PERTEMUAN 6-MPC 2 PRAKTIK. Oleh: Adhi Kurniawan SEKOLAH TINGGI ILMU STATISTIK

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "PERTEMUAN 6-MPC 2 PRAKTIK. Oleh: Adhi Kurniawan SEKOLAH TINGGI ILMU STATISTIK"

Transkripsi

1 PERTEMUAN 6-MPC 2 PRAKTIK Oleh: Adhi Kuriawa SEKOLAH TINGGI ILMU STATISTIK

2 PPS Cluster Samplig Misalka suatu daerah terdiri dari N cluster yag masig-masig cluster terdiri dari eleme. Dari populasi tersebut, diambil sebayak cluster secara PPS WR dega size suatu variabel pedukug tertetu X i. Cotoh: Suatu survei di suatu kecamata dega megambil beberapa blok sesus sebagai sampel secara PPS WR dega size jumlah peduduk, kemudia dilakuka pecacaha terhadap semua rumah tagga di blok sesus terpilih. N, simbol blok sesus, blok sesus sebagai cluster simbol jumlah rumah tagga utuk blok sesus ke-i, rumah tagga sebagai eleme X i simbol jumlah peduduk utuk cluster ke-i, sebagai size dalam pearika PPS WR

3 PPS Cluster Samplig Samplig Scheme No Ideks Uit Metode Populasi Sampel Peluag 1 i Blok sesus 2 j Rumah tagga PPS WR (size: peduduk) N X i X 0 Overall samplig fractio merupaka perkalia dari fraksi samplig atartahap pearika sampel, dirumuska: f ij = f 1 f 2 = X i X 0 Desig weight/samplig weight merupaka kebalika (ivers) dari overall samplig fractio, dirumuska: w ij = X 0 X i Fraksi samplig (jumlah sampel peluag) X i X 0 sesus 1 1

4 PPS Cluster Samplig Misalka y ij meyataka ilai karakteristik yag diteliti pada eleme ke-j cluster ke-i. Estimasi total karakteristik merupaka pejumlaha tertimbag atara desig weight dega ilai karakteristik yag diteliti, dirumuska: Y = j=1 w ij y ij = Estimasi varias samplig: j=1 X 0 X i y ij = 1 X 0 y X ij i j=1 = 1 v Y = s b 2 Keteraga: s b 2 = 1 1 Y 2 = j=1 y ij total ilai karakteristik di cluster ke i

5 PPS Cluster Samplig Jika yag diguaka sebagai size dalam pearika sampel PPS adalah jumlah eleme di dalam cluster maka: X i = X 0 = M 0 = M 0 Estimasi total: Samplig varias: Y = j=1 w ij y ij = j=1 M 0 y ij = 1 v Y = s b 2 Keteraga: s b 2 = 1 1 Y 2

6 Estimasi rata-rata karakteristik per cluster: PPS Cluster Samplig y = Y N v Y v y = N 2 Estimasi rata-rata karakteristik per eleme: y = y M atau y = Y NM = Y M 0 v y v Y v Y v y = atau v y = = M2 NM 2 2 M 0 Keteraga: M 0 :jumlah seluruh eleme dalam populasi M 0 = N M : rata-rata jumlah eleme per cluster M = M 0 N

7 PPS Cluster Samplig Cotoh soal: Utuk megetahui upah pekerja idustri mikro, dilakuka survei di suatu kota dega megambil sampel sebayak 7 idustri mikro dari 84 idustri secara PPS WR dega size jumlah output idustri. Dari idustri yag terpilih sebagai sampel, selajutya dilakuka pecacaha terhadap semua pekerja. Diketahui jumlah pekerja idustri mikro di kota tersebut sebayak 336 orag dega total output sebayak 5000 uit. Data yag diperoleh sebagai berikut: No Jumlah Upah pekerja per bula (juta) Output a. Perkiraka total daa yag harus disiapka oleh idustri-idustri di kota tersebut utuk membayar upah teaga kerja. Legkapi dega stadar error, RSE, da 95%-CI ya! b. Perkiraka rata-rata daa yag harus disiapka oleh setiadustri di kota tsb utuk mebayar upah teaga kerja. Legkapi dega stadar error, RSE, da 95%-CI ya! c. Perkiraka rata-rata upah teaga kerja di kota tsb, beserta stadar error, RSE, da 95%-CI ya!

8 PPS Cluster Samplig Peyelesaia: N = 84 = 7 X 0 = 5000 M 0 = 336 M = M 0 N = = 4 a. Estimasi total Y = 1 s b 2 = 1 1 v Y = s b 2 = = 460,57 7 Y = 12820, = 12820,202 = 1831,457 i X i = X i X 0 se Y = 1831,457 = 42,796 rse Y = 42, % = 9,29% 460,57 95% Cofidece Iterval: Lower boud: 460,57 1,96 42,796 = 376,689 Upper boud: 460,57+1,96 42,796 =544,

9 PPS Cluster Samplig Estimasi rata-rata karakteristik per cluster: y = Y N = 460,57 84 v y = = 5.48 v Y N 2 = 1831, = 0,2596 se y = 0,2596 = 0,5095 rse y = 0, % = 9,29% 5,48 Estimasi rata-rata karakteristik per eleme: y = Y M 0 = 460, = 1,37 v y = v Y M 0 2 = 1831, = 0,0162 se y = 0,0162 = 0,1274 rse y = 0,1274 1,37 100% = 9,29% 95% Cofidece Iterval: Lower boud: 5,48 1,96 0,5095 = 4,48 Upper boud: 5,48+1,96 0,5095 = 6,48 95% Cofidece Iterval: Lower boud: 1,37 1,96 0,1274 = 1,12 Upper boud: 1,37+1,96 0,1274 = 1,62

10 PPS Cluster Samplig Latiha 1: Suatu usaha budidaya ika mujair igi megetahui berat total ika peliharaaya. Ika mujair tersebut dibudidayaka di dalam 75 bak, yag masig-masig bak mempuyai luas permukaa da jumlah ika yag berbeda-beda. Sebuah radom sampel sebayak 6 bak diambil secara PPS WR dega size luas permukaa bak, kemudia dari bak terpilih dilakuka pemaea semua ika yag ada di dalammya. Diketahui jumlah luas peampag dari seluruh bak adalah 360 m 2 da jumlah seluruh beih ika yag dibudidayaka 380 ekor. Berat ika (kg) Bak Luas (m 2 ) ,2 0,5 0,6 0,7 0,4 0, ,4 0,3 0,7 3 4,5 0,5 0,5 0,5 0,8 0,2 4 3,5 0,3 0,6 0,6 0,3 5 5,6 0,4 0,1 0,4 0,7 0,5 6 6,4 0,2 0,3 0,5 0,6 0,3 0,5 0,3 a. Perkiraka total berat ika yag dibudidayaka oleh pegusaha tersebut, legkapi dega stadar error, RSE, da 95%CI-ya! b. Perkiraka rata-rata berat ika tiap bak, beserta stadar error, RSE, da 95%CI-ya! c. Perkiraka berat rata-rata ika mujair yag dibudidayaka, beserta stadar error, RSE, da 95%CI-ya!

11 PPS Cluster Samplig Latiha 2: Suatu desa dibagi mejadi 15 blok. Utuk megetahui jumlah terak sapi di desa tersebut, dilakuka pegambila sampel sebayak 5 blok secara PPS WR dega size jumlah peterak sapi perah. Data yag tersedia: Data sampel Desa Jumlah terak sapi perah A D G J L a. Perkiraka total sapi perah di desa tsb, beserta stadar error, RSE, da 95%CI-ya! b. Perkiraka rata-rata sapi perah yag dimiliki oleh rumah tagga di desa tsb, beserta stadar error, RSE, da 95% CI-ya! Data Populasi No Desa Jumlah peterak 1 A 5 2 B 4 3 C 3 4 D 6 5 E 4 6 F 5 7 G 7 8 H 3 9 I 2 10 J 6 11 K 4 12 L 3 13 M 6 14 N 2 15 O 3

12 TERIMA KASIH Have A Nice Samplig

PERTEMUAN 9-MPC 2 PRAKTIK. Oleh: Adhi Kurniawan SEKOLAH TINGGI ILMU STATISTIK

PERTEMUAN 9-MPC 2 PRAKTIK. Oleh: Adhi Kurniawan SEKOLAH TINGGI ILMU STATISTIK PERTEMUAN 9-MPC 2 PRAKTIK Oleh: Adhi Kuriawa SEKOLAH TINGGI ILMU STATISTIK Two Stage Samplig (PPS WR-PPS WR) Misalka suatu survei dilakuka dega pearika sampel dua tahap (two stage samplig), dega tahapa

Lebih terperinci

PERTEMUAN 3-MPC 2 PRAKTIK. Oleh: Adhi Kurniawan SEKOLAH TINGGI ILMU STATISTIK

PERTEMUAN 3-MPC 2 PRAKTIK. Oleh: Adhi Kurniawan SEKOLAH TINGGI ILMU STATISTIK PERTEMUAN 3-MPC PRAKTIK Oleh: Adhi Kuriawa SEKOLAH TINGGI ILMU STATISTIK Cluster Samplig Pearika samplig klaster Sigle stage cluster samplig Multistage Samplig Equal Cluster Samplig Uequal Cluster Samplig

Lebih terperinci

SOAL DAN PEMBAHASAN MULTISTAGE SAMPLING. Oleh: Adhi Kurniawan

SOAL DAN PEMBAHASAN MULTISTAGE SAMPLING. Oleh: Adhi Kurniawan SOA DAN PEMBAHASAN MUTISTAGE SAMPING Oleh: Adhi Kuriawa. Pada bula Mei 03, suatu survei keteagakerjaa dilakuka di suatu kecamata. Pada tahap pertama dilakuka pegambila sampel 4 blok sesus secara PPS WR

Lebih terperinci

PERTEMUAN 12-MPC 2 PRAKTIK. Oleh: Adhi Kurniawan SEKOLAH TINGGI ILMU STATISTIK

PERTEMUAN 12-MPC 2 PRAKTIK. Oleh: Adhi Kurniawan SEKOLAH TINGGI ILMU STATISTIK PERTEMUAN 12-MPC 2 PRAKTIK Oleh: Adhi Kuriawa SEKOLAH TINGGI ILMU STATISTIK POKOK BAHASAN 1 THREE STAGE SAMPLING Three Stage Samplig Secara umum, pearika sampel tiga tahap dilakuka dega tahapa sebagai

Lebih terperinci

PERTEMUAN 1-MPC 2 PRAKTIK. Oleh: Adhi Kurniawan SEKOLAH TINGGI ILMU STATISTIK

PERTEMUAN 1-MPC 2 PRAKTIK. Oleh: Adhi Kurniawan SEKOLAH TINGGI ILMU STATISTIK PERTEMUAN 1-MPC PRAKTIK Oleh: Adhi Kuriawa SEKOLAH TINGGI ILMU STATISTIK Utuk meigkatka presisi (meguragi varias samplig), desai samplig serig memafaatka auxiliarry variable yag mempuyai hubuga yag erat

Lebih terperinci

PERTEMUAN 5-MPC 2 PRAKTIK. Oleh: Adhi Kurniawan SEKOLAH TINGGI ILMU STATISTIK

PERTEMUAN 5-MPC 2 PRAKTIK. Oleh: Adhi Kurniawan SEKOLAH TINGGI ILMU STATISTIK PERTEMUAN 5-MPC 2 PRAKTIK Oleh: Adhi Kuriawa SEKOLAH TINGGI ILMU STATISTIK Uequal Cluster Samplig Misalka satu gugus sampel yag berukura cluster yag ditarik dari N cluster secara simple radom samplig wor.

Lebih terperinci

PERTEMUAN 4-MPC 2 PRAKTIK. Oleh: Adhi Kurniawan SEKOLAH TINGGI ILMU STATISTIK

PERTEMUAN 4-MPC 2 PRAKTIK. Oleh: Adhi Kurniawan SEKOLAH TINGGI ILMU STATISTIK PERTEUAN 4-PC 2 PRAKTIK Oleh: Adhi Kuriawa SEKOLAH TINGGI ILU STATISTIK Aalysis Of Variace (ANOVA) Utuk Cluster Samplig Aova Utuk Data Sampel Source Betwee Cluster Withi Cluster Degree s of Freedom 1 (

Lebih terperinci

RATIO ESTIMATOR, DIFFERENCE ESTIMATOR, & REGRESSION ESTIMATOR

RATIO ESTIMATOR, DIFFERENCE ESTIMATOR, & REGRESSION ESTIMATOR RATIO ESTIMATOR, DIFFERENCE ESTIMATOR, & REGRESSION ESTIMATOR OEH: ADHI KURNIAWAN STAF DIREKTORAT PENGEMBANGAN METODOOGI SENSUS DAN SURVEI BADAN PUSAT STATISTIK RI RATIO ESTIMATOR, DIFFERENCE ESTIMATOR,

Lebih terperinci

Pendugaan Parameter. Debrina Puspita Andriani /

Pendugaan Parameter. Debrina Puspita Andriani    / Pedugaa Parameter 7 Debria Puspita Adriai E-mail : debria.ub@gmail.com / debria@ub.ac.id Outlie Pedahulua Pedugaa Titik Pedugaa Iterval Pedugaa Parameter: Kasus Sampel Rataa Populasi Pedugaa Parameter:

Lebih terperinci

Statistika Inferensial

Statistika Inferensial Cofidece Iterval Ara Fariza Statistika Iferesial Populasi Sampel Simpulka (estimasi) tetag parameter Medapatka statistik Estimasi: estimasi titik, estimasi iterval, uji hipotesa 2 1 Proses Estimasi Populasi

Lebih terperinci

II. LANDASAN TEORI. Sampling adalah proses pengambilan atau memilih n buah elemen dari populasi yang

II. LANDASAN TEORI. Sampling adalah proses pengambilan atau memilih n buah elemen dari populasi yang II. LANDASAN TEORI Defiisi 2.1 Samplig Samplig adalah proses pegambila atau memilih buah eleme dari populasi yag berukura N (Lohr, 1999). Dalam melakuka samplig, terdapat teori dasar yag disebut teori

Lebih terperinci

BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan

BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan BAB III METODE PENELITAN. Tempat Da Waktu Peelitia Peelitia dilakuka di SMP Negeri Batudaa Kab. Gorotalo dega subject Peelitia adalah siswa kelas VIII. Pemiliha SMP Negeri Batudaa Kab. Gorotalo. Adapu

Lebih terperinci

A. Pengertian Hipotesis

A. Pengertian Hipotesis PENGUJIAN HIPOTESIS A. Pegertia Hipotesis Hipotesis statistik adalah suatu peryataa atau dugaa megeai satu atau lebih populasi Ada macam hipotesis:. Hipotesis ol (H 0 ), adalah suatu hipotesis dega harapa

Lebih terperinci

STATISTIK PERTEMUAN VIII

STATISTIK PERTEMUAN VIII STATISTIK PERTEMUAN VIII Pegertia Estimasi Merupaka bagia dari statistik iferesi Estimasi = pedugaa, atau meaksir harga parameter populasi dega harga-harga statistik sampelya. Misal : suatu populasi yag

Lebih terperinci

PERTEMUAN 14-MPC 2 PRAKTIK. Oleh: Adhi Kurniawan SEKOLAH TINGGI ILMU STATISTIK

PERTEMUAN 14-MPC 2 PRAKTIK. Oleh: Adhi Kurniawan SEKOLAH TINGGI ILMU STATISTIK PERTEMUAN 4-MPC PRAKTIK Oleh: Adh Kurawa SEKOLAH TINGGI ILMU STATISTIK Double Samplg Utuk Peduga Beda, Rato, Regres Msalka, pada kods tertetu, kta g megguaka dfferece estmator, rato estmator, atau regresso

Lebih terperinci

III. METODE PENELITIAN. Pembangunan Daerah (BAPPEDA) Provinsi NTB, BPS pusat, dan instansi lain

III. METODE PENELITIAN. Pembangunan Daerah (BAPPEDA) Provinsi NTB, BPS pusat, dan instansi lain III. METODE PENELITIAN 3.1 Jeis da Sumber Data Data yag diguaka pada peelitia ii merupaka data sekuder yag diperoleh dari Bada Pusat Statistik (BPS) Provisi NTB, Bada Perecaaa Pembagua Daerah (BAPPEDA)

Lebih terperinci

Distribusi Sampling merupakan distribusi teoritis (distribusi kemungkinan) dari semua hasil sampel yang mungkin, dengan ukuran sampel yang tetap N,

Distribusi Sampling merupakan distribusi teoritis (distribusi kemungkinan) dari semua hasil sampel yang mungkin, dengan ukuran sampel yang tetap N, DISTRIBUSI SAMLING opulasi da Sampel opulasi : totalitas dari semua objek/ idividu yg memiliki karakteristik tertetu, jelas da legkap yag aka diteliti Sampel : bagia dari populasi yag diambil melalui cara-cara

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN 30 III. METODE PENELITIAN A. Metode Dasar Peelitia Metode yag diguaka dalam peelitia adalah metode deskriptif, yaitu peelitia yag didasarka pada pemecaha masalah-masalah aktual yag ada pada masa sekarag.

Lebih terperinci

JENIS PENDUGAAN STATISTIK

JENIS PENDUGAAN STATISTIK ENDUGAAN STATISTIK ENDAHULUAN Kosep pedugaa statistik diperluka utuk membuat dugaa dari gambara populasi. ada pedugaa statistik dibutuhka pegambila sampel utuk diaalisis (statistik sampel) yag ati diguaka

Lebih terperinci

III.MATERI DAN METODA. tujug desa. Waktu penelitian akan dilaksanakan mulai bulan Mei sampai bulan Juni 2014.

III.MATERI DAN METODA. tujug desa. Waktu penelitian akan dilaksanakan mulai bulan Mei sampai bulan Juni 2014. III.MATERI DAN METODA 3.1. Waktu da Tempat Tempat peelitia dilakuka di Kecamata Kampar Kabupate Kampar yag terdiri dari tujug desa. Waktu peelitia aka dilaksaaka mulai bula Mei sampai bula Jui 2014. 3.2.

Lebih terperinci

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika Wed 6/0/3 ETIMAI (PENDUGAAN TATITIK) Ir. Tito Adi Dewato tatistika Deskriptif Iferesi Estimasi Uji Hipotesis Titik Retag Estimasi da Uji Hipotesis Dilakuka setelah peelitia dalam tahap pegambila suatu

Lebih terperinci

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi.

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi. Distribusi Samplig (Distribusi Pearika Sampel). Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

OBJEK DAN METODE PENELITIAN. Objek ternak yang digunakan adalah itik Damiaking jantan dan betina

OBJEK DAN METODE PENELITIAN. Objek ternak yang digunakan adalah itik Damiaking jantan dan betina 1 III OBJEK DAN METODE PENELITIAN 3.1. Objek da Perlegkapa Peelitia 3.1.1. Objek Peelitia Objek terak yag diguaka adalah itik Damiakig jata da betia produktif dega umur lebih dari 7 bula di Kampug Teras

Lebih terperinci

Statistika Inferensia: Pendugaan Parameter. Dr. Kusman Sadik, M.Si Dept. Statistika IPB, 2015

Statistika Inferensia: Pendugaan Parameter. Dr. Kusman Sadik, M.Si Dept. Statistika IPB, 2015 Statistika Iferesia: Pedugaa Parameter Dr. Kusma Sadik, M.Si Dept. Statistika IPB, 05 Populasi : Parameter Sampel : Statistik Statistik merupaka PENDUGA bagi parameter populasi Pegetahua megeai distribusi

Lebih terperinci

IV. METODE PENELITIAN. berdasarkan tujuan penelitian (purposive) dengan pertimbangan bahwa Kota

IV. METODE PENELITIAN. berdasarkan tujuan penelitian (purposive) dengan pertimbangan bahwa Kota IV. METODE PENELITIAN 4.1. Lokasi da Waktu Peelitia ii dilaksaaka di Kota Bogor Pemiliha lokasi peelitia berdasarka tujua peelitia (purposive) dega pertimbaga bahwa Kota Bogor memiliki jumlah peduduk yag

Lebih terperinci

Distribusi Sampling (Distribusi Penarikan Sampel)

Distribusi Sampling (Distribusi Penarikan Sampel) Distribusi Samplig (Distribusi Pearika Sampel) 1. Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

TEKNIK SAMPLING PCA SISTEMATIK. Hazmira Yozza Izzati Rahmi HG. Jurusan Matematika FMIPA - Unand

TEKNIK SAMPLING PCA SISTEMATIK. Hazmira Yozza Izzati Rahmi HG. Jurusan Matematika FMIPA - Unand Hazmira Yozza Izzati Rahmi HG TEKNIK SAMPLING PCA SISTEMATIK Jurusa Matematika FMIPA - Uad Defiisi Samplig sistematik adalah metode pearika cotoh yag dilakuka dega cara memilih secara acak satu eleme dari

Lebih terperinci

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4 Program Studi : Tekik Iformatika Miggu ke : 4 INDUKSI MATEMATIKA Hampir semua rumus da hukum yag berlaku tidak tercipta dega begitu saja sehigga diraguka kebearaya. Biasaya, rumus-rumus dapat dibuktika

Lebih terperinci

Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Unand

Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Unand TEKIK SAMPLIG PCA SEDERHAA Hazmira Yozza Izzati Rahmi HG Jurusa Matematika FMIPA Uad Defiisi : Jika suatu cotoh berukura diambil dari suatu populasi berukura sedemikia rupa sehigga setiap kemugkia cotoh

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Lokasi da Waktu Peelitia Kegiata peelitia ii dilaksaaka pada bula Mei 2011 bertempat di Dusu Nusa Bakti, Kecamata Serawai da Dusu Natai Buga, Kecamata Melawi yag merupaka

Lebih terperinci

DISTRIBUSI SAMPLING (Distribusi Penarikan Sampel)

DISTRIBUSI SAMPLING (Distribusi Penarikan Sampel) DISTRIBUSI SAMPLING (Distribusi Pearika Sampel) I. PENDAHULUAN Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

MATERI DAN METODE. Penelitian ini telah dilakukan selama 1 bulan, dimulai pada awal bulan

MATERI DAN METODE. Penelitian ini telah dilakukan selama 1 bulan, dimulai pada awal bulan III. MATERI DAN METODE 3.. Tempat da Waktu Peelitia ii telah dilakuka selama bula, dimulai pada awal bula eptember 03 di Kecamata Kuala Kampar Kabupate Pelalawa Provisi Riau. 3.. Materi Peelitia Baha yag

Lebih terperinci

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto Tue 0/04/3 ETIMAI (PENDUGAAN TATITIK) Ir. Tito Adi Dewato Estimasi : salah satu cara megemukaka peryataa iduktif (meyataka karakteristik populasi dega meggu aka karakteristik yag didapat dari cuplika).

Lebih terperinci

IV. METODE PENELITIAN

IV. METODE PENELITIAN IV. METODE PENELITIAN 4.1. Lokasi da Waktu Peelitia Daerah peelitia adalah Kota Bogor yag terletak di Provisi Jawa Barat. Pemiliha lokasi ii berdasarka pertimbaga atara lai: (1) tersediaya Tabel Iput-Output

Lebih terperinci

BAB III PEMBAHASAN. Pada BAB III ini akan dibahas mengenai bentuk program linear fuzzy

BAB III PEMBAHASAN. Pada BAB III ini akan dibahas mengenai bentuk program linear fuzzy BAB III PEMBAHASAN Pada BAB III ii aka dibahas megeai betuk program liear fuzzy dega koefisie tekis kedala berbetuk bilaga fuzzy da pembahasa peyelesaia masalah optimasi studi kasus pada UD FIRDAUS Magelag

Lebih terperinci

BAB VII RANDOM VARIATE DISTRIBUSI DISKRET

BAB VII RANDOM VARIATE DISTRIBUSI DISKRET BAB VII RANDOM VARIATE DISTRIBUSI DISKRET Diskret radom variabel dapat diguaka utuk berbagai radom umber yag diambil dalam betuk iteger. Pola kebutuha ivetori (persediaa) merupaka cotoh yag serig diguaka

Lebih terperinci

II. LANDASAN TEORI. dihitung. Nilai setiap statistik sampel akan bervariasi antar sampel.

II. LANDASAN TEORI. dihitung. Nilai setiap statistik sampel akan bervariasi antar sampel. II. LANDASAN TEORI Defiisi 2.1 Distribusi Samplig Distribusi samplig adalah distribusi probibilitas dari suatu statistik. Distribusi tergatug dari ukura populasi, ukura sampel da metode memilih sampel.

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Didalam melakuka kegiata suatu alat atau mesi yag bekerja, kita megeal adaya waktu hidup atau life time. Waktu hidup adalah lamaya waktu hidup suatu kompoe atau uit pada

Lebih terperinci

MATEMATIKA EKONOMI 1 Deret. DOSEN Fitri Yulianti, SP, MSi.

MATEMATIKA EKONOMI 1 Deret. DOSEN Fitri Yulianti, SP, MSi. MATEMATIKA EKONOMI 1 Deret DOSEN Fitri Yuliati, SP, MSi. Deret Deret ialah ragkaia bilaga yag tersusu secara teratur da memeuhi kaidah-kaidah tertetu. Bilaga-bilaga yag merupaka usur da pembetuk sebuah

Lebih terperinci

B a b 1 I s y a r a t

B a b 1 I s y a r a t 34 TKE 315 ISYARAT DAN SISTEM B a b 1 I s y a r a t (bagia 3) Idah Susilawati, S.T., M.Eg. Program Studi Tekik Elektro Fakultas Tekik da Ilmu Komputer Uiversitas Mercu Buaa Yogyakarta 29 35 1.5.2. Isyarat

Lebih terperinci

III. BAHAN DAN METODE. Penelitian ini dilaksanakan pada bulan April 2014 di BBPTU-HPT Baturraden,

III. BAHAN DAN METODE. Penelitian ini dilaksanakan pada bulan April 2014 di BBPTU-HPT Baturraden, III. BAHAN DAN METODE A. Waktu da Tempat Peelitia Peelitia ii dilaksaaka pada bula April 014 di BBPTU-HPT Baturrade, Purwokerto. B. Baha da Alat Peelitia Baha peelitia ii yaitu rekordig produksi susu laktasi

Lebih terperinci

METODOLOGI PENELITIAN. Penelitian ini telah dilakukan di Desa Koto Perambahan Kecamatan Kampar

METODOLOGI PENELITIAN. Penelitian ini telah dilakukan di Desa Koto Perambahan Kecamatan Kampar III. METODOLOGI PENELITIAN 3.. Tempat da Waktu Peelitia Peelitia ii telah dilakuka di Desa Koto Perambaha Kecamata Kampar Timur Kabupate Kampar. Waktu pelaksaaa peelitia ii sekitar 3 bula yaki Bula Oktober-Desember

Lebih terperinci

PENAKSIR RANTAI RASIO DAN RANTAI PRODUK YANG EFISIEN UNTUK MENAKSIR RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA

PENAKSIR RANTAI RASIO DAN RANTAI PRODUK YANG EFISIEN UNTUK MENAKSIR RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA PENAKSIR RANTAI RASIO DAN RANTAI PRODUK YANG EFISIEN UNTUK MENAKSIR RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA V. M. Vidya *, Bustami, R. Efedi Mahasiswa Program S Matematika Dose Jurusa Matematika

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di SMA Negeri 1 Way Jepara Kabupaten Lampung Timur

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di SMA Negeri 1 Way Jepara Kabupaten Lampung Timur III. METODOLOGI PENELITIAN A. Lokasi da Waktu Peelitia Peelitia ii dilakuka di SMA Negeri Way Jepara Kabupate Lampug Timur pada bula Desember 0 sampai dega Mei 03. B. Populasi da Sampel Populasi dalam

Lebih terperinci

III. MATERI DAN METODE. a. Penelitian ini menggunakan 68 ekor kambing peranakan etawa ( PE) (31. ukur, tongkat ukur dan timbangan.

III. MATERI DAN METODE. a. Penelitian ini menggunakan 68 ekor kambing peranakan etawa ( PE) (31. ukur, tongkat ukur dan timbangan. III. MATERI DAN METODE 3.1. Waktu da Tempat Peelitia Peelitia ii telah dilaksaaka pada Bula Oktober sampai November 013 di peteraka yag ada di Kota Pekabaru. 3.. Materi Peelitia a. Peelitia ii megguaka

Lebih terperinci

i adalah indeks penjumlahan, 1 adalah batas bawah, dan n adalah batas atas.

i adalah indeks penjumlahan, 1 adalah batas bawah, dan n adalah batas atas. 4 D E R E T Kosep deret merupaka kosep matematika yag cukup populer da aplikatif khusuya dalam kasus-kasus yag meyagkut perkembaga da pertumbuha suatu gejala tertetu. Apabila perkembaga atau pertumbuha

Lebih terperinci

BAB III METODE PENELITIAN Penelitian ini dilakukan di kelas X SMA Muhammadiyah 1 Pekanbaru. semester ganjil tahun ajaran 2013/2014.

BAB III METODE PENELITIAN Penelitian ini dilakukan di kelas X SMA Muhammadiyah 1 Pekanbaru. semester ganjil tahun ajaran 2013/2014. BAB III METODE PENELITIAN A. Waktu da Tempat Peelitia Peelitia dilaksaaka dari bula Agustus-September 03.Peelitia ii dilakuka di kelas X SMA Muhammadiyah Pekabaru semester gajil tahu ajara 03/04. B. Subjek

Lebih terperinci

Ukuran Pemusatan. Pertemuan 3. Median. Quartil. 17-Mar-17. Modus

Ukuran Pemusatan. Pertemuan 3. Median. Quartil. 17-Mar-17. Modus -Mar- Ukura Pemusata Pertemua STATISTIKA DESKRIPTIF Statistik deskripti adalah pegolaha data utuk tujua medeskripsika atau memberika gambara terhadap obyek yag diteliti dega megguaka sampel atau populasi.

Lebih terperinci

Sampling Process and Sampling Distribution Inference : Point and Interval Estimates. Pertemuan 2

Sampling Process and Sampling Distribution Inference : Point and Interval Estimates. Pertemuan 2 Samplig Process ad Samplig Distributio Iferece : Poit ad Iterval Estimates Pertemua 1 CAKUPAN MATERI: Pemahama tetag Samplig Sampel Acak Sederhaa (Simple Radom Samplig SRS) Estimasi Titik (Poit Estimatio)

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN A. Subjek Peelitia Peelitia ii dilaksaaka di kawasa huta magrove, yag berada pada muara sugai Opak di Dusu Baros, Kecamata Kretek, Kabupate Batul. Populasi dalam peelitia ii adalah

Lebih terperinci

METODE PENARIKAN SAMPEL SYSTEMATIC RANDOM SAMPLING

METODE PENARIKAN SAMPEL SYSTEMATIC RANDOM SAMPLING METODE PENARIKAN SAMPEL SYSTEMATIC RANDOM SAMPLING Oleh: Adhi Kuriawa Pegatar Pada pearika sampel acak sederhaa (SRS) setiap uit dipilih dega megguaka agka radom. Dega demikia kita harus mearik sampel

Lebih terperinci

BAB 4. METODE ESTIMASI PARAMETER DARI DISTRIBUSI WAKTU KERUSAKAN

BAB 4. METODE ESTIMASI PARAMETER DARI DISTRIBUSI WAKTU KERUSAKAN BAB 4 METODE ESTIMASI PARAMETER DARI DISTRIBUSI WAKTU KERUSAKAN Estimasi reliabilitas membutuhka pegetahua distribusi waktu kerusaka yag medasari dari kompoe atau sistem yag dimodelka Utuk memprediksi

Lebih terperinci

Pengertian Estimasi Titik. Estimasi (Pendugaan) Estimasi (Pendugaan) Estimasi (Pendugaan) Populasi dan Sampel. Mean Proporsi

Pengertian Estimasi Titik. Estimasi (Pendugaan) Estimasi (Pendugaan) Estimasi (Pendugaan) Populasi dan Sampel. Mean Proporsi Chapter 6 Studet Lecture Notes 6-1 Hal-1 Hal-2 Estimasi (Pedugaa) Estimasi (Pedugaa) TOPIK Pegertia Estimasi Estimasi titik Nilai rata-rata populasi Nilai proporsi populasi Estimasi Iterval Estimasi iterval

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN 22 BAB III METODOLOGI PENELITIAN 3.1 Lokasi da Waktu Peelitia Peelitia ii dilaksaaka di tiga kator PT Djarum, yaitu di Kator HQ (Head Quarter) PT Djarum yag bertempat di Jala KS Tubu 2C/57 Jakarta Barat,

Lebih terperinci

x = μ...? 2 2 s = σ...? x x s = σ...?

x = μ...? 2 2 s = σ...? x x s = σ...? Pedugaa Parameter x 2 sx s = μ...? 2 = σ x...? = σ...? Peduga Parameter Peduga titik yaitu parameter populasi p diduga dega suatu besara statistik, misal: rata-rata, proporsi, ragam, dll Peduga Selag (Iterval)

Lebih terperinci

Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai

Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai PENGUJIAN HIPOTESIS Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai ilai-ilai parameter populasi,

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang. Universitas Sumatera Utara

BAB I PENDAHULUAN. 1.1 Latar Belakang. Universitas Sumatera Utara BAB I PENDAHULUAN 1.1 Latar Belakag Salah satu pera da fugsi statistik dalam ilmu pegetahua adalah sebagai. alat aalisis da iterpretasi data kuatitatif ilmu pegetahua, sehigga didapatka suatu kesimpula

Lebih terperinci

KALKULUS 4. Dra. D. L. Crispina Pardede, DEA. SARMAG TEKNIK MESIN

KALKULUS 4. Dra. D. L. Crispina Pardede, DEA. SARMAG TEKNIK MESIN KALKULUS Dra. D. L. Crispia Pardede DEA. SARMAG TEKNIK MESIN KALKULUS - SILABUS. Deret Fourier.. Fugsi Periodik.2. Fugsi Geap da Gajil.3. Deret Trigoometri.. Betuk umum Deret Fourier.. Kodisi Dirichlet.6.

Lebih terperinci

III BAHAN DAN METODE PENELITIAN. Ternak yang digunakan dalam penelitian ini adalah kuda berjumlah 25

III BAHAN DAN METODE PENELITIAN. Ternak yang digunakan dalam penelitian ini adalah kuda berjumlah 25 18 III BAHAN DAN METODE PENELITIAN 3.1 Baha Peelitia 3.1.1 Objek Peelitia Terak yag diguaka dalam peelitia ii adalah kuda berjumlah 25 ekor terdiri dari 5 jata da 20 betia dega umur berkisar atara 10 15

Lebih terperinci

UKURAN PEMUSATAN DATA

UKURAN PEMUSATAN DATA Malim Muhammad, M.Sc. UKURAN PEMUSATAN DATA J U R U S A N A G R O T E K N O L O G I F A K U L T A S P E R T A N I A N U N I V E R S I T A S M U H A M M A D I Y A H P U R W O K E R T O DEFINISI UKURAN PEMUSATAN

Lebih terperinci

IV METODE PENELITIAN

IV METODE PENELITIAN IV METODE PENELITIAN 4.1. Lokasi da Waktu Peelitia Lokasi peelitia dilakuka di PT. Bak Bukopi, Tbk Cabag Karawag yag berlokasi pada Jala Ahmad Yai No.92 Kabupate Karawag, Jawa Barat da Kabupate Purwakarta

Lebih terperinci

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL BAB VIII MASAAH ESTIMASI SAT DAN DA SAMPE 8.1 Statistik iferesial Statistik iferesial suatu metode megambil kesimpula dari suatu populasi. Ada dua pedekata yag diguaka dalam statistik iferesial. Pertama,

Lebih terperinci

III. METODELOGI PENELITIAN. Metodelogi adalah sekumpulan prosedur yang terdokumentasi. dalam penelitian. Soekidjo Notoatmodjo, (2002:29)

III. METODELOGI PENELITIAN. Metodelogi adalah sekumpulan prosedur yang terdokumentasi. dalam penelitian. Soekidjo Notoatmodjo, (2002:29) III. METODELOGI PENELITIAN A. Metodelogi Peelitia Metodelogi adalah sekumpula prosedur yag terdokumetasi medefiisika siklus pemecaha masalah atau pegembagaya da meetuka bagaimaa sistem aka dibagu metodelogi

Lebih terperinci

LOGO MATEMATIKA BISNIS (Deret)

LOGO MATEMATIKA BISNIS (Deret) LOGO MATEMATIKA BISNIS (Deret) DOSEN FEBRIYANTO, SE., MM. www.febriyato79.wordpress.com 1 MATEMATIKA BISNIS Matematika Bisis memberika pemahama ilmu megeai kosep matematika dalam bidag bisis. Sehigga suatu

Lebih terperinci

III. METODOLOGI PENELITIAN. diinginkan. Menurut Arikunto (1991 : 3) penelitian eksperimen adalah suatu

III. METODOLOGI PENELITIAN. diinginkan. Menurut Arikunto (1991 : 3) penelitian eksperimen adalah suatu III. METODOLOGI PENELITIAN A. Metode Peelitia Metode peelitia merupaka suatu cara tertetu yag diguaka utuk meeliti suatu permasalaha sehigga medapatka hasil atau tujua yag diigika. Meurut Arikuto (99 :

Lebih terperinci

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi Distribusi Samplig (Distribusi Pearika Sampel) 1. Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu BAB 4 UKURAN PENYEBARAN DATA Pada Bab sebelumya kita telah mempelajari beberapa ukura pemusata data, yaitu ukura yag memberika iformasi tetag bagaimaa data-data ii megumpul atau memusat Pada bagia Bab

Lebih terperinci

Metode Statistika STK211/ 3(2-3)

Metode Statistika STK211/ 3(2-3) Metode Statistika STK211/ 3(2-3) Pertemua VI Sebara Pearika Cotoh Septia Rahardiatoro - STK IPB 1 Sebara Pearika Cotoh Megidetifikasi sebara suatu fugsi dari cotoh ketika diambil dari suatu populasi X

Lebih terperinci

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian BAB I PENDAHULUAN A. Latar Belakag Masalah Matematika merupaka suatu ilmu yag mempuyai obyek kajia abstrak, uiversal, medasari perkembaga tekologi moder, da mempuyai pera petig dalam berbagai disipli,

Lebih terperinci

= Keterkaitan langsung ke belakang sektor j = Unsur matriks koefisien teknik

= Keterkaitan langsung ke belakang sektor j = Unsur matriks koefisien teknik Aalisis Sektor Kuci Dimaa : KLBj aij = Keterkaita lagsug ke belakag sektor j = Usur matriks koefisie tekik (b). Keterkaita Ke Depa (Forward Ligkage) Forward ligkage meujukka peraa suatu sektor tertetu

Lebih terperinci

BAB III METODOLOGI PENELITIAN. kuantitatif karena bertujuan untuk mengetahui kompetensi pedagogik mahasiswa

BAB III METODOLOGI PENELITIAN. kuantitatif karena bertujuan untuk mengetahui kompetensi pedagogik mahasiswa 54 BAB III METODOLOGI PENELITIAN A. Jeis Peelitia Peelitia ii merupaka peelitia deskriptif dega pedekata kuatitatif karea bertujua utuk megetahui kompetesi pedagogik mahasiswa setelah megikuti mata kuliah

Lebih terperinci

theresiaveni.wordpress.com NAMA : KELAS :

theresiaveni.wordpress.com NAMA : KELAS : theresiaveiwordpresscom NAMA : KELAS : 1 theresiaveiwordpresscom BARISAN DAN DERET Barisa da deret dapat diguaka utuk memudahka peyelesaia perhituga, misalya buga bak, keaika produksi, da laba/rugi suatu

Lebih terperinci

TINJAUAN PUSTAKA Pengertian

TINJAUAN PUSTAKA Pengertian TINJAUAN PUSTAKA Pegertia Racaga peelitia kasus-kotrol di bidag epidemiologi didefiisika sebagai racaga epidemiologi yag mempelajari hubuga atara faktor peelitia dega peyakit, dega cara membadigka kelompok

Lebih terperinci

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI MIA SMA Negeri 5

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI MIA SMA Negeri 5 III. METODOLOGI PENELITIAN A. Populasi da Sampel Peelitia Populasi dalam peelitia ii adalah semua siswa kelas I MIA SMA Negeri 5 Badar Lampug Tahu Pelajara 04-05 yag berjumlah 48 siswa. Siswa tersebut

Lebih terperinci

Bab 6 PENAKSIRAN PARAMETER

Bab 6 PENAKSIRAN PARAMETER Bab 6 PENAKSIRAN PARAMETER Stadar Kompetesi : Setelah megikuti kuliah ii, mahasiswa dapat memahami hubuga ilai sampel da populasi da meetuka distribusi samplig yag tepat utuk diguaka Kompetesi Dasar :

Lebih terperinci

TEORI PENAKSIRAN. Bab 8. A. Pendahuluan. Kompetensi Mampu menjelaskan dan menganalisis teori penaksiran

TEORI PENAKSIRAN. Bab 8. A. Pendahuluan. Kompetensi Mampu menjelaskan dan menganalisis teori penaksiran Bab 8 TEORI PENAKSIRAN Kompetesi Mampu mejelaska da megaalisis teori peaksira Idikator 1. Mejelaska da megaalisis data dega megguaka peaksira titik 2. Mejelaska da megaalisis data dega megguaka peaksira

Lebih terperinci

BAB VII DISTRIBUSI SAMPLING DAN DESKRIPSI DATA

BAB VII DISTRIBUSI SAMPLING DAN DESKRIPSI DATA BAB VII DITRIBUI AMPLING DAN DEKRIPI DATA 7. Distribusi amplig (samplig distributio) amplig distributio adalah distribusi probabilitas dari suatu statistik. amplig distributio tergatug dari ukura populasi,

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Penelitian ini dilaksanakan pada bulan Juli 2013 sampai Januari 2014

BAB III METODOLOGI PENELITIAN. Penelitian ini dilaksanakan pada bulan Juli 2013 sampai Januari 2014 BAB III METODOLOGI PENELITIAN A. Lokasi da Waktu Peelitia ii dilaksaaka pada bula Juli 2013 sampai Jauari 201 berlokasi di Kabupate Gorotalo. B. Jeis Peelitia Peilitia tetag evaluasi program pegembaga

Lebih terperinci

BAB IV. METODE PENELITlAN. Rancangan atau desain dalam penelitian ini adalah analisis komparasi, dua

BAB IV. METODE PENELITlAN. Rancangan atau desain dalam penelitian ini adalah analisis komparasi, dua BAB IV METODE PENELITlAN 4.1 Racaga Peelitia Racaga atau desai dalam peelitia ii adalah aalisis komparasi, dua mea depede (paired sample) yaitu utuk meguji perbedaa mea atara 2 kelompok data. 4.2 Populasi

Lebih terperinci

Modul Kuliah statistika

Modul Kuliah statistika Modul Kuliah statistika Dose: Abdul Jamil, S.Kom., MM SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER MUHAMMADIYAH JAKARTA Bab 2 Populasi da Sampel 2.1 Populasi Populasi merupaka keseluruha pegamata

Lebih terperinci

PERCOBAAN 4 VARIABEL ACAK DAN DISTRIBUSI PROBABILITASNYA

PERCOBAAN 4 VARIABEL ACAK DAN DISTRIBUSI PROBABILITASNYA PERCOBAAN 4 VARIABEL ACAK DAN DISTRIBUSI PROBABILITASNYA 4.. Tujua : Setelah melaksaaka praktikum ii mahasiswa diharapka mampu : Membedaka data berdasarka jeis variabelya Mapatka mea da varias dari distribusi

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Metode Peelitia Peelitia ii megguaka metode peelitia Korelasioal. Peelitia korelasioaal yaitu suatu metode yag meggambarka secara sistematis da obyektif tetag hubuga atara

Lebih terperinci

Pendugaan Parameter. Selang Kepercayaan = Konfidensi Interval = Confidence Interval

Pendugaan Parameter. Selang Kepercayaan = Konfidensi Interval = Confidence Interval Pedugaa Parameter. Pedahulua Pedugaa Parameter Popoulai dilakuka dega megguaka ilai Statitik Sampel Mial :. x diguaka ebagai peduga bagi. diguaka ebagai peduga bagi 3. p atau p diguaka ebagai peduga bagi

Lebih terperinci

BAB III METODE PENELITIAN. Lokasi penelitian ini dilakukan di Puskesmas Limba B terutama masyarakat

BAB III METODE PENELITIAN. Lokasi penelitian ini dilakukan di Puskesmas Limba B terutama masyarakat 38 3.1 Lokasi da Waktu Peelitia 3.1.1 Lokasi Peelitia BAB III METODE PENELITIAN Lokasi peelitia ii dilakuka di Puskesmas Limba B terutama masyarakat yag berada di keluraha limba B Kecamata Kota Selata

Lebih terperinci

ESTIMASI TITIK DAN INTERVAL KEPERCAYAAN

ESTIMASI TITIK DAN INTERVAL KEPERCAYAAN 8/8/0 IE 305 tatistika Idustri LOGO ETIMAI TITIK DAN INTERVAL KEPERCAYAAN Elty arvia, T.,MT. Fakultas Tekik Jurusa Tekik Idustri Uiversitas Kriste Maraatha Badug LT arvia/esi Tujua 3 4 5 6 Medefiisika

Lebih terperinci

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak:

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak: PENGUJIAN HIPOTESIS A. Lagkah-lagkah pegujia hipotesis Hipotesis adalah asumsi atau dugaa megeai sesuatu. Jika hipotesis tersebut tetag ilai-ilai parameter maka hipotesis itu disebut hipotesis statistik.

Lebih terperinci

III. BAHAN DAN METODE. Penelitian ini dilaksanakan pada Oktober 2013 di Desa Dadapan, Kecamatan

III. BAHAN DAN METODE. Penelitian ini dilaksanakan pada Oktober 2013 di Desa Dadapan, Kecamatan III. BAHAN DAN METODE A. Waktu da Tempat Peelitia Peelitia ii dilaksaaka pada Oktober 013 di Desa Dadapa, Kecamata Sumberejo, Kabupate Taggamus. B. Baha Peelitia Objek peelitia ii yaitu 30 ekor sampel

Lebih terperinci

PENDAHULUAN. Statistika penyajian DATA untuk memperoleh INFORMASI penafsiran DATA. Data (bentuk tunggal : Datum ) : ukuran suatu nilai

PENDAHULUAN. Statistika penyajian DATA untuk memperoleh INFORMASI penafsiran DATA. Data (bentuk tunggal : Datum ) : ukuran suatu nilai 1. Pegertia Statistika PENDAHULUAN Statistika berhubuga dega peyajia da peafsira kejadia yag bersifat peluag dalam suatu peyelidika terecaa atau peelitia ilmiah. Statistika peyajia DATA utuk memperoleh

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN 38 BAB III METODOLOGI PENELITIAN A. Metode Peelitia Metode peelitia adalah suatu cara ilmiah utuk medapatka data dega tujua tertetu. Peelitia yag megagkat judul Efektivitas Tekik Permaia Pioy Heyo dalam

Lebih terperinci

BAB 6: ESTIMASI PARAMETER (2)

BAB 6: ESTIMASI PARAMETER (2) Bab 6: Estimasi Parameter () BAB 6: ESTIMASI PARAMETER (). ESTIMASI PROPORSI POPULASI Proporsi merupaka perbadiga atara terjadiya suatu peristiwa dega semua kemugkiaa peritiwa yag bisa terjadi. Besara

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 1.1. Lokasi Peelitia Peelitia ii dilakuka di Pojok Bursa Efek Jakarta (BEJ) yag berlokasi di Uiversitas Islam Negeri Malag, Jala Gajayaa 50 malag. Peetua lokasi ii dilakuka dega

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN 9 III. METODE PENELITIAN A. Lokasi da Objek Peelitia Peelitia ii dilakuka di RPH Tejo Petak 10i, BKPH Parug Pajag KPH Bogor, Perum Perhutai Uit III Jawa Barat da Bate. Objek peelitia adalah waktu kerja

Lebih terperinci

Pertemuan Ke-11. Teknik Analisis Komparasi (t-test)_m. Jainuri, M.Pd

Pertemuan Ke-11. Teknik Analisis Komparasi (t-test)_m. Jainuri, M.Pd Pertemua Ke- Komparasi berasal dari kata compariso (Eg) yag mempuyai arti perbadiga atau pembadiga. Tekik aalisis komparasi yaitu salah satu tekik aalisis kuatitatif yag diguaka utuk meguji hipotesis tetag

Lebih terperinci

BAB VIII KONSEP DASAR PROBABILITAS

BAB VIII KONSEP DASAR PROBABILITAS BAB VIII KONSEP DASAR PROBABILITAS 1.1. Pedahulua Dalam pertemua ii Ada aka mempelajari beberapa padaga tetag permutasi da kombiasi, fugsi da metode perhituga probabilitas, da meghitug probabilitas. Pada

Lebih terperinci

III. METODE PENELITIAN. Lokasi penelitian dilakukan di Provinsi Sumatera Barat yang terhitung

III. METODE PENELITIAN. Lokasi penelitian dilakukan di Provinsi Sumatera Barat yang terhitung 42 III. METODE PENELITIAN 3.. Lokasi da Waktu Peelitia Lokasi peelitia dilakuka di Provisi Sumatera Barat yag terhitug mulai miggu ketiga bula April 202 higga miggu pertama bula Mei 202. Provisi Sumatera

Lebih terperinci

III BAHAN DAN METODE PENELITIAN. Penelititan ini menggunakan 30 ekor Sapi Bali jantan umur berkisar antara

III BAHAN DAN METODE PENELITIAN. Penelititan ini menggunakan 30 ekor Sapi Bali jantan umur berkisar antara III BAHAN DAN METODE PENELITIAN 3. Baha da Peralata Peelitia 3.. Baha Peelitia Peelitita ii megguaka 30 ekor Sapi Bali jata umur berkisar atara -3 tahu dega bobot bada berkisar atara 50-500 kg atau dalam

Lebih terperinci

PENAKSIR RASIO UNTUK RATA-RATA POPULASI MENGGUNAKAN KOEFISIEN VARIASI DAN KOEFISIEN KURTOSIS PADA SAMPLING GANDA

PENAKSIR RASIO UNTUK RATA-RATA POPULASI MENGGUNAKAN KOEFISIEN VARIASI DAN KOEFISIEN KURTOSIS PADA SAMPLING GANDA PEAKSIR RASIO UTUK RATA-RATA POPULASI MEGGUAKA KOEFISIE VARIASI DA KOEFISIE KURTOSIS PADA SAMPLIG GADA Heru Agriato *, Arisma Ada, Firdaus Mahasiswa Program S Matematika Dose Jurusa Matematika Fakultas

Lebih terperinci

III. MATERI DAN METODE. Penelitian ini dilaksanakan selama 2 bulan dimulai bulan April - Mei

III. MATERI DAN METODE. Penelitian ini dilaksanakan selama 2 bulan dimulai bulan April - Mei III. MATERI DAN METODE 3.1. Waktu da Tempat Peelitia Peelitia ii dilaksaaka selama 2 bula dimulai bula April - Mei 2014 di Laboratorium Ilmu Nutrisi da Kimia Fakultas Pertaia da Peteraka Uiversitas Islam

Lebih terperinci

BAB II METODOLOGI PENELITIAN. kualitatif. Kerangka acuan dalam penelitian ini adalah metode penelitian

BAB II METODOLOGI PENELITIAN. kualitatif. Kerangka acuan dalam penelitian ini adalah metode penelitian BAB II METODOLOGI PEELITIA 2.1. Betuk Peelitia Betuk peelitia dapat megacu pada peelitia kuatitatif atau kualitatif. Keragka acua dalam peelitia ii adalah metode peelitia kuatitatif yag aka megguaka baik

Lebih terperinci

Pendahuluan. Dalam statistika tercakup dua pekerjaan penting, yaitu : penyajian DATA menghasilkan INFORMASI penafsiran

Pendahuluan. Dalam statistika tercakup dua pekerjaan penting, yaitu : penyajian DATA menghasilkan INFORMASI penafsiran 1. Pegertia Statistika Pedahulua Statistika metode yag berhubuga dega peyajia da peafsira kejadia yag bersifat peluag dalam suatu peyelidika terecaa atau peelitia ilmiah Dalam statistika tercakup dua pekerjaa

Lebih terperinci