BILANGAN RAMSEY SISI DARI r ( P, )

Ukuran: px
Mulai penontonan dengan halaman:

Download "BILANGAN RAMSEY SISI DARI r ( P, )"

Transkripsi

1 Charul Imron dan dy Tr Baskoro, Blangan Ramsey Ss BILANGAN RAMSY SISI DARI r ( P, ) (Ramsey Number from the Sde r ( P, ) ) Charul Imron dan dy Tr Baskoro Jurusan Matemátca, FMIPA ITS Surabaya mron-ts@matematka.ts.ac.d Departemen Matematka, FMIPA ITB Bandung ebaskoro@dns.math.tb.ac.d ABSTRAK Pada paper n akan dtunjukkan bahwa blangan Ramsey ss dar r ( P, ),, 5 adalah 0,,. Dtunjukkan pula bahwa r ( P, ) r ( P, P ) + r ( P P ) k k+l- untuk n ganjl dan k, l genap. Kata kunc: Blangan Ramsey ss, Graph lntasan untuk n dengan n, ABSTRACT In ths paper t wll be shown that Ramsey numbers from the sde r ( P, ) from n,, 5 are 0,,. It s also shown that r ( P, ) r ( P, P ) + r ( P, P ) wth n k k+l- for n odd and k, l even nteger Keywords: Sde Ramsey number, Lane graph Makalah dterma tanggal Aprl 006. PNDAHULUAN Dberkan dua graph F dan H, notas G? (F, H ) menyatakan bahwa setap pewarnaan -warna (msal merah dan bru) pada semua ss graph G akan mengakbatkan G memuat subgraph F berwarna merah atau memuat subgraph H berwarna bru. Blangan Ramsey klask r ( F, H ) adalah banyaknya smpul mnmum dar suatu graph G yang bersfat G? (F, H), sedangkan blangan Ramsey ss r ( F, H ) adalah banyaknya ss mnmum dar suatu graph G yang bersfat G? (F, H). Pada paper n akan dkaj blangan Ramsey ss untuk kombnas graph lntasan P dengan graph lntasan dengan n,, 5, sedangkan untuk n,,..., sudah dkaj (rdõs dkk, 978). Pada paper n, akan dkaj pula hubungan antara n genap dengan n ganjl untuk n 5.. NOTASI DAN DFINISI Graph G yang basanya dtuls dengan G(V,) terdr dar hmpunan tak kosong smpul yang basanya dsmbolkan dengan (G). Setap u, v V (G) tersebut dengan smpul dar graph G dan e (u,v) merupakan pasangan terurut dar smpul yang dsebut dengan ss dar graph G. Untuk memudahkan, ss e (u,v) serng dtuls dengan uv. Oreder dar G dnotaskan dengan V (G) yatu banyaknya smpul dalam graph G, 7

2 Berkala MIPA, 6 (), Me 006 sedangkan bayaknya ss dnotaskan dengan (G). Derajat dar suatu smpul v d G adalah banyaknya smpul yang bertetangga dengan v. Dua smpul dkatakan bebas jka dua smpul tersebut tdak bertetangga, sedangkan suatu hmpunan S V (G) dkatakan hmpunan bebas jka setap dua smpul d S adalah bebas dalam G. Dengan cara yang sama, dua ss d G dkatakan salng bebas jka dua ss tersebut mempunya empat smpul yang berbeda. Hmpunan T (G) dkatakan hmpunan ss bebas jka setap dua ss yang berbeda d T adalah bebas dalam G. Defns. Blangan Ramsey r(k,l) ddefnskan sebaga blangan mnmum N sedemkan hngga pewarnaan X dar hmpunan ss K N dnotaskan dengan ( K N ) dmana K N memuat K k merah atau K l bru sebaga subgraph. Pewarnaan X merupakan fungs dar {(,j)? j dan,j {,,...,N}} ke {merah, bru} G tdak memuat P merah, akan dbuktkan bahwa pewarnaan X tersebut akan memuat P bru. Untuk menunjukkan adanya P bru, lhat Gambar yatu kontruks graph G dengan jumlah smpul sebanyak V(G ) dan jumlah ss sebanyak (G ) 5. Oleh karena tu, hanya ada dua ss yang dapat berwarna merah yang tdak membentuk lntasan P. Hal tersebut mengakbatkan G memuat P bru. Ambl satu ss sebarang d G, sehngga (G ), kemudan warna bru. Karena (G ), maka tdak dtemukan P bru yang dharapkan. Jad r ( P, P ) 5 dan perhatkan bahwa graph G dapat dawal atau dakhr pada smpul u atau smpul u. u u u u u. BILANGAN RAMSY SISI Blangan ramsey ss dar r ( P, ) P n adalah banyaknya ss pada suatu graph G sedemkan hngga dtemukan lntasan P berwarna merah atau luntasan berwarna bru yang merupakan subgraph dar G. Telah dhtung oleh Nuraen (005), untuk n,, 5,...,, sepert tertera pada Tabel. Tabel : Blangan Ramsey Ss u u G u u 5 u 6 Gambar : n Gambar : n 6 G 6 u u u u P P P 5 P 6 P 7 P 8 P 9 P 0 P P ( P ) r, Teorema-teorema berkut merupakan sebagan penjelasan dar Tabel. u 5 u 6 G 8 u 7 u 8 Teorema.. (rdõs dkk, 978) r P, P 5, r P, P 8, r P, P ( ) ( ) ( ) 6 8 Bukt: Perhatkan Gambar, ambl X sebarang pewarnaan -warna (msal merah dan bru) pada ss G. Andakan Gambar : n 8 Untuk menunjukkan r ( P, P ) 8. 6 Perhatkan Gambar, yatu kontruks graph G 6 dengan jumlah smpul sebanyak V(G 6 ) 6 dan jumlah ss sebanyak (G 6 ) 8, dmana : 8

3 Charul Imron dan dy Tr Baskoro, Blangan Ramsey Ss V ( G ) { u,,..., 6} ( ) G 6 6 { uu +,} { u u +,5} { u u +,,} { u u }, dengan Dengan memperhatkan graph G 6, jumlah ss yang mungkn dber warna merah agar supaya tdak dtemukan P merah tetap dapat dtemukan P 6 bru, maka ss-ss yang mungkn dapat dber warna merah adalah maksmum tga ss yang salng bebas yang terletak d :S. tga merah d. satu merah d, satu merah d dan satu merah d. satu merah d, satu merah d dan satu merah d Dengan memperhatkan letak merah d tga ss tersebut, dpastkan dapat dtemukan lntasan ss berwarna bru yang dawal atau dakhr pada smpul u atau u 6. Untuk menunjukkan r ( P, P ). 8 Perhatkan Gambar, yatu kontruks graph G 8 dengan jumlah smpul sebanyak V(G 8 ) 8 dan jumlah ss sebanyak (G 8 ), dmana : V ( G8 ) { u,,,..., 8} ( 8 ) { uu +,, } { u u + 5,6,7} { u u +,,,} G 5 { u u8} { u u } 5, dengan Dengan memperhatkan graph G 8, jumlah ss yang mungkn dber warna merah agar supaya tdak dtemukan P merah tetap dapat dtemukan P 8 bru, maka ss-ss yang mungkn dapat dber warna merah adalah maksmum empat ss yang salng bebas yang terletak d :. empat merah d. dua merah d, satu merah d dan satu merah d. dua merah d, dan dua merah d 5. satu merah d, satu merah d, satu merah d dan satu merah d Dengan memperhatkan letak merah d empat ss tersebut, dpastkan dapat dtemukan lntasan ss berwarna bru yang dawal atau dakhr pada smpul u. Berkut teorema yang lannya, merupakan penjelasan dar tabel d atas. Teorema. (rdõs dkk, 978) P, P 0, r P, P r P, P ( ) ( ), 7 9 r ( ) 6 u u u u u 5 u u G 7 u 6 u 7 Gambar : n 7 u u u 5 u 6 u 7 u 8 u 9 Gambar 5: n 9 u u u u u 5 G Gambar 6: n u 6 u 7 u 8 u 9 u 0 u 9

4 Berkala MIPA, 6 (), Me 006 Bukt: Perhatkan Gambar, ambl x sebarang pewarnaan -warna (msal merah dan bru) pada ss G 7. Andakan G 7 tdak memuat P merah, akan dbuktkan bahwa pewarnaan x tersebut akan memuat P 7 bru. Untuk menunjukkan adanya P 7 bru, lhat Gambar yatu kontruks graph G 7 dengan jumlah smpul sebanyak, V(G 7 ) 7 dan jumlah ss sebanyak (G 7 ) 0. Perhatkan kembal kontruks graph G 7, sebenarnya graph tersebut merupakan gabungan dar dua graph G dengan menggabungkan salah satu ssnya, yatu smpul u dar graph bagan bawah. Telah djelaskan datas bahwa G dapat dawal atau dakhrpada smpul u. Sedangkan penggabungan dua graph tersebut terletak pada smpul-smpul tersebut. Jad dapat dtemukan P 7 bru yang dngnkan, sehngga r ( P, P ) 0 7 Untuk menunjukkan r ( P, P ). 9 Perhatkan Gambar 5, yatu kontruks graph G 9 dengan jumlah smpul sebanyak V(G 9 ) 9 dan jumlah ss sebanyak (G 9 ), dengan cara yang sama, perhatkan kembal kontruks graph G 9, sebenarnya graph tersebut merupakan gabungan dar graph G (bagan atas graph G 9 ) dan graph G 6 (bagan bawah graph G 9 ) dengan menggabungkan salah satu ssnya, yatu smpul u pada G dan smpul u pada G 6. telah djelaskan d atas bahwa G dapat dakhr pada smpul u dan G 6 dapat dawal pada smpul u. Sedangkan penggabungan dua graph tersebut terletak pada smpulsmpul tersebut. Jad dapat dtemukan P 9 bru yang dngnkan, sehngga r ( P, P ) 9 Untuk menunjukkan r ( P, P ) 6. Perhatkan Gambar 6, yatu kontruks graph G dengan jumlah smpul sebanyak V (G ) dan jumlah ss sebanyak (G ) 6, dengan cara yang sama pula, perhatkan kembal kontruks graph G, sebenarnya graph tersebut merupakan gabungan dar dua graph G 6 dengan menggabungkan salah satu ssnya, yatu smpul u 6 dan smpul u. Telah djelaskan d atas bahwa G 6 dapat dawal atau dakhr pada smpul u atau u 6. Sedangkan penggabungan dua graph tersebut terletak pada smpul-smpul tersebut. Jad dapat dtemukan P bru yang dngnkan, sehngga r ( P, P ) 6 Dar pembuktan Teorema., dapat dduga bahwa blangan ramsay yang lebh besar lag, perhatkan dugaan d bawah n. Dugaan. r ( P P ) r ( P, P ) r ( P P ) +, n k dmana n k + - untuk n 7 ganjl, k dan l genap. Bukt. Telah dhtung oleh Nuraen, bahwa r ( P, P ) 5, dengan mengambl l k maka r ( P, P ) r ( P, P ) + r ( P, P ) sesua dengan perhtungan pada tabel d atas. Begtu juga untuk n 9, untuk r ( P, P ) 5 dan r ( P, P ) 8, dengan 6 mengambl k dan l 6 maka r ( P, P ) r ( P, P ) + r ( P, P ) sesua dengan perhtungan 6 pada tabel d atas. Sedangkan untuk n, r ( P, P ) 8, 6 dengan mengambl k l 6 maka r ( P, P ) r ( P, P ) + r ( P, P ) sesua dengan perhtungan 6 pada tabel d atas. Teorema. r ( P, P ) 0 u u u u u 5 u 6 u 7 u 8 u 9 u 0 u Gambar 7: n Bukt. Perhatkan Gambar 7, ambl x sebarang pewarna -warna (msal merah dan bru) pada ss G. Andakan G tdak memuat P merah, akan dbuktkan bahwa pewarnaan x tersebut akan memuat P bru. Untuk menunjukkan adanya P bru, lhat Gambar 7 yatu kontruks graph G degan jumlah smpul sebanyak V (G ) dan u u 0

5 Charul Imron dan dy Tr Baskoro, Blangan Ramsey Ss jumlah ss sebanyak (G ) 0. dmana: V(G ) { u,,...,} {u,,...,6} {u 6,7,...,} atau V(G ) V(G 6 ) V(G 8 ) sedangkan V(G 6 ) n V(G 8 ) {u 6 } yang merupakan smpul penghubung antara graph G 6 dan graph G 8. (G ) (G 6 ) (G 8 ) Katakan bahwa blok-atas adalah subgraph G bagan atas yang sama dengan graph G 6 dan blok-bawah adalah subgraph G bagan bawah yang sama dengan graph G 8. Dengan memperhatkan graph G, jumlah ss yang mungkn dber warna agar supaya tdak dtemukan P merah tetap dapat dtemukan P bru, maka ss-ss yang mugkn dapat dber warna merah adalah maksmum enam ss yang salng bebas yang terletak d :. tga merah d blok-atas dan tga merah d blok-bawah. dua merah d blok-atas dan empat merah d blok-bawah Kejadan. Perhatkan kembal uraan dar G 6 yang merupakan blok-atas, telah dbuktkan d atas bahwa G 6 dapat dtemukan lntasan bru yang berakhr pada smpul u 6 atau smpul terakhr. Sedangkan tga merah terletak pada blok-bawah yang berbentuk G 8 dan telah terbukt dapat dcar lntasan bru yang dawal dar smpul terakhr dar blok dawal dar smpul awal, jad dapat dtemukan lntasan P bru. Begtu juga untuk kejadan. Sehngga memperhatkan letak merah d tga ss tersebut, dpastkan dapat dtemukan lntasan P bru. Teorema.5 r ( P, P ) u u u u u 5 u 6 u 7 Bukt. Perhatkan Gambar 8, ambl x sebarang pewarnaan -warna (msal merah dan bru) pada ss G. Andakan G tdak memuat P merah, akan dbuktkan bahwa pewarnaan x tersebut akan memuat P bru. Untuk menunjukkan adanya P bru, lhat Gambar 8 yatu kontruks graph G dengan jumlah smpul sebanyak V(G ) dan jumlah ss sebanyak (G ). dmana : V(G ) {u,,...,} (G 6 ) 5, dengan {u u +,,...,6} {u u + 8,9,...,} {u u +7,,...,7} {u u +5,5,7} 5 {u u } Dengan memperhatkan graph G, jumlah ss yang mungkn dber warna merah agar supaya tdak dtemukan P merah tetap dapat dtemukan P bru, maka ss-ss yang mungkn dapat dber warna merah adalah maksmum tujuh ss yang salng bebas dengan komposs peletakan lhat Tabel Tabel : Letak Merah Dengan memperhatkan letak merah d tujuh ss tersebut, dpastkan dapat dtemukan lntasan P bru. u 8 u 9 u 0 u u u u G Gambar 8: n 5 Teorema.6 r ( P, P ) Bukt. Perhatkan Gambar 9, ambl x sebarang pewarnaan -warna (msal merah dan bru) pada ss G 5. Andakan G 5 tdak

6 Berkala MIPA, 6 (), Me 006 memuat P merah, akan dbuktkan bahwa pewarnaan x tersebut akan memuat P 5 bru. Unruk menunjukkan adanya P 5 bru, lhat Gambar 9 yatu kontruks graph G 5 dengan jumlah smpul sebanyak V(G 5 ). dmana : V(G 5 ) {u,,...,5} {u,,...,8} {u 8,9,...,5} atau V(G 5 ) V(G 8 ) V(G 8 ) sedangkan V(G 8 ) V(G 8 ) {u 8 } yang merupakan smpul penghubung antara graph G 8 atas dan graph G 8 bawah. (G ) (G 8 ) (G 8 ) u u u u Kejadan. Perhatkan kembal uraan dar g 8 yang merupakan blok-atas (G 8 yang terbalk), telah dbuktkan datas bahwa G 8 dapat dtemukan lntasan bru yang berakhr pada smpul u atau smpul awal. Sedangkan empat merah terletak pada blokbawah yang berbentuk G 8 dan telah terbukt dapat dcar lntasan bru yang dawal dar smpul awal yatu u. Jad blok-atas dakhr pada smpul terakhr dan blokbawah dawal dar smpul awal, jad dapat dtemukan lntasan P 5 bru. Begtu juga untuk kejadan. Sehngga memperhatkan letak merah d tga ss tersebut, dpastkan dapat dtemukan lntasan P 5 bru.. KSIMPULAN u 5 u 6 u 7 G 5 u 8 u 9 u 0 u u u Gambar 9: n 5 u u 5 Katakan bahwa blok-atas adalah subgraph G 5 bagan atas yang sama dengan graph G 8 dan blok-bawah adalah subgraph G 5 bagan bawah yang sama dengan graph G 8. Dengan memperhatkan graph G 5, jumlah ss yang mungkn dber warna merah agar supaya tdak dtemukan P merah tetap dapat dtemukan P 5 bru, maka ss-ss yang mungkn dapat dber warna merah adalah maksmum tujuh ss yang salng bebas yang terletak d:. empat merah d blok-atas dan tga merah d blok-bawah. tga merah d blok-atas dan empat merah d blok-bawah Paper n memberkan kontrbus pada penentuan blangan Ramsey ss. Khusus blangan Ramsey ss r ( P, ) untuk n,, 5, untuk n yang lebh besar belum dtemukan dan sebaga batasan bahwa r ( P, P ) n untuk n yang telah n dtemukan oleh Nuraen. DAFTAR PUSTAKA P. rdõs, R.J. Faudree, C.C. Rousseau, R.H. Schlep, 978, The Sze Ramsey Number, Perodca Mathematca Hungara, Vol. 9 (-), 5-6. R.J. Faudree, J. Seehan, 98, Sze Ramsey Number for Small-Order Graphs, Journal of Graph Theory, Vol. 7, Y. Nuraen, 005, Blangan Ramsey Ss Untuk Graf Lntasan, Tess S, Departemen Matematka FMIPA ITB.

DIMENSI PARTISI GRAF GIR

DIMENSI PARTISI GRAF GIR Jurnal Matematka UNAND Vol. 1 No. 2 Hal. 21 27 ISSN : 2303 2910 c Jurusan Matematka FMIPA UNAND DIMENSI PARTISI GRAF GIR REFINA RIZA Program Stud Matematka, Fakultas Matematka dan Ilmu Pengetahuan Alam,

Lebih terperinci

Bab 1 Ruang Vektor. R. Leni Murzaini/0906577381

Bab 1 Ruang Vektor. R. Leni Murzaini/0906577381 Bab 1 Ruang Vektor Defns Msalkan F adalah feld, yang elemen-elemennya dnyatakansebaga skalar. Ruang vektor atas F adalah hmpunan tak kosong V, yang elemen-elemennya merupakan vektor, bersama dengan dua

Lebih terperinci

BAB III HASILKALI TENSOR PADA RUANG VEKTOR. Misalkan V ruang vektor atas lapangan F. Suatu transformasi linear f L ( V, F )

BAB III HASILKALI TENSOR PADA RUANG VEKTOR. Misalkan V ruang vektor atas lapangan F. Suatu transformasi linear f L ( V, F ) 28 BAB III HASILKALI TENSOR PADA RUANG VEKTOR III.1 Ruang Dual Defns III.1.2: Ruang Dual [10] Msalkan V ruang vektor atas lapangan F. Suatu transformas lnear f L ( V, F ) dkatakan fungsonal lnear (atau

Lebih terperinci

PADA GRAF PRISMA BERCABANG

PADA GRAF PRISMA BERCABANG PELABELAN TOTAL SUPER (a, d)-busur ANTI AJAIB PADA GRAF PRISMA BERCABANG Achmad Fahruroz,, Dew Putre Lestar,, Iffatul Mardhyah, Unverstas Gunadarma Depok Program Magster Fakultas MIPA Unverstas Indonesa

Lebih terperinci

PELABELAN TOTAL SISI TAK BERATURAN PADA GRAF GABUNGAN BIPARTIT LENGKAP

PELABELAN TOTAL SISI TAK BERATURAN PADA GRAF GABUNGAN BIPARTIT LENGKAP JMP : Volume 1 Nomor 2, Oktober 2009 PELABELAN TOTAL SISI TAK BERATURAN PADA GRAF GABUNGAN BIPARTIT LENGKAP Tryan dan Nken Larasat Fakultas Sans dan Teknk, Unverstas Jenderal Soedrman Purwokerto, Indonesa

Lebih terperinci

Teori Himpunan. Modul 1 PENDAHULUAN. impunan sebagai koleksi (pengelompokan) dari objek-objek yang

Teori Himpunan. Modul 1 PENDAHULUAN. impunan sebagai koleksi (pengelompokan) dari objek-objek yang Modul 1 Teor Hmpunan PENDAHULUAN Prof SM Nababan, PhD Drs Warsto, MPd mpunan sebaga koleks (pengelompokan) dar objek-objek yang H dnyatakan dengan jelas, banyak dgunakan dan djumpa dberbaga bdang bukan

Lebih terperinci

BEBERAPA SIFAT TERKAIT SUBMODUL SEMIPRIMA

BEBERAPA SIFAT TERKAIT SUBMODUL SEMIPRIMA BEBERAPA SIFAT TERKAIT SUBMODUL SEMIPRIMA A-3 Dan Aresta Yuwanngsh 1 1 Mahasswa S Matematka UGM dan.aresta17@yahoo.com Abstrak Dberkan R merupakan rng dengan elemen satuan, M R-modul kanan, dan R S End

Lebih terperinci

PELABELAN TOTAL SISI AJAIB SUPER PADA GRAF CORONA-LIKE UNICYCLIC

PELABELAN TOTAL SISI AJAIB SUPER PADA GRAF CORONA-LIKE UNICYCLIC PELABELAN TOTAL SISI AJAIB SUPER PADA GRAF CORONA-LIKE UNICYCLIC Kurnawan *, Rolan Pane, Asl Srat Mahasswa Program Stud S Matematka Dosen Jurusan Matematka Fakultas Matematka dan Ilmu Pengetahuan Alam

Lebih terperinci

ALJABAR LINIER LANJUT

ALJABAR LINIER LANJUT ALABAR LINIER LANUT Ruang Bars dan Ruang Kolom suatu Matrks Msalkan A adalah matrks mnatas lapangan F. Bars pada matrks A merentang subruang F n dsebut ruang bars A, dnotaskan dengan rs(a) dan kolom pada

Lebih terperinci

BAB III FUNGSI MAYOR DAN MINOR. Pada bab ini akan dibahas konsep-konsep dasar dari fungsi mayor dan fungsi

BAB III FUNGSI MAYOR DAN MINOR. Pada bab ini akan dibahas konsep-konsep dasar dari fungsi mayor dan fungsi BAB III FUNGSI MAYOR DAN MINOR Pada bab n akan dbahas konsep-konsep dasar dar fungs mayor dan fungs mnor dar suatu fungs yang terdefns pada suatu nterval tertutup. Pendefnsan fungs mayor dan mnor tersebut

Lebih terperinci

MEREDUKSI SISTEM PERSAMAAN LINEAR FUZZY PENUH DENGAN BILANGAN FUZZY TRAPESIUM

MEREDUKSI SISTEM PERSAMAAN LINEAR FUZZY PENUH DENGAN BILANGAN FUZZY TRAPESIUM MEREDUKSI SISTEM PERSAMAAN LINEAR FUZZY PENUH DENGAN BILANGAN FUZZY TRAPESIUM Tut Susant, Mashad, Sukamto Mahasswa Program S Matematka Dosen Jurusan Matematka Fakultas Matematka dan Ilmu Pengetahuan Alam

Lebih terperinci

RANGKAIAN SERI. 1. Pendahuluan

RANGKAIAN SERI. 1. Pendahuluan . Pendahuluan ANGKAIAN SEI Dua elemen dkatakan terhubung ser jka : a. Kedua elemen hanya mempunya satu termnal bersama. b. Ttk bersama antara elemen tdak terhubung ke elemen yang lan. Pada Gambar resstor

Lebih terperinci

UJI PRIMALITAS. Sangadji *

UJI PRIMALITAS. Sangadji * UJI PRIMALITAS Sangadj * ABSTRAK UJI PRIMALITAS. Makalah n membahas dan membuktkan tga teorema untuk testng prmaltas, yatu teorema Lucas, teorema Lucas yang dsempurnakan dan teorema Pocklngton. D sampng

Lebih terperinci

Sifat-sifat Operasi Perkalian Modular pada Graf Fuzzy

Sifat-sifat Operasi Perkalian Modular pada Graf Fuzzy SEMINAR MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 07 Sfat-sfat Operas Perkalan Modular pada raf Fuzzy T - 3 Tryan, ahyo Baskoro, Nken Larasat 3, Ar Wardayan 4,, 3, 4 Unerstas Jenderal Soedrman transr@yahoo.com.au

Lebih terperinci

Pembayaran harapan yang berkaitan dengan strategi murni pemain P 2. Pembayaran Harapan bagi Pemain P1

Pembayaran harapan yang berkaitan dengan strategi murni pemain P 2. Pembayaran Harapan bagi Pemain P1 Lecture : Mxed Strategy: Graphcal Method A. Metode Campuran dengan Metode Grafk Metode grafk dapat dgunakan untuk menyelesakan kasus permanan dengan matrks pembayaran berukuran n atau n. B. Matrks berukuran

Lebih terperinci

Edisi Juni 2011 Volume V No. 1-2 ISSN TRAIL EULER MINIMAL DI DALAM GRAF BERARAH YANG TERBOBOTI. Bandung

Edisi Juni 2011 Volume V No. 1-2 ISSN TRAIL EULER MINIMAL DI DALAM GRAF BERARAH YANG TERBOBOTI. Bandung Eds Jun 211 Volume V No. 1-2 ISSN 1979-8911 RAIL EULER MINIMAL DI DALAM GRAF BERARAH YANG ERBOBOI St Julaeha 1, Murtnngrum 2, Rda Novrda 3, Endang Retno Nugroho 4 1 Dosen Jurusan Matematka, Fakultas Sans

Lebih terperinci

SEMI RING POLINOM ATAS ALJABAR MAX-PLUS

SEMI RING POLINOM ATAS ALJABAR MAX-PLUS JMP : Volume 4 Nomor 2, Desember 2012, hal. 289-297 SEMI RING POLINOM ATAS ALJABAR MAX-PLUS Suroto Prod Matematka, Jurusan MIPA, Fakultas Sans dan Teknk Unverstas Jenderal Soedrman e-mal : suroto_80@yahoo.com

Lebih terperinci

SISTEM LINEAR MAX-PLUS KABUR WAKTU INVARIANT AUTONOMOUS

SISTEM LINEAR MAX-PLUS KABUR WAKTU INVARIANT AUTONOMOUS SISTEM LINEAR MAX-PLUS KABUR WAKTU INVARIANT AUTONOMOUS A8 M. Andy Rudhto 1 1 Program Stud Penddkan Matematka FKIP Unverstas Sanata Dharma Kampus III USD Pangan Maguwoharjo Yogyakarta 1 e-mal: arudhto@yahoo.co.d

Lebih terperinci

SEARAH (DC) Rangkaian Arus Searah (DC) 7

SEARAH (DC) Rangkaian Arus Searah (DC) 7 ANGKAAN AUS SEAAH (DC). Arus Searah (DC) Pada rangkaan DC hanya melbatkan arus dan tegangan searah, yatu arus dan tegangan yang tdak berubah terhadap waktu. Elemen pada rangkaan DC melput: ) batera ) hambatan

Lebih terperinci

APLIKASI PERKONGRUENAN DALAM MENYELESAIKAN SISTEM PERSAMAAN LINEAR DUA PEUBAH. Yuni Yulida dan Muhammad Ahsar K

APLIKASI PERKONGRUENAN DALAM MENYELESAIKAN SISTEM PERSAMAAN LINEAR DUA PEUBAH. Yuni Yulida dan Muhammad Ahsar K Jurnal Matematka Murn dan Terapan Vol. 3 No. Desember 009: 4-6 APLIKASI PERKONGRUENAN DALAM MENYELESAIKAN SISTEM PERSAMAAN LINEAR DUA PEUBAH Yun Yulda dan Muhammad Ahsar K Program Stud Matematka Unverstas

Lebih terperinci

KONSEP DASAR PROBABILITAS

KONSEP DASAR PROBABILITAS KONSEP DASAR PROBABILITAS TI2131 TEORI PROBABILITAS MINGGU KE-3 & KE-4 1 Defns 1 Probabltas dar sebuah kejadan A adalah jumlah bobot dar tap ttk sampel yang termasuk dalam A. Selanjutnya: 0 < P(A) < 1,

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang dan Permasalahan

BAB I PENDAHULUAN Latar Belakang dan Permasalahan BAB I PENDAHULUAN 1.1. Latar Belakang dan Permasalahan Matematka dbag menjad beberapa kelompok bdang lmu, antara lan analss, aljabar, dan statstka. Ruang barsan merupakan salah satu bagan yang ada d bdang

Lebih terperinci

KAJIAN DAN ALGORITMA PELABELAN PSEUDO EDGE-MAGIC. memiliki derajat maksimum dan tidak ada titik yang terisolasi. Jika n i adalah

KAJIAN DAN ALGORITMA PELABELAN PSEUDO EDGE-MAGIC. memiliki derajat maksimum dan tidak ada titik yang terisolasi. Jika n i adalah BAB III KAJIAN DAN ALGORITMA PELABELAN PSEUDO EDGE-MAGIC III. Batas Bawah Magc Number pada Pelabelan Total Pseudo Edge-Magc Teorema 3.. Anggap G = (,E) adalah sebuah graf dengan n-ttk dan m-ss dan memlk

Lebih terperinci

BAB III PEMBAHASAN. Pada bab ini akan dibahas mengenai ring embedding dan faktorisasi. tunggal pada ring komutatif tanpa elemen kesatuan.

BAB III PEMBAHASAN. Pada bab ini akan dibahas mengenai ring embedding dan faktorisasi. tunggal pada ring komutatif tanpa elemen kesatuan. BAB III PEMBAHASAN Pada bab n akan dbahas mengena rng embeddng dan faktorsas tunggal pada rng komutatf tanpa elemen kesatuan. A. Rng Embeddng Defns 3.1 (Malk et al. 1997: 318 Suatu rng R dkatakan embedded

Lebih terperinci

JMP : Volume 5 Nomor 1, Juni 2013, hal SPEKTRUM PADA GRAF REGULER KUAT

JMP : Volume 5 Nomor 1, Juni 2013, hal SPEKTRUM PADA GRAF REGULER KUAT JMP : Volume 5 Nomor, Jun 03, hal. 3 - SPEKTRUM PD GRF REGULER KUT Rzk Mulyan, Tryan dan Nken Larasat Program Stud Matematka, Fakultas Sans dan Teknk Unerstas Jenderal Soedrman Emal : rzky90@gmal.com BSTRCT.

Lebih terperinci

permasalahan dalam graf yaitu permasalahan dekomposisi dan pelabelan. Lexicographic product dari G1

permasalahan dalam graf yaitu permasalahan dekomposisi dan pelabelan. Lexicographic product dari G1 DEOMPOSISI m, m -(ANTI) AJAIB DARI Hendy 1, St Fatmah 2 Fakultas Matematka dan Ilmu Pengetahuan Alam, Unverstas Pesantren Tngg Darul Ulum 1,2 omplek PP Darul Ulum Peterongan Jombang hendyhendy17@gmal.com

Lebih terperinci

Didownload dari ririez.blog.uns.ac.id BAB I PENDAHULUAN

Didownload dari ririez.blog.uns.ac.id BAB I PENDAHULUAN BAB I PENDAHULUAN Sebuah jarngan terdr dar sekelompok node yang dhubungkan oleh busur atau cabang. Suatu jens arus tertentu berkatan dengan setap busur. Notas standart untuk menggambarkan sebuah jarngan

Lebih terperinci

Bab 3. Teori Comonotonic. 3.1 Pengurutan Variabel Acak

Bab 3. Teori Comonotonic. 3.1 Pengurutan Variabel Acak Bab 3 Teor Comonotonc Pada bab n konsep teor comonotonc akan dpaparkan dar awal dan berakhr pada konsep teor n untuk jumlah dar peubah - peubah acak 1. Setelah tu untuk membantu pemahaman akan dberkan

Lebih terperinci

3 METODE HEURISTIK UNTUK VRPTW

3 METODE HEURISTIK UNTUK VRPTW 12 3 METODE HEURISTIK UNTUK VRPTW 3.1 Metode Heurstk Metode heurstk merupakan salah satu metode penentuan solus optmal dar permasalahan optmas kombnatoral. Berbeda dengan solus eksak yang menentukan nla

Lebih terperinci

BAB X RUANG HASIL KALI DALAM

BAB X RUANG HASIL KALI DALAM BAB X RUANG HASIL KALI DALAM 0. Hasl Kal Dalam Defns. Hasl kal dalam adalah fungs yang mengatkan setap pasangan vektor d ruang vektor V (msalkan pasangan u dan v, dnotaskan dengan u, v ) dengan blangan

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang. Di dalam matematika mulai dari SD, SMP, SMA, dan Perguruan Tinggi

BAB I PENDAHULUAN. 1.1 Latar Belakang. Di dalam matematika mulai dari SD, SMP, SMA, dan Perguruan Tinggi Daftar Is Daftar Is... Kata pengantar... BAB I...1 PENDAHULUAN...1 1.1 Latar Belakang...1 1.2 Rumusan Masalah...2 1.3 Tujuan...2 BAB II...3 TINJAUAN TEORITIS...3 2.1 Landasan Teor...4 BAB III...5 PEMBAHASAN...5

Lebih terperinci

ANALISIS DATA KATEGORIK (STK351)

ANALISIS DATA KATEGORIK (STK351) Suplemen Respons Pertemuan ANALISIS DATA KATEGORIK (STK351) 7 Departemen Statstka FMIPA IPB Pokok Bahasan Sub Pokok Bahasan Referens Waktu Korelas Perngkat (Rank Correlaton) Bag. 1 Koefsen Korelas Perngkat

Lebih terperinci

II. TEORI DASAR. Definisi 1. Transformasi Laplace didefinisikan sebagai

II. TEORI DASAR. Definisi 1. Transformasi Laplace didefinisikan sebagai II. TEORI DASAR.1 Transormas Laplace Ogata (1984) mengemukakan bahwa transormas Laplace adalah suatu metode operasonal ang dapat dgunakan untuk menelesakan persamaan derensal lnear. Dengan menggunakan

Lebih terperinci

BAB II DIMENSI PARTISI

BAB II DIMENSI PARTISI BAB II DIMENSI PARTISI. Defns dasar dan eteratannya dengan metrc dmenson Dalam pembahasan dmens parts, graf yang dbahas adalah graf terhubung sederhana dan tda meml arah. Sebelum mendefnsan graf yang dgunaan

Lebih terperinci

Pelabelan Total Sisi Ajaib Pada Subkelas Pohon

Pelabelan Total Sisi Ajaib Pada Subkelas Pohon Pelabelan Total Ss Ajab Pada Subkelas Pohon Hlda Rzky Nngtyas, Dr Daraj, SS, MT [] Jurusan Mateatka, Fakultas MIPA, Insttut Teknolog Sepuluh Nopeber (ITS Jl Aref Rahan Hak, Surabaya 60 E-al: daraj@ateatkatsacd

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No. 1, 33-40, April 2001, ISSN : KLASIFIKASI INTERAKSI GELOMBANG PERMUKAAN BERTIPE DUA SOLITON

JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No. 1, 33-40, April 2001, ISSN : KLASIFIKASI INTERAKSI GELOMBANG PERMUKAAN BERTIPE DUA SOLITON JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No., 33-40, Aprl 00, ISSN : 40-858 KLASIFIKASI INTERAKSI GELOMBANG PERMUKAAN BERTIPE DUA SOLITON Sutmn dan Agus Rusgyono Jurusan Matematka FMIPA UNDIP Abstrak Pada

Lebih terperinci

TRANSITIF KLOSUR DARI GABUNGAN DUA RELASI EKUIVALENSI PADA SUATU HIMPUNAN DENGAN STRUKTUR DATA DINAMIS

TRANSITIF KLOSUR DARI GABUNGAN DUA RELASI EKUIVALENSI PADA SUATU HIMPUNAN DENGAN STRUKTUR DATA DINAMIS TRANSITIF KLOSUR DARI PADA SUATU HIMPUNAN Sukmawat Nur Endah Program Stud Ilmu Komputer Jurusan Matematka FMIPA UNDIP Jl. Prof. H. Soedarto, S.H, Semarang 5275 Abstract. A relaton R on set A s an equvalence

Lebih terperinci

PENGGABUNGAN PADA SUPER EDGE-MAGIC PETERSEN GRAPH DENGAN VERTEX PADA SETIAP VERTEX YANG ADA. Ida Christiana 1,Chairul Imron 2 ABSTRAK

PENGGABUNGAN PADA SUPER EDGE-MAGIC PETERSEN GRAPH DENGAN VERTEX PADA SETIAP VERTEX YANG ADA. Ida Christiana 1,Chairul Imron 2 ABSTRAK PENGGABUNGAN PADA SUPER EDGE-MAGIC PETERSEN GRAPH DENGAN VERTEX PADA SETIAP VERTEX YANG ADA Ida Chrstana 1,Charul Imron ABSTRAK Pelabelan suatu grah adalah suatu emetaan dar hmunan elemen grah (vertex,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Fuzzy Set Pada tahun 1965, Zadeh memodfkas teor hmpunan dmana setap anggotanya memlk derajat keanggotaan yang bernla kontnu antara 0 sampa 1. Hmpunan n dsebut dengan hmpunaan

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 59-70, Agustus 2003, ISSN :

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 59-70, Agustus 2003, ISSN : JURNA MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 59-70, Agustus 2003, ISSN : 1410-8518 MASAAH RUTE TERPENDEK PADA JARINGAN JAAN MENGGUNAKAN AMPU AU-INTAS Stud Kasus: Rute Peralanan Ngesrep Smpang ma Eko Bud

Lebih terperinci

PELABELAN GRACEFUL DAN FELICITOUS PADA GRAF LINTASASN P n, UNTUK n BILANGAN ASLI SKRIPSI. Oleh: RIZAL ABADI NIM

PELABELAN GRACEFUL DAN FELICITOUS PADA GRAF LINTASASN P n, UNTUK n BILANGAN ASLI SKRIPSI. Oleh: RIZAL ABADI NIM PELABELAN GRACEFUL DAN FELICITOUS PADA GRAF LINTASASN P n, UNTUK n BILANGAN ASLI SKRIPSI Oleh: RIZAL ABADI NIM 050006 JURUSAN MATEMATIKA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI (UIN) MALANG

Lebih terperinci

PELABELAN CORDIAL DAN GRACEFUL PADA ARBITRARY SUPERSUBDIVISION GRAF PATH DAN STAR

PELABELAN CORDIAL DAN GRACEFUL PADA ARBITRARY SUPERSUBDIVISION GRAF PATH DAN STAR PELABELAN CORDIAL DAN GRACEFUL PADA ARBITRARY SUPERSUBDIVISION GRAF PATH DAN STAR Kornela Paskatra Cahayan, R. Her Soelstyo U 2, Solchn Zak 3,2,3 Program Stud Matematka FSM Unverstas Dponegoro Jl. Pro.

Lebih terperinci

SCHEMATICS 2009 National Programming Contest

SCHEMATICS 2009 National Programming Contest SCHEMATICS 2009 Natonal Programmng Contest No Nama Problem 1 Berhtung 2 Gelang Cantk 3 Jalan 4 Kubangan Lumpur 5 Ayam dan Bebek 6 Schematcs09 7 Pagar Labrn JURUSAN TEKNIK INFORMATIKA FAKULTAS TEKNOLOGI

Lebih terperinci

Bab III Analisis Rantai Markov

Bab III Analisis Rantai Markov Bab III Analss Ranta Markov Sstem Markov (atau proses Markov atau ranta Markov) merupakan suatu sstem dengan satu atau beberapa state atau keadaan, dan dapat berpndah dar satu state ke state yang lan pada

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Penjadwalan Baker (1974) mendefnskan penjadwalan sebaga proses pengalokasan sumber-sumber dalam jangka waktu tertentu untuk melakukan sejumlah pekerjaan. Menurut Morton dan

Lebih terperinci

Perepresentasian Pohon Berakar dengan Model Balon

Perepresentasian Pohon Berakar dengan Model Balon Perepresentasan Pohon Berakar dengan Model Balon Danang Aref Setyawan Jurusan Teknk Informatka Insttut Teknolog Bandung, emal: f5090@students.f.tb.ac.d Abstract Terdapat beberapa metode yang dapat dgunakan

Lebih terperinci

BAB 3 PRINSIP INKLUSI EKSKLUSI

BAB 3 PRINSIP INKLUSI EKSKLUSI BAB 3 PRINSIP INKLUSI EKSKLUSI. Tentukan banyak blangan bulat dar sampa dengan 0.000 yang tdak habs dbag 4, 6, 7 atau 0. Jawab: Msal: S = {, 2, 3, 4, 5,..., 0.000} a = {sfat habs dbag 4} a 2 = {sfat habs

Lebih terperinci

ANALISIS BENTUK HUBUNGAN

ANALISIS BENTUK HUBUNGAN ANALISIS BENTUK HUBUNGAN Analss Regres dan Korelas Analss regres dgunakan untuk mempelajar dan mengukur hubungan statstk yang terjad antara dua varbel atau lebh varabel. Varabel tersebut adalah varabel

Lebih terperinci

Tinjauan Algoritma Genetika Pada Permasalahan Himpunan Hitting Minimal

Tinjauan Algoritma Genetika Pada Permasalahan Himpunan Hitting Minimal 157 Vol. 13, No. 2, 157-161, Januar 2017 Tnjauan Algortma Genetka Pada Permasalahan Hmpunan Httng Mnmal Jusmawat Massalesse, Bud Nurwahyu Abstrak Beberapa persoalan menark dapat dformulaskan sebaga permasalahan

Lebih terperinci

MINGGU KE- V: UKURAN PENYEBARAN

MINGGU KE- V: UKURAN PENYEBARAN MINGGU KE- V: UKURAN PENYEBARAN Tujuan Instruksonal Umum :. Mahasswa mampu memaham apa yang dmaksud dengan ukuran penyebaran. Mahasswa mampu memaham berbaga pengukuran untuk mencar nla ukuran penyebaran

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 2 LNDSN TEORI 2. Teor engamblan Keputusan Menurut Supranto 99 keputusan adalah hasl pemecahan masalah yang dhadapnya dengan tegas. Suatu keputusan merupakan jawaban yang past terhadap suatu pertanyaan.

Lebih terperinci

RANCANGAN ACAK KELOMPOK TAK LENGKAP (Incomplete Block Design) Dr.Ir. I Made Sumertajaya, M.Si Departemen Statistika-FMIPA IPB 2007

RANCANGAN ACAK KELOMPOK TAK LENGKAP (Incomplete Block Design) Dr.Ir. I Made Sumertajaya, M.Si Departemen Statistika-FMIPA IPB 2007 RANCANGAN ACAK KELOMPOK TAK LENGKAP (Incomplete Block Desgn) Dr.Ir. I Made Sumertajaya, M.S Departemen Statstka-FMIPA IPB 007 Revew Rancangan Acak Kelompok Kta ngn membandngkan t perlakuan Pengelompokan

Lebih terperinci

BAB 2 LANDASAN TEORI. estimasi, uji keberartian regresi, analisa korelasi dan uji koefisien regresi.

BAB 2 LANDASAN TEORI. estimasi, uji keberartian regresi, analisa korelasi dan uji koefisien regresi. BAB LANDASAN TEORI Pada bab n akan durakan beberapa metode yang dgunakan dalam penyelesaan tugas akhr n. Selan tu penuls juga mengurakan tentang pengertan regres, analss regres berganda, membentuk persamaan

Lebih terperinci

Teori Himpunan. Modul 1 PENDAHULUAN

Teori Himpunan. Modul 1 PENDAHULUAN Modul 1 Teor Hmpunan Dr. Subanar K PENDHULUN arena banyak karakterstk dar masalah probabltas dapat dnyatakan secara formal dan dmodelkan secara rngkas dengan menggunakan notas hmpunan elementer, maka pertama-tama

Lebih terperinci

BAB IV PEMBAHASAN MODEL

BAB IV PEMBAHASAN MODEL BAB IV PEMBAHASAN MODEL Pada bab IV n akan dlakukan pembuatan model dengan melakukan analss perhtungan untuk permasalahan proses pengadaan model persedaan mult tem dengan baya produks cekung dan jont setup

Lebih terperinci

IV. UKURAN SIMPANGAN, DISPERSI & VARIASI

IV. UKURAN SIMPANGAN, DISPERSI & VARIASI IV. UKURAN SIMPANGAN, DISPERSI & VARIASI Pendahuluan o Ukuran dspers atau ukuran varas, yang menggambarkan derajat bagamana berpencarnya data kuanttatf, dntaranya: rentang, rentang antar kuartl, smpangan

Lebih terperinci

LAMPIRAN A PENURUNAN PERSAMAAN NAVIER-STOKES

LAMPIRAN A PENURUNAN PERSAMAAN NAVIER-STOKES LAMPIRAN A PENURUNAN PERSAMAAN NAVIER-STOKES Hubungan n akan dawal dar gaya yang beraks pada massa fluda. Gaya-gaya n dapat dbag ke dalam gaya bod, gaya permukaan, dan gaya nersa. a. Gaya Bod Gaya bod

Lebih terperinci

BAB.3 METODOLOGI PENELITIN 3.1 Lokasi dan Waktu Penelitian Penelitian ini di laksanakan di Sekolah Menengah Pertama (SMP) N. 1 Gorontalo pada kelas

BAB.3 METODOLOGI PENELITIN 3.1 Lokasi dan Waktu Penelitian Penelitian ini di laksanakan di Sekolah Menengah Pertama (SMP) N. 1 Gorontalo pada kelas 9 BAB.3 METODOLOGI PENELITIN 3. Lokas dan Waktu Peneltan Peneltan n d laksanakan d Sekolah Menengah Pertama (SMP) N. Gorontalo pada kelas VIII. Waktu peneltan dlaksanakan pada semester ganjl, tahun ajaran

Lebih terperinci

BAB IX. STATISTIKA. CONTOH : HASIL ULANGAN MATEMATIKA 5 SISWA SBB: PENGERTIAN STATISTIKA DAN STATISTIK:

BAB IX. STATISTIKA. CONTOH : HASIL ULANGAN MATEMATIKA 5 SISWA SBB: PENGERTIAN STATISTIKA DAN STATISTIK: BAB IX. STATISTIKA. CONTOH : HASIL ULANGAN MATEMATIKA 5 SISWA SBB: PENGERTIAN STATISTIKA DAN STATISTIK: BAB IX. STATISTIKA Contoh : hasl ulangan Matematka 5 sswa sbb: 6 8 7 6 9 Pengertan Statstka dan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengertan Regres Regres pertama kal dpergunakan sebaga konsep statstka oleh Sr Francs Galton (1822 1911). Belau memperkenalkan model peramalan, penaksran, atau pendugaan, yang

Lebih terperinci

MENCERMATI BERBAGAI JENIS PERMASALAHAN DALAM PROGRAM LINIER KABUR. Mohammad Asikin Jurusan Matematika FMIPA UNNES. Abstrak

MENCERMATI BERBAGAI JENIS PERMASALAHAN DALAM PROGRAM LINIER KABUR. Mohammad Asikin Jurusan Matematika FMIPA UNNES. Abstrak JURAL MATEMATIKA DA KOMUTER Vol. 6. o., 86-96, Agustus 3, ISS : 4-858 MECERMATI BERBAGAI JEIS ERMASALAHA DALAM ROGRAM LIIER KABUR Mohammad Askn Jurusan Matematka FMIA UES Abstrak Konsep baru tentang hmpunan

Lebih terperinci

TINJAUAN PUSTAKA. Node. Edge. Gambar 1 Directed Acyclic Graph

TINJAUAN PUSTAKA. Node. Edge. Gambar 1 Directed Acyclic Graph TINJAUAN PUSTAKA Bayesan Networks BNs dapat memberkan nformas yang sederhana dan padat mengena nformas peluang. Berdasarkan komponennya BNs terdr dar Bayesan Structure (Bs) dan Bayesan Parameter (Bp) (Cooper

Lebih terperinci

PELABELAN HARMONIS GANJIL PADA GABUNGAN GRAF ULAR DAN GRAF ULAR BERLIPAT

PELABELAN HARMONIS GANJIL PADA GABUNGAN GRAF ULAR DAN GRAF ULAR BERLIPAT PROSIDING ISSN: 50-656 PELABELAN HARMONIS GANJIL PADA GABUNGAN GRAF ULAR DAN GRAF ULAR BERLIPAT Fery Frmansah Prod Penddkan Matematka FKIP Unverstas Wdya Dharma Klaten, 5738 Emal :eryrmansah@unwdhaacd

Lebih terperinci

BAB 2 LANDASAN TEORI. Universitas Sumatera Utara

BAB 2 LANDASAN TEORI. Universitas Sumatera Utara BAB 2 LANDASAN TEORI 2.1 Pengertan Analsa Regres Dalam kehdupan sehar-har, serng kta jumpa hubungan antara satu varabel terhadap satu atau lebh varabel yang lan. Sebaga contoh, besarnya pendapatan seseorang

Lebih terperinci

GELANGGANG HEREDITER

GELANGGANG HEREDITER GELANGGANG HEREDITER TEDUH WULANDARI Departemen Matematka, Fakultas Matematka dan Imu Penetahuan Alam, Insttut Pertanan Boor Jl. Raya Pajajaran, Kampus IPB Baranansan, Boor, Indonesa Abstract. Tulsan n

Lebih terperinci

Contoh 5.1 Tentukan besar arus i pada rangkaian berikut menggunakan teorema superposisi.

Contoh 5.1 Tentukan besar arus i pada rangkaian berikut menggunakan teorema superposisi. BAB V TEOEMA-TEOEMA AGKAIA 5. Teorema Superposs Teorema superposs bagus dgunakan untuk menyelesakan permasalahan-permasalahan rangkaan yang mempunya lebh dar satu sumber tegangan atau sumber arus. Konsepnya

Lebih terperinci

DISTRIBUSI HASIL PENGUKURAN DAN NILAI RATA-RATA

DISTRIBUSI HASIL PENGUKURAN DAN NILAI RATA-RATA DISTRIBUSI HASIL PENGUKURAN DAN NILAI RATA-RATA Dstrbus Bnomal Msalkan dalam melakukan percobaan Bernoull (Bernoull trals) berulang-ulang sebanyak n kal, dengan kebolehjadan sukses p pada tap percobaan,

Lebih terperinci

P n e j n a j d a u d a u l a a l n a n O pt p im i a m l a l P e P m e b m a b n a g n k g i k t Oleh Z r u iman

P n e j n a j d a u d a u l a a l n a n O pt p im i a m l a l P e P m e b m a b n a g n k g i k t Oleh Z r u iman OTIMISASI enjadualan Optmal embangkt Oleh : Zurman Anthony, ST. MT Optmas pengrman daya lstrk Dmaksudkan untuk memperkecl jumlah keseluruhan baya operas dengan memperhtungkan rug-rug daya nyata pada saluran

Lebih terperinci

(1.1) maka matriks pembayaran tersebut dikatakan mempunyai titik pelana pada (r,s) dan elemen a

(1.1) maka matriks pembayaran tersebut dikatakan mempunyai titik pelana pada (r,s) dan elemen a Lecture 2: Pure Strategy A. Strategy Optmum Hal pokok yang sesungguhnya menad nt dar teor permanan adalah menentukan solus optmum bag kedua phak yang salng bersang tersebut yang bersesuaan dengan strateg

Lebih terperinci

Catatan Kuliah 12 Memahami dan Menganalisa Optimisasi dengan Kendala Ketidaksamaan

Catatan Kuliah 12 Memahami dan Menganalisa Optimisasi dengan Kendala Ketidaksamaan Catatan Kulah Memaham dan Menganalsa Optmsas dengan Kendala Ketdaksamaan. Non Lnear Programmng Msalkan dhadapkan pada lustras berkut n : () Ma U = U ( ) :,,..., n st p B.: ; =,,..., n () Mn : C = pk K

Lebih terperinci

Bab 3 Analisis Ralat. x2 x2 x. y=x 1 + x 2 (3.1) 3.1. Menaksir Ralat

Bab 3 Analisis Ralat. x2 x2 x. y=x 1 + x 2 (3.1) 3.1. Menaksir Ralat Mater Kulah Ekspermen Fska Oleh : Drs. Ishaft, M.S. Program Stud Penddkan Fska Unverstas Ahmad Dahlan, 07 Bab 3 Analss Ralat 3.. Menaksr Ralat Msalna suatu besaran dhtung dar besaran terukur,,..., n. Jka

Lebih terperinci

BAB 3 PEMBAHASAN. 3.1 Prosedur Penyelesaian Masalah Program Linier Parametrik Prosedur Penyelesaian untuk perubahan kontinu parameter c

BAB 3 PEMBAHASAN. 3.1 Prosedur Penyelesaian Masalah Program Linier Parametrik Prosedur Penyelesaian untuk perubahan kontinu parameter c 6 A PEMAHASA Pada bab sebelumnya telah dbahas teor-teor yang akan dgunakan untuk menyelesakan masalah program lner parametrk. Pada bab n akan dperlhatkan suatu prosedur yang lengkap untuk menyelesakan

Lebih terperinci

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. Universitas Sumatera Utara BAB 1 ENDAHULUAN 1.1 Latar Belakang Secara umum dapat dkatakan bahwa mengambl atau membuat keputusan berart memlh satu dantara sekan banyak alternatf. erumusan berbaga alternatf sesua dengan yang sedang

Lebih terperinci

I PENDAHULUAN II LANDASAN TEORI

I PENDAHULUAN II LANDASAN TEORI I PENDAHULUAN Latar elakang Sekolah merupakan salah satu bagan pentng dalam penddkan Oleh karena tu sekolah harus memperhatkan bagan-bagan yang ada d dalamnya Salah satu bagan pentng yang tdak dapat dpsahkan

Lebih terperinci

BAB III PENGAMBILAN KEPUTUSAN DISPLACED IDEAL. Inti dari pengambilan keputusan adalah memilih alternatif, tentunya harus

BAB III PENGAMBILAN KEPUTUSAN DISPLACED IDEAL. Inti dari pengambilan keputusan adalah memilih alternatif, tentunya harus 40 BAB III PENGAMBILAN KEPUTUSAN DISPLACED IDEAL 3.1. Pengamban Keputusan Int dar pengamban keputusan adaah memh aternatf, tentunya harus aternatf yang terbak (the best aternatve). Tujuan dar anass keputusan

Lebih terperinci

BAB VB PERSEPTRON & CONTOH

BAB VB PERSEPTRON & CONTOH BAB VB PERSEPTRON & CONTOH Model JST perseptron dtemukan oleh Rosenblatt (1962) dan Mnsky Papert (1969). Model n merupakan model yang memlk aplkas dan pelathan yang lebh bak pada era tersebut. 5B.1 Arstektur

Lebih terperinci

BAB II DASAR TEORI. 2.1 Definisi Game Theory

BAB II DASAR TEORI. 2.1 Definisi Game Theory BAB II DASAR TEORI Perkembangan zaman telah membuat hubungan manusa semakn kompleks. Interaks antar kelompok-kelompok yang mempunya kepentngan berbeda kemudan melahrkan konflk untuk mempertahankan kepentngan

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No. 1, 23-32, April 2001, ISSN :

JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No. 1, 23-32, April 2001, ISSN : JRNAL MATEMATIKA DAN KOMPTER Vol 4 No 1, 3-3, Aprl 1, ISSN : 141-51 KAJIAN DISKRETISASI DENGAN METODE GALERKIN SEMI DISKRET TERHADAP EFISIENSI SOLSI MODEL RAMBATAN PANAS TANPA SK KONVEKSI Suhartono dan

Lebih terperinci

BAB III METODE PENELITIAN. penelitian dilakukan secara purposive atau sengaja. Pemilihan lokasi penelitian

BAB III METODE PENELITIAN. penelitian dilakukan secara purposive atau sengaja. Pemilihan lokasi penelitian BAB III METODE PENELITIAN 3.1 Lokas Peneltan Peneltan dlaksanakan d Desa Sempalwadak, Kecamatan Bululawang, Kabupaten Malang pada bulan Februar hngga Me 2017. Pemlhan lokas peneltan dlakukan secara purposve

Lebih terperinci

BAB II TINJAUAN PUSTAKA. pada suatu graf sebagai landasan teori pada penelitian ini.

BAB II TINJAUAN PUSTAKA. pada suatu graf sebagai landasan teori pada penelitian ini. BAB II TINJAUAN PUSTAKA Pada bagan n akan dbrkan konsp dasar graf dan blangan kromatk lokas pada suatu graf sbaga landasan tor pada pnltan n 21 Konsp Dasar Graf Bbrapa konsp dasar yang dgunakan dalam pnltan

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN. Latar Belakang Matematka sebaga bahasa smbol yang bersfat unversal memegang peranan pentng dalam perkembangan suatu teknolog. Matematka sangat erat hubungannya dengan kehdupan nyata.

Lebih terperinci

EKSISTENSI DAN KETUNGGALAN SOLUSI HARGA OPSI EROPA

EKSISTENSI DAN KETUNGGALAN SOLUSI HARGA OPSI EROPA Prosdng Semnar Nasonal Peneltan, Penddkan dan Penerapan MIPA Fakultas MIPA, Unverstas Neger Yogyakarta, 6 Me 009 EKSISTENSI DAN KETUNGGALAN SOLUSI HARGA OPSI EROPA SUTRIMA zutrma@yahoo.co.d Jurusan Matematka

Lebih terperinci

UKURAN GEJALA PUSAT &

UKURAN GEJALA PUSAT & UKURAN GEJALA PUSAT & UKURAN LETAK UKURAN GEJALA PUSAT & LETAK Untuk mendapatkan gambaran yang jelas mengena suatu populas atau sampel Ukuran yang merupakan wakl kumpulan data mengena populas atau sampel

Lebih terperinci

BAB IV PEMBAHASAN HASIL PENELITIAN

BAB IV PEMBAHASAN HASIL PENELITIAN BAB IV PEMBAHASAN HASIL PENELITIAN A. Hasl Peneltan Pada peneltan yang telah dlakukan penelt selama 3 mnggu, maka hasl belajar matematka pada mater pokok pecahan d kelas V MI I anatussbyan Mangkang Kulon

Lebih terperinci

V = adalah himpunan hingga, dan misalkan

V = adalah himpunan hingga, dan misalkan BAB III ALJABAR HIPERGRAF 3. Hpergraf Defns Msalkan { v, v2,..., vn} V = adalah hpunan hngga, dan salkan ε = {, I} adalah koleks dar hpunan bagan dar V. Koleks ε enjad E suatu hpergraf pada V jka hpergraf.

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 ENDAHULUAN 1.1 Latar Belakang Manusa dlahrkan ke duna dengan ms menjalankan kehdupannya sesua dengan kodrat Illah yakn tumbuh dan berkembang. Untuk tumbuh dan berkembang, berart setap nsan harus

Lebih terperinci

2.1 Sistem Makroskopik dan Sistem Mikroskopik Fisika statistik berangkat dari pengamatan sebuah sistem mikroskopik, yakni sistem yang sangat kecil

2.1 Sistem Makroskopik dan Sistem Mikroskopik Fisika statistik berangkat dari pengamatan sebuah sistem mikroskopik, yakni sistem yang sangat kecil .1 Sstem Makroskopk dan Sstem Mkroskopk Fska statstk berangkat dar pengamatan sebuah sstem mkroskopk, yakn sstem yang sangat kecl (ukurannya sangat kecl ukuran Angstrom, tdak dapat dukur secara langsung)

Lebih terperinci

MODEL OPTIMAL SISTEM TRANSPORTASI ANGKUTAN KOTA

MODEL OPTIMAL SISTEM TRANSPORTASI ANGKUTAN KOTA ODEL OPTIAL SISTE TRANSPORTASI ANGKUTAN KOTA PRAPTO TRI SUPRIYO Departemen atematka Fakultas atematka dan Ilmu Pengetahuan Alam Insttut Pertanan Bogor Jl erant, Kampus IPB Darmaga, Bogor 16680 Indonesa

Lebih terperinci

Bab 1 PENDAHULUAN Latar Belakang

Bab 1 PENDAHULUAN Latar Belakang 11 Bab 1 PENDAHULUAN 1.1. Latar Belakang Perbankan adalah ndustr yang syarat dengan rsko. Mula dar pengumpulan dana sebaga sumber labltas, hngga penyaluran dana pada aktva produktf. Berbaga kegatan jasa

Lebih terperinci

P(A S) = P(A S) = P(B A) = dengan P(A) > 0.

P(A S) = P(A S) = P(B A) = dengan P(A) > 0. 0 3.5. PELUANG BERSYARAT Jka kta menghtung peluang sebuah pestwa, maka penghtungannya selalu ddasakan pada uang sampel ekspemen. Apabla A adalah sebuah pestwa, maka penghtungan peluang da pestwa A selalu

Lebih terperinci

Apabila dua variabel X dan Y mempunyai hubungan, maka nilai variabel X yang sudah diketahui dapat dipergunakan untuk mempekirakan / menaksir Y.

Apabila dua variabel X dan Y mempunyai hubungan, maka nilai variabel X yang sudah diketahui dapat dipergunakan untuk mempekirakan / menaksir Y. ANALISIS KORELASI (ANALISIS HUBUNGAN) Korelas Hubungan antar kejadan (varabel) yang satu dengan kejadan (varabel) lannya (dua varabel atau lebh), yang dtemukan oleh Karl Pearson pada awal 1900 Apabla dua

Lebih terperinci

Petunjuk Praktikum Fisika Dasar I. (Tumbukan Dalam Satu Dimensi)

Petunjuk Praktikum Fisika Dasar I. (Tumbukan Dalam Satu Dimensi) Petunjuk Praktkum Fska Dasar I (Tumbukan Dalam Satu Dmens) Dajukan Untuk Memenuh Tugas Tersruktur Mata ulah Ekspermen Fska Dasar 1 Jurusan Penddkan Fska Oleh : Muhamad Ihsanudn (0602425) JURUSAN PENDIDIAN

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Untuk menjawab permasalahan yaitu tentang peranan pelatihan yang dapat

BAB III METODOLOGI PENELITIAN. Untuk menjawab permasalahan yaitu tentang peranan pelatihan yang dapat BAB III METODOLOGI PENELITIAN 3.1 Metode Peneltan Untuk menjawab permasalahan yatu tentang peranan pelathan yang dapat menngkatkan knerja karyawan, dgunakan metode analss eksplanatf kuanttatf. Pengertan

Lebih terperinci

BAB VIB METODE BELAJAR Delta rule, ADALINE (WIDROW- HOFF), MADALINE

BAB VIB METODE BELAJAR Delta rule, ADALINE (WIDROW- HOFF), MADALINE BAB VIB METODE BELAJAR Delta rule, ADALINE (WIDROW- HOFF), MADALINE 6B.1 Pelathan ADALINE Model ADALINE (Adaptve Lnear Neuron) dtemukan oleh Wdrow & Hoff (1960) Arstekturnya mrp dengan perseptron Perbedaan

Lebih terperinci

BAB 1 PENDAHULUAN. Pertumbuhan dan kestabilan ekonomi, adalah dua syarat penting bagi kemakmuran

BAB 1 PENDAHULUAN. Pertumbuhan dan kestabilan ekonomi, adalah dua syarat penting bagi kemakmuran BAB 1 PENDAHULUAN 1.1. Latar Belakang Pertumbuhan dan kestablan ekonom, adalah dua syarat pentng bag kemakmuran dan kesejahteraan suatu bangsa. Dengan pertumbuhan yang cukup, negara dapat melanjutkan pembangunan

Lebih terperinci

Ringkasan Statistika Kelas XI SMA Tarakanita 1 Jakarta BAB I STATISTIKA

Ringkasan Statistika Kelas XI SMA Tarakanita 1 Jakarta BAB I STATISTIKA BAB I STATISTIKA 1. PENGENALAN STATISTIKA A. PENGERTIAN DASAR STATISTIKA 1. Statstka dan Statstk Statstka adalah lmu tentang pengolahan dan analss suatu data hngga penarkan kesmpulan dar data tu. Statstk

Lebih terperinci

III. METODE PENELITIAN. Metode dalam penelitian ini adalah metode eksperimen. Penggunaan metode eksperimen ini

III. METODE PENELITIAN. Metode dalam penelitian ini adalah metode eksperimen. Penggunaan metode eksperimen ini III. METODE PENELITIAN A. Metode Peneltan Metode dalam peneltan n adalah metode ekspermen. Penggunaan metode ekspermen n bertujuan untuk mengetahu apakah suatu metode, prosedur, sstem, proses, alat, bahan

Lebih terperinci

Penyelesaian Masalah Transshipmen Dengan Metoda Primal-Dual Wawan Laksito YS 2)

Penyelesaian Masalah Transshipmen Dengan Metoda Primal-Dual Wawan Laksito YS 2) ISSN : 69 7 Penyelesaan Masalah Transshpmen Dengan Metoda Prmal-Dual Wawan Laksto YS ) Abstrak Masalah Pemndahan Muatan adalah masalah transportas yang melbatkan sambungan yang harus dlewat. Obektnya adalah

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang I ENDHULUN. Latar elakang Mengambl keputusan secara aktf memberkan suatu tngkat pengendalan atas kehdupan spengambl keputusan. lhan-plhan yang dambl sebenarnya membantu dalam penentuan masa depan. Namun

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 5. No. 3, , Desember 2002, ISSN :

JURNAL MATEMATIKA DAN KOMPUTER Vol. 5. No. 3, , Desember 2002, ISSN : JURNAL MATEMATIKA AN KOMPUTER Vol. 5. No. 3, 161-167, esember 00, ISSN : 1410-8518 PENGARUH SUATU ATA OBSERVASI ALAM MENGESTIMASI PARAMETER MOEL REGRESI Hern Utam, Rur I, dan Abdurakhman Jurusan Matematka

Lebih terperinci