Bab 1 Ruang Vektor. R. Leni Murzaini/

Ukuran: px
Mulai penontonan dengan halaman:

Download "Bab 1 Ruang Vektor. R. Leni Murzaini/0906577381"

Transkripsi

1 Bab 1 Ruang Vektor Defns Msalkan F adalah feld, yang elemen-elemennya dnyatakansebaga skalar. Ruang vektor atas F adalah hmpunan tak kosong V, yang elemen-elemennya merupakan vektor, bersama dengan dua operas. Operas pertama dsebut penjumlahan dan dnotaskan dengan +, yang dmaksud dengan setap pasangan (u, v) d V adalah vektor u + v d V. Operas kedua dsebut perkalan dengan skalar dan dnotaskan penjajaran, yang dmaksud dengan setap pasangan (r, u) F x V adalah vektor ru d V. Lebh lanjut, harus pula memenuh sfat-sfat: 1. (Assosatf terhadap penjumlahan) Untuk setap vektor u, v, w V, u + (v + w) = (u + v ) + w 2. (Komutatf terhadap penjumlahan) Untuk setap vektor u, v, w V, u + v = v + u 3. (Eksstens elemen nol) Terdapat vektor 0 V yang bersfat 0 + u = u + 0 = u untuk setap vektor u V 4. (Eksstens nvers penjumlahan) Untuk setap vektor u V, terdapat vektor d V, dnotaskan dengan u, yang bersfat: u + ( u) = ( u) + u = 0 5. (Sfat perkalan dengan skalar) Untuk setap skalar a, b F dan untuk setap vektor u, v V, a(u + v) = au + av (a + b)u = au + bu (ab)u = a(bu) 1u = u, dengan 1F Perhatkan bahwa empat sfat pertama pada defns ruang vektor dapat drngkas dengan mengatakan bahwa V adalah grup abelan terhadap operas penjumlahan. Ruang vektor atas feld F dsebut Ruang-F. Ruang vektor atas feld real dsebut ruang vektor real dan ruang vektor atas feld kompleks dsebut ruang vektor kompleks. Defns Msalkan S adalah subset tdak kosong dar ruang vektor V. Kombnas lner dar vektorvektor d S dnyatakan dalam bentuk a 1 v a n v n dengan v 1,, v n S dan a 1,, a n F. Skalar a dsebut koefsen dar kombnas lner. R. Len Murzan/

2 Suatu kombnas lner dkatakan trval jka setap koefsen a adalah nol, selan tu dkatakan nontrval. Contoh-Contoh Ruang Vektor Berkut n beberapa contoh ruang vektor. Contoh 1.1 1) Msalkan F adalah suatu feld. Hmpunan F F yatu hmpunan semua fungs dar F ke F, adalah ruang vektor atas F, dbawah operas penjumlahan dan perkalan skalar pada fungs: dan (f + g)(x) = f(x) + g(x) (af)(x) = a(f(x)). 2) Hmpunan M m,n (F) yatu hmpunan semua matrks m x n dengan entr-entrnya d feld F, adalah ruang vektor atas F, dbawah operas penjumlahan matrks dan perkalan matrks dengan skalar. 3) Hmpunan F n yatu hmpunan semua susunan n-tuples yang komponen-komponennya berada d feld F, adalah ruang vektor atas F, dengan penjumlahan dan perkalan skalar yang ddefnskan: dan (a 1,, a n )+(b 1,, b n ) = (a 1 + b 1,, a n + b n ) c(a 1,, a n ) = (ca 1,, ca n ) Element-elemen F n dapat juga dtuls dalam bentuk kolom. Jka F adalah feld hngga dengan q n elemen, dtuls V(n, q) untuk F q. 4) Msal F adalah suatu feld. Bentuk barsan ssebagan besar ruang barsan adalah ruang vektor. Hmpunan Seq(F) yatu hmpunan semua barsan tak hngga yang merupakan anggota feld F, adalah ruang vektor yang operasnya ddefnskan dan (s n ) + (t n ) = (s n + t n ) a(s n ) = (as n ) Dengan cara serupa, hmpunan c o yatu hmpunan blangan kompleks yang konvergen ke 0 adalah ruang vektor, sepert hmpunan l yatu hmpunan semua barsan kompleks terbatas. Juga, jka p adalah blangan bulat postf, maka hmpunan l p yatu hmpunan semua barsan kompleks (s n ) dengan R. Len Murzan/

3 n1 s n p adalah ruang vektor dbawah operas componentwse. Untuk melhat apakah pejumlahan merupakan operas bner d l p, salah satu dar Mnkowsk s nequalty yang tdak dkerjakan dsn. 1/ p 1/ p 1/ p p p p sn tn sn tn n1 n1 n1 Subruang Sebagan besar struktur aljabar memuat substruktur, termasuk ruang vektor. Defns S subset dar V dkatakan subruang dar ruang vektor V jka S adalah ruang vektor dengan operas yang sama dengan operas pada V, dnotaskan dengan S V dan jka S adalah subruang sejat dar V dnotaskan dengan S < V. Subruang nol dar V adalah {0}. Untuk mengetahu apakah S adalah subruang dar V, cukup dseldk bahwa S tertutup dbawah operas d V. Teorema 1.1 Subset S yang tdak kosong dar ruang vektor V adalah subruang dar V jka dan hanya jka S tertutup dbawah operas penjumlahan dan perkalan dengan skalar atau, secara ekvalen, S tertutup dbawah kombnas lner, yatu, a, b F, u, v S au + bv S Bukt: 1. Jka dketahu S V, S, S adalah subruang dar ruang vektor V maka S tertutup dbawah operas penjumlahan dan perkalan dengan skalar. Bukt: Dketahu S V, S, S adalah subruang dar ruang vektor V. Akan dtunjukkan bahwa S tertutup dbawah operas penjumlahan dan perkalan dengan skalar. Ambl sebarang a, b F Karena S, ambl sebarang u, v S. Karena S adalah subruang dar ruang vektor V, berart S adalah ruang vektor dengan operas yang sama dengan operas pada V. 3 R. Len Murzan/

4 Karena S adalah ruang vektor, berart au S dan bv S. Karena au S, bv S, S V, berart au + bv S. Terbukt bahwa jka S V, S, S adalah subruang dar ruang vektor V maka S tertutup dbawah operas penjumlahan dan perkalan dengan skalar. 2. Jka dketahu bahwa S V, S, dan S tertutup dbawah operas penjumlahan dan perkalan dengan skalar maka S subruang dar ruang vektor V. Akan dtunjukkan bahwa S adalah ruang vektor 2.1. Akan dtunjukkan bahwa (S, +) adalah grup abelan 2.2. Akan dtunjukkan bahwa untuk setap skalar a, b F dan untuk setap vektor u, v S, berlaku a(u + v) = au + av, (a + b)u = au + bu, (ab)u = a(bu), 1u = u, dengan 1F Bukt: 2.1. Dketahu S V, S, dan S tertutup dbawah operas penjumlahan dan perkalan dengan skalar Ambl sebarang u, v, w S Ambl sebarang a, b F Akan dtunjukkan bahwa (S, +) adalah grup abelan Karena S V dan V adalah ruang vektor, berart berlaku u + (v + w) = (u + v) + w dan u + v = v + u...() Karena S V, V adalah ruang vektor, dan S tertutup terhadap perkalan dengan skalar berart terdapat 1 F sedemkan sehngga ( 1)u = u S..() Karena S tertutup terhadap penjumlahan, berart u + ( u) = 0 S.() Dar (), (), dan () terbukt bahwa (S, +) adalah grup abelan Dketahu S V, S, dan S tertutup dbawah operas penjumlahan dan perkalan dengan skalar Karena S, ambl sebarang u, v, w S Ambl sebarang a, b F Akan dtunjukkan berlaku a(u + v) = au + av, (a + b)u = au + bu, (ab)u = a(bu), 1u = u, dengan 1F. Karena S V berart u, v, w V. Karena V adalah ruang vektor, berart berlaku a(u + v) = au + av, (a + b)u = au + bu, (ab)u = a(bu), 1u = u, dengan 1F. R. Len Murzan/

5 Terbukt bahwa setap skalar a, b F dan untuk setap vektor u, v S, berlaku a(u + v) = au + av, (a + b)u = au + bu, (ab)u = a(bu), 1u = u, dengan 1F. Dar pembuktan 2.1 dan 2.2. terbukt bahwa S adalah ruang vektor. Dar pembuktan 1 dan 2 terbukt bahwa Subset S yang tdak kosong dar ruang vektor V adalah subruang dar V jka dan hanya jka S tertutup dbawah operas penjumlahan dan perkalan dengan skalar atau, secara ekvalen, S tertutup dbawah kombnas lner, yatu, a, b F, u, v S au + bv S Contoh 1.2 Pandang ruang vektor V(n, 2) dar semua n-tuples bner, yatu n-tuples yang terdr dar 0 dan 1. Bobot W(v) dar vektor v V(n, 2) adalah jumlah koordnat tdak nol d V, msal W( ) = 3. Msal E n adalah hmpunan semua vektor d V yang berbobot genap. Maka E n adalah subruang dar V(n, 2). Untuk melhat hal n, perhatkan bahwa W(u + v) = W(u) + W(v) 2W(u v) dengan u v adalah vektor d V(n, 2) yang komponen ke- nya adalah product dar komponen ke- dar u dan v, yatu, (u v) = u. v Selanjutnya jka W(u) dan W(v) keduanya genap, begtu juga dengan W(u + v). Akhrnya, perkalan skalar atas F 2 adalah trval dan juga E n adalah subruang dar V(n, 2), dkenal sebaga subruang berbobot genap dar V(n, 2). Contoh 1.3 Sebarang subruang dar ruang vektor V(n, q) dsebut lner code. Lner code adalah pentng dan banyak dpelajar dalam tpe-tpe kode, karena strukturnya berdayaguna dalam encodng dan decodng nformas. Lattce dar Subruang Hmpunan S(V) adalah hmpunan semua subruang dar ruang vektor V yang terurut secara set ncluson. Subruang nol {0} adalah elemen terkecl d S(V) dan V adalah elemet terbesar d S(V). Jka S, T S(V) maka S T adalah subruang terbesar dar V yang terkandung ddalam S maupun T. Dalam bentuk set ncluson, S T adalah batas bawah terbesar dar S dan T. S T = glb {S, T} R. Len Murzan/

6 Secara umum, jka {S K} adalah sebarang koleks subruang dar V, maka rsan-rsannya adalah batas bawah terbesar dar subruang: K S glb{ S K} Dengan kata lan, jka S, T S(V) ( dan F adalah tak hngga), maka S T S(V) jka dan hanya jka S T atau T S. Dengan demkan gabungan dua subruang bukanlah subruang. Teorema 1.2 Ruang vektor non trval V atas feld tak hngga F tdak dapat dnyatakan sebaga gabungan sejumlah hngga dar subruang sejat. Bukt. Andakan V = S 1 S n, asumskan bahwa S 1 S 2 S n Msalkan w S 1 \ (S 2 S n ) dan v S 1. Pandang hmpunan tak hngga A = {rw + v r F} yatu gars yang melalu v sejajar w. Akan dtunjukkan bahwa setap S memuat palng banyak satu vektor dar hmpunan tak hngga A, yang kontradks dengan V = S 1 S n. Jka rw + v S 1, r 0 maka w S 1 akbatnya v S 1, bertentangan dengan asums. Berkutnya, andakan r 1 w + v S dan r 2 w + v S, 2 dan r 1 r 2. Maka S (r 1 w + v) (r 2 w + v) = (r 1 r 2 )w Dperoleh w S, hal n juga bertentangan dengan asums. Berkut n adalah defns yang dgunakan untuk menentukan subruang terkecl dar V yang memuat subruang S dan T. Defns Msal S dan T adalah subruang dar V. Jumlah S + T ddefnskan dengan S + T = {u + v u S, v T} Lebh umum, jumlah sebarang koleks subruang {S K} adalah hmpunan dar jumlahan berhngga dar vektor- vektor pada gabungan S. K S s1... sn s j S K R. Len Murzan/

7 Tdak sult menunjukan bahwa jumlah sebarang koleks subruang dar V juga merupakan subruang dar V dan jumlahnya adalah batas atas terkecl dbawah set ncluson: S + T = lub{s, T} Lebh umum, K S lub{ S K} Jka sebagan terurut hmpunan P bersfat setap pasangan elemennya memlk batas atas terkecl dan batas bawah terbesar, maka P dsebut lattce. Jka P memlk elemen terkecl dan elemen terbesar dan bersfat setap koleks elemennya memlk batas atas terkecl dan batas bawah terbesar maka P dsebut lattce lengkap. Batas atas terkecl dar suatu koleks dsebut jon dar koleks dan batas bawah terbesar dar suatu koleks dsebut meet. Teorema 1.3 Hmpunan S(V) yatu hmpunan semua subruang dar ruang vektor V adalah lattce lengkap dbawah set ncluson, dengan elemen terkecl {0}, elemen terbesar V, meet glb{s K} = dan jon lub{s K} = Bukt: Dketahu S(V) adalah hmpunan semua subruang dar ruang vektor V. Akan dtunjukkan bahwa S(V) adalah lattce lengkap (1) Akan dtunjukkan bahwa S(V) memlk elemen terkecl dan elemen terbesar. (2) Setap koleks d S(V) memlk batas atas terkecl dan batas bawah terbesar. Bukt: (1) Akan dtunjukan bahwa S(V) memlk elemen terkecl dan elemen terbesar Karena S(V) adalah hmpunan semua subruang dar ruang vektor V maka berdasarkan defns subruang berart {0} S(V) dan V S(V), dengan {0} adalah elemen terkecl d S(V) dan V adalah elemen terbesar d S(V). Terbukt bahwa S(V) memlk elemen terkecl dan elemen terbesar. (2) Akan dtunjukkan bahwa setap koleks d S(V) memlk batas atas terkecl dan batas bawah terbesar Ambl G = {S 1, S 2,, S k } adalah sebarang koleks d S(V) K S K S Akan dtunjukkan bahwa G memlk batas bawah terbesar R. Len Murzan/

8 Karena S(V) adalah partally ordered by set ncluson berart dapat dplh S 1 dengan S 1 S 2 S k. Karena S 1 S 2 S k berart S 1 S glb S K K Terbukt bahwa setap koleks d S(V) memlk batas bawah terbesar...() Karena S(V) adalah partally ordered by set ncluson berart terdapat Sk S dengan S k S k 1 S 1. Karena S k S k 1 S 1 berart S S lub S K k K Terbukt bahwa S(V) memlk batas atas terkecl...() Dar () dan () terbukt bahwa Setap koleks d S(V) memlk batas atas terkecl dan batas bawah terbesar. Dar pembuktan (1) dan (2) terbukt bahwa Hmpunan S(V) yatu hmpunan semua subruang dar ruang vektor V adalah lattce lengkap dbawah set ncluson, dengan elemen terkecl {0}, elemen terbesar V, meet K dan jon glb{s K} = lub{s K} = K S K S R. Len Murzan/

ALJABAR LINIER LANJUT

ALJABAR LINIER LANJUT ALABAR LINIER LANUT Ruang Bars dan Ruang Kolom suatu Matrks Msalkan A adalah matrks mnatas lapangan F. Bars pada matrks A merentang subruang F n dsebut ruang bars A, dnotaskan dengan rs(a) dan kolom pada

Lebih terperinci

BAB III HASILKALI TENSOR PADA RUANG VEKTOR. Misalkan V ruang vektor atas lapangan F. Suatu transformasi linear f L ( V, F )

BAB III HASILKALI TENSOR PADA RUANG VEKTOR. Misalkan V ruang vektor atas lapangan F. Suatu transformasi linear f L ( V, F ) 28 BAB III HASILKALI TENSOR PADA RUANG VEKTOR III.1 Ruang Dual Defns III.1.2: Ruang Dual [10] Msalkan V ruang vektor atas lapangan F. Suatu transformas lnear f L ( V, F ) dkatakan fungsonal lnear (atau

Lebih terperinci

Teori Himpunan. Modul 1 PENDAHULUAN. impunan sebagai koleksi (pengelompokan) dari objek-objek yang

Teori Himpunan. Modul 1 PENDAHULUAN. impunan sebagai koleksi (pengelompokan) dari objek-objek yang Modul 1 Teor Hmpunan PENDAHULUAN Prof SM Nababan, PhD Drs Warsto, MPd mpunan sebaga koleks (pengelompokan) dar objek-objek yang H dnyatakan dengan jelas, banyak dgunakan dan djumpa dberbaga bdang bukan

Lebih terperinci

BAB X RUANG HASIL KALI DALAM

BAB X RUANG HASIL KALI DALAM BAB X RUANG HASIL KALI DALAM 0. Hasl Kal Dalam Defns. Hasl kal dalam adalah fungs yang mengatkan setap pasangan vektor d ruang vektor V (msalkan pasangan u dan v, dnotaskan dengan u, v ) dengan blangan

Lebih terperinci

BAB III PEMBAHASAN. Pada bab ini akan dibahas mengenai ring embedding dan faktorisasi. tunggal pada ring komutatif tanpa elemen kesatuan.

BAB III PEMBAHASAN. Pada bab ini akan dibahas mengenai ring embedding dan faktorisasi. tunggal pada ring komutatif tanpa elemen kesatuan. BAB III PEMBAHASAN Pada bab n akan dbahas mengena rng embeddng dan faktorsas tunggal pada rng komutatf tanpa elemen kesatuan. A. Rng Embeddng Defns 3.1 (Malk et al. 1997: 318 Suatu rng R dkatakan embedded

Lebih terperinci

BEBERAPA SIFAT TERKAIT SUBMODUL SEMIPRIMA

BEBERAPA SIFAT TERKAIT SUBMODUL SEMIPRIMA BEBERAPA SIFAT TERKAIT SUBMODUL SEMIPRIMA A-3 Dan Aresta Yuwanngsh 1 1 Mahasswa S Matematka UGM dan.aresta17@yahoo.com Abstrak Dberkan R merupakan rng dengan elemen satuan, M R-modul kanan, dan R S End

Lebih terperinci

SEMI RING POLINOM ATAS ALJABAR MAX-PLUS

SEMI RING POLINOM ATAS ALJABAR MAX-PLUS JMP : Volume 4 Nomor 2, Desember 2012, hal. 289-297 SEMI RING POLINOM ATAS ALJABAR MAX-PLUS Suroto Prod Matematka, Jurusan MIPA, Fakultas Sans dan Teknk Unverstas Jenderal Soedrman e-mal : suroto_80@yahoo.com

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang dan Permasalahan

BAB I PENDAHULUAN Latar Belakang dan Permasalahan BAB I PENDAHULUAN 1.1. Latar Belakang dan Permasalahan Matematka dbag menjad beberapa kelompok bdang lmu, antara lan analss, aljabar, dan statstka. Ruang barsan merupakan salah satu bagan yang ada d bdang

Lebih terperinci

BILANGAN RAMSEY SISI DARI r ( P, )

BILANGAN RAMSEY SISI DARI r ( P, ) Charul Imron dan dy Tr Baskoro, Blangan Ramsey Ss BILANGAN RAMSY SISI DARI r ( P, ) (Ramsey Number from the Sde r ( P, ) ) Charul Imron dan dy Tr Baskoro Jurusan Matemátca, FMIPA ITS Surabaya mron-ts@matematka.ts.ac.d

Lebih terperinci

SISTEM LINEAR MAX-PLUS KABUR WAKTU INVARIANT AUTONOMOUS

SISTEM LINEAR MAX-PLUS KABUR WAKTU INVARIANT AUTONOMOUS SISTEM LINEAR MAX-PLUS KABUR WAKTU INVARIANT AUTONOMOUS A8 M. Andy Rudhto 1 1 Program Stud Penddkan Matematka FKIP Unverstas Sanata Dharma Kampus III USD Pangan Maguwoharjo Yogyakarta 1 e-mal: arudhto@yahoo.co.d

Lebih terperinci

Dekomposisi Nilai Singular dan Aplikasinya

Dekomposisi Nilai Singular dan Aplikasinya A : Dekomposs Nla Sngular dan Aplkasnya Gregora Aryant Dekomposs Nla Sngular dan Aplkasnya Oleh : Gregora Aryant Program Stud Penddkan Matematka nverstas Wdya Mandala Madun aryant_gregora@yahoocom Abstrak

Lebih terperinci

Aljabar Linier. Kuliah 2 30/8/2014 2

Aljabar Linier. Kuliah 2 30/8/2014 2 30/8/2014 1 Aljabar Linier Kuliah 2 30/8/2014 2 Bab 1 Subpokok Bahasan Ruang Vektor Subruang Subruang Lattice Jumlah Langsung Himpunan Pembangun dan Bebas Linier Dimensi Ruang Vektor Basis Terurut dan

Lebih terperinci

BAB III FUNGSI MAYOR DAN MINOR. Pada bab ini akan dibahas konsep-konsep dasar dari fungsi mayor dan fungsi

BAB III FUNGSI MAYOR DAN MINOR. Pada bab ini akan dibahas konsep-konsep dasar dari fungsi mayor dan fungsi BAB III FUNGSI MAYOR DAN MINOR Pada bab n akan dbahas konsep-konsep dasar dar fungs mayor dan fungs mnor dar suatu fungs yang terdefns pada suatu nterval tertutup. Pendefnsan fungs mayor dan mnor tersebut

Lebih terperinci

DIMENSI PARTISI GRAF GIR

DIMENSI PARTISI GRAF GIR Jurnal Matematka UNAND Vol. 1 No. 2 Hal. 21 27 ISSN : 2303 2910 c Jurusan Matematka FMIPA UNAND DIMENSI PARTISI GRAF GIR REFINA RIZA Program Stud Matematka, Fakultas Matematka dan Ilmu Pengetahuan Alam,

Lebih terperinci

BAB VB PERSEPTRON & CONTOH

BAB VB PERSEPTRON & CONTOH BAB VB PERSEPTRON & CONTOH Model JST perseptron dtemukan oleh Rosenblatt (1962) dan Mnsky Papert (1969). Model n merupakan model yang memlk aplkas dan pelathan yang lebh bak pada era tersebut. 5B.1 Arstektur

Lebih terperinci

MEREDUKSI SISTEM PERSAMAAN LINEAR FUZZY PENUH DENGAN BILANGAN FUZZY TRAPESIUM

MEREDUKSI SISTEM PERSAMAAN LINEAR FUZZY PENUH DENGAN BILANGAN FUZZY TRAPESIUM MEREDUKSI SISTEM PERSAMAAN LINEAR FUZZY PENUH DENGAN BILANGAN FUZZY TRAPESIUM Tut Susant, Mashad, Sukamto Mahasswa Program S Matematka Dosen Jurusan Matematka Fakultas Matematka dan Ilmu Pengetahuan Alam

Lebih terperinci

UJI PRIMALITAS. Sangadji *

UJI PRIMALITAS. Sangadji * UJI PRIMALITAS Sangadj * ABSTRAK UJI PRIMALITAS. Makalah n membahas dan membuktkan tga teorema untuk testng prmaltas, yatu teorema Lucas, teorema Lucas yang dsempurnakan dan teorema Pocklngton. D sampng

Lebih terperinci

ANALISIS BENTUK HUBUNGAN

ANALISIS BENTUK HUBUNGAN ANALISIS BENTUK HUBUNGAN Analss Regres dan Korelas Analss regres dgunakan untuk mempelajar dan mengukur hubungan statstk yang terjad antara dua varbel atau lebh varabel. Varabel tersebut adalah varabel

Lebih terperinci

APLIKASI PERKONGRUENAN DALAM MENYELESAIKAN SISTEM PERSAMAAN LINEAR DUA PEUBAH. Yuni Yulida dan Muhammad Ahsar K

APLIKASI PERKONGRUENAN DALAM MENYELESAIKAN SISTEM PERSAMAAN LINEAR DUA PEUBAH. Yuni Yulida dan Muhammad Ahsar K Jurnal Matematka Murn dan Terapan Vol. 3 No. Desember 009: 4-6 APLIKASI PERKONGRUENAN DALAM MENYELESAIKAN SISTEM PERSAMAAN LINEAR DUA PEUBAH Yun Yulda dan Muhammad Ahsar K Program Stud Matematka Unverstas

Lebih terperinci

Sifat-sifat Operasi Perkalian Modular pada Graf Fuzzy

Sifat-sifat Operasi Perkalian Modular pada Graf Fuzzy SEMINAR MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 07 Sfat-sfat Operas Perkalan Modular pada raf Fuzzy T - 3 Tryan, ahyo Baskoro, Nken Larasat 3, Ar Wardayan 4,, 3, 4 Unerstas Jenderal Soedrman transr@yahoo.com.au

Lebih terperinci

PADA GRAF PRISMA BERCABANG

PADA GRAF PRISMA BERCABANG PELABELAN TOTAL SUPER (a, d)-busur ANTI AJAIB PADA GRAF PRISMA BERCABANG Achmad Fahruroz,, Dew Putre Lestar,, Iffatul Mardhyah, Unverstas Gunadarma Depok Program Magster Fakultas MIPA Unverstas Indonesa

Lebih terperinci

ANALISIS DATA KATEGORIK (STK351)

ANALISIS DATA KATEGORIK (STK351) Suplemen Respons Pertemuan ANALISIS DATA KATEGORIK (STK351) 7 Departemen Statstka FMIPA IPB Pokok Bahasan Sub Pokok Bahasan Referens Waktu Korelas Perngkat (Rank Correlaton) Bag. 1 Koefsen Korelas Perngkat

Lebih terperinci

II. TEORI DASAR. Definisi 1. Transformasi Laplace didefinisikan sebagai

II. TEORI DASAR. Definisi 1. Transformasi Laplace didefinisikan sebagai II. TEORI DASAR.1 Transormas Laplace Ogata (1984) mengemukakan bahwa transormas Laplace adalah suatu metode operasonal ang dapat dgunakan untuk menelesakan persamaan derensal lnear. Dengan menggunakan

Lebih terperinci

Tinjauan Algoritma Genetika Pada Permasalahan Himpunan Hitting Minimal

Tinjauan Algoritma Genetika Pada Permasalahan Himpunan Hitting Minimal 157 Vol. 13, No. 2, 157-161, Januar 2017 Tnjauan Algortma Genetka Pada Permasalahan Hmpunan Httng Mnmal Jusmawat Massalesse, Bud Nurwahyu Abstrak Beberapa persoalan menark dapat dformulaskan sebaga permasalahan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Fuzzy Set Pada tahun 1965, Zadeh memodfkas teor hmpunan dmana setap anggotanya memlk derajat keanggotaan yang bernla kontnu antara 0 sampa 1. Hmpunan n dsebut dengan hmpunaan

Lebih terperinci

KAJIAN DAN ALGORITMA PELABELAN PSEUDO EDGE-MAGIC. memiliki derajat maksimum dan tidak ada titik yang terisolasi. Jika n i adalah

KAJIAN DAN ALGORITMA PELABELAN PSEUDO EDGE-MAGIC. memiliki derajat maksimum dan tidak ada titik yang terisolasi. Jika n i adalah BAB III KAJIAN DAN ALGORITMA PELABELAN PSEUDO EDGE-MAGIC III. Batas Bawah Magc Number pada Pelabelan Total Pseudo Edge-Magc Teorema 3.. Anggap G = (,E) adalah sebuah graf dengan n-ttk dan m-ss dan memlk

Lebih terperinci

PERTEMUAN I PENGENALAN STATISTIKA TUJUAN PRAKTIKUM

PERTEMUAN I PENGENALAN STATISTIKA TUJUAN PRAKTIKUM PERTEMUAN I PENGENALAN STATISTIKA TUJUAN PRAKTIKUM 1) Membuat dstrbus frekuens. 2) Mengetahu apa yang dmaksud dengan Medan, Modus dan Mean. 3) Mengetahu cara mencar Nla rata-rata (Mean). TEORI PENUNJANG

Lebih terperinci

Pembayaran harapan yang berkaitan dengan strategi murni pemain P 2. Pembayaran Harapan bagi Pemain P1

Pembayaran harapan yang berkaitan dengan strategi murni pemain P 2. Pembayaran Harapan bagi Pemain P1 Lecture : Mxed Strategy: Graphcal Method A. Metode Campuran dengan Metode Grafk Metode grafk dapat dgunakan untuk menyelesakan kasus permanan dengan matrks pembayaran berukuran n atau n. B. Matrks berukuran

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 5. No. 3, , Desember 2002, ISSN :

JURNAL MATEMATIKA DAN KOMPUTER Vol. 5. No. 3, , Desember 2002, ISSN : JURNAL MATEMATIKA AN KOMPUTER Vol. 5. No. 3, 161-167, esember 00, ISSN : 1410-8518 PENGARUH SUATU ATA OBSERVASI ALAM MENGESTIMASI PARAMETER MOEL REGRESI Hern Utam, Rur I, dan Abdurakhman Jurusan Matematka

Lebih terperinci

Pendahuluan. 0 Dengan kata lain jika fungsi tersebut diplotkan, grafik yang dihasilkan akan mendekati pasanganpasangan

Pendahuluan. 0 Dengan kata lain jika fungsi tersebut diplotkan, grafik yang dihasilkan akan mendekati pasanganpasangan Pendahuluan 0 Data-data ang bersfat dskrt dapat dbuat contnuum melalu proses curve-fttng. 0 Curve-fttng merupakan proses data-smoothng, akn proses pendekatan terhadap kecenderungan data-data dalam bentuk

Lebih terperinci

BAB VIB METODE BELAJAR Delta rule, ADALINE (WIDROW- HOFF), MADALINE

BAB VIB METODE BELAJAR Delta rule, ADALINE (WIDROW- HOFF), MADALINE BAB VIB METODE BELAJAR Delta rule, ADALINE (WIDROW- HOFF), MADALINE 6B.1 Pelathan ADALINE Model ADALINE (Adaptve Lnear Neuron) dtemukan oleh Wdrow & Hoff (1960) Arstekturnya mrp dengan perseptron Perbedaan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Penjadwalan Baker (1974) mendefnskan penjadwalan sebaga proses pengalokasan sumber-sumber dalam jangka waktu tertentu untuk melakukan sejumlah pekerjaan. Menurut Morton dan

Lebih terperinci

Bab 3. Teori Comonotonic. 3.1 Pengurutan Variabel Acak

Bab 3. Teori Comonotonic. 3.1 Pengurutan Variabel Acak Bab 3 Teor Comonotonc Pada bab n konsep teor comonotonc akan dpaparkan dar awal dan berakhr pada konsep teor n untuk jumlah dar peubah - peubah acak 1. Setelah tu untuk membantu pemahaman akan dberkan

Lebih terperinci

SEARAH (DC) Rangkaian Arus Searah (DC) 7

SEARAH (DC) Rangkaian Arus Searah (DC) 7 ANGKAAN AUS SEAAH (DC). Arus Searah (DC) Pada rangkaan DC hanya melbatkan arus dan tegangan searah, yatu arus dan tegangan yang tdak berubah terhadap waktu. Elemen pada rangkaan DC melput: ) batera ) hambatan

Lebih terperinci

Didownload dari ririez.blog.uns.ac.id BAB I PENDAHULUAN

Didownload dari ririez.blog.uns.ac.id BAB I PENDAHULUAN BAB I PENDAHULUAN Sebuah jarngan terdr dar sekelompok node yang dhubungkan oleh busur atau cabang. Suatu jens arus tertentu berkatan dengan setap busur. Notas standart untuk menggambarkan sebuah jarngan

Lebih terperinci

APLIKASI METODE SINGULAR VALUE DECOMPOSITION(SVD) PADA SISTEM PERSAMAAN LINIER KOMPLEKS

APLIKASI METODE SINGULAR VALUE DECOMPOSITION(SVD) PADA SISTEM PERSAMAAN LINIER KOMPLEKS Vol No Jurnal Sans Teknolog Industr APLIKASI METODE SINGULAR VALUE DECOMPOSITION(SVD) PADA SISTEM PERSAMAAN LINIER KOMPLEKS Ftr Aryan Dew Yulant Jurusan Matematka Fakultas Sans Teknolog UIN SUSKA Rau Emal:

Lebih terperinci

PELABELAN TOTAL SISI TAK BERATURAN PADA GRAF GABUNGAN BIPARTIT LENGKAP

PELABELAN TOTAL SISI TAK BERATURAN PADA GRAF GABUNGAN BIPARTIT LENGKAP JMP : Volume 1 Nomor 2, Oktober 2009 PELABELAN TOTAL SISI TAK BERATURAN PADA GRAF GABUNGAN BIPARTIT LENGKAP Tryan dan Nken Larasat Fakultas Sans dan Teknk, Unverstas Jenderal Soedrman Purwokerto, Indonesa

Lebih terperinci

LAMPIRAN A PENURUNAN PERSAMAAN NAVIER-STOKES

LAMPIRAN A PENURUNAN PERSAMAAN NAVIER-STOKES LAMPIRAN A PENURUNAN PERSAMAAN NAVIER-STOKES Hubungan n akan dawal dar gaya yang beraks pada massa fluda. Gaya-gaya n dapat dbag ke dalam gaya bod, gaya permukaan, dan gaya nersa. a. Gaya Bod Gaya bod

Lebih terperinci

BAB 3 PEMBAHASAN. 3.1 Prosedur Penyelesaian Masalah Program Linier Parametrik Prosedur Penyelesaian untuk perubahan kontinu parameter c

BAB 3 PEMBAHASAN. 3.1 Prosedur Penyelesaian Masalah Program Linier Parametrik Prosedur Penyelesaian untuk perubahan kontinu parameter c 6 A PEMAHASA Pada bab sebelumnya telah dbahas teor-teor yang akan dgunakan untuk menyelesakan masalah program lner parametrk. Pada bab n akan dperlhatkan suatu prosedur yang lengkap untuk menyelesakan

Lebih terperinci

Teori Himpunan. Modul 1 PENDAHULUAN

Teori Himpunan. Modul 1 PENDAHULUAN Modul 1 Teor Hmpunan Dr. Subanar K PENDHULUN arena banyak karakterstk dar masalah probabltas dapat dnyatakan secara formal dan dmodelkan secara rngkas dengan menggunakan notas hmpunan elementer, maka pertama-tama

Lebih terperinci

MENCERMATI BERBAGAI JENIS PERMASALAHAN DALAM PROGRAM LINIER KABUR. Mohammad Asikin Jurusan Matematika FMIPA UNNES. Abstrak

MENCERMATI BERBAGAI JENIS PERMASALAHAN DALAM PROGRAM LINIER KABUR. Mohammad Asikin Jurusan Matematika FMIPA UNNES. Abstrak JURAL MATEMATIKA DA KOMUTER Vol. 6. o., 86-96, Agustus 3, ISS : 4-858 MECERMATI BERBAGAI JEIS ERMASALAHA DALAM ROGRAM LIIER KABUR Mohammad Askn Jurusan Matematka FMIA UES Abstrak Konsep baru tentang hmpunan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengertan Regres Regres pertama kal dpergunakan sebaga konsep statstka oleh Sr Francs Galton (1822 1911). Belau memperkenalkan model peramalan, penaksran, atau pendugaan, yang

Lebih terperinci

PENDAHULUAN Latar Belakang

PENDAHULUAN Latar Belakang PENDAHULUAN Latar Belakang Menurut teor molekuler benda, satu unt volume makroskopk gas (msalkan cm ) merupakan suatu sstem yang terdr atas sejumlah besar molekul (kra-kra sebanyak 0 0 buah molekul) yang

Lebih terperinci

DISTRIBUSI HASIL PENGUKURAN DAN NILAI RATA-RATA

DISTRIBUSI HASIL PENGUKURAN DAN NILAI RATA-RATA DISTRIBUSI HASIL PENGUKURAN DAN NILAI RATA-RATA Dstrbus Bnomal Msalkan dalam melakukan percobaan Bernoull (Bernoull trals) berulang-ulang sebanyak n kal, dengan kebolehjadan sukses p pada tap percobaan,

Lebih terperinci

BAB 3 PRINSIP INKLUSI EKSKLUSI

BAB 3 PRINSIP INKLUSI EKSKLUSI BAB 3 PRINSIP INKLUSI EKSKLUSI. Tentukan banyak blangan bulat dar sampa dengan 0.000 yang tdak habs dbag 4, 6, 7 atau 0. Jawab: Msal: S = {, 2, 3, 4, 5,..., 0.000} a = {sfat habs dbag 4} a 2 = {sfat habs

Lebih terperinci

V = adalah himpunan hingga, dan misalkan

V = adalah himpunan hingga, dan misalkan BAB III ALJABAR HIPERGRAF 3. Hpergraf Defns Msalkan { v, v2,..., vn} V = adalah hpunan hngga, dan salkan ε = {, I} adalah koleks dar hpunan bagan dar V. Koleks ε enjad E suatu hpergraf pada V jka hpergraf.

Lebih terperinci

Catatan Kuliah 12 Memahami dan Menganalisa Optimisasi dengan Kendala Ketidaksamaan

Catatan Kuliah 12 Memahami dan Menganalisa Optimisasi dengan Kendala Ketidaksamaan Catatan Kulah Memaham dan Menganalsa Optmsas dengan Kendala Ketdaksamaan. Non Lnear Programmng Msalkan dhadapkan pada lustras berkut n : () Ma U = U ( ) :,,..., n st p B.: ; =,,..., n () Mn : C = pk K

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang. Di dalam matematika mulai dari SD, SMP, SMA, dan Perguruan Tinggi

BAB I PENDAHULUAN. 1.1 Latar Belakang. Di dalam matematika mulai dari SD, SMP, SMA, dan Perguruan Tinggi Daftar Is Daftar Is... Kata pengantar... BAB I...1 PENDAHULUAN...1 1.1 Latar Belakang...1 1.2 Rumusan Masalah...2 1.3 Tujuan...2 BAB II...3 TINJAUAN TEORITIS...3 2.1 Landasan Teor...4 BAB III...5 PEMBAHASAN...5

Lebih terperinci

I PENDAHULUAN II LANDASAN TEORI

I PENDAHULUAN II LANDASAN TEORI I PENDAHULUAN Latar elakang Sekolah merupakan salah satu bagan pentng dalam penddkan Oleh karena tu sekolah harus memperhatkan bagan-bagan yang ada d dalamnya Salah satu bagan pentng yang tdak dapat dpsahkan

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 ENDAHULUAN 1.1 Latar Belakang Manusa dlahrkan ke duna dengan ms menjalankan kehdupannya sesua dengan kodrat Illah yakn tumbuh dan berkembang. Untuk tumbuh dan berkembang, berart setap nsan harus

Lebih terperinci

TRANSITIF KLOSUR DARI GABUNGAN DUA RELASI EKUIVALENSI PADA SUATU HIMPUNAN DENGAN STRUKTUR DATA DINAMIS

TRANSITIF KLOSUR DARI GABUNGAN DUA RELASI EKUIVALENSI PADA SUATU HIMPUNAN DENGAN STRUKTUR DATA DINAMIS TRANSITIF KLOSUR DARI PADA SUATU HIMPUNAN Sukmawat Nur Endah Program Stud Ilmu Komputer Jurusan Matematka FMIPA UNDIP Jl. Prof. H. Soedarto, S.H, Semarang 5275 Abstract. A relaton R on set A s an equvalence

Lebih terperinci

BAB 2 LANDASAN TEORI. estimasi, uji keberartian regresi, analisa korelasi dan uji koefisien regresi.

BAB 2 LANDASAN TEORI. estimasi, uji keberartian regresi, analisa korelasi dan uji koefisien regresi. BAB LANDASAN TEORI Pada bab n akan durakan beberapa metode yang dgunakan dalam penyelesaan tugas akhr n. Selan tu penuls juga mengurakan tentang pengertan regres, analss regres berganda, membentuk persamaan

Lebih terperinci

BAB I Rangkaian Transient. Ir. A.Rachman Hasibuan dan Naemah Mubarakah, ST

BAB I Rangkaian Transient. Ir. A.Rachman Hasibuan dan Naemah Mubarakah, ST BAB I angkaan Transent Oleh : Ir. A.achman Hasbuan dan Naemah Mubarakah, ST . Pendahuluan Pada pembahasan rangkaan lstrk, arus maupun tegangan yang dbahas adalah untuk konds steady state/mantap. Akan tetap

Lebih terperinci

PELABELAN TOTAL SISI AJAIB SUPER PADA GRAF CORONA-LIKE UNICYCLIC

PELABELAN TOTAL SISI AJAIB SUPER PADA GRAF CORONA-LIKE UNICYCLIC PELABELAN TOTAL SISI AJAIB SUPER PADA GRAF CORONA-LIKE UNICYCLIC Kurnawan *, Rolan Pane, Asl Srat Mahasswa Program Stud S Matematka Dosen Jurusan Matematka Fakultas Matematka dan Ilmu Pengetahuan Alam

Lebih terperinci

Edisi Juni 2011 Volume V No. 1-2 ISSN TRAIL EULER MINIMAL DI DALAM GRAF BERARAH YANG TERBOBOTI. Bandung

Edisi Juni 2011 Volume V No. 1-2 ISSN TRAIL EULER MINIMAL DI DALAM GRAF BERARAH YANG TERBOBOTI. Bandung Eds Jun 211 Volume V No. 1-2 ISSN 1979-8911 RAIL EULER MINIMAL DI DALAM GRAF BERARAH YANG ERBOBOI St Julaeha 1, Murtnngrum 2, Rda Novrda 3, Endang Retno Nugroho 4 1 Dosen Jurusan Matematka, Fakultas Sans

Lebih terperinci

RANGKAIAN SERI. 1. Pendahuluan

RANGKAIAN SERI. 1. Pendahuluan . Pendahuluan ANGKAIAN SEI Dua elemen dkatakan terhubung ser jka : a. Kedua elemen hanya mempunya satu termnal bersama. b. Ttk bersama antara elemen tdak terhubung ke elemen yang lan. Pada Gambar resstor

Lebih terperinci

KRITERIA MEMILIH PENDUGA TITIK TERBAIK. Abstrak

KRITERIA MEMILIH PENDUGA TITIK TERBAIK. Abstrak KRITERIA MEMILIH PENDUGA TITIK TERBAIK Oleh : Sufr Abstrak Msalkan X varabel random dengan fungs padat peluang ( x / ), θ parameter populas yang tdak dketahu, dan T = t x ) ( f X adalah penduga ttk (statstk)

Lebih terperinci

KONSEP DASAR PROBABILITAS

KONSEP DASAR PROBABILITAS KONSEP DASAR PROBABILITAS TI2131 TEORI PROBABILITAS MINGGU KE-3 & KE-4 1 Defns 1 Probabltas dar sebuah kejadan A adalah jumlah bobot dar tap ttk sampel yang termasuk dalam A. Selanjutnya: 0 < P(A) < 1,

Lebih terperinci

81 Bab 6 Ruang Hasilkali Dalam

81 Bab 6 Ruang Hasilkali Dalam 8 Bab Rang Haslkal Dalam Bab RUANG HASIL KALI DALAM Rang hasl kal dalam merpakan rang ektor yang dlengkap dengan operas hasl kal dalam. Sepert halnya rang ektor rang haslkal dalam bermanfaat dalam beberapa

Lebih terperinci

Jurnal Pendidikan Matematika & Matematika

Jurnal Pendidikan Matematika & Matematika Jurnal Penddkan Mateatka & Mateatka Syasah. (2011). Pengaruh Puasa Terhadap Konsentras Belajar Sswa. Jakarta: UIN Syarf Hdayatullah Jakarta. Thabrany, Hasbullah. (1995). Rahasa Sukses Belajar. Jakarta:

Lebih terperinci

PENYELESAIAN SISTEM PERSAMAAN LINEAR KOMPLEKS MENGGUNAKAN METODE DEKOMPOSISI QR TUGAS AKHIR

PENYELESAIAN SISTEM PERSAMAAN LINEAR KOMPLEKS MENGGUNAKAN METODE DEKOMPOSISI QR TUGAS AKHIR PENYELESAIAN SISTEM PERSAMAAN LINEAR KOMPLEKS MENGGUNAKAN METODE DEKOMPOSISI QR TUGAS AKHIR Dajukan sebaga Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sans pada Jurusan Matematka Oleh : IIS ERIANTI

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini dilakukan di MTs Negeri 2 Bandar Lampung dengan populasi siswa

III. METODE PENELITIAN. Penelitian ini dilakukan di MTs Negeri 2 Bandar Lampung dengan populasi siswa III. METODE PENELITIAN A. Populas dan Sampel Peneltan n dlakukan d MTs Neger Bandar Lampung dengan populas sswa kelas VII yang terdr dar 0 kelas yatu kelas unggulan, unggulan, dan kelas A sampa dengan

Lebih terperinci

PROPERTY DAN PERDAGANGAN SEBAGAI SEKTOR DOMINAN PADA DATA BURSA SAHAM. DENGAN Principal Component Analysis (PCA)

PROPERTY DAN PERDAGANGAN SEBAGAI SEKTOR DOMINAN PADA DATA BURSA SAHAM. DENGAN Principal Component Analysis (PCA) PROPERT DAN PERDAGANGAN SEBAGAI SEKTOR DOMINAN PADA DATA BURSA SAHAM DENGAN Prncpal Component Analyss (PCA) Oleh : Hanna aa Parhusp, usp, Deva eawdyananto a dan Bernadeta Desnova Kr Program Stud Statstka

Lebih terperinci

Deret Taylor & Diferensial Numerik. Matematika Industri II

Deret Taylor & Diferensial Numerik. Matematika Industri II Deret Taylor & Derensal Numerk Matematka Industr II Maclaurn Power Seres Deret Maclaurn adalah penaksran polnom derajat tak hngga 0 0! 0 n n 0 n! Notce: Deret nnte tak hngga menyatakan bahwa akhrnya deret

Lebih terperinci

BAB V PENGEMBANGAN MODEL FUZZY PROGRAM LINIER

BAB V PENGEMBANGAN MODEL FUZZY PROGRAM LINIER BAB V PENGEMBANGAN MODEL FUZZY PROGRAM LINIER 5.1 Pembelajaran Dengan Fuzzy Program Lner. Salah satu model program lnear klask, adalah : Maksmumkan : T f ( x) = c x Dengan batasan : Ax b x 0 n m mxn Dengan

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1. Hpotess Peneltan Berkatan dengan manusa masalah d atas maka penuls menyusun hpotess sebaga acuan dalam penulsan hpotess penuls yatu Terdapat hubungan postf antara penddkan

Lebih terperinci

(1.1) maka matriks pembayaran tersebut dikatakan mempunyai titik pelana pada (r,s) dan elemen a

(1.1) maka matriks pembayaran tersebut dikatakan mempunyai titik pelana pada (r,s) dan elemen a Lecture 2: Pure Strategy A. Strategy Optmum Hal pokok yang sesungguhnya menad nt dar teor permanan adalah menentukan solus optmum bag kedua phak yang salng bersang tersebut yang bersesuaan dengan strateg

Lebih terperinci

BAB III METODE PENELITIAN. Metode penelitian yang digunakan dalam penelitian ini adalah metode

BAB III METODE PENELITIAN. Metode penelitian yang digunakan dalam penelitian ini adalah metode BAB III METODE PENELITIAN Desan Peneltan Metode peneltan yang dgunakan dalam peneltan n adalah metode deskrptf analts dengan jens pendekatan stud kasus yatu dengan melhat fenomena permasalahan yang ada

Lebih terperinci

TINJAUAN PUSTAKA. Node. Edge. Gambar 1 Directed Acyclic Graph

TINJAUAN PUSTAKA. Node. Edge. Gambar 1 Directed Acyclic Graph TINJAUAN PUSTAKA Bayesan Networks BNs dapat memberkan nformas yang sederhana dan padat mengena nformas peluang. Berdasarkan komponennya BNs terdr dar Bayesan Structure (Bs) dan Bayesan Parameter (Bp) (Cooper

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 7 BAB LANDASAN TEORI.1 Analsa Regres Analsa regres dnterpretaskan sebaga suatu analsa yang berkatan dengan stud ketergantungan (hubungan kausal) dar suatu varabel tak bebas (dependent varable) atu dsebut

Lebih terperinci

2 TINJAUAN PUSTAKA. sistem statis dan sistem fuzzy. Penelitian sejenis juga dilakukan oleh Aziz (1996).

2 TINJAUAN PUSTAKA. sistem statis dan sistem fuzzy. Penelitian sejenis juga dilakukan oleh Aziz (1996). 2 TINJAUAN PUSTAKA 2.1 Stud Yang Terkat Peneltan n mengacu pada jurnal yang dtuls oleh Khang, dkk.(1995). Dalam peneltannya, Khang, dkk membandngkan arus lalu lntas yang datur menggunakan sstem stats dan

Lebih terperinci

JMP : Volume 5 Nomor 1, Juni 2013, hal SPEKTRUM PADA GRAF REGULER KUAT

JMP : Volume 5 Nomor 1, Juni 2013, hal SPEKTRUM PADA GRAF REGULER KUAT JMP : Volume 5 Nomor, Jun 03, hal. 3 - SPEKTRUM PD GRF REGULER KUT Rzk Mulyan, Tryan dan Nken Larasat Program Stud Matematka, Fakultas Sans dan Teknk Unerstas Jenderal Soedrman Emal : rzky90@gmal.com BSTRCT.

Lebih terperinci

BAB II DIMENSI PARTISI

BAB II DIMENSI PARTISI BAB II DIMENSI PARTISI. Defns dasar dan eteratannya dengan metrc dmenson Dalam pembahasan dmens parts, graf yang dbahas adalah graf terhubung sederhana dan tda meml arah. Sebelum mendefnsan graf yang dgunaan

Lebih terperinci

BAB III. Monte Carlo dan metode least-square, maka pada bab ini diantaranya akan

BAB III. Monte Carlo dan metode least-square, maka pada bab ini diantaranya akan BAB III METODE LEAST-SQUARE MONTE CARLO Pada bab sebelumnya telah delaskan antara lan mengena smulas Monte Carlo dan metode least-square, maka pada bab n dantaranya akan dbahas penggunaan kedua metode

Lebih terperinci

SELANG KEPERCAYAAN UNTUK KOEFISIEN GARIS REGRESI LINEAR DENGAN METODE LEAST MEDIAN SQUARES 1 ABSTRAK

SELANG KEPERCAYAAN UNTUK KOEFISIEN GARIS REGRESI LINEAR DENGAN METODE LEAST MEDIAN SQUARES 1 ABSTRAK SELANG KEPERCAYAAN UNTUK KOEFISIEN GARIS REGRESI LINEAR DENGAN METODE LEAST MEDIAN SQUARES Harm Sugart Jurusan Statstka FMIPA Unverstas Terbuka emal: harm@ut.ac.d ABSTRAK Adanya penympangan terhadap asums

Lebih terperinci

Bab III Analisis Rantai Markov

Bab III Analisis Rantai Markov Bab III Analss Ranta Markov Sstem Markov (atau proses Markov atau ranta Markov) merupakan suatu sstem dengan satu atau beberapa state atau keadaan, dan dapat berpndah dar satu state ke state yang lan pada

Lebih terperinci

Contoh 5.1 Tentukan besar arus i pada rangkaian berikut menggunakan teorema superposisi.

Contoh 5.1 Tentukan besar arus i pada rangkaian berikut menggunakan teorema superposisi. BAB V TEOEMA-TEOEMA AGKAIA 5. Teorema Superposs Teorema superposs bagus dgunakan untuk menyelesakan permasalahan-permasalahan rangkaan yang mempunya lebh dar satu sumber tegangan atau sumber arus. Konsepnya

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di SMA Negeri I Tibawa pada semester genap

BAB III METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di SMA Negeri I Tibawa pada semester genap 5 BAB III METODOLOGI PENELITIAN 3. Lokas Dan Waktu Peneltan Peneltan n dlaksanakan d SMA Neger I Tbawa pada semester genap tahun ajaran 0/03. Peneltan n berlangsung selama ± bulan (Me,Jun) mula dar tahap

Lebih terperinci

BAB 2 LANDASAN TEORI. Universitas Sumatera Utara

BAB 2 LANDASAN TEORI. Universitas Sumatera Utara BAB 2 LANDASAN TEORI 2.1 Pengertan Analsa Regres Dalam kehdupan sehar-har, serng kta jumpa hubungan antara satu varabel terhadap satu atau lebh varabel yang lan. Sebaga contoh, besarnya pendapatan seseorang

Lebih terperinci

berasal dari pembawa muatan hasil generasi termal, sehingga secara kuat

berasal dari pembawa muatan hasil generasi termal, sehingga secara kuat 10 KARAKTRISTIK TRANSISTOR 10.1 Dasar Pengoperasan JT Pada bab sebelumnya telah dbahas dasar pengoperasan JT, utamannya untuk kasus saat sambungan kolektor-bass berpanjar mundur dan sambungan emtor-bass

Lebih terperinci

BAB II KAJIAN TEORI. 2.1 Pendahuluan. 2.2 Pengukuran Data Kondisi

BAB II KAJIAN TEORI. 2.1 Pendahuluan. 2.2 Pengukuran Data Kondisi BAB II KAJIAN TEORI 2.1 Pendahuluan Model penurunan nla konds jembatan yang akan destmas mengatkan data penurunan konds jembatan dengan beberapa varabel kontnu yang mempengaruh penurunan kondsnya. Data

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 59-70, Agustus 2003, ISSN :

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 59-70, Agustus 2003, ISSN : JURNA MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 59-70, Agustus 2003, ISSN : 1410-8518 MASAAH RUTE TERPENDEK PADA JARINGAN JAAN MENGGUNAKAN AMPU AU-INTAS Stud Kasus: Rute Peralanan Ngesrep Smpang ma Eko Bud

Lebih terperinci

IV. UKURAN SIMPANGAN, DISPERSI & VARIASI

IV. UKURAN SIMPANGAN, DISPERSI & VARIASI IV. UKURAN SIMPANGAN, DISPERSI & VARIASI Pendahuluan o Ukuran dspers atau ukuran varas, yang menggambarkan derajat bagamana berpencarnya data kuanttatf, dntaranya: rentang, rentang antar kuartl, smpangan

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN. Latar Belakang Matematka sebaga bahasa smbol yang bersfat unversal memegang peranan pentng dalam perkembangan suatu teknolog. Matematka sangat erat hubungannya dengan kehdupan nyata.

Lebih terperinci

BAB VI MODEL-MODEL DETERMINISTIK

BAB VI MODEL-MODEL DETERMINISTIK BAB VI MODEL-MODEL DETERMINISTIK 6. Masalah Penyaluran Daya Lstrk Andakan seorang perencana sstem kelstrkan merencakan penyaluran daya lstrk dar beberapa pembangkt yang ternterkoneks dan terhubung dengan

Lebih terperinci

I. PENGANTAR STATISTIKA

I. PENGANTAR STATISTIKA 1 I. PENGANTAR STATISTIKA 1.1 Jens-jens Statstk Secara umum, lmu statstka dapat terbag menjad dua jens, yatu: 1. Statstka Deskrptf. Statstka Inferensal Dalam sub bab n akan djelaskan mengena pengertan

Lebih terperinci

KAITAN ANTARA SUPLEMEN SUATU MODUL DAN EKSISTENSI AMPLOP PROYEKTIF MODUL FAKTORNYA DALAM KATEGORI σ[m]

KAITAN ANTARA SUPLEMEN SUATU MODUL DAN EKSISTENSI AMPLOP PROYEKTIF MODUL FAKTORNYA DALAM KATEGORI σ[m] KAITAN ANTARA SULEEN SUATU ODUL DAN EKSISTENSI ALO ROYEKTIF ODUL FAKTORNYA DALA KATEGORI σ[] Ftran urusan atematka FIA Unverstas Lamung l rofdr Soemantr Brojonegoro No1 Bandar Lamung Abstract Let be an

Lebih terperinci

Bab IV Pemodelan dan Perhitungan Sumberdaya Batubara

Bab IV Pemodelan dan Perhitungan Sumberdaya Batubara Bab IV Pemodelan dan Perhtungan Sumberdaa Batubara IV1 Pemodelan Endapan Batubara Pemodelan endapan batubara merupakan tahapan kegatan dalam evaluas sumberdaa batubara ang bertuuan menggambarkan atau menatakan

Lebih terperinci

Bab 3 Analisis Ralat. x2 x2 x. y=x 1 + x 2 (3.1) 3.1. Menaksir Ralat

Bab 3 Analisis Ralat. x2 x2 x. y=x 1 + x 2 (3.1) 3.1. Menaksir Ralat Mater Kulah Ekspermen Fska Oleh : Drs. Ishaft, M.S. Program Stud Penddkan Fska Unverstas Ahmad Dahlan, 07 Bab 3 Analss Ralat 3.. Menaksr Ralat Msalna suatu besaran dhtung dar besaran terukur,,..., n. Jka

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakang Dalam kehdupan sehar-har, serngkal dumpa hubungan antara suatu varabel dengan satu atau lebh varabel lan. D dalam bdang pertanan sebaga contoh, doss dan ens pupuk yang dberkan

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Untuk menjawab permasalahan yaitu tentang peranan pelatihan yang dapat

BAB III METODOLOGI PENELITIAN. Untuk menjawab permasalahan yaitu tentang peranan pelatihan yang dapat BAB III METODOLOGI PENELITIAN 3.1 Metode Peneltan Untuk menjawab permasalahan yatu tentang peranan pelathan yang dapat menngkatkan knerja karyawan, dgunakan metode analss eksplanatf kuanttatf. Pengertan

Lebih terperinci

VLE dari Korelasi nilai K

VLE dari Korelasi nilai K VLE dar orelas nla Penggunaan utama hubungan kesetmbangan fasa, yatu dalam perancangan proses pemsahan yang bergantung pada kecenderungan zat-zat kma yang dberkan untuk mendstrbuskan dr, terutama dalam

Lebih terperinci

BAB 2 LANDASAN TEORI. persamaan penduga dibentuk untuk menerangkan pola hubungan variabel-variabel

BAB 2 LANDASAN TEORI. persamaan penduga dibentuk untuk menerangkan pola hubungan variabel-variabel BAB LANDASAN TEORI. Analss Regres Regres merupakan suatu alat ukur yang dgunakan untuk mengukur ada atau tdaknya hubungan antar varabel. Dalam analss regres, suatu persamaan regres atau persamaan penduga

Lebih terperinci

BAB.3 METODOLOGI PENELITIN 3.1 Lokasi dan Waktu Penelitian Penelitian ini di laksanakan di Sekolah Menengah Pertama (SMP) N. 1 Gorontalo pada kelas

BAB.3 METODOLOGI PENELITIN 3.1 Lokasi dan Waktu Penelitian Penelitian ini di laksanakan di Sekolah Menengah Pertama (SMP) N. 1 Gorontalo pada kelas 9 BAB.3 METODOLOGI PENELITIN 3. Lokas dan Waktu Peneltan Peneltan n d laksanakan d Sekolah Menengah Pertama (SMP) N. Gorontalo pada kelas VIII. Waktu peneltan dlaksanakan pada semester ganjl, tahun ajaran

Lebih terperinci

Bab III Reduksi Orde Model Sistem LPV

Bab III Reduksi Orde Model Sistem LPV Bab III Reduks Ode Model Sstem PV Metode eduks ode model melalu MI telah dgunakan untuk meeduks ode model sstem I bak untuk kasus kontnu maupun dskt. Melalu metode n telah dhaslkan pula bentuk da model

Lebih terperinci

Preferensi untuk alternatif A i diberikan

Preferensi untuk alternatif A i diberikan Bahan Kulah : Topk Khusus Metode Weghted Product (WP) menggunakan perkalan untuk menghubungkan ratng atrbut, dmana ratng setap atrbut harus dpangkatkan dulu dengan bobot atrbut yang bersangkutan. Proses

Lebih terperinci

PENENTUAN LOKASI PEMANCAR TELEVISI MENGGUNAKAN FUZZY MULTI CRITERIA DECISION MAKING

PENENTUAN LOKASI PEMANCAR TELEVISI MENGGUNAKAN FUZZY MULTI CRITERIA DECISION MAKING Meda Informatka, Vol. 2, No. 2, Desember 2004, 57-64 ISSN: 0854-4743 PENENTUAN LOKASI PEMANCAR TELEVISI MENGGUNAKAN FUZZY MULTI CRITERIA DECISION MAKING Sr Kusumadew Jurusan Teknk Informatka, Fakultas

Lebih terperinci

Pendeteksian Data Pencilan dan Pengamatan Berpengaruh pada Beberapa Kasus Data Menggunakan Metode Diagnostik

Pendeteksian Data Pencilan dan Pengamatan Berpengaruh pada Beberapa Kasus Data Menggunakan Metode Diagnostik Pendeteksan Data Penclan dan Pengamatan Berpengaruh pada Beberapa Kasus Data Menggunakan Metode Dagnostk Sally Indra 1, Dod Vonanda, Rry Srnngsh 3 1 Student of Mathematcs Department State Unversty of Padang,

Lebih terperinci

PENENTUAN DENSITAS PERMUKAAN

PENENTUAN DENSITAS PERMUKAAN PENENTUAN DENSITAS PERMUKAAN Pada koreks topograf ada satu nla yang belum dketahu nlanya yatu denstas batuan permukaan (rapat massa batuan dekat permukaan). Rapat massa batuan dekat permukaan dapat dtentukan

Lebih terperinci

BAB IX. STATISTIKA. CONTOH : HASIL ULANGAN MATEMATIKA 5 SISWA SBB: PENGERTIAN STATISTIKA DAN STATISTIK:

BAB IX. STATISTIKA. CONTOH : HASIL ULANGAN MATEMATIKA 5 SISWA SBB: PENGERTIAN STATISTIKA DAN STATISTIK: BAB IX. STATISTIKA. CONTOH : HASIL ULANGAN MATEMATIKA 5 SISWA SBB: PENGERTIAN STATISTIKA DAN STATISTIK: BAB IX. STATISTIKA Contoh : hasl ulangan Matematka 5 sswa sbb: 6 8 7 6 9 Pengertan Statstka dan

Lebih terperinci