STUDI KELAYAKAN: ASPEK FINANSIAL. F.Hafiz Saragih SP, MSc

Save this PDF as:

Ukuran: px
Mulai penontonan dengan halaman:

Download "STUDI KELAYAKAN: ASPEK FINANSIAL. F.Hafiz Saragih SP, MSc"

Transkripsi

1 STUDI KELAYAKAN: ASPEK FINANSIAL F.Hafz Saragh SP, MSc

2 Pajak Baya bag perusahaa/ usahata, sehgga merupaka peguraga dar beeft Subsd FINANSIAL Peguraga baya bag perusahaa/ usahata, sehgga merupaka tambaha beeft Pajak Trasfer dar perusahaa/ kosume ke Pemertah utuk kepetga masyarakat, sehgga merupaka tambaha beeft Subsd EKONOMI Pegalha sumber daa masyarakat utuk kepetga masyarakat, sehgga tdak megurag baya

3 Aalsa Fasal Aalsa usahata (Taama semusm) Aalsa vestas (Taama tahua) π, R/C NPM = Px NPV, B/C IRR

4 Bagamaa seseorag dapat membadgka la uag dalam kuru waktu yag berbeda? Seseorag haya dapat meyesuaka la uag pada perode yag berbeda dega megguka kosep terest rate. Artya, seseorag TIDAK DAPAT membadgka la uag dar kuru waktu yag berbeda tapa terlebh dahulu meyesuakaya dega terest rate.

5 Tme Preferece Tme preferece suatu preferes waktu (skala waktu) uag saat lebh berart dar uag masa yag aka datag. Pemkra tersebut secara ekoom ddasarka atas alasa-alasa sebaga berkut :. Alasa flas, yatu dega adaya tgkat flas aka dapat meuruka la uag. 2. Alasa kosums, yatu bahwa dega uag yag sama, apabla dkosumska aka memberka tgkat kekmata yag lebh dbadgak dega jka dkosumska d masa yag aka datag. 3. Alasa rsko peympaa, yatu bahwa dega adaya rsko yag tdak dketahu d waktu yag aka data, maka prakts la uag d masa yag aka datag memerluka jumlah yag cukup besar.

6 Mafaat Nla Waktu Uag Membuat keputusa tetag: struktur keuaga, lease atau bel, pembayara kembal oblgas, tekk pelaa surat berharga da permasaaha baya modal

7 Buga tetap Buga dhtug berdasarka la pokok yg sama da tgkat buga (%) yg sama setap waktu. Formula : B MxLxP 00 B MxLxP 200 B MxLxP B = besarya keseluruha buga M = besarya pjama L = jumlah tahu / bula P = tgkat (%) buga

8 Cotoh : Perusahaa memutuska memjam uag ke bak utuk membaya pembagua gudag baru sebesar $ dega buga 2% per tahu dalam jagka waktu 2 th da dagsur 4 kal. Berapa besarya buga yag harus dbayar da berapa total uag yag harus dbayarka kepada Bak???????

9 Jawaba : B MxLxP 00 B $ x2x2 00 $ Jad, buga yg harus dbayarka selama 2 tahu sebesar $ Sedagka total uag yg harus dbayarka adalah : F M ( L. P) F $ ( 2x2%) $

10 Nla Majemuk (Compoud Value) Merupaka pejumlaha dar sejumlah uag pokok dega buga yag dperoleh selama perode tertetu. Formula : F P atau F P( IF) F P I = jumlah uag yag aka datag th ke = jumlah uag sekarag = tgkat buga = jml tahu / bula

11 Nla yag aka datag Jka ada megvestaska Rp har dega terest 0% da dcompoud secara aual, berapa yag aka ada terma pada akhr tahu pertama da kelma jka seluruh pedapata lagsug dvestaska kembal (o wthdrawals)? % Rp FV

12 Nla yag aka datag Tahu Nla Sekarag Buga pada tahu ke Nla akhr

13 Nla yag aka datag Tahu Nla Awal Compud factor Nla akhr (Future Value) (+0,) (+0,) (+0,) (+0,) (+0,)

14 F = P (+ ) F = Jumlah uag yag aka datag P = Jumlah uag waktu sekarag = Tgkat buga = perode waktu

15 Cotoh : Pada awal th 2007 Saudara meabug d Bak sebesar $ dega suku buga 5% per tahu. Berapa uag saudara pada akhr tahu 2009???? Jawaba : F $ ( 3 3 0,05) = $ x,57625 = $ 5.762,50

16 Tabel Pembayara Buga Tahu ke Pokok Pjama Buga pd akhr tahu Pokok + buga $ $ $ $ $ $ $ $ 5.52,50 $ 5.762,50 Nla uag 5% 5.762, tahu

17 Nla Sekarag (Preset Value) Merupaka la sekarag dar sejumlah uag yag aka dterma beberapa waktu medatag atas dasar tgkat buga tertetu. Formula : P F atau P = la sekarag = la yg aka datag = tgkat buga = sejumlah tahu yg aka datag F P F ( )

18 Cotoh : Berapa la sekarag dar sejumlah uag sebesar $ yg baru aka dterma pada akhr tahu ke 5 bla ddasarka buga 5% dg buga majemuk????? Jawaba : $ P 5 (,5) $ P $ ,04 2,0

19 Nla Majemuk dar Auty Autas merupaka ser pembayara sejumlah uag dg sejumlah yg sama selama perode waktu tertetu pada tgkat buga tertetu. Formula : F A F = la sejumlah uag pembayara ser A = besarya pembayara I = tgkat buga = jumlah tahu

20 Cotoh : Perusahaa aka membayarka pjama sebesar Rp ,- dlm 5 tahu setap akhr tahu scr berturut-turut dega buga 5%, seluruh pjama aka dbayarka pd akhr th ke 5. Berapakah jumlah majemuk dr uag tsb?????? Jawaba : F Rp (,5)5 0,5 F Rp x,0357 0,5 Rp ,00

21 Pembayara pjama

22 keutuga SEMUSIM TAHUNAN C B C B C B NPV R C C C C B B B o t t t t o t t t o t t t C B C B = dscout rate = umur ekooms

23 TITIK PULANG POKOK - Perlu dhtug kapa terjadya ttk pulag pokok (BEP) - Semak lama waktu pecapaa TR=TC semak lama usaha/proyek mecapa keutuga da semak besar pula saldo keruga yag merupaka beba terhadap baya operas da pemelharaa. - Pay back perod (PBP) atau jagka waktu pegembala baya vestas: semak cepat pegembala baya vestas dar usaha/proyek yag drecaaka, semak bak proyek tersebut karea daa vestas dapat dguaka sebaga peaama vestas baru.

24 PERHITUNGAN PROFIT - Semak besar keutuga yag dterma, semak layak usaha/proyek yag dkembagka.

25 krtera Keutuga mmal = 0 Semusm: R / C Tahua: NPV 0

26 Dscout rate Gray et al (986, p.47) D Idoesa belum ada tgkat dscout rate sosal yag dtetapka secara umum oleh Bappeas, amu agka yag dguaka basaya berksar atara 0%- 5%

27 latha

NPV DAN IRR IR. ASEP TOTO KARTAMAN, MENG

NPV DAN IRR IR. ASEP TOTO KARTAMAN, MENG DAN IRR IR. ASEP TOTO KARTAMAN, MENG SEMESTER PENDEK SEMESTER TAHUN AKADEMIK 03-04 Prod Tekk Idustr Fakultas Tekk Uverstas Pasuda Badug 04 PERHITUNGAN KELAYAKAN INVESTASI. Net Preset Value () merupaka

Lebih terperinci

Angka Banding Manfaat dan Biaya

Angka Banding Manfaat dan Biaya METODE ANALISIS PERENCANAAN 2 Mater 3 : TPL 311 Oleh : Ke Marta Kaskoe Agka Badg Mafaat da Baya Dalam proyek pembagua, perlu dketahu apa mafaat dar proyek tersebut? Bagamaa keutuga ekoom atau keutuga sosal

Lebih terperinci

EKIVALENSI PRESENT WORTH FUTURE WORTH ANNUAL WORTH GRADIENT SERIES. Christina Wirawan 1

EKIVALENSI PRESENT WORTH FUTURE WORTH ANNUAL WORTH GRADIENT SERIES. Christina Wirawan 1 EKIVLENSI RESENT WORTH UTURE WORTH NNUL WORTH GRDIENT SERIES Chrsta Wrawa KONSE Dperluka terutama utuk memlh alteratf Ekvales tergatug pada : Tgkat suku buga Jumlah uag Waktu peermaa/pegeluara Cara buga

Lebih terperinci

Dasar Ekonomi Teknik: Matematika Uang. Ekonomi Teknik TIP FTP UB

Dasar Ekonomi Teknik: Matematika Uang. Ekonomi Teknik TIP FTP UB Dasar Ekoom Tekk: Matematka Uag Ekoom Tekk TIP TP UB Bahasa lra Kas (Cash low Tme Value of Moey Buga Ekvales Cash low Tata alra uag masuk da keluar per perode waktu pada suatu perusahaa lra kas aka terjad

Lebih terperinci

BAB 2 : BUNGA, PERTUMBUHAN DAN PELURUHAN

BAB 2 : BUNGA, PERTUMBUHAN DAN PELURUHAN Jl. Raya Wagu Kel. Sdagsar Kota Bogor Telp. 0251-8242411, emal: prohumas@smkwkrama.et, webste : www.smkwkrama.et BAB 2 : BUNGA, PERTUBUHAN DAN PELURUHAN PENGERTIAN BUNGA Buga adalah jasa dar smpaa atau

Lebih terperinci

EKONOMI TEKNIK. Ekuivalensi

EKONOMI TEKNIK. Ekuivalensi EKONOMI TEKNIK Ekuvales Ekuvales Ekuvales = Nla uag yag sama pada waktu yag berbeda. Jumlah uag berbeda pada waktu berbeda dapat berla ekooms sama. Cotoh = harga bes Rp 4.5, (25), Rp 5.5, (29), da Rp 6.5

Lebih terperinci

Analisis Kriteria Investasi

Analisis Kriteria Investasi Uverstas Guadarma TUJUAN Setelah mempelajar Bab dharapka mahasswa dapat memaham: Apakah gagasa usaha (proyek) yag drecaaka dapat memberka mafaat (beeft), bak dlhat dar facal beeft maupu socal beeft. Pelaa

Lebih terperinci

Analisis Kriteria Investasi TUJUAN

Analisis Kriteria Investasi TUJUAN Aalss Krtera Ivestas TUJUAN Setelah mempelajar Bab dharapka mahasswa dapat memaham: Apakah gagasa usaha (proyek) yag drecaaka dapat memberka mafaat (beeft), bak dlhat dar facal beeft maupu socal beeft.

Lebih terperinci

Penurunan Persamaan Perpetuitas dan Anuitas

Penurunan Persamaan Perpetuitas dan Anuitas SEMINR NSIONL MTEMTIK DN PENDIDIKN MTEMTIK UNY 2016 Peurua Persamaa Perpetutas da utas T - 6 Bud Fresdy Fakultas Ekoom da Bss Uverstas Idosa bstrak Mahasswa bss da akutas, debtor bak, da vestor memerluka

Lebih terperinci

PENERAPAN BARISAN DAN DERET

PENERAPAN BARISAN DAN DERET PENERPN BRIN DN DERET. MODEL PERKEMBNGN UH Jka perkembaga varabel-varabel tertetu dalam kegata usaha (msalya: produks, baya, pedapata, pegguaa teaga kerja, peaama modal) berpola sepert barsa artmetka,

Lebih terperinci

BAB III METODE PENELITIAN. Penelitian ini dilakukan di PT. Mulya Agro Bioteknologi yang terletak

BAB III METODE PENELITIAN. Penelitian ini dilakukan di PT. Mulya Agro Bioteknologi yang terletak BAB III METODE PENELITIAN 3.1 Lokas da Waktu Peelta Peelta dlakuka d PT. Mulya Agro Botekolog yag terletak Perumaha Tegalgodo Asr Blok H III No. 10 Kecamata Karagploso, Kabupate Malag. Pemlha lokas peelta

Lebih terperinci

3.1 Biaya Investasi Pipa

3.1 Biaya Investasi Pipa BAB III Model Baya Pada model baya [8] d tugas akhr, baya tahua total utuk megoperaska jarga ppa terdr dar dua kompoe, yatu baya operasoal da baya vestas. Baya operasoal terdr dar baya operasoal ppa da

Lebih terperinci

Buku Padua Belajar Maajeme Keuaga Chapter 0 KONSEP NILAI WAKTU UANG. Pegertia. Nilai Uag meurut waktu, berarti uag hari ii lebih baik / berharga dari pada ilai uag dimasa medatag pada harga omial yag sama.

Lebih terperinci

Nilai Waktu dan Uang (Time Value of Money)

Nilai Waktu dan Uang (Time Value of Money) Nilai Waktu da Uag (Time Value of Moey) Kosep Dasar Jika ilai omialya sama, uag yag dimiliki saat ii lebih berharga daripada uag yag aka diterima di masa yag aka datag Lebih baik meerima Rp juta sekarag

Lebih terperinci

MATERI HITUNG KEUANGAN

MATERI HITUNG KEUANGAN ATERI HITUNG KEUANGAN. emecahka masalah keuaga megguaka kosep matematka. eyelesaka masalah buga tuggal da buga majemuk dalam keuaga.2 eyelesaka masalah rete dalam sstem keuaga.3 eyelesaka masalah autas

Lebih terperinci

Muniya Alteza

Muniya Alteza RISIKO DAN RETURN 1. Estmas Retur da Rsko Idvdual. Kosep Dversfkas 3. Kovaras da Koefse Korelas 4. Estmas Retur da Rsko Portofolo Muya Alteza m_alteza@uy.ac.d Estmas Retur da Rsko 1) Estmas Realzed Retur

Lebih terperinci

FMDAM (2) TOPSIS TOPSIS TOPSIS. Charitas Fibriani

FMDAM (2) TOPSIS TOPSIS TOPSIS. Charitas Fibriani FMDAM (2) Chartas Fbra Techque for Order Preferece by Smlarty to Ideal Soluto () ddasarka pada kosep dmaa alteratf terplh yag terbak tdak haya memlk jarak terpedek dar solus deal postf, amu juga memlk

Lebih terperinci

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu KORELASI 1 D dua kta tdak dapat hdup sedr, tetap memerluka hubuga dega orag la. Hubuga tu pada umumya dlakuka dega maksud tertetu sepert medapat kergaa pajak, memperoleh kredt, memjam uag, serta mta pertologa/batua

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu.

BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu. BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa yag varabel bebasya ( berpagkat palg tgg satu. Utuk regres ler sederhaa, regres ler haya melbatka dua varabel ( da. Persamaa regresya dapat dtulska

Lebih terperinci

Muniya Alteza

Muniya Alteza NILAI WAKTU UANG 1. Kosep dasar ilai waktu uag (time value of moey) 2. Nilai masa depa (future value) 3. Nilai sekarag (preset value) 4. Auitas (auity) 5. Perpetuitas (perpetuity) 6. Buga tahua efektif/

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel

BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel BAB I PENDAHULUAN 1.1 Statstka Deskrptf da Statstka Iferesal Dewasa d berbaga bdag lmu da kehdupa utuk memaham/megetahu sesuatu dperluka dat Sebaga cotoh utuk megetahu berapa bayak rakyat Idoesa yag memerluka

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa merupaka baga regres yag mecakup hubuga ler satu peubah acak tak bebas dega satu peubah bebas. Hubuga ler da dar satu populas dsebut gars regres

Lebih terperinci

MATEMATIKA EKONOMI 1 Deret. DOSEN Fitri Yulianti, SP, MSi.

MATEMATIKA EKONOMI 1 Deret. DOSEN Fitri Yulianti, SP, MSi. MATEMATIKA EKONOMI 1 Deret DOSEN Fitri Yuliati, SP, MSi. Deret Deret ialah ragkaia bilaga yag tersusu secara teratur da memeuhi kaidah-kaidah tertetu. Bilaga-bilaga yag merupaka usur da pembetuk sebuah

Lebih terperinci

BAB 5. ANALISIS REGRESI DAN KORELASI

BAB 5. ANALISIS REGRESI DAN KORELASI BAB 5. ANALISIS REGRESI DAN KORELASI Tujua utama aalss regres adalah mecar ada tdakya hubuga ler atara dua varabel: Varabel bebas (X), yatu varabel yag mempegaruh Varabel terkat (Y), yatu varabel yag dpegaruh

Lebih terperinci

ANALISIS KELAYAKAN USAHA PUPUK ORGANIK (PO) CURAH. Oleh : CECEP PARDANI FAKULTAS PERTANIAN UNIVERSITAS GALUH CIAMIS

ANALISIS KELAYAKAN USAHA PUPUK ORGANIK (PO) CURAH. Oleh : CECEP PARDANI FAKULTAS PERTANIAN UNIVERSITAS GALUH CIAMIS ANALISIS KELAYAKAN USAHA PUPUK ORGANIK (PO) CURAH Oleh : CECEP PARDANI FAKULTAS PERTANIAN UNIVERSITAS GALUH CIAMIS e-mal : alfarhac@gmal.com DEVI SUTRIANA FAKULTAS PERTANIAN UNIVERSITAS GALUH CIAMIS e-mal

Lebih terperinci

Manajemen Keuangan. Idik Sodikin,SE,MBA,MM KONSEP WAKTU UANG PADA MASALAH KEUANGAN. Modul ke: Fakultas EKONOMI DAN BISNIS. Program Studi Akuntansi

Manajemen Keuangan. Idik Sodikin,SE,MBA,MM KONSEP WAKTU UANG PADA MASALAH KEUANGAN. Modul ke: Fakultas EKONOMI DAN BISNIS. Program Studi Akuntansi Modul ke: 05 KONSEP WAKTU UANG PADA MASALAH KEUANGAN Fakultas EKONOMI DAN BISNIS Program Studi Akutasi Idik Sodiki,SE,MBA,MM Pedahulua Kosep ilai waktu dari uag (time value of moey) pada dasarya mejelaska

Lebih terperinci

ANUITAS. 9/19/2012 MK. Aktuaria Darmanto,S.Si.

ANUITAS. 9/19/2012 MK. Aktuaria Darmanto,S.Si. ANUITAS 9/19/2012 MK. Aktuaria Darmato,S.Si. 1 OVERVIEW Auitas adl suatu pembayara dalam jumlah tertetu, yag dilakuka setiap selag waktu da lama tertetu, secara berkelajuta. Suatu auitas yg pasti dilakuka

Lebih terperinci

WAKTU PERGANTIAN ALAT BERAT JENIS WHEEL LOADER DENGAN METODE LEAST COST

WAKTU PERGANTIAN ALAT BERAT JENIS WHEEL LOADER DENGAN METODE LEAST COST Koferes Nasoal Tekk Spl 3 (KoNTekS 3) Jakarta, 6 7 Me 009 WAKTU PERGANTIAN ALAT BERAT JENIS WHEEL LOADER DENGAN METODE LEAST COST Maksum Taubrata Program Stud Tekk Spl, Uverstas Krste Maraatha Badug Jl.

Lebih terperinci

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai BAB LANDASAN TEORI. Kosep Dasar Aalss Regres Aalss regres regressso aalyss merupaka suatu tekk utuk membagu persamaa da megguaka persamaa tersebut utuk membuat perkraa predcto. Dega demka, aalss regres

Lebih terperinci

IV METODE PENELITIAN

IV METODE PENELITIAN IV METODE PENELITIAN 4.1. Lokasi da Waktu Peelitia Lokasi peelitia dilakuka di PT. Bak Bukopi, Tbk Cabag Karawag yag berlokasi pada Jala Ahmad Yai No.92 Kabupate Karawag, Jawa Barat da Kabupate Purwakarta

Lebih terperinci

CADANGAN PROSEKTIF ASURANSI JIWA DWIGUNA BERDASARKAN ASUMSI CONSTANT FORCE

CADANGAN PROSEKTIF ASURANSI JIWA DWIGUNA BERDASARKAN ASUMSI CONSTANT FORCE CADANGAN ROSEKTIF ASURANSI JIWA DWIGUNA BERDASARKAN ASUMSI CONSTANT FORCE Tara Mustka 1, Johaes Kho 2, Azskha 2 1 Mahasswa rogra S1 Mateatka 2 Dose Jurusa Mateatka Fakultas Mateatka da Ilu egetahua Ala

Lebih terperinci

BAB 6 PRINSIP INKLUSI DAN EKSKLUSI

BAB 6 PRINSIP INKLUSI DAN EKSKLUSI BB 6 PRINSIP INKLUSI DN EKSKLUSI Pada baga aka ddskuska topk berkutya yatu eumeras yag damaka Prsp Iklus da Eksklus. Kosep dalam bab merupaka perluasa de dalam Dagram Ve beserta oepras rsa da gabuga, amu

Lebih terperinci

BAB 2 LANDASAN TEORI. Istilah regresi pertama kali diperkenalkan oleh Francis Galton. Menurut Galton,

BAB 2 LANDASAN TEORI. Istilah regresi pertama kali diperkenalkan oleh Francis Galton. Menurut Galton, BAB LANDASAN TEORI Pegerta Regres Istlah regres pertama kal dperkealka oleh Fracs Galto Meurut Galto, aalss regres berkeaa dega stud ketergatuga dar suatu varabel yag dsebut varabel tak bebas (depedet

Lebih terperinci

H. MEMECAHKAN MASALAH KEUANGAN DENGAN KONSEP MATEMATIKA

H. MEMECAHKAN MASALAH KEUANGAN DENGAN KONSEP MATEMATIKA H. EECAHKAN ASALAH KEUANGAN DENGAN KONSE ATEATIKA eyelesaka asalah Buga Tuggal da Buga ajemuk Dalam Keuaga Buga Tuggal egerta Buga erse Datas Seratus da erse Dbawah Seratus erse D atas Seratus erse datas

Lebih terperinci

BAB 1 ERROR PERHITUNGAN NUMERIK

BAB 1 ERROR PERHITUNGAN NUMERIK BAB ERROR PERHITUNGAN NUMERIK A. Tujua a. Memaham galat da hampra b. Mampu meghtug galat da hampra c. Mampu membuat program utuk meelesaka perhtuga galat da hampra dega Matlab B. Peragkat da Mater a. Software

Lebih terperinci

i adalah indeks penjumlahan, 1 adalah batas bawah, dan n adalah batas atas.

i adalah indeks penjumlahan, 1 adalah batas bawah, dan n adalah batas atas. 4 D E R E T Kosep deret merupaka kosep matematika yag cukup populer da aplikatif khusuya dalam kasus-kasus yag meyagkut perkembaga da pertumbuha suatu gejala tertetu. Apabila perkembaga atau pertumbuha

Lebih terperinci

MANAJEMEN RISIKO INVESTASI

MANAJEMEN RISIKO INVESTASI MANAJEMEN RISIKO INVESTASI A. PENGERTIAN RISIKO Resiko adalah peyimpaga hasil yag diperoleh dari recaa hasil yag diharapka Besarya tigkat resiko yag dimasukka dalam peilaia ivestasi aka mempegaruhi besarya

Lebih terperinci

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM 1 Megetahu perhtuga persamaa regres ler Meggambarka persamaa regres ler ke dalam dagram pecar TEORI PENUNJANG Persamaa Regres adalah persamaa matematka

Lebih terperinci

PENDAHULUAN Metode numerik merupakan suatu teknik atau cara untuk menganalisa dan menyelesaikan masalah masalah di dalam bidang rekayasa teknik dan

PENDAHULUAN Metode numerik merupakan suatu teknik atau cara untuk menganalisa dan menyelesaikan masalah masalah di dalam bidang rekayasa teknik dan Aalsa Numerk Baha Matrkulas PENDAHULUAN Metode umerk merupaka suatu tekk atau cara utuk megaalsa da meyelesaka masalah masalah d dalam bdag rekayasa tekk da sa dega megguaka operas perhtuga matematk Masalah-masalah

Lebih terperinci

Penarikan Contoh Gerombol (Cluster Sampling) Departemen Statistika FMIPA IPB

Penarikan Contoh Gerombol (Cluster Sampling) Departemen Statistika FMIPA IPB Pearka Cotoh Gerombol (Cluster Samplg) Departeme Statstka FMIPA IPB Radom samplg (Revew) Smple radom samplg Stratfed radom samplg Rato, regresso, ad dfferece estmato Systematc radom samplg Cluster radom

Lebih terperinci

BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP

BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP Msal dguaka kode ler C[, k, d] dega matrks pembagu G da matrks cek partas H. Sebuah blok formas x = x 1 x 2 x k, x = 0 atau 1, yag aka dkrm terlebh

Lebih terperinci

CATATAN KULIAH #12&13 Bunga Majemuk

CATATAN KULIAH #12&13 Bunga Majemuk CATATAN KULIAH #12&13 Buga Majemuk 10.1 Pedahulua Pada pembahasa sebelumya diasumsika bahwa P atau ilai pokok pembayara tidak megalami perubaha dari awal higga akhir sehigga ilai buga selalu dihitug dari

Lebih terperinci

Pembayaran pertama yang dilakukan pada setiap akhir tahun selama n tahun

Pembayaran pertama yang dilakukan pada setiap akhir tahun selama n tahun Husa Arfah, M.Sc : Autas Dasar Emal : husaarfah@uy.ac. ANUITAS DASAR 3. Peahulua Autas aalah seragkaa pembayara yag lakuka paa terval waktu yag sama (per tahu atau sebalkya). Pembayara utuk jagka waktu

Lebih terperinci

JENIS BUNGA PEMAJEMUKAN KONTINYU

JENIS BUNGA PEMAJEMUKAN KONTINYU JENIS BUNGA PEMAJEMUKAN KONTINYU Suku Buga Nomal Suku Buga Efektf Hubuga ataa Suku Buga Nomal da Efektf Aus Daa Dskt da Aus Daa Kotyu SUKU BUNGA NOMINAL & SUKU BUNGA EFEKTIF Selama daggap aus daa (peemaa

Lebih terperinci

Penelitian Operasional II Teori Permainan TEORI PERMAINAN

Penelitian Operasional II Teori Permainan TEORI PERMAINAN Peelta Operasoal II Teor Permaa 7 2 TEORI PERMAINAN 2 Pegatar 2 Krtera Tekk Permaa : () Terdapat persaga kepetga datara pelaku (2) Setap pema memlk stateg, bak terbatas maupu tak terbatas (3) Far Game

Lebih terperinci

BAB 5 BARISAN DAN DERET KOMPLEKS. Secara esensi, pembahasan tentang barisan dan deret komlpeks sama dengan barisan dan deret real.

BAB 5 BARISAN DAN DERET KOMPLEKS. Secara esensi, pembahasan tentang barisan dan deret komlpeks sama dengan barisan dan deret real. BAB 5 BARIAN DAN DERET KOMPLEK ecara eses, pembahasa tetag barsa da deret komlpeks sama dega barsa da deret real. 5. Barsa Barsa merupaka sebuah fugs dega doma berupa hmpua blaga asl N. ebuah barsa kompleks

Lebih terperinci

BAB 2 LANDASAN TEORI. Analisis regresi adalah suatu proses memperkirakan secara sistematis tentang apa yang paling

BAB 2 LANDASAN TEORI. Analisis regresi adalah suatu proses memperkirakan secara sistematis tentang apa yang paling BAB LANDASAN TEORI Kosep Dasar Aalss Regres Aalss regres adalah suatu proses memperkraka secara sstemats tetag apa yag palg mugk terjad dmasa yag aka datag berdasarka formas yag sekarag dmlk agar memperkecl

Lebih terperinci

MATEMATIKA BISNIS. OLEH: SRI NURMI LUBIS, S.Si GICI BUSSINESS SCHOOL BATAM

MATEMATIKA BISNIS. OLEH: SRI NURMI LUBIS, S.Si GICI BUSSINESS SCHOOL BATAM MATEMATIKA BISNIS OLEH: SRI NURMI LUBIS, S.Si GICI BUSSINESS SCHOOL BATAM BAB BARISAN DAN DERET A. BARISAN Barisa bilaga adalah susua bilaga yag diurutka meurut atura tertetu.betuk umum barisa bilaga a,

Lebih terperinci

ANALISIS KELAYAKAN FINANSIAL USAHA PENGOLAHAN DODOL SIRSAK

ANALISIS KELAYAKAN FINANSIAL USAHA PENGOLAHAN DODOL SIRSAK ANALISIS KELAYAKAN FINANSIAL USAHA PENGOLAHAN DODOL SIRSAK (Aoa murcata) (Stud Kasus d Desa Sgapara Kecamata Sgapara Kabupate Taskmalaya) Oleh: Ga Ekayaa 1, Soetoro 2, Mochamad Ramda 3 1,3 Fakultas Pertaa

Lebih terperinci

Uji Statistika yangb digunakan dikaitan dengan jenis data

Uji Statistika yangb digunakan dikaitan dengan jenis data Uj Statstka yagb dguaka dkata dega jes data Jes Data omal Ordal Iterval da Raso Uj Statstka Koefse Kotges Rak Spearma Kedall Tau Korelas Parsal Kedall Tau Koefse Kokordas Kedall W Pearso Korelas Gada Korelas

Lebih terperinci

UKURAN GEJALA PUSAT DAN UKURAN LETAK

UKURAN GEJALA PUSAT DAN UKURAN LETAK UKURAN GEJALA PUSAT DAN UKURAN LETAK MODUL 4 UKURAN GEJALA PUSAT DAN UKURAN LETAK. Pedahulua Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu persoala, bak megea sampel atau pu

Lebih terperinci

3 Departemen Statistika FMIPA IPB

3 Departemen Statistika FMIPA IPB Supleme Respos Pertemua ANALISIS DATA KATEGORIK (STK51) Departeme Statstka FMIPA IPB Pokok Bahasa Sub Pokok Bahasa Referes Waktu U potess Tga Cotoh atau Lebh U Kruskal-Walls (aalss ragam satu-arah berdasarka

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 1 Pegerta Regres Istlah regres pertama kal dperkealka oleh Fracs Galto Meurut Galto, aalss regres berkeaa dega stud ketergatuga dar suatu varabel yag dsebut tak bebas depedet varable,

Lebih terperinci

BARISAN DAN DERET. Materi ke 1

BARISAN DAN DERET. Materi ke 1 BARISAN DAN DERET Materi ke 1 Pola Bilaga adalah? Susua bilaga yag disusu meurut atura tertetu. Cotoh : 1. Pola Bilaga Gajil 1, 3, 5,... 2. Pola Bilaga Geap 2, 4, 6,... PERHATIKAN SSNAN BILANGAN DI BAWAH

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Dalam pemodela program ler, semua parameter yag dguaka dalam model dasumska dapat dketahu secara past. Parameter-parameter terdr dar koefse batasa ( ) a, la kuattas batasa

Lebih terperinci

2.2.3 Ukuran Dispersi

2.2.3 Ukuran Dispersi 3 Ukura Dspers Yag aka dbahas ds adalah smpaga baku da varas karea dua ukura dspers yag palg serg dguaka Hubuga atara smpaga baku dega varas adalah Varas = Kuadrat dar Smpaga baku otas yag umum dguaka

Lebih terperinci

Bab II Teori Pendukung

Bab II Teori Pendukung Bab II Teor Pedukug.. asar Statstka Utuk keperlua peaksra outstadg clams lablty, pegetahua dalam statstka mead hal yag petg. asar statstka yag dguaka dalam tess atara la :. strbus ormal Sebuah peubah acak

Lebih terperinci

BAB 2 LANDASAN TEORI. yang akan terjadi pada masa yang akan datang dengan waktu yang relative lama.

BAB 2 LANDASAN TEORI. yang akan terjadi pada masa yang akan datang dengan waktu yang relative lama. BAB 2 LANDASAN TEORI 2.1 Pegerta Peramala Peramala ( forecastg ) adalah kegata memperkraka atau mempredkska apa yag aka terjad pada masa yag aka datag dega waktu yag relatve lama. Sedagka ramala adalah

Lebih terperinci

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu BAB II LADASA TEORI Dalam pegambla sampel dar suatu populas, dperluka suatu tekk pegambla sampel yag tepat sesua dega keadaa populas tersebut. Sehgga sampel yag dperoleh adalah sampel yag dapat mewakl

Lebih terperinci

III. METODE PENELITIAN. yang hidup dan berguna bagi masyarakat, maupun bagi peneliti sendiri

III. METODE PENELITIAN. yang hidup dan berguna bagi masyarakat, maupun bagi peneliti sendiri III. METODE PEELITIA A. Metodolog Peelta Metodolog peelta adalah cara yag dlakuka secara sstemats megkut atura-atura, recaaka oleh para peeltutuk memecahka permasalaha yag hdup da bergua bag masyarakat,

Lebih terperinci

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS Tgg tekaa [m] UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS Se, 11 Desember 017 100 met [ Boleh membuka buku Tdak boleh memaka komputer ] SOAL 1 [SO A-3, BOBOT NILAI 50%] Sebuah PDAM melakuka pegukura

Lebih terperinci

SOLUSI TUGAS I HIMPUNAN

SOLUSI TUGAS I HIMPUNAN Program Stud S1 Tekk Iformatka Fakultas Iformatka, Telkom Uversty SOLUSI TUGAS I HIMPUNAN Matematka Dskrt (MUG2A3) Halama 1 dar 6 Soal 1 Tetukalah eleme-eleme dar hmpua berkut! 2 x x adalah blaga real

Lebih terperinci

STATISTIKA A. Definisi Umum B. Tabel Distribusi Frekuensi

STATISTIKA A. Definisi Umum B. Tabel Distribusi Frekuensi STATISTIKA A. Des Umum. Pegerta statstk Statstk adalah kumpula akta yag berbetuk agka da dsusu dalam datar atau tabel yag meggambarka suatu persoala. Cotoh: statstk kurs dolar Amerka, statstk pertumbuha

Lebih terperinci

BAB 2. Tinjauan Teoritis

BAB 2. Tinjauan Teoritis BAB Tjaua Teorts.1 Regres Lear Sederhaa Regres lear adalah alat statstk yag dperguaka utuk megetahu pegaruh atara satu atau beberapa varabel terhadap satu buah varabel. Varabel yag mempegaruh serg dsebut

Lebih terperinci

Menghitung Kinerja Investasi

Menghitung Kinerja Investasi Meghtug Kerja Ivestas Dalam perjalaa vestas, la suatu asset bsa berubah dar waktu ke waktu akbat perubaha kods pasar. Sela tu, sebaga baga dar proses vestas, vestor perlu mematau da megevaluas kerja vestas

Lebih terperinci

BAB III UKURAN PEMUSATAN DATA

BAB III UKURAN PEMUSATAN DATA BAB III UKURAN PEMUSATAN DATA A. Ukura Gejala Pusat Ukura pemusata adalah suatu ukura yag meujukka d maa suatu data memusat atau suatu kumpula pegamata memusat (megelompok). Ukura pemusata data adalah

Lebih terperinci

LANGKAH-LANGKAH UJI HIPOTESIS DENGAN 2 (Untuk Data Nominal)

LANGKAH-LANGKAH UJI HIPOTESIS DENGAN 2 (Untuk Data Nominal) LANGKAH-LANGKAH UJI HIPOTESIS DENGAN (Utuk Data Nomal). Merumuska hpotess (termasuk rumusa hpotess statstk). Data hasl peelta duat dalam etuk tael slag (tael frekues oservas) 3. Meetuka krtera uj atau

Lebih terperinci

ANALISIS KELAYAKAN FINANSIAL PADA AGROINDUSTRI TEMPE (Studi Kasus pada Perajin Tempe di Kelurahan Banjar Kecamatan Banjar Kota Banjar)

ANALISIS KELAYAKAN FINANSIAL PADA AGROINDUSTRI TEMPE (Studi Kasus pada Perajin Tempe di Kelurahan Banjar Kecamatan Banjar Kota Banjar) ANALISIS KELAYAKAN FINANSIAL PADA AGROINDUSTRI TEMPE (Stud Kasus pada Peraj Tempe d Keluraha Bajar Kecamata Bajar Kota Bajar) Oleh: Hel Oktavyat 1, Soetoro 2, Cecep Parda 3 1) Mahasswa Fakultas Pertaa

Lebih terperinci

4/1/2013. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut. Dengan: n = banyak data

4/1/2013. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut. Dengan: n = banyak data //203 UKURAN GEJALA PUSAT DAN UKURAN LETAK Kaa Evta Dew, S.Pd., M.S. Ukura gejala pusat Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu hal, bak tu dar sampel ataupu populas Ukura

Lebih terperinci

Penarikan Contoh Acak Sederhana (Simple Random Sampling)

Penarikan Contoh Acak Sederhana (Simple Random Sampling) Pearka Cotoh Acak Sederhaa (Smple Radom Samplg) Defs Jka sebuah cotoh berukura dambl dar suatu populas sedemka rupa sehgga setap cotoh berukura ag mugk memlk peluag sama utuk terambl, maka prosedur tu

Lebih terperinci

SUM BER BELA JAR Menerap kan aturan konsep statistika dalam pemecah an masalah INDIKATOR MATERI TUGAS

SUM BER BELA JAR Menerap kan aturan konsep statistika dalam pemecah an masalah INDIKATOR MATERI TUGAS C. Pembelajara 3 1. Slabus N o STANDA R KOMPE TENSI KOMPE TENSI DASAR INDIKATOR MATERI TUGAS BUKTI BELAJAR KON TEN INDIKA TOR WAK TU SUM BER BELA JAR Meerap ka atura kosep statstka dalam pemecah a masalah

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Lokasi da Waktu Peelitia Peelitia ii dilakuka di lokasi huta taama idustri yag terdapat di PT. Wirakarya Sakti Provisi Jambi. Waktu pelaksaaa peelitia ii adalah bula April

Lebih terperinci

4/15/2009. Arti investasi : a. Hasil penjualan. b. Biaya c. Ekspektasi dan kepercayaan.

4/15/2009. Arti investasi : a. Hasil penjualan. b. Biaya c. Ekspektasi dan kepercayaan. Arti ivestasi : a. Hasil pejuala. b. Biaya c. Ekspektasi da kepercayaa. Ivestasi : peigkata barag modal berujud Kekuata Ekoomi Utama; Hasil pegembalia ivestasi yag dipegaruhi oleh struktur ekoomi, biaya

Lebih terperinci

ANALISIS PERBANDINGAN ARUS KAS PT DUTA PERTIWI TBK DAN PT KAWASAN INDUSTRI JABABEKA TBK

ANALISIS PERBANDINGAN ARUS KAS PT DUTA PERTIWI TBK DAN PT KAWASAN INDUSTRI JABABEKA TBK ANALISIS PRBANDINGAN ARUS KAS PT DUTA PRTIWI TBK DAN PT KAWASAN INDUSTRI JABABKA TBK (Rsk ad Cash Flow Aalyss) Oleh/By: Sutart da Sr Bawoo Dose Akadem Maajeme Kesatua da STI Kesatua ABSTRAK Perusahaa megguaka

Lebih terperinci

UKURAN GEJALA PUSAT (UGP)

UKURAN GEJALA PUSAT (UGP) UKURAN GEJALA PUSAT (UGP) Pegerta: Rata-rata (average) alah suatu la yag mewakl suatu kelompok data. Nla dsebut juga ukura gejala pusat karea pada umumya mempuya kecederuga terletak d tegah-tegah da memusat

Lebih terperinci

STUDI KELAYAKAN BISNIS. Investment Criteria Analysis. Arranged by : R. AGUS BAKTIONO UNIVERSITAS NAROTAMA SURABAYA 2010

STUDI KELAYAKAN BISNIS. Investment Criteria Analysis. Arranged by : R. AGUS BAKTIONO UNIVERSITAS NAROTAMA SURABAYA 2010 STUDI KELAYAKAN BISNIS Arraged by : R. AGUS BAKTIONO UNIVERSITAS NAROTAMA SURABAYA 2010 TUJUAN Setelah mempelajari Bab ii diharapka mahasiswa dapat memahami: Apakah gagasa usaha (proyek) yag direcaaka

Lebih terperinci

MUTUALLY EXCLUSIVE ALTERNATIVE PROJECT UNTUK ANALISIS KELAYAKAN USAHA INDUSTRI KECIL

MUTUALLY EXCLUSIVE ALTERNATIVE PROJECT UNTUK ANALISIS KELAYAKAN USAHA INDUSTRI KECIL Jural Sstem Tekk Idustr Volume 6, No. Jul 005 MUTUALLY EXCLUSIVE ALTERNATIVE PROJECT UNTUK ANALISIS KELAYAKAN USAHA INDUSTRI KECIL A Had Arf Fakultas Ekoom Uverstas Malkussaleh Abstrak: Pembagua asoal

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1 Pedahulua Sebelum membahas megea prosedur peguja hpotess, terlebh dahulu aka djelaska beberapa teor da metode yag meujag utuk mempermudah pembahasa. Adapu teor da metode tersebut

Lebih terperinci

KEPUTUSAN-KEPUTUSAN LINTAS WAKTU

KEPUTUSAN-KEPUTUSAN LINTAS WAKTU KEPUTUSA-KEPUTUSA LITAS WAKTU Dr. Mohammad Abdul Mukhy Page Modal adalah uang dan sumber daya yang dnvestaskan Bunga (nterest) adalah pengembalan atas modal atau sejumlah uang yang dterma nvestor untuk

Lebih terperinci

TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM. Sudarno Jurusan Matematika FMIPA UNDIP

TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM. Sudarno Jurusan Matematika FMIPA UNDIP JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 11-19, Aprl 004, ISSN : 1410-8518 TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM Sudaro Jurusa Matematka FMIPA UNDIP Abstrak Sstem yag dbetuk

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1. Waktu da Tempat Peelta megea la ekoom koflk mausa da gajah dlaksaaka selama 2 bula mula dar bula Jul hgga Agustus 2009. Pegambla data lapaga dlaksaaka d Desa Lubuk Kembag

Lebih terperinci

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS Se, 19 Desember 016 100 met [ Boleh membuka buku Tdak boleh memaka komputer ] SOAL 1 [SO A-3, BOBOT NILAI 40%] Hasl pegukura sampel d beberapa sekolah da

Lebih terperinci

BAB 2 LANDASAN TEORITIS. yang akan terjadi pada masa yang akan datang dengan waktu yang relatif lama.

BAB 2 LANDASAN TEORITIS. yang akan terjadi pada masa yang akan datang dengan waktu yang relatif lama. BAB 2 LANDASAN TEORITIS 2.1 Pegerta Peramala Peramala ( forecastg ) adalah kegata memperkraka atau mempredkska apa yag aka terjad pada masa yag aka datag dega waktu yag relatf lama. Sedagka ramala adalah

Lebih terperinci

TUGAS MATA KULIAH TEORI RING LANJUT MODUL NOETHER

TUGAS MATA KULIAH TEORI RING LANJUT MODUL NOETHER TUGAS ATA KULIAH TEORI RING LANJUT ODUL NOETHER Da Aresta Yuwagsh (/364/PPA/03489) Sebelumya, telah dketahu bahwa sebaga rg dega eleme satua memeuh sfat rata ak utuk deal-deal d. Apabla dpadag sebaga modul,

Lebih terperinci

CAL ( ) ( ) E r. Var rp i M im

CAL ( ) ( ) E r. Var rp i M im LAIRAN 3 Lampra Bukt ersamaa ( Gambar: Kurva Froter da CAL E ( r CAL E ( r ( E r r roter r ( E r r Kemrga gars CAL adalah, merupaka market prce o rsk (rsko harga pasar da dsebut raso mbal hasl terhadap

Lebih terperinci

* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES

* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES * PENYAJIAN DATA Secara umum, ada dua cara peyaja data, yatu : 1. Tabel atau daftar. Grafk atau dagram Macam-macam daftar yag dkeal : a. Daftar bars kolom b. Daftar kotges c. Daftar dstrbus frekues Sedagka

Lebih terperinci

3/19/2012. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut

3/19/2012. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut 3/9/202 UKURAN GEJALA PUSAT DAN UKURAN LETAK Kaa Evta Dew, S.Pd., M.S. Ukura gejala pusat Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu hal, bak tu dar sampel ataupu populas

Lebih terperinci

ESTIMASI UKURAN SENSITIVITAS KEUNTUNGAN SAHAM DALAM PORTOFOLIO PADA SINGLE INDEX MODEL

ESTIMASI UKURAN SENSITIVITAS KEUNTUNGAN SAHAM DALAM PORTOFOLIO PADA SINGLE INDEX MODEL Bulet Ilmah Mat. Stat. da Terapaya (Bmaster) Volume 0, No. (03), hal. 57-6 ESTIMASI UKUAN SENSITIVITAS KEUNTUNGAN SAHAM DALAM POTOFOLIO PADA SINGLE INDEX MODEL Eka Kurawat, Helm, Neva Satyahadew INTISAI

Lebih terperinci

ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS

ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS = 1 + + + + k k + u PowerPot Sldes baa Rohmaa Educato Uverst of Idoesa 007 Laboratorum Ekoom & Koperas Publshg Jl. Dr. Setabud

Lebih terperinci

BAB 4: Anuitas Lebih Umum

BAB 4: Anuitas Lebih Umum Husa Arfah, M.Sc : Autas yag lebh Umum Emal :husaarfah@uy.ac.d BAB 4: Autas Lebh Umum 4. Pedahulua Pada bab 3 telah dbahas tetag autas utuk perode pembayara, da perode buga koers yag setara da dpeuh secara

Lebih terperinci

BAB III PERSAMAAN PANAS DIMENSI SATU

BAB III PERSAMAAN PANAS DIMENSI SATU BAB III PERSAMAAN PANAS DIMENSI SAU Pada baga sebelumya, kta telah membahas peerapa metoda Ruge-Kutta orde 4 utuk meyelesaka masalah la awal dar persamaa dferesal basa orde. Pada bab, kta aka melakuka

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Sampa saat, model Regres da model Aalss Varas telah dpadag sebaga dua hal ag tdak berkata. Meskpu merupaka pedekata ag umum dalam meeragka kedua cara pada taraf permulaa,

Lebih terperinci

MINGGU KE-10 HUBUNGAN ANTAR KONVERGENSI

MINGGU KE-10 HUBUNGAN ANTAR KONVERGENSI MINGGU KE-0 HUBUNGAN ANTAR KONVERGENSI Hubuga atar koverges Hrark atar koverges dyataka dalam teorema berkut. Teorema Msalka X da X, X, X 3,... adalah varabel radom yag ddefska pada ruag probabltas yag

Lebih terperinci

TATAP MUKA III UKURAN PEMUSATAN DATA (MEAN, MEDIAN DAN MODUS) Fitri Yulianti, SP. Msi.

TATAP MUKA III UKURAN PEMUSATAN DATA (MEAN, MEDIAN DAN MODUS) Fitri Yulianti, SP. Msi. TATAP MUKA III UKURAN PEMUSATAN DATA (MEAN, MEDIAN DAN MODUS) Ftr Yulat, SP. Ms. UKURAN DATA Ukura data Ukura Pemusata data Ukura letak data Ukura peyebara data Mea Meda Jagkaua Meda Kuartl Jagkaua atar

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. Statistik merupakan cara cara tertentu yang digunakan dalam mengumpulkan,

BAB 2 TINJAUAN TEORITIS. Statistik merupakan cara cara tertentu yang digunakan dalam mengumpulkan, BAB TINJAUAN TEORITIS 1 Kosep Dasar Statstka Statstk merupaka cara cara tertetu yag dguaka dalam megumpulka, meyusu atau megatur, meyajka, megaalsa da member terpretas terhadap sekumpula data, sehgga kumpula

Lebih terperinci

II. LANDASAN TEORI. Pada bab II ini, akan dibahas pengertian-pengertian (definisi) dan teoremateorema

II. LANDASAN TEORI. Pada bab II ini, akan dibahas pengertian-pengertian (definisi) dan teoremateorema II. LANDAAN TEORI Pada bab II aka dbahas pegerta-pegerta (defs) da teoremateorema ag medukug utuk pembahasa pada bab IV. Pegerta (defs) da teorema tersebut dtulska sebaga berkut.. Teorema Proeks Teorema

Lebih terperinci

ANALISIS KORELASI DAN REGRESI (LINEAR)

ANALISIS KORELASI DAN REGRESI (LINEAR) ANALISIS KORELASI DAN REGRESI (LINEAR) Hubuga atara dua kejada dapat dyataka dega hubuga dua varabel Apabla dua varabel da mempuya hubuga, maka la varabel yag sudah dketahu dapat dperguaka utuk memperkraka/meaksr.

Lebih terperinci

STATISTIKA. A. Tabel Langkah untuk mengelompokkan data ke dalam tabel distribusi frekuensi data berkelompok/berinterval: a. Rentang/Jangkauan (J)

STATISTIKA. A. Tabel Langkah untuk mengelompokkan data ke dalam tabel distribusi frekuensi data berkelompok/berinterval: a. Rentang/Jangkauan (J) STATISTIKA A. Tabel Lagkah utuk megelompokka data ke dalam tabel dstrbus frekues data berkelompok/berterval: a. Retag/Jagkaua (J) J X maks X m b. Bayak kelas (k) Megguaka atura Sturgess, yatu k,. log c.

Lebih terperinci

BAB III PEMBENTUKAN SKEMA PEMBAGIAN RAHASIA

BAB III PEMBENTUKAN SKEMA PEMBAGIAN RAHASIA BAB III PEMBENTUKAN SKEMA PEMBAGIAN RAHASIA 3. Pegkodea Matrks Ketetaggaa Matrks ketetaggaa A adaah matrks smetr, sehgga, dega memh semua eeme pada dagoa utama da eeme-eeme dbawah dagoa utama, maka aka

Lebih terperinci

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten BAB III METODE PENELITIAN 3. Tempat da Waktu Peelta 3.. Tempat Tempat peelta dlaksaaka d SMP Neger 4 Tlamuta Kabupate Boalemo pada sswa kelas VIII. 3.. Waktu Peelta dlaksaaka dalam waktu 3 bula yatu dar

Lebih terperinci