ai Purwati 2 1,2 Jurusa Tei Kimia, Istitut Sais & Teologi AKPRIND Yogyaarta e-mail : ai4wati@gmail.com ABSTRAT The ucatalytic

Lebih terperinci

BAGAN KENDALI G UNTUK PENGENDALIAN VARIABILITAS PROSES MULTIVARIAT (Studi Kasus pada data cuaca di kota Makassar pada tahun 2003 sampai tahun 2012)

BAGAN KENDALI G UNTUK PENGENDALIAN VARIABILITAS PROSES MULTIVARIAT (Studi Kasus pada data cuaca di kota Makassar pada tahun 2003 sampai tahun 2012) BAGAN KENDALI G UNTUK PENGENDALIAN VARIABILITAS PROSES MULTIVARIAT (Studi Kasus pada data cuaca di ota Maassar pada tahu 003 sampai tahu 0) PAISAL, H, HERDIANI, E.T. DAN SALEH, M 3 Jurusa Matematia, Faultas

Lebih terperinci

PETA KONSEP RETURN dan RISIKO PORTOFOLIO

PETA KONSEP RETURN dan RISIKO PORTOFOLIO PETA KONSEP RETURN da RISIKO PORTOFOLIO RETURN PORTOFOLIO RISIKO PORTOFOLIO RISIKO TOTAL DIVERSIFIKASI PORTOFOLIO DENGAN DUA AKTIVA PORTOFOLIO DENGAN BANYAK AKTIVA DEVERSIFIKASI DENGAN BANYAK AKTIVA DEVERSIFIKASI

Lebih terperinci

BAB IV PENGUMPULAN DAN PENGOLAHAN DATA

BAB IV PENGUMPULAN DAN PENGOLAHAN DATA BAB IV PENGUMPULAN DAN PENGOLAHAN DATA 4.1 Data permitaa Dalam meramalka permitaa produk lever cable utuk kebutuha PT. Kyoda Mas Mulia sediri. data yag diambil utuk perhituga peramala permitaa yaitu dega

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Permasalaha peugasa atau assigmet problem adalah suatu persoala dimaa harus melakuka peugasa terhadap sekumpula orag yag kepada sekumpula job yag ada, sehigga tepat satu

Lebih terperinci

IV. METODE PENELITIAN

IV. METODE PENELITIAN IV. METODE PENELITIAN 4.1. Lokasi da Waktu Peelitia Daerah peelitia adalah Kota Bogor yag terletak di Provisi Jawa Barat. Pemiliha lokasi ii berdasarka pertimbaga atara lai: (1) tersediaya Tabel Iput-Output

Lebih terperinci

WAKILAN DIAGRAMATIK UNTUK TEORI USIKAN DALAM MEKANIKA KUANTUM. M Farchani Rosyid Dwi Satya Palupi. Jurusan Fisika, FMIPA, UGM.

WAKILAN DIAGRAMATIK UNTUK TEORI USIKAN DALAM MEKANIKA KUANTUM. M Farchani Rosyid Dwi Satya Palupi. Jurusan Fisika, FMIPA, UGM. Prosidig Semiar Nasioal Peelitia, Pedidia, da Peerapa MIPA Faultas MIPA, Uiversitas Negeri Yogyaarta, 6 Mei 9 WAKILAN DIAGRAMATIK UNTUK TEORI USIKAN DALAM MEKANIKA KUANTUM M Farchai Rosyid Dwi Satya Palupi

Lebih terperinci

1. Integral (1) Pembahasan yang akan kita lakukan hanya mengenai bentuk persamaan diferensial seperti contoh yang pertama.

1. Integral (1) Pembahasan yang akan kita lakukan hanya mengenai bentuk persamaan diferensial seperti contoh yang pertama. Darublic www.darublic.com 1. Itegral (1) (Macam Itegral, Pedeata Numeri) Sudarato Sudirham Dalam bab sebeluma, ita memelajari salah satu bagia utama alulus, aitu alulus diferesial. Beriut ii ita aa membahas

Lebih terperinci

DISAIN DAN IMPLEMENTASI PERANGKAT LUNAK KLASIFIKASI CITRA INDERAJA MULTISPEKTRAL SECARA UNSUPERVISED

DISAIN DAN IMPLEMENTASI PERANGKAT LUNAK KLASIFIKASI CITRA INDERAJA MULTISPEKTRAL SECARA UNSUPERVISED DISAIN DAN IMPLEMENTASI PERANGAT LUNA LASIFIASI CITRA INDERAJA MULTISPETRAL SECARA UNSUPERVISED AGUS ZAINAL ARIFIN, Faultas Teologi Iformasi, Istitut Teologi Sepuluh Nopember, Surabaya Gedug Tei Iformatia,

Lebih terperinci

ANALISA PENGARUH PANJANG BELT CONVEYOR TERHADAP FREKUENSI REPAIR SEBELUM DAN SESUDAH MENGGUNAKAN LOCKING BOLT PADA SAMBUNGAN COLD SPLICING ABSTRAKSI

ANALISA PENGARUH PANJANG BELT CONVEYOR TERHADAP FREKUENSI REPAIR SEBELUM DAN SESUDAH MENGGUNAKAN LOCKING BOLT PADA SAMBUNGAN COLD SPLICING ABSTRAKSI ANALIA PENGARUH PANJANG BELT CONVEYOR TERHAAP FREKUENI REPAIR EBELUM AN EUAH MENGGUNAKAN LOCKING BOLT PAA AMBUNGAN COL PLICING ABTRAKI Ach. Hadi Widodo¹,Priyagug Hartoo²,uatmio³ ¹Mahasiswa Tei Mesi,Uiversitas

Lebih terperinci

PEMODELAN LAMA PEMBERIAN ASI EKSKLUSIF PADA RUMAH TANGGA MISKIN DENGAN METODE REGRESI POHON DI PROVINSI SULAWESI TENGAH

PEMODELAN LAMA PEMBERIAN ASI EKSKLUSIF PADA RUMAH TANGGA MISKIN DENGAN METODE REGRESI POHON DI PROVINSI SULAWESI TENGAH PEMODELAN LAMA PEMBERIAN ASI EKSKLUSIF PADA RUMAH TANGGA MISKIN DENGAN METODE REGRESI POHON DI PROVINSI SULAWESI TENGAH Yermia Firma Setiawirawa da Dr. Bambag Widjaaro Oto, S.Si, M.Si Mahasiswa Jurusa

Lebih terperinci

Projek. Contoh Menemukan Konsep Barisan dan Deret Geometri a. Barisan Geometri. Perhatikan barisan bilangan 2, 4, 8, 16,

Projek. Contoh Menemukan Konsep Barisan dan Deret Geometri a. Barisan Geometri. Perhatikan barisan bilangan 2, 4, 8, 16, Projek Himpulah miimal tiga masalah peerapa barisa da deret aritmatika dalam bidag fisika, tekologi iformasi, da masalah yata di sekitarmu. Ujilah berbagai kosep da atura barisa da deret aritmatika di

Lebih terperinci

UNIVERSITAS INDONESIA DISTRIBUSI BANYAK SINGGAH DARI SUATU RANDOM WALK DAN UJI KERANDOMAN SKRIPSI RANTI NUGRAHENI

UNIVERSITAS INDONESIA DISTRIBUSI BANYAK SINGGAH DARI SUATU RANDOM WALK DAN UJI KERANDOMAN SKRIPSI RANTI NUGRAHENI UNIVERSITAS INDONESIA DISTRIBUSI BANYAK SINGGAH DARI SUATU RANDOM WALK DAN UJI KERANDOMAN SKRIPSI RANTI NUGRAHENI 35475 FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI SARJANA MATEMATIKA DEPOK

Lebih terperinci

MATERI 14 EVALUASI KINERJA PORTOFOLIO

MATERI 14 EVALUASI KINERJA PORTOFOLIO MATERI 14 EVALUASI KINERJA PORTOFOLIO KERANGKA PIKIR EVALUASI KINERjA PORTOFOLIO (EKP) MENGUKUR TINGKAT RETURN PORTOFOLIO RISK-ADJUSTED PERFORMANCE - INDEKS SHARPE - INDEKS TREYNOR - INDEKS JENSEN dede08m.com

Lebih terperinci

PENGARUH MODAL KERJA TERHADAP KREDIT YANG DISALURKAN SERTA DAMPAKNYA TERHADAP RENTABILITAS PERUSAHAAN

PENGARUH MODAL KERJA TERHADAP KREDIT YANG DISALURKAN SERTA DAMPAKNYA TERHADAP RENTABILITAS PERUSAHAAN Jural Autasi FE Usil, Vol. 4, No., 009 ISSN : 907-9958 PENGARUH MODAL KERJA TERHADAP KREDIT YANG DISALURKAN SERTA DAMPAKNYA TERHADAP RENTABILITAS PERUSAHAAN Rai Rahma Dose Jurusa Autasi Faultas Eoomi Uiversitas

Lebih terperinci

ANALISIS ALOKASI RUGI TRANSMISI DENGAN METODE Z-BUS

ANALISIS ALOKASI RUGI TRANSMISI DENGAN METODE Z-BUS ANALISIS ALOKASI RUGI TRANSMISI DENGAN METODE Z-BUS Firdaus Dose Jurusa edidia Tei Eletro FT UNM Abstra Sistem teaga listri telah berembag begitu pesat sehigga sistem ariga uga meela biaya rugirugi daya

Lebih terperinci

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n LIMIT 4.. FUNGSI LIMIT Defiisi 4.. A R Titik c R adalah titik limit dari A, jika utuk setiap δ > 0 ada palig sedikit satu titik di A, c sedemikia sehigga c < δ. Defiisi diatas dapat disimpulka dega cara

Lebih terperinci

Jurusan Pendidikan Matematika, Fakultas Keguruan dan Ilmu Pendidikan Universitas Bung Hatta

Jurusan Pendidikan Matematika, Fakultas Keguruan dan Ilmu Pendidikan Universitas Bung Hatta PENERAPAN MODEL COOPERATIVE LEARNING TIPE THINK PAIR SQUARE UNTUK MENINGKATKAN KEMAMPUAN PEMECAHAN MASALAH MATEMATIKA SISWA KELAS VIII SMP PERTIWI 1 PADANG Cherly Mardelfi 1, Lutfia Almash 2, Yusri Wahyui

Lebih terperinci

PENAKSIR RASIO UNTUK RATA-RATA POPULASI MENGGUNAKAN KOEFISIEN VARIASI DAN KOEFISIEN KURTOSIS PADA SAMPLING GANDA

PENAKSIR RASIO UNTUK RATA-RATA POPULASI MENGGUNAKAN KOEFISIEN VARIASI DAN KOEFISIEN KURTOSIS PADA SAMPLING GANDA PEAKSIR RASIO UTUK RATA-RATA POPULASI MEGGUAKA KOEFISIE VARIASI DA KOEFISIE KURTOSIS PADA SAMPLIG GADA Heru Agriato *, Arisma Ada, Firdaus Mahasiswa Program S Matematika Dose Jurusa Matematika Fakultas

Lebih terperinci

BUKTI ALTERNATIF KONVERGENSI DERET PELL DAN PELL-LUCAS (ALTERNATIVE PROOF THE CONVERGENCE OF PELL AND PELL-LUCAS SERIES)

BUKTI ALTERNATIF KONVERGENSI DERET PELL DAN PELL-LUCAS (ALTERNATIVE PROOF THE CONVERGENCE OF PELL AND PELL-LUCAS SERIES) rosidig Semirata2015 bidag MIA BKS-TN Barat Uiversitas Tajugpura otiaak BUKTI ALTERNATIF KONVERGENSI DERET ELL DAN ELL-LUCAS (ALTERNATIVE ROOF THE CONVERGENCE OF ELL AND ELL-LUCAS SERIES) Baki Swita 1

Lebih terperinci

Jurnal MIPA 38 (1) (2015): Jurnal MIPA.

Jurnal MIPA 38 (1) (2015): Jurnal MIPA. Jural MIPA 38 () (5): 68-78 Jural MIPA http://ouraluesacid/u/idephp/jm APROKSIMASI ANUIAS HIDUP MENGGUNAKAN KOMBINASI EKSPONENSIAL LJ Siay S Gurito Guardi 3 Jurusa Matematia FMIPA Uiversitas Pattimura

Lebih terperinci

Studi Determinasi Nilai Tukar di Indonesia : Pendekatan Vector Autoregressive (VAR)

Studi Determinasi Nilai Tukar di Indonesia : Pendekatan Vector Autoregressive (VAR) Mie et al., Studi Determiasi Nilai Tuar di Idoesia : Pedeata Vector Autoregressive... 1 Studi Determiasi Nilai Tuar di Idoesia : Pedeata Vector Autoregressive (VAR) Exchage Rate Determiatio Studies i Idoesia

Lebih terperinci

PERAMALAN KURSIDRTERHADAP USDMENGGUNAKAN DOUBLE MOVING AVERAGES DAN DOUBLEEXPONENTIAL SMOOTHING.

PERAMALAN KURSIDRTERHADAP USDMENGGUNAKAN DOUBLE MOVING AVERAGES DAN DOUBLEEXPONENTIAL SMOOTHING. PERAMALAN KURSIDRERHADAP USDMENGGUNAKAN DOUBLE MOVING AVERAGES DAN DOUBLEEXPONENIAL SMOOHING. Padrul Jaa 1), Rokhimi 2), Ismi Ratri Prihatiigsih 3) 1,2,3 PedidikaMatematika, Uiversitas PGRI Yogyakarta

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang. B. Tujuan dan Sasaran. C. Ruang Lingkup

BAB I PENDAHULUAN. A. Latar Belakang. B. Tujuan dan Sasaran. C. Ruang Lingkup BAB I PENDAHULUAN A. Latar Belaag Kombiatoria mempuyai beberapa aspe, yaitu eumerasi, teori graf, da ofigurasi atau peyusua. Eumerasi membahas peghituga susua berbagai tipe. Sebagai cotoh: (i) meghitug

Lebih terperinci

IV. METODE PENELITIAN. berdasarkan tujuan penelitian (purposive) dengan pertimbangan bahwa Kota

IV. METODE PENELITIAN. berdasarkan tujuan penelitian (purposive) dengan pertimbangan bahwa Kota IV. METODE PENELITIAN 4.1. Lokasi da Waktu Peelitia ii dilaksaaka di Kota Bogor Pemiliha lokasi peelitia berdasarka tujua peelitia (purposive) dega pertimbaga bahwa Kota Bogor memiliki jumlah peduduk yag

Lebih terperinci