CAL ( ) ( ) E r. Var rp i M im

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "CAL ( ) ( ) E r. Var rp i M im"

Transkripsi

1 LAIRAN

2 3 Lampra Bukt ersamaa ( Gambar: Kurva Froter da CAL E ( r CAL E ( r ( E r r roter r ( E r r Kemrga gars CAL adalah, merupaka market prce o rsk (rsko harga pasar da dsebut raso mbal hasl terhadap varabltas. salka mbal hasl yag dharapka pada portoolo E ( r, a adalah bobot dar vestor. Dapat dgambarka dalam suatu prospek sederhaa sebaga berkut: E ( r ( a ( ( a ( E r E r + E r. Ragam portoolo ddapat sebaga berkut: rp w'vw a rp ( a a a ( a ( a a ( a a + + a a + a( a + a a + a ( ( ( ( a a a a + + dega w vektor bobot, w' vektor traspose dar w, V matrks ragam-koragam. tadar devas a ( a a( a + +. Var rp etap vestas aka trade o mbal hasl da stadar devasya merupaka perubaha mbal hasl terhadap perubaha stadar devas sebaga berkut: de ( rp E ( rp/ a d / a r ( r a ( E r a E ( r E r E ( r E( r a rp ( a + ( a + a ( a a a + ( a ( + 4a (

3 4 ( Kemuda de r E r d / a a a + a ( ( a + a + a a ( ( / a r r E( r E( r ( ( ( + a a a + + a a a a.. Karea setap vestor memegag portoolo yag sama yatu portoolo pasar (pada ttk ekulbrum maka a 0. de ( r E ( r E( r. d r a 0 + Kemrga CAL sama dega perubaha mbal hasl yag dharapka terhadap perubaha stadar devas maka dperoleh E( r r E ( r E( r + ( r ( E r ( E r r ( E( r r + ( ( ( (( ( ( E r r + E r r E r r ( ( ( (( ( ( E r r + E r r E r r ( E ( r r + ( E( r r ( E( r r E( r r ( ( E r r E r r ( ( ( E r r + E r r ( ( ( dega β adalah rsko sstemats. ehgga model CA klask adalah ( ( β ( E r r + E r r. terbukt

4 5 Lampra Bukt ersamaa ( da (9 salka W adalah kekayaa awal tahu oleh dvdu ke-. Kemuda semua kekayaa dvestaska dalam uag pada salah satu sekurtas ke-. salka adalah bayakya vestas yag dlakuka pada salah satu sekurtas ke- oleh dvdu ke-. Kekayaa awal tahu ddeska sebaga berkut W. (L.7 Kekayaa akhr tahuya adalah W % R. (L.8 R + r, r merupaka la mbal hasl sekurtas ke-. Aggap bahwa setap dvdu g E U W % dega kedala W. D maa U adalah ugs utltas memaksmumka ( ( yag terderesal da kotu pada ugs kekayaa oleh dvdu ke-. Ekspas deret Taylor U ( W % d sektar E ( W % sebaga berkut ( U ( ( E W U ( W ( W E( W. (L.9 0! Kemuda la harapa dar ersamaa (L.8 adalah ( U ( ( E W EU ( ( W E W E( W (L.30 0! ( dmaa U adalah turua ke- dar U yag devaluas pada E ( W. Dar ersamaa (L.30 dmsalka mome pusat ke- dar peubah acak W adalah µ E W E ( W. (L.3 Kemuda dega membetuk Lagrage, masg-masg dvdu memaksmumka. E U ( W dega kedala W. ehgga maksmumka EU ( ( W + L( W. (L.3 0 ubsttus ersamaa (L.30 da ersamaa (L.33 ke ersamaa (L.3 sehgga ( U ( E( W µ + L ( W. (L.33! 0 0 Utuk peyederhaaa dmsalka saa da turuka ersamaa (L.33 terhadap, maka dperoleh ( ( U U µ + µ L 0 0!!. (L.34 Dega, kekayaa awal tahuya mead W (L.35 da kekayaa akhr tahuya W R. (L.36 Dmsalka W E( W. (L.37 ubsttus ersamaa (L.36 ke ersamaa (L.37 dperoleh W E( W E( R E( R. (L.38

5 6 Turuka ersamaa (L.38 terhadap W E ( R. (L.39 Kemuda, lhat ersamaa (L.34 da ersamaa (L.39 maka dperoleh ( ( + ( + U U W U E( R!.!! (L.40 Lhat ersamaa (L.3 da ersamaa (L.34 dperoleh ( µ E W E ( W E R E R ( E R E R E W W R E ( R E W W ( R E ( R. (L.4 ubttuska ersamaa (L.40 da ersamaa (L.4 ke ersamaa (L.4 dperoleh ( ( U U µ + µ L 0!! ( + ( U U E( R µ + E ( R E( R W W L. 0!! (L.4 ( ada ersamaa (L.4, ekspas deret Taylor utuk U d sektar W sebaga berkut ( + U µ. (L.43 0! ubsttus ersamaa (L.43 ke ersamaa (L.4 dperoleh ( ( U E ( R U + E ( R E( R W W L! ( ( U E ( R U + E ( R E( R W W L. (L.44 (! Lhat pada ersamaa (L.3 dega deks maka µ EW EW (. (L.45 Jka 0 µ 0 E W E W da ka µ E W E W 0 E( (L.46 E W E W E W E E W E W E W 0. (L.47

6 7 elautya, turuka ersamaa (L.46 da ersamaa (L.47 terhadap ( µ 0 ( µ 0. (L.48 ersamaa (L.48 megakbatka,3, 4,...,. Kemuda kuragka sekurtas ke- dega sekurtas ke-k pada ersamaa (L.44 dega L0, sehgga dperoleh ( ( U E( R Rk U + E ( R Rk E( R Rk W W 0 (! ( U E ( R Rk E( R Rk W W E( R Rk ( U (! ( U E ( R Rk ( E( R E( Rk W W E( R E( Rk ( U (! ada ersamaa (L.49, msalka θ U U ( ( (!. (L.49 (L.50 ubsttus ersamaa (L.50 ke ersamaa (L.49 E( R E( Rk + θe ( R Rk ( E( R E( Rk W W. (L.5 Aggap ada sekurtas yag bebas rsko. salka R + r. Kemuda substus R ke R k pada ersamaa (L.5 dperoleh E( R R + θe ( R R ( E( R R W W R + θe ( R R E( R + R W W R + θe ( R E( R W W. (L.5 salka adalah bayakya vestas yag telah dtaamka pada sekurtas bebas rsko. Bayakya vestas yag telah dtaamka pada portoolo dar sekurtas-sekurtas bersko adalah W (L.53 Rp + rp. (L.54 r p adalah la mbal hasl pada portoolo dar sekurtas bersko. ubsttus ersamaa (L.35 da (L.53 ke ersamaa (L.36 meghaslka W% R W% W R W% ( + R W R + R. (L.55 p

7 8 Nla harapa dar ersamaa (L.55 E W W E( Rp + R. (L.56 ubsttus ersamaa (L.55 da ersamaa (L.56 ke ersamaa (L.5, maka dperoleh E( R R + θe ( R E( R W W R + θ E R E R R + R E R R p p ( ( ( ( { } ( ( ( ( { } ( ( ( ( { } R + θ E R E R R E R p p R + θ E R E R R E R. (L.57 p p salka R R (L.58 Kemuda substtus ersamaa (L.58 ke ersamaa (L.57 sehgga dperoleh {( ( ( ( } + θ ER ( R E R E R R E R. (L.59 Kemuda, ersamaa (L.59 dbuat sedemka sehgga ( ( {( ( ( ( } E( R E( R + θ ER ( R E R E R salka, pada ersamaa (L.60 ( ( E R E R R E R. (L.60 b( θ E R E R (L.6 da v {( ( ( ( } E( R E( R E R E R R E R. (L.6 Utuk lebh memudahka, substtus ersamaa (L.6 da (L.6 ke ersamaa (L.60 mead model CA -mome sebaga berkut ( ( E R R + b v (L.63 Berdasarka ersamaa (L.63 maka utuk CA 3-mome dega,3 dperoleh E R R + b v + b v. (L.64 ( 3 salka v β. (L.65 v3 γ. (L.66 ubsttus ersamaa (L.65 da (L.66 ke ersamaa (L.64 sehgga E R R + b β + b γ. (L.67 ( Utuk koese b da b dperoleh sebaga berkut salka R + r, r adalah la mbal hasl pada keseluruha portoolo yag dmlk oleh suatu dvdu. salka R stadar devas dar la mbal hasl pada keseluruha portoolo yag dmlk oleh suatu dvdu, da τ R kemrga dar la mbal hasl pada keseluruha portoolo yag dmlk oleh suatu dvdu. salka β la beta dar keseluruha portoolo yag dmlk oleh suatu dvdu, da

8 9 γ la gamma dar keseluruha portoolo yag dmlk oleh suatu dvdu. Berdasarka pada rumus CA -mome, maka β R R. (L.68 Berdasarka sat-sat koragam da coskewess yatu β β maka β R R β R R R β (L.69 R da γτ R τ R. (L.70 Berdasarka sat-sat koragam da coskewess yatu γ γ maka τ γ τ R R τ R γ. (L.7 τ R Kemuda dketahu bahwa W. (L.7 R τ W τ. (L.73 R ubsttus ersamaa (L.36 da (L.67 ke ersamaa (L.37 dperoleh W E W W E R ( E R ( E R W ( β γ R + b + b W WR + Wb β + Wb γ. (L.74 Kemuda, substtus ersamaa (L.69, (L.7, (L.7, (L.73 ke ersamaa (L.74 maka dperoleh R τ R W W R + Wb + Wb τ R τ R WR + b b + R τ. (L.75 R Karea portoolo pasar tak berubah, R da τ R berla tetap. Kemuda turuka ersamaa (L.75 terhadap sehgga dperoleh

9 0 W b R W b. (L.76 ( R Turuka ersamaa (L.75 terhadap τ sehgga dperoleh W b τ τ R W b. (L.77 ( τ R τ terbukt

10 Lampra 3 Bukt ersamaa ( r u ( tu r( + k( t re +. (.78 Berdasarka ersamaa (7 maka la harapaya maka E r r + bβ + b γ (.79 ( e e e Kemuda, beta (gamma dar ekutas dapat dyataka sebaga kombas ler dar suatu beta (gamma uderwrtg da suatu beta (gamma vestas dyataka sebaga berkut β ( β ( + ( u tu k t βe +. (.80 γ ( γ ( + ( u tu k t γ e +. (.8 ubsttus ersamaa (.78 ke ersamaa (.79 maka ( ( + ( r u tu r k t E + r + bβ + b γ ( ( ( ( + ( e e E ru tu E r k t + r + bβ e + bγ e. (.8 ubstus ersamaa (7, (.80, (.8 ke ersamaa (.8 maka ( ( ( r + bβ + bγ( + k( t E r t u u + ( ( + ( ( γ ( + k( t βu tu β k t γu tu r + b + + b + ( u ( u + ( + β + γ( + ( r b( βu ( tu ( k β( t b( γu ( tu ( k γ( t E r t r b b k t ( u ( u ( + β + γ( + ( + + b( βu ( tu + ( + k β( t + b( γu ( tu + ( + k γ( t E r t r b b k t r ( u ( u ( + β + γ( + ( + + βu ( u + bβ ( + k( t + b γ ( t + b γ ( + k( t E r t r b b k t r b t u u ( u ( u ( + β + γ( + ( + + ( tu[ bβ u + bγu] + ( + k( t[ bβ + bγ] ( ( + ( [ β + γ ] E r t r b b k t r E r t r t b b u u u u u + ( + k( t bβ + bγ r bβ bγ ( u ( u + ( u[ βu + γu] ( + ( ( ( ( ( r ( [ ] r + β γ k + + t E r t r t b b r k t E ru tu tu b u b u r E ( ru( tu ( ( + k( t + ( tu bβu + bγu ( tu r E ( r ( t ( t + k kt + bβ t + bγ t ( ( ( u u u u u u

11 r E ( ru( tu ( t k+ kt + bβu ( tu + bγu ( tu r E ( ru( tu ( t k( t + bβu ( tu + bγu ( tu tr E ( ru( tu kr ( t + + bβu ( tu + bγu ( tu. (.83 terbukt

12 3 Lampra 4 Bukt ersamaa (6 ubsttus ersamaa (5 ke ersamaa ( sehgga dperoleh ru ( tu r( + k( t E + r + b( ve E( ru ( tu E( r( + k( t + r + b( ve. (N.84 Kemuda, substtus ersamaa ( da (3 ke ersamaa (N.84 maka dperoleh r ( ( ( ( ( + b v k t E r u t + u + ( ( + ( vu tu k v t r + b( + E r t r b v k t ( ( + + ( + ( u u ( ( ( ( ( r + b v t + + k v t ( u u E ( r ( t r + b v ( + k( t + r u u ( ( ( ( ( + b v t + + k v t ( u u E ( r ( t r + b v ( + k( t + r u u ( ( ( ( + b v t + b + k v t ( u u ( E r t b v r b v k t r b v t ( ( ( + ( + + ( u u ( ( ( u u ( ( ( + ( + + ( E r t r k t r b v t u u ( u u r r E r t k t b v t ( ( ( + ( + + ( u u ( u u r E ( ru( tu ( ( + k( t + b( vu ( tu r E ( ru( tu ( ( t + k kt + b( vu ( tu r E ( ru( tu ( t k+ kt + b( vu ( tu r E ( ru( tu ( t k( t + b( vu ( tu tr E ( ru( tu kr ( t + + b( vu ( tu. (N.85 terbukt

( ) ( ) ( ) ( ) ( ) III MODEL. , θ Ω. 1 Pendugaan parameter dengan metode maximum lkelihood estimation dapat diperoleh dari:

( ) ( ) ( ) ( ) ( ) III MODEL. , θ Ω. 1 Pendugaan parameter dengan metode maximum lkelihood estimation dapat diperoleh dari: 5 Mamum Lkelhood Estmato Defs Fugs Lkelhood Msalka X, X,, X adalah eubah acak d dega fugs massa eluag ( ; θ, dega θ dasumska skalar da tdak dketahu, maka rosedur fugs lkelhood daat dtulska sebaga berkut

Lebih terperinci

BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP

BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP Msal dguaka kode ler C[, k, d] dega matrks pembagu G da matrks cek partas H. Sebuah blok formas x = x 1 x 2 x k, x = 0 atau 1, yag aka dkrm terlebh

Lebih terperinci

PEMBAHASAN. [Fisher, 1988] Definisi 19 (Fungsi Utilitas Joan) Fungsi utilitas Joan didefinisikan sebagai berikut. dan l. dengan x adalah kekayaan.

PEMBAHASAN. [Fisher, 1988] Definisi 19 (Fungsi Utilitas Joan) Fungsi utilitas Joan didefinisikan sebagai berikut. dan l. dengan x adalah kekayaan. 4 h x x. [Fsher 988] Des 9 (Fgs Utltas Joa Fgs tltas Joa ddeska sebaga berkt ( x x x adalah kekayaa. Teorema (etode Lagrage [Wsto 004] asalah da varabel da sat kedala Utk memaksmmka ata memmmka ( x x terhadap

Lebih terperinci

BAB III PERSAMAAN PANAS DIMENSI SATU

BAB III PERSAMAAN PANAS DIMENSI SATU BAB III PERSAMAAN PANAS DIMENSI SAU Pada baga sebelumya, kta telah membahas peerapa metoda Ruge-Kutta orde 4 utuk meyelesaka masalah la awal dar persamaa dferesal basa orde. Pada bab, kta aka melakuka

Lebih terperinci

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM 1 Megetahu perhtuga persamaa regres ler Meggambarka persamaa regres ler ke dalam dagram pecar TEORI PENUNJANG Persamaa Regres adalah persamaa matematka

Lebih terperinci

BAB 2 LANDASAN TEORI. Istilah regresi pertama kali diperkenalkan oleh Francis Galton. Menurut Galton,

BAB 2 LANDASAN TEORI. Istilah regresi pertama kali diperkenalkan oleh Francis Galton. Menurut Galton, BAB LANDASAN TEORI Pegerta Regres Istlah regres pertama kal dperkealka oleh Fracs Galto Meurut Galto, aalss regres berkeaa dega stud ketergatuga dar suatu varabel yag dsebut varabel tak bebas (depedet

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa merupaka baga regres yag mecakup hubuga ler satu peubah acak tak bebas dega satu peubah bebas. Hubuga ler da dar satu populas dsebut gars regres

Lebih terperinci

Regresi Linier Sederhana Definisi Pengaruh

Regresi Linier Sederhana Definisi Pengaruh Regres Ler Sederhaa Dah Idra Baga Bostatstka da Kepeduduka Fakultas Kesehata Masyarakat Uverstas Arlagga Defs Pegaruh Jka terdapat varabel, msalka da yag data-dataya dplot sepert gambar dbawah 3 Defs Pegaruh

Lebih terperinci

BAB 5 BARISAN DAN DERET KOMPLEKS. Secara esensi, pembahasan tentang barisan dan deret komlpeks sama dengan barisan dan deret real.

BAB 5 BARISAN DAN DERET KOMPLEKS. Secara esensi, pembahasan tentang barisan dan deret komlpeks sama dengan barisan dan deret real. BAB 5 BARIAN DAN DERET KOMPLEK ecara eses, pembahasa tetag barsa da deret komlpeks sama dega barsa da deret real. 5. Barsa Barsa merupaka sebuah fugs dega doma berupa hmpua blaga asl N. ebuah barsa kompleks

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu.

BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu. BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa yag varabel bebasya ( berpagkat palg tgg satu. Utuk regres ler sederhaa, regres ler haya melbatka dua varabel ( da. Persamaa regresya dapat dtulska

Lebih terperinci

SOLUSI TUGAS I HIMPUNAN

SOLUSI TUGAS I HIMPUNAN Program Stud S1 Tekk Iformatka Fakultas Iformatka, Telkom Uversty SOLUSI TUGAS I HIMPUNAN Matematka Dskrt (MUG2A3) Halama 1 dar 6 Soal 1 Tetukalah eleme-eleme dar hmpua berkut! 2 x x adalah blaga real

Lebih terperinci

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai BAB LANDASAN TEORI. Kosep Dasar Aalss Regres Aalss regres regressso aalyss merupaka suatu tekk utuk membagu persamaa da megguaka persamaa tersebut utuk membuat perkraa predcto. Dega demka, aalss regres

Lebih terperinci

PENDAHULUAN Metode numerik merupakan suatu teknik atau cara untuk menganalisa dan menyelesaikan masalah masalah di dalam bidang rekayasa teknik dan

PENDAHULUAN Metode numerik merupakan suatu teknik atau cara untuk menganalisa dan menyelesaikan masalah masalah di dalam bidang rekayasa teknik dan Aalsa Numerk Baha Matrkulas PENDAHULUAN Metode umerk merupaka suatu tekk atau cara utuk megaalsa da meyelesaka masalah masalah d dalam bdag rekayasa tekk da sa dega megguaka operas perhtuga matematk Masalah-masalah

Lebih terperinci

Bab II Teori Pendukung

Bab II Teori Pendukung Bab II Teor Pedukug.. asar Statstka Utuk keperlua peaksra outstadg clams lablty, pegetahua dalam statstka mead hal yag petg. asar statstka yag dguaka dalam tess atara la :. strbus ormal Sebuah peubah acak

Lebih terperinci

Muniya Alteza

Muniya Alteza RISIKO DAN RETURN 1. Estmas Retur da Rsko Idvdual. Kosep Dversfkas 3. Kovaras da Koefse Korelas 4. Estmas Retur da Rsko Portofolo Muya Alteza m_alteza@uy.ac.d Estmas Retur da Rsko 1) Estmas Realzed Retur

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel

BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel BAB I PENDAHULUAN 1.1 Statstka Deskrptf da Statstka Iferesal Dewasa d berbaga bdag lmu da kehdupa utuk memaham/megetahu sesuatu dperluka dat Sebaga cotoh utuk megetahu berapa bayak rakyat Idoesa yag memerluka

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 1 Pegerta Regres Istlah regres pertama kal dperkealka oleh Fracs Galto Meurut Galto, aalss regres berkeaa dega stud ketergatuga dar suatu varabel yag dsebut tak bebas depedet varable,

Lebih terperinci

PRAKTIKUM 7 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel

PRAKTIKUM 7 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel Praktkum 7 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel PRAKTIKUM 7 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel Tujua : Mempelajar metode Secat dega modfkas tabel utuk peelesaa

Lebih terperinci

PRAKTIKUM 5 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel

PRAKTIKUM 5 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel Praktkum 5 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel PRAKTIKUM 5 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel Tujua : Mempelajar metode Secat dega modfkas tabel utuk peelesaa

Lebih terperinci

STATISTIK. Ukuran Gejala Pusat Ukuran Letak Ukuran Simpangan, Dispersi dan Variasi Momen, Kemiringan, dan Kurtosis

STATISTIK. Ukuran Gejala Pusat Ukuran Letak Ukuran Simpangan, Dispersi dan Variasi Momen, Kemiringan, dan Kurtosis STATISTIK Ukura Gejala Pusat Ukura Letak Ukura Smpaga, Dspers da Varas Mome, Kemrga, da Kurtoss Notas Varabel dyataka dega huruf besar Nla dar varabel dyataka dega huruf kecl basaya dtuls Tmes New Roma

Lebih terperinci

2.2.3 Ukuran Dispersi

2.2.3 Ukuran Dispersi 3 Ukura Dspers Yag aka dbahas ds adalah smpaga baku da varas karea dua ukura dspers yag palg serg dguaka Hubuga atara smpaga baku dega varas adalah Varas = Kuadrat dar Smpaga baku otas yag umum dguaka

Lebih terperinci

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu BAB II LADASA TEORI Dalam pegambla sampel dar suatu populas, dperluka suatu tekk pegambla sampel yag tepat sesua dega keadaa populas tersebut. Sehgga sampel yag dperoleh adalah sampel yag dapat mewakl

Lebih terperinci

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS Tgg tekaa [m] UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS Se, 11 Desember 017 100 met [ Boleh membuka buku Tdak boleh memaka komputer ] SOAL 1 [SO A-3, BOBOT NILAI 50%] Sebuah PDAM melakuka pegukura

Lebih terperinci

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS Se, 19 Desember 016 100 met [ Boleh membuka buku Tdak boleh memaka komputer ] SOAL 1 [SO A-3, BOBOT NILAI 40%] Hasl pegukura sampel d beberapa sekolah da

Lebih terperinci

Penelitian Operasional II Teori Permainan TEORI PERMAINAN

Penelitian Operasional II Teori Permainan TEORI PERMAINAN Peelta Operasoal II Teor Permaa 7 2 TEORI PERMAINAN 2 Pegatar 2 Krtera Tekk Permaa : () Terdapat persaga kepetga datara pelaku (2) Setap pema memlk stateg, bak terbatas maupu tak terbatas (3) Far Game

Lebih terperinci

CAPM (THE CAPITAL ASSETS PRICING MODEL) N-MOMEN PADA ASURANSI BENCANA SEPTIAWATI G

CAPM (THE CAPITAL ASSETS PRICING MODEL) N-MOMEN PADA ASURANSI BENCANA SEPTIAWATI G CAP (THE CAPITAL AET PRICING ODEL N-OEN PADA AURANI BENCANA EPTIAWATI G5403054 DEPARTEEN ATEATIKA FAKULTA ATEATIKA DAN ILU PENGETAHUAN ALA INTITUT PERTANIAN BOGOR BOGOR 007 ABTRACT EPTIAWATI. CAP (The

Lebih terperinci

Ruang Banach. Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA

Ruang Banach. Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA Ruag Baach Sumaag Muhtar Gozal UNIVERSITAS PENDIDIKAN INDONESIA Satu kose etg d kulah Aalss ugsoal adalah teor ruag Baach. Pada baga aka drevu defs, cotoh-cotoh, serta sfat-sfat etg ruag Baach. Kta aka

Lebih terperinci

NORM VEKTOR DAN NORM MATRIKS

NORM VEKTOR DAN NORM MATRIKS NORM VEKTOR DN NORM MTRIK umaag Muhtar Gozal UNIVERIT PENDIDIKN INDONEI. Pedahulua Jka kta membcaraka topk ruag vektor maka cotoh sederhaa yag dapat kta ambl adalah ruag Eucld R. D ruag kta medefska pajag

Lebih terperinci

II. LANDASAN TEORI. Pada bab II ini, akan dibahas pengertian-pengertian (definisi) dan teoremateorema

II. LANDASAN TEORI. Pada bab II ini, akan dibahas pengertian-pengertian (definisi) dan teoremateorema II. LANDAAN TEORI Pada bab II aka dbahas pegerta-pegerta (defs) da teoremateorema ag medukug utuk pembahasa pada bab IV. Pegerta (defs) da teorema tersebut dtulska sebaga berkut.. Teorema Proeks Teorema

Lebih terperinci

BAB 5. ANALISIS REGRESI DAN KORELASI

BAB 5. ANALISIS REGRESI DAN KORELASI BAB 5. ANALISIS REGRESI DAN KORELASI Tujua utama aalss regres adalah mecar ada tdakya hubuga ler atara dua varabel: Varabel bebas (X), yatu varabel yag mempegaruh Varabel terkat (Y), yatu varabel yag dpegaruh

Lebih terperinci

I adalah himpunan kotak terbatas dan tertutup yang berisi lebih dari satu

I adalah himpunan kotak terbatas dan tertutup yang berisi lebih dari satu METODE FUNGS QUAS-FED SATU ARAMETER UNTUK MENYEESAKAN MASAAH ROGRAM NTEGER TAK NEAR Ra Hardyat (M4) ABSTRAK Dalam kehdupa sehar-har serg djumpa masalah optmas yag membutuhka hasl teger Masalah tersebut

Lebih terperinci

BAB II LANDASAN TEORI. merepresentasikan dan menjelaskan permasalahan pada dunia nyata ke dalam. pernyataan matematis (Widowati & Sutimin, 2007 : 1).

BAB II LANDASAN TEORI. merepresentasikan dan menjelaskan permasalahan pada dunia nyata ke dalam. pernyataan matematis (Widowati & Sutimin, 2007 : 1). BAB II LANDASAN EORI.. Model Matematka Model Matematka merupaka represetas matematka yag dhaslka dar pemodela Matematka. Pemodela Matematka merupaka suatu proses merepresetaska da mejelaska permasalaha

Lebih terperinci

TEKNIK SAMPLING. Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Universitas Andalas

TEKNIK SAMPLING. Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Universitas Andalas TEKNIK SAMPLING Hazmra Yozza Izzat Rahm HG Jurusa Matematka FMIPA Uverstas Adalas Defs Suatu cotoh gerombol adalah suatu cotoh acak sederhaa dmaa setap ut pearka cotoh adalah kelompok atau gerombol dar

Lebih terperinci

I PENDAHULUAN II LANDASAN TEORI

I PENDAHULUAN II LANDASAN TEORI I PENDAHULUAN 11 Latar Belakag Peelta yag dlakuka oleh Va der Pol pada sebuah tabug trode tertutup, yatu sebuah alat yag dguaka utuk megedalka arus lstrk dalam suatu srkut pada trasmtter da recever meghaslka

Lebih terperinci

Penarikan Contoh Acak Sederhana (Simple Random Sampling)

Penarikan Contoh Acak Sederhana (Simple Random Sampling) Pearka Cotoh Acak Sederhaa (Smple Radom Samplg) Defs Jka sebuah cotoh berukura dambl dar suatu populas sedemka rupa sehgga setap cotoh berukura ag mugk memlk peluag sama utuk terambl, maka prosedur tu

Lebih terperinci

STATISTIKA A. Definisi Umum B. Tabel Distribusi Frekuensi

STATISTIKA A. Definisi Umum B. Tabel Distribusi Frekuensi STATISTIKA A. Des Umum. Pegerta statstk Statstk adalah kumpula akta yag berbetuk agka da dsusu dalam datar atau tabel yag meggambarka suatu persoala. Cotoh: statstk kurs dolar Amerka, statstk pertumbuha

Lebih terperinci

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu KORELASI 1 D dua kta tdak dapat hdup sedr, tetap memerluka hubuga dega orag la. Hubuga tu pada umumya dlakuka dega maksud tertetu sepert medapat kergaa pajak, memperoleh kredt, memjam uag, serta mta pertologa/batua

Lebih terperinci

TUGAS MATA KULIAH TEORI RING LANJUT MODUL NOETHER

TUGAS MATA KULIAH TEORI RING LANJUT MODUL NOETHER TUGAS ATA KULIAH TEORI RING LANJUT ODUL NOETHER Da Aresta Yuwagsh (/364/PPA/03489) Sebelumya, telah dketahu bahwa sebaga rg dega eleme satua memeuh sfat rata ak utuk deal-deal d. Apabla dpadag sebaga modul,

Lebih terperinci

PENGGUNAAN VALUE AT RISK DALAM ANALISIS RISIKO PADA PORTOFOLIO SINGLE INDEX MODEL (Studi Kasus Data Saham LQ 45) Intisari

PENGGUNAAN VALUE AT RISK DALAM ANALISIS RISIKO PADA PORTOFOLIO SINGLE INDEX MODEL (Studi Kasus Data Saham LQ 45) Intisari Bulet Ilmah Mat. Stat. da Terapaya (Bmaster) Volume 03, No. 3 (014), hal 15. PENGGUNAAN VALUE AT ISK DALAM ANALISIS ISIKO PADA POTOFOLIO SINGLE INDEX MODEL (Stud Kasus Data Saham LQ 45) Ed Saputra, Neva

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. melakukan smash sebelum dan sesudah latihan power otot lengan adalah sebagai

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. melakukan smash sebelum dan sesudah latihan power otot lengan adalah sebagai BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4. Deskrps Peelta Berdasarka hasl peelta, d peroleh data megea kemempua sswa melakuka smash sebelum da sesudah latha power otot lega adalah sebaga berkut : Tabel.

Lebih terperinci

MINGGU KE-10 HUBUNGAN ANTAR KONVERGENSI

MINGGU KE-10 HUBUNGAN ANTAR KONVERGENSI MINGGU KE-0 HUBUNGAN ANTAR KONVERGENSI Hubuga atar koverges Hrark atar koverges dyataka dalam teorema berkut. Teorema Msalka X da X, X, X 3,... adalah varabel radom yag ddefska pada ruag probabltas yag

Lebih terperinci

8. MENGANALISIS HASIL EVALUASI

8. MENGANALISIS HASIL EVALUASI 8. MENGANALISIS HASIL EVALUASI Tujua : Mampu megaalsa tgkat kesukara hasl evaluas utuk megkatka hasl proses pembelajara Kegata megaals hasl evaluas merupaka upaya utuk memperbak programprogram pembelajara

Lebih terperinci

NPV DAN IRR IR. ASEP TOTO KARTAMAN, MENG

NPV DAN IRR IR. ASEP TOTO KARTAMAN, MENG DAN IRR IR. ASEP TOTO KARTAMAN, MENG SEMESTER PENDEK SEMESTER TAHUN AKADEMIK 03-04 Prod Tekk Idustr Fakultas Tekk Uverstas Pasuda Badug 04 PERHITUNGAN KELAYAKAN INVESTASI. Net Preset Value () merupaka

Lebih terperinci

MATEMATIKA INTEGRAL RIEMANN

MATEMATIKA INTEGRAL RIEMANN MATEMATIKA KELAS XII IPA - KURIKULUM GABUNGAN Ses NGAN INTEGRAL RIEMANN A. NOTASI SIGMA a. Defs Notas Sgma Sgma (Σ) adalah otas matematka megguaka smbol yag mewakl pejumlaha da beberapa suku yag memlk

Lebih terperinci

ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas:

ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas: ANALISIS REGRESI Pedahulua Aalss regres berkata dega stud megea ketergatuga satu peubah (peubah terkat) terhadap satu atau lebh peubah laya (peubah pejelas). Jka Y dumpamaka sebaga peubah terkat da X1,X,...,X

Lebih terperinci

BAB III ISI. x 2. 2πσ

BAB III ISI. x 2. 2πσ BAB III ISI 4. Keadata Normal Multvarat da Sfat-sfatya Keadata ormal multvarat meruaka geeralsas dar keadata ormal uvarat utuk dmes. f ( x) [( x )/ ] / = e x π x = ( x )( ) ( x ). < < (-) (-) Betuk (-)

Lebih terperinci

BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL. Masalah regresi invers dengan bentuk linear dapat dijumpai dalam

BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL. Masalah regresi invers dengan bentuk linear dapat dijumpai dalam BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL 3. Pegerta Masalah regres vers dega betuk lear dapat djumpa dalam berbaga bdag kehdupa, dataraya dalam bdag ekoom, kesehata, fska, kma

Lebih terperinci

BAB I PENGINTEGRALAN KOMPLEKS

BAB I PENGINTEGRALAN KOMPLEKS BAB I PENGINTEGRALAN OMPLES . Itegral Gars Sebelum membcaraka tegral gars terlebh dahulu aka dbahas kurva kurva mulus ltasa da retas suatu ltasa. Ltasa urva legkuga d bdag datar dapat dataka dalam betuk

Lebih terperinci

STATISTIKA. A. Tabel Langkah untuk mengelompokkan data ke dalam tabel distribusi frekuensi data berkelompok/berinterval: a. Rentang/Jangkauan (J)

STATISTIKA. A. Tabel Langkah untuk mengelompokkan data ke dalam tabel distribusi frekuensi data berkelompok/berinterval: a. Rentang/Jangkauan (J) STATISTIKA A. Tabel Lagkah utuk megelompokka data ke dalam tabel dstrbus frekues data berkelompok/berterval: a. Retag/Jagkaua (J) J X maks X m b. Bayak kelas (k) Megguaka atura Sturgess, yatu k,. log c.

Lebih terperinci

UKURAN PEMUSATAN & PENYEBARAN

UKURAN PEMUSATAN & PENYEBARAN UKURAN PEMUSATAN & PENYEBARAN RATA - RATA UKURAN PEMUSATAN MEDIAN MODUS Rata rata htug (mea) Merupaka hasl bag dar sejumlah skr dega bayakya respde Utuk Data Tdak Berkelmpk x Dmaa : = la samapa x = la

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Bab aka mejelaska megea ladasa teor yag dpaka oleh peuls dalam peelta. Bab dbag mejad beberapa baga, yag masg masg aka mejelaska Prcpal Compoet Aalyss (PCA), Egeface, Klusterg K-Meas,

Lebih terperinci

TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM. Sudarno Jurusan Matematika FMIPA UNDIP

TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM. Sudarno Jurusan Matematika FMIPA UNDIP JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 11-19, Aprl 004, ISSN : 1410-8518 TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM Sudaro Jurusa Matematka FMIPA UNDIP Abstrak Sstem yag dbetuk

Lebih terperinci

FMDAM (2) TOPSIS TOPSIS TOPSIS. Charitas Fibriani

FMDAM (2) TOPSIS TOPSIS TOPSIS. Charitas Fibriani FMDAM (2) Chartas Fbra Techque for Order Preferece by Smlarty to Ideal Soluto () ddasarka pada kosep dmaa alteratf terplh yag terbak tdak haya memlk jarak terpedek dar solus deal postf, amu juga memlk

Lebih terperinci

BAB III UKURAN PEMUSATAN DATA

BAB III UKURAN PEMUSATAN DATA BAB III UKURAN PEMUSATAN DATA A. Ukura Gejala Pusat Ukura pemusata adalah suatu ukura yag meujukka d maa suatu data memusat atau suatu kumpula pegamata memusat (megelompok). Ukura pemusata data adalah

Lebih terperinci

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten BAB III METODE PENELITIAN 3. Tempat da Waktu Peelta 3.. Tempat Tempat peelta dlaksaaka d SMP Neger 4 Tlamuta Kabupate Boalemo pada sswa kelas VIII. 3.. Waktu Peelta dlaksaaka dalam waktu 3 bula yatu dar

Lebih terperinci

CAPITAL ASSET PRICING MODEL

CAPITAL ASSET PRICING MODEL CAPITAL ASSET PRICING ODEL 1. Konsep CAP 2. Perumusan CAP (CL dan SL) 3. Pelonggaran CAP unya Alteza Konsep Dasar CAP Drumuskan oleh Sharpe, Lntner & ossn (1960an) odel yang menghubungkan expected return

Lebih terperinci

Kritikan Terhadap Varians Sebagai Alat Ukur

Kritikan Terhadap Varians Sebagai Alat Ukur Krtkan Terhadap Varans Sebaga Alat Ukur Varans mengukur penympangan pengembalan aktva d sektar nla yang dharapkan, maka varans mempertmbangkan juga pengembalan d atas atau d bawah nla pengembalan yang

Lebih terperinci

UKURAN GEJALA PUSAT DAN UKURAN LETAK

UKURAN GEJALA PUSAT DAN UKURAN LETAK UKURAN GEJALA PUSAT DAN UKURAN LETAK MODUL 4 UKURAN GEJALA PUSAT DAN UKURAN LETAK. Pedahulua Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu persoala, bak megea sampel atau pu

Lebih terperinci

STUDI KELAYAKAN: ASPEK FINANSIAL. F.Hafiz Saragih SP, MSc

STUDI KELAYAKAN: ASPEK FINANSIAL. F.Hafiz Saragih SP, MSc STUDI KELAYAKAN: ASPEK FINANSIAL F.Hafz Saragh SP, MSc Pajak Baya bag perusahaa/ usahata, sehgga merupaka peguraga dar beeft Subsd FINANSIAL Peguraga baya bag perusahaa/ usahata, sehgga merupaka tambaha

Lebih terperinci

PENAKSIR PARAMETER DISTRIBUSI EKSPONENSIAL PARETO DENGAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD

PENAKSIR PARAMETER DISTRIBUSI EKSPONENSIAL PARETO DENGAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD PENAKSIR PARAMETER DISTRIBUSI EKSPONENSIAL PARETO DENGAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD Mayag Novhta Sar *, Bustam, Sgt Sugarto Mahasswa Program Stud S Matematka FMIPA Uverstas Rau Dose Fakultas

Lebih terperinci

INTERPOLASI. FTI-Universitas Yarsi

INTERPOLASI. FTI-Universitas Yarsi BAB VI INTERPOLASI FTI-Uverstas Yars Pedahulua Bla dketahu taulas ttk-ttk (y seaga erkut (yag dalam hal rumus ugs y ( tdak dketahu secara eksplst: Htug taksra la y utuk 3.8! FTI-Uverstas Yars Persoala

Lebih terperinci

S2 MP Oleh ; N. Setyaningsih

S2 MP Oleh ; N. Setyaningsih S2 MP Oleh ; N. Setyagsh MATERI PERTEMUAN 1-3 (1)Pedahulua pera statstka dalam peelta ; (2)Peyaja data : dalam betuk (a) tabel da (b) dagram; (3) ukura tedes setaral da ukura peympaga (4)dstrbus ormal

Lebih terperinci

PRAKTIKUM 20 Interpolasi Polinomial dan Lagrange

PRAKTIKUM 20 Interpolasi Polinomial dan Lagrange Praktkum 0 Iterpolas Polomal da Lagrage PRAKTIKUM 0 Iterpolas Polomal da Lagrage Tuua : Mempelaar berbaga metode Iterpolas ag ada utuk meetuka ttkttk atara dar buah ttk dega megguaka suatu fugs pedekata

Lebih terperinci

On A Generalized Köthe-Toeplitz Duals

On A Generalized Köthe-Toeplitz Duals JMP : Volume 4 Nomor, Ju 202, hal. 3-39 O A Geeralzed Köthe-Toepltz Duals Sumardoo, Supama 2, da Soepara Darmawaa 3 PPPPTK Matematka, smrd2007@gmal.com 2 Mathematcs Departmet, Gadah Mada Uverst, supama@ugm.ac.d

Lebih terperinci

KALKULUS LANJUT. Pertemuan ke-4. Reny Rian Marliana, S.Si.,M.Stat.

KALKULUS LANJUT. Pertemuan ke-4. Reny Rian Marliana, S.Si.,M.Stat. KALKULUS LANJUT Pertemua ke-4 Rey Ra Marlaa, S.S.,M.Stat. Plot Mater Notas Jumlah & Sgma Itegral Tetu Jumlah Rema Pedahulua Luas Notas Jumlah & Sgma Purcell, et all. (page 226,2003): Sebuah fugs yag daerah

Lebih terperinci

BAB III INTEGRAL RIEMANN-STIELTJES. satu pendekatan untuk membentuk proses titik. Berkaitan dengan masalah

BAB III INTEGRAL RIEMANN-STIELTJES. satu pendekatan untuk membentuk proses titik. Berkaitan dengan masalah BAB III INEGRAL RIEMANN-SIELJES. Pedahulua Pada Bab, telah dsggug bahwa ukura meghtug merupaka salah satu pedekata utuk membetuk proses ttk. Berkata dega masalah perhtuga, ada hal meark yag perlu amat,

Lebih terperinci

Dasar Ekonomi Teknik: Matematika Uang. Ekonomi Teknik TIP FTP UB

Dasar Ekonomi Teknik: Matematika Uang. Ekonomi Teknik TIP FTP UB Dasar Ekoom Tekk: Matematka Uag Ekoom Tekk TIP TP UB Bahasa lra Kas (Cash low Tme Value of Moey Buga Ekvales Cash low Tata alra uag masuk da keluar per perode waktu pada suatu perusahaa lra kas aka terjad

Lebih terperinci

SIFAT-SIFAT LANJUT FUNGSI TERBATAS

SIFAT-SIFAT LANJUT FUNGSI TERBATAS Bulet Ilmah Mat. Stat. da Terapaya (Bmaster) Volume 03, No. 2(204), hal 35 42. SIFAT-SIFAT LANJUT FUNGSI TERBATAS Suhard, Helm, Yudar INTISARI Fugs terbatas merupaka fugs yag memlk batas atas da batas

Lebih terperinci

Pertemuan 3 Luas Daerah Bidang Datar, dan Volume Benda Padat dengan Metode Bidang Irisan Sejajar

Pertemuan 3 Luas Daerah Bidang Datar, dan Volume Benda Padat dengan Metode Bidang Irisan Sejajar ertemua 3 Luas Daerah Bdag Datar, da Volume Beda adat dega Metode Bdag Irsa Sejajar A. Luas Daerah Bdag Datar 1. Luas Daerah Bdag Datar Yag Datas Oleh Kura f, sumu X, Gars a da Gars DEFINISI: Msalka D

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Dalam pemodela program ler, semua parameter yag dguaka dalam model dasumska dapat dketahu secara past. Parameter-parameter terdr dar koefse batasa ( ) a, la kuattas batasa

Lebih terperinci

3. METODOLOGI PENELITIAN

3. METODOLOGI PENELITIAN 3. METODOLOGI PENELITIAN 3.1 Waktu da Tempat Peelta dlakuka mula taggal 13 Me sampa dega 19 Agustus 007d perara Teluk Lasogko, Kabupate Buto, Sulawes Teggara. Lokas dplh dega pertmbaga bahwa perara merupaka

Lebih terperinci

Regresi & Korelasi Linier Sederhana. Gagasan perhitungan ditetapkan oleh Sir Francis Galton ( )

Regresi & Korelasi Linier Sederhana. Gagasan perhitungan ditetapkan oleh Sir Francis Galton ( ) Regres & Korelas Ler Sederhaa 1. Pedahulua Gagasa perhtuga dtetapka oleh Sr Fracs Galto (18-1911) Persamaa regres :Persamaa matematk yag memugkka peramala la suatu peubah takbebas (depedet varable) dar

Lebih terperinci

BAB III ESTIMASI MODEL PROBIT TERURUT

BAB III ESTIMASI MODEL PROBIT TERURUT BAB III ESTIMASI MODEL PROBIT TERURUT 3. Pedahulua Model eurua kods embata destmas dega model robt terurut. Estmas terhada arameter model robt terurut yatu koefse model da threshold dlakuka dega metode

Lebih terperinci

Penarikan Contoh Gerombol (Cluster Sampling) Departemen Statistika FMIPA IPB

Penarikan Contoh Gerombol (Cluster Sampling) Departemen Statistika FMIPA IPB Pearka Cotoh Gerombol (Cluster Samplg) Departeme Statstka FMIPA IPB Radom samplg (Revew) Smple radom samplg Stratfed radom samplg Rato, regresso, ad dfferece estmato Systematc radom samplg Cluster radom

Lebih terperinci

BAB 2. Tinjauan Teoritis

BAB 2. Tinjauan Teoritis BAB Tjaua Teorts.1 Regres Lear Sederhaa Regres lear adalah alat statstk yag dperguaka utuk megetahu pegaruh atara satu atau beberapa varabel terhadap satu buah varabel. Varabel yag mempegaruh serg dsebut

Lebih terperinci

INTERPOLASI INTERPOLASI LINIER INTERPOLASI KUADRATIK

INTERPOLASI INTERPOLASI LINIER INTERPOLASI KUADRATIK INTERPOASI INTERPOASI INIER INTERPOASI KUADRATIK INTERPOASI POINOMIA Dua ttk data : Gars Tga ttk data : Kuadratk g Empat ttk data :Polomal tgkat-3 Dketahu: ttk data ( y ) ( y ) ( y ) D ttk data :Polomal

Lebih terperinci

BAB III PEMBENTUKAN SKEMA PEMBAGIAN RAHASIA

BAB III PEMBENTUKAN SKEMA PEMBAGIAN RAHASIA BAB III PEMBENTUKAN SKEMA PEMBAGIAN RAHASIA 3. Pegkodea Matrks Ketetaggaa Matrks ketetaggaa A adaah matrks smetr, sehgga, dega memh semua eeme pada dagoa utama da eeme-eeme dbawah dagoa utama, maka aka

Lebih terperinci

BAB 2 : BUNGA, PERTUMBUHAN DAN PELURUHAN

BAB 2 : BUNGA, PERTUMBUHAN DAN PELURUHAN Jl. Raya Wagu Kel. Sdagsar Kota Bogor Telp. 0251-8242411, emal: prohumas@smkwkrama.et, webste : www.smkwkrama.et BAB 2 : BUNGA, PERTUBUHAN DAN PELURUHAN PENGERTIAN BUNGA Buga adalah jasa dar smpaa atau

Lebih terperinci

PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN

PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN Idah Vltr, Harso, Haposa Srat Mahassa Program S Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu

Lebih terperinci

OVERVIEW 1/40

OVERVIEW 1/40 http://www..deden08m.wordpress.com OVERVIEW 1/40 Konsep-konsep dasar dalam pembentukan portofolo optmal. Perbedaan tentang aset bersko dan aset bebas rsko. Perbedaan preferens nvestor dalam memlh portofolo

Lebih terperinci

Nama : Crishadi Juliantoro NPM :

Nama : Crishadi Juliantoro NPM : ANALISIS INVESTASI PADA PERUSAHAAN YANG MASUK DALAM PERHITUNGAN INDEX LQ-45 MENGGUNAKAN PORTOFOLIO DENGAN METODE SINGLE INDEX MODEL. Nama : Crshad Julantoro NPM : 110630 Latar Belakang Pemlhan saham yang

Lebih terperinci

3 Departemen Statistika FMIPA IPB

3 Departemen Statistika FMIPA IPB Supleme Respos Pertemua ANALISIS DATA KATEGORIK (STK51) Departeme Statstka FMIPA IPB Pokok Bahasa Sub Pokok Bahasa Referes Waktu U potess Tga Cotoh atau Lebh U Kruskal-Walls (aalss ragam satu-arah berdasarka

Lebih terperinci

PELABELAN HARMONIS GANJIL PADA GRAF

PELABELAN HARMONIS GANJIL PADA GRAF Jural EduTech ol. No. Maret 08 ISSN: -60 e-issn: -06 PELABELAN HARMONIS GANJIL PADA GRAF Zulf Amr, Arda Aula, Army Syella, Harsma Pratamal, Saftr Ramadha, Charusa Uverstas Muhammadyah Sumatera Utara zulfamr@umsu.ac.d;

Lebih terperinci

Uji Statistika yangb digunakan dikaitan dengan jenis data

Uji Statistika yangb digunakan dikaitan dengan jenis data Uj Statstka yagb dguaka dkata dega jes data Jes Data omal Ordal Iterval da Raso Uj Statstka Koefse Kotges Rak Spearma Kedall Tau Korelas Parsal Kedall Tau Koefse Kokordas Kedall W Pearso Korelas Gada Korelas

Lebih terperinci

TEORI INVESTASI DAN PORTFOLIO MATERI 4.

TEORI INVESTASI DAN PORTFOLIO MATERI 4. TEORI INVESTASI DAN PORTFOLIO MATERI 4 KONSEP DASAR 2/40 Ada tga konsep dasar yang perlu dketahu untuk memaham pembentukan portofolo optmal, yatu: portofolo efsen dan portofolo optmal fungs utltas dan

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Sampa saat, model Regres da model Aalss Varas telah dpadag sebaga dua hal ag tdak berkata. Meskpu merupaka pedekata ag umum dalam meeragka kedua cara pada taraf permulaa,

Lebih terperinci

ESTIMASI UKURAN SENSITIVITAS KEUNTUNGAN SAHAM DALAM PORTOFOLIO PADA SINGLE INDEX MODEL

ESTIMASI UKURAN SENSITIVITAS KEUNTUNGAN SAHAM DALAM PORTOFOLIO PADA SINGLE INDEX MODEL Bulet Ilmah Mat. Stat. da Terapaya (Bmaster) Volume 0, No. (03), hal. 57-6 ESTIMASI UKUAN SENSITIVITAS KEUNTUNGAN SAHAM DALAM POTOFOLIO PADA SINGLE INDEX MODEL Eka Kurawat, Helm, Neva Satyahadew INTISAI

Lebih terperinci

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL Hesty ala, Arsma Ada, Bustam hestyfala@ymalcom Mahasswa Program S Matematka MIPA-UR Dose Matematka MIPA-UR

Lebih terperinci

INTERVAL KEPERCAYAAN UNTUK PERBEDAAN KOEFISIEN VARIASI DARI DISTRIBUSI LOGNORMAL I. Pebriyani 1*, Bustami 2, S. Sugiarto 2

INTERVAL KEPERCAYAAN UNTUK PERBEDAAN KOEFISIEN VARIASI DARI DISTRIBUSI LOGNORMAL I. Pebriyani 1*, Bustami 2, S. Sugiarto 2 INTERVAL KEPERCAAAN UNTUK PERBEDAAN KOEFIIEN VARIAI DARI DITRIBUI LOGNORMAL I. Pebrya * Bustam. ugarto Mahasswa Program Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu Pegetahua Alam Uverstas

Lebih terperinci

BAB 2 LANDASAN TEORITIS. yang akan terjadi pada masa yang akan datang dengan waktu yang relatif lama.

BAB 2 LANDASAN TEORITIS. yang akan terjadi pada masa yang akan datang dengan waktu yang relatif lama. BAB 2 LANDASAN TEORITIS 2.1 Pegerta Peramala Peramala ( forecastg ) adalah kegata memperkraka atau mempredkska apa yag aka terjad pada masa yag aka datag dega waktu yag relatf lama. Sedagka ramala adalah

Lebih terperinci

Extra 4 Pengantar Teori Modul

Extra 4 Pengantar Teori Modul Extra 4 Pegatar Teor odul Apabla selama dkealka suatu kosep aljabar megea ruag vektor, maka modul merupaka perumuma dar ruag vektor. Pada modul, syarat skalar dperumum mejad eleme pada suatu rg da buka

Lebih terperinci

UKURAN GEJALA PUSAT (UGP)

UKURAN GEJALA PUSAT (UGP) UKURAN GEJALA PUSAT (UGP) Pegerta: Rata-rata (average) alah suatu la yag mewakl suatu kelompok data. Nla dsebut juga ukura gejala pusat karea pada umumya mempuya kecederuga terletak d tegah-tegah da memusat

Lebih terperinci

BAB 2 LANDASAN TEORI. Analisis regresi adalah suatu proses memperkirakan secara sistematis tentang apa yang paling

BAB 2 LANDASAN TEORI. Analisis regresi adalah suatu proses memperkirakan secara sistematis tentang apa yang paling BAB LANDASAN TEORI Kosep Dasar Aalss Regres Aalss regres adalah suatu proses memperkraka secara sstemats tetag apa yag palg mugk terjad dmasa yag aka datag berdasarka formas yag sekarag dmlk agar memperkecl

Lebih terperinci

POLIGON TERBUKA TERIKAT SEMPURNA

POLIGON TERBUKA TERIKAT SEMPURNA MODUL KULIAH ILMU UKUR TANAH POLIGON TERBUKA TERIKAT SEMPURNA Pegerta : peetua azmuth awal da akhr, peetuat kesalaha peutup sudut,koreks sudut, kesalaha lear da koreks lear kearah sumbu X da Y, Peetua

Lebih terperinci

BAB II LANDASAN TEORI. penulisan skripsi yaitu mengenai data panel, beberapa bentuk dan sifat

BAB II LANDASAN TEORI. penulisan skripsi yaitu mengenai data panel, beberapa bentuk dan sifat BAB II LANDASAN TEORI Pada Bab II aka dbahas dasar-dasar teor yag dguaka dalam peulsa skrps yatu megea data pael, beberapa betuk da sfat matrks, matrks parts, betuk ler da betuk kuadratk beserta ekspektasya,

Lebih terperinci

BAB 2 LANDASAN TEORI. yang akan terjadi pada masa yang akan datang dengan waktu yang relative lama.

BAB 2 LANDASAN TEORI. yang akan terjadi pada masa yang akan datang dengan waktu yang relative lama. BAB 2 LANDASAN TEORI 2.1 Pegerta Peramala Peramala ( forecastg ) adalah kegata memperkraka atau mempredkska apa yag aka terjad pada masa yag aka datag dega waktu yag relatve lama. Sedagka ramala adalah

Lebih terperinci

BAB 1 STATISTIKA RINGKASAN MATERI

BAB 1 STATISTIKA RINGKASAN MATERI BAB STATISTIKA A RINGKASAN MATERI. Pegerta Data adalah kumpula keteraga-keteraga atau catata-catata megea suatu kejada, dapat berupa blaga, smbol, sat atau kategor. Masg-masg keteraga dar data dsebut datum.

Lebih terperinci

V ANALISIS SENSITIVITAS

V ANALISIS SENSITIVITAS 5 + + = 5 + + = 5 + 5 = + = (6) Pegtuga (lat Lapra 8 baga ) Berdasarka asl pegtuga SPL (6) epuya bayak solus dega satu varabel bebas Msalka sebaga varabel bebas, aka pegtuga solus PGD dlajutka ke prosedur

Lebih terperinci

11/10/2010 REGRESI LINEAR SEDERHANA DAN KORELASI TUJUAN

11/10/2010 REGRESI LINEAR SEDERHANA DAN KORELASI TUJUAN // REGRESI LINEAR SEDERHANA DAN KORELASI. Model Regres Lear. Peaksr Kuadrat Terkecl 3. Predks Nla Respos 4. Iferes Utuk Parameter-parameter Regres 5. Kecocoka Model Regres 6. Korelas Utrwe Mukhayar MA

Lebih terperinci

Menghitung Kinerja Investasi

Menghitung Kinerja Investasi Meghtug Kerja Ivestas Dalam perjalaa vestas, la suatu asset bsa berubah dar waktu ke waktu akbat perubaha kods pasar. Sela tu, sebaga baga dar proses vestas, vestor perlu mematau da megevaluas kerja vestas

Lebih terperinci