2.2.3 Ukuran Dispersi

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "2.2.3 Ukuran Dispersi"

Transkripsi

1 3 Ukura Dspers Yag aka dbahas ds adalah smpaga baku da varas karea dua ukura dspers yag palg serg dguaka Hubuga atara smpaga baku dega varas adalah Varas = Kuadrat dar Smpaga baku otas yag umum dguaka utuk smpaga baku adalah : (tou, sgma) utuk smpaga baku populas da s utuk smpaga baku sampel Ukura merupaka ukura statstk yag meujukka sampa sejauh maa varabltas data yag terkumpul Mak kecl la ukura, meujukka varabltas data mak redah atau dapat dkataka bahwa data relat seragam, da sebalkya Msal,, adalah buah data ( dskrt atau kotu) yag belum dsajka dalam DDF (ugrouped data) Yag dambl dar sebuah populas berukura dega data,,, Maka varas ( : populas, s : sampel ) dhtug dega rumus :

2 Ugrouped Data : (3) = da s = Grouped Data : Cara Pajag (4) = da s = Cara Pedek (5) = da s = X : ttk tegah, rekues, da C = ( 0) ) ( ) ( C C p ) ( C C p p

3 4 Agka Baku da Koese Varas sedagka rata- Msal sebuah sampel berukura dega,, rataya da smpaga baku s maka Agka Baku : ( la ( rata rata)) (6) Z = Z = s smpagabaku Jka dspers absolut dambl smpaga baku, maka ddapat Koese Varas, dsgkat KV dyataka : SmpagaBaku s 00% (7) KV = Rata rata 00 % = Koese Varas yg lbh kecl meujukka kosstes (varabltas) dvdu

4 Jad dperoleh peympaga atau devas dar pada rata-rata dyataka dalam satua smpaga baku Agka yag ddapat damaka agka z Varabel Z, Z, Z Teryata mempuya rata-rata = 0 da smpaga baku = Dalam keyataa, agka baku Z serg dubah mejad keadaa atau model baru, atau tepatya dstrbus baru, yag mempuya rata-rata 0 da smpaga baku s o yag dtetuka Agka yag dperoleh dega cara damaka agka baku atau agka stadard dega rumus : Z = 0 + s o ( ) s 0 = 0 da s o =

5 5 Rata-rata da Smpaga Gabuga Msal, dambl k buah sampel Kemuda, dar tap sampel dhtug rata-rata da smpaga baku Maka aka dperoleh k buah la rata-rata da k buah la smpaga baku Selegkapya, dapat dlhat dalam Tabel 9

6 Tabel 9 Rata-rata da Smpaga Baku Sampel ke Ukura Rata-rata Smpaga Baku l S s k k k s k Jumlah - -

7 (8 ) gab = k k da s gab = k k ( ( ) s )

8 Dalam pskolog, test Wechsler-Bellevue dubah ke dalam agka baku dega rata-rata = 0 da smpaga baku = 3 Test klaskas umum Tetara d Amerka Serkat basa djadka agka baku dega rata-rata = 00 da smpaga baku 0 3 Graduate record Eamato d USA dyataka dalam agka stadard dega rata-rata = 500 da smpaga bakuya 00 Agka baku dpaka utuk membadgka keadaa dstrbus sesuatu hal

9 Data berkut adalah IQ dar 40 calo mahasswa sebuah Pergurua Tgg a Sajka data d atas dlm DDF b Gambarka Hstogram, polgo da Ogve c Htug Mo, Me, K3, D4 da P55 d Htug rata-rata da smpaga baku cara pajag da cara pedek e Apakah dua cara meghaslka yag sama? Jka aka dterma mejad mahasswa adalah 85% peserta yag mempuyaiq tertgg, tetuka batas teredah IQ yg dapat dterma g Tetuka batas tertgg dar 65 % calo mahasswa yag memlk IQ teredah

10 Cotoh : Seorag mahasswa medapat la 86 pada uja akhr Bass data dmaa rata-rata da smpaga baku kelompok, masg-masg 78 da 0 Pada uja akhr Struktur data dmaa rata-rata kelompok 84 da smpaga baku 8, a medapat la 9 Dalam mata uja maa a mecapa keduduka yag lebh bak Utuk bass data Z = 8678 ( ) 0 0,8 Utuk Struktur data Z = 984 ( ) 8 0,44 Mahasswa tsb medapat 0,8 dar smpaga baku d atas rata-rata la bass data da haya 0,44 dar smpaa baku datas rata-rata la struktur data Keduduka lebh tgg dalam hal bass data

11 Kalau saja la-la d atas dubah ke dalam agka baku dega rata-rata 00 da smpaga baku 0, Utuk bass data Z = ( ) 6, 0 Utuk Struktur data Z = ( ) 08,9 8

12 Cotoh : Semacam lampu elektro rata-rata dapat dpaka selama 3500 jam dega smpaga baku 050 jam Lampu model la rata-rata 0000 jam da smpaga baku 000 jam KV Lampu I = 00 % = 30 % KV Lampu II = 00 % = 0 % Teryata lampu kedua secara relat mempuya masa paka yag lebh uorm

UKURAN GEJALA PUSAT DAN UKURAN LETAK

UKURAN GEJALA PUSAT DAN UKURAN LETAK UKURAN GEJALA PUSAT DAN UKURAN LETAK MODUL 4 UKURAN GEJALA PUSAT DAN UKURAN LETAK. Pedahulua Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu persoala, bak megea sampel atau pu

Lebih terperinci

STATISTIK. Ukuran Gejala Pusat Ukuran Letak Ukuran Simpangan, Dispersi dan Variasi Momen, Kemiringan, dan Kurtosis

STATISTIK. Ukuran Gejala Pusat Ukuran Letak Ukuran Simpangan, Dispersi dan Variasi Momen, Kemiringan, dan Kurtosis STATISTIK Ukura Gejala Pusat Ukura Letak Ukura Smpaga, Dspers da Varas Mome, Kemrga, da Kurtoss Notas Varabel dyataka dega huruf besar Nla dar varabel dyataka dega huruf kecl basaya dtuls Tmes New Roma

Lebih terperinci

Mean untuk Data Tunggal. Definisi. Jika suatu sampel berukuran n dengan anggota x1, x2, x3,, xn, maka mean sampel didefinisiskan : n Xi.

Mean untuk Data Tunggal. Definisi. Jika suatu sampel berukuran n dengan anggota x1, x2, x3,, xn, maka mean sampel didefinisiskan : n Xi. Mea utuk Data Tuggal Des. Jka suatu sampel berukura dega aggota x1, x, x3,, x, maka mea sampel ddesska : 1... N 1 Mea utuk Data Kelompok Des Mea dar data yag dkelompoka adalah : x x 1 1 1 dega : x = ttk

Lebih terperinci

4/1/2013. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut. Dengan: n = banyak data

4/1/2013. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut. Dengan: n = banyak data //203 UKURAN GEJALA PUSAT DAN UKURAN LETAK Kaa Evta Dew, S.Pd., M.S. Ukura gejala pusat Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu hal, bak tu dar sampel ataupu populas Ukura

Lebih terperinci

BAB 1 STATISTIKA RINGKASAN MATERI

BAB 1 STATISTIKA RINGKASAN MATERI BAB STATISTIKA A RINGKASAN MATERI. Pegerta Data adalah kumpula keteraga-keteraga atau catata-catata megea suatu kejada, dapat berupa blaga, smbol, sat atau kategor. Masg-masg keteraga dar data dsebut datum.

Lebih terperinci

S2 MP Oleh ; N. Setyaningsih

S2 MP Oleh ; N. Setyaningsih S2 MP Oleh ; N. Setyagsh MATERI PERTEMUAN 1-3 (1)Pedahulua pera statstka dalam peelta ; (2)Peyaja data : dalam betuk (a) tabel da (b) dagram; (3) ukura tedes setaral da ukura peympaga (4)dstrbus ormal

Lebih terperinci

STATISTIKA: UKURAN PEMUSATAN. Tujuan Pembelajaran

STATISTIKA: UKURAN PEMUSATAN. Tujuan Pembelajaran Kurkulum 013/006 matematka K e l a s XI STATISTIKA: UKURAN PEMUSATAN Tujua Pembelajara Setelah mempelajar mater, kamu dharapka memlk kemampua berkut. 1. Dapat meetuka rata-rata data tuggal da data berkelompok..

Lebih terperinci

UKURAN GEJALA PUSAT (UGP)

UKURAN GEJALA PUSAT (UGP) UKURAN GEJALA PUSAT (UGP) Pegerta: Rata-rata (average) alah suatu la yag mewakl suatu kelompok data. Nla dsebut juga ukura gejala pusat karea pada umumya mempuya kecederuga terletak d tegah-tegah da memusat

Lebih terperinci

SUM BER BELA JAR Menerap kan aturan konsep statistika dalam pemecah an masalah INDIKATOR MATERI TUGAS

SUM BER BELA JAR Menerap kan aturan konsep statistika dalam pemecah an masalah INDIKATOR MATERI TUGAS C. Pembelajara 3 1. Slabus N o STANDA R KOMPE TENSI KOMPE TENSI DASAR INDIKATOR MATERI TUGAS BUKTI BELAJAR KON TEN INDIKA TOR WAK TU SUM BER BELA JAR Meerap ka atura kosep statstka dalam pemecah a masalah

Lebih terperinci

3/19/2012. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut

3/19/2012. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut 3/9/202 UKURAN GEJALA PUSAT DAN UKURAN LETAK Kaa Evta Dew, S.Pd., M.S. Ukura gejala pusat Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu hal, bak tu dar sampel ataupu populas

Lebih terperinci

STATISTIKA A. Definisi Umum B. Tabel Distribusi Frekuensi

STATISTIKA A. Definisi Umum B. Tabel Distribusi Frekuensi STATISTIKA A. Des Umum. Pegerta statstk Statstk adalah kumpula akta yag berbetuk agka da dsusu dalam datar atau tabel yag meggambarka suatu persoala. Cotoh: statstk kurs dolar Amerka, statstk pertumbuha

Lebih terperinci

STATISTIKA DASAR. Oleh

STATISTIKA DASAR. Oleh STATISTIKA DASAR Oleh Suryo Gurto cara peyaja data - tabel - grak meghtug harga-harga petg : - ukura lokas - ukura sebara/peympaga apabla data mempuya observasya cukup bayak perlu dsusu secara sstematk

Lebih terperinci

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS Tgg tekaa [m] UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS Se, 11 Desember 017 100 met [ Boleh membuka buku Tdak boleh memaka komputer ] SOAL 1 [SO A-3, BOBOT NILAI 50%] Sebuah PDAM melakuka pegukura

Lebih terperinci

TATAP MUKA III UKURAN PEMUSATAN DATA (MEAN, MEDIAN DAN MODUS) Fitri Yulianti, SP. Msi.

TATAP MUKA III UKURAN PEMUSATAN DATA (MEAN, MEDIAN DAN MODUS) Fitri Yulianti, SP. Msi. TATAP MUKA III UKURAN PEMUSATAN DATA (MEAN, MEDIAN DAN MODUS) Ftr Yulat, SP. Ms. UKURAN DATA Ukura data Ukura Pemusata data Ukura letak data Ukura peyebara data Mea Meda Jagkaua Meda Kuartl Jagkaua atar

Lebih terperinci

UKURAN PEMUSATAN DAN LETAK DATA

UKURAN PEMUSATAN DAN LETAK DATA UKURAN PEMUSATAN DAN LETAK DATA PENDAHULUAN Suatu harga yag dapat dpaka utuk mewakl sekumpula data. Harga rata-rata merupaka suatu la sektar maa blaga-blaga la tersebar. Harga rata-rata serg damaka measure

Lebih terperinci

* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES

* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES * PENYAJIAN DATA Secara umum, ada dua cara peyaja data, yatu : 1. Tabel atau daftar. Grafk atau dagram Macam-macam daftar yag dkeal : a. Daftar bars kolom b. Daftar kotges c. Daftar dstrbus frekues Sedagka

Lebih terperinci

BAB 5. ANALISIS REGRESI DAN KORELASI

BAB 5. ANALISIS REGRESI DAN KORELASI BAB 5. ANALISIS REGRESI DAN KORELASI Tujua utama aalss regres adalah mecar ada tdakya hubuga ler atara dua varabel: Varabel bebas (X), yatu varabel yag mempegaruh Varabel terkat (Y), yatu varabel yag dpegaruh

Lebih terperinci

IV. UKURAN SIMPANGAN, DISPERSI & VARIASI

IV. UKURAN SIMPANGAN, DISPERSI & VARIASI IV. UKURAN SIMPANGAN, DISPERSI & VARIASI Pendahuluan o Ukuran dspers atau ukuran varas, yang menggambarkan derajat bagamana berpencarnya data kuanttatf, dntaranya: rentang, rentang antar kuartl, smpangan

Lebih terperinci

BAB III UKURAN PEMUSATAN DATA

BAB III UKURAN PEMUSATAN DATA BAB III UKURAN PEMUSATAN DATA A. Ukura Gejala Pusat Ukura pemusata adalah suatu ukura yag meujukka d maa suatu data memusat atau suatu kumpula pegamata memusat (megelompok). Ukura pemusata data adalah

Lebih terperinci

Ukuran Pemusatan Data. Arum Handini P., M.Sc Ayundyah K., M.Si.

Ukuran Pemusatan Data. Arum Handini P., M.Sc Ayundyah K., M.Si. Ukura Pemusata Data Arum Had P., M.Sc Ayudyah K., M.S. Notas utuk Populas da Sampel Notas: Mea (rata-rata) Sample x Populas μ Varas s 2 σ 2 Smpaga baku s σ Ukura Pemusata Data 1. Mea (rata-rata) 2. Meda

Lebih terperinci

BAB 2 LANDASAN TEORI. Istilah regresi pertama kali diperkenalkan oleh Francis Galton. Menurut Galton,

BAB 2 LANDASAN TEORI. Istilah regresi pertama kali diperkenalkan oleh Francis Galton. Menurut Galton, BAB LANDASAN TEORI Pegerta Regres Istlah regres pertama kal dperkealka oleh Fracs Galto Meurut Galto, aalss regres berkeaa dega stud ketergatuga dar suatu varabel yag dsebut varabel tak bebas (depedet

Lebih terperinci

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu KORELASI 1 D dua kta tdak dapat hdup sedr, tetap memerluka hubuga dega orag la. Hubuga tu pada umumya dlakuka dega maksud tertetu sepert medapat kergaa pajak, memperoleh kredt, memjam uag, serta mta pertologa/batua

Lebih terperinci

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM 1 Megetahu perhtuga persamaa regres ler Meggambarka persamaa regres ler ke dalam dagram pecar TEORI PENUNJANG Persamaa Regres adalah persamaa matematka

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. melakukan smash sebelum dan sesudah latihan power otot lengan adalah sebagai

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. melakukan smash sebelum dan sesudah latihan power otot lengan adalah sebagai BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4. Deskrps Peelta Berdasarka hasl peelta, d peroleh data megea kemempua sswa melakuka smash sebelum da sesudah latha power otot lega adalah sebaga berkut : Tabel.

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu.

BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu. BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa yag varabel bebasya ( berpagkat palg tgg satu. Utuk regres ler sederhaa, regres ler haya melbatka dua varabel ( da. Persamaa regresya dapat dtulska

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa merupaka baga regres yag mecakup hubuga ler satu peubah acak tak bebas dega satu peubah bebas. Hubuga ler da dar satu populas dsebut gars regres

Lebih terperinci

STATISTIKA. A. Tabel Langkah untuk mengelompokkan data ke dalam tabel distribusi frekuensi data berkelompok/berinterval: a. Rentang/Jangkauan (J)

STATISTIKA. A. Tabel Langkah untuk mengelompokkan data ke dalam tabel distribusi frekuensi data berkelompok/berinterval: a. Rentang/Jangkauan (J) STATISTIKA A. Tabel Lagkah utuk megelompokka data ke dalam tabel dstrbus frekues data berkelompok/berterval: a. Retag/Jagkaua (J) J X maks X m b. Bayak kelas (k) Megguaka atura Sturgess, yatu k,. log c.

Lebih terperinci

Jawablah pertanyaan berikut dengan ringkas dan jelas menggunakan bolpoin. Total nilai 100. A. ISIAN SINGKAT (Poin 20) 2

Jawablah pertanyaan berikut dengan ringkas dan jelas menggunakan bolpoin. Total nilai 100. A. ISIAN SINGKAT (Poin 20) 2 M 81 STTISTIK DSR SEMESTER II 11/1 KK STTISTIK, FMIP IT SOLUSI UJIN TENGH SEMESTER (UTS) Sabtu, 1 Me 1, Pukul 9. 1.4 WI (1 met) Kelas 1. Pegajar: Udjaa S. Pasarbu/Rr. Kura Novta Sar, Kelas. Pegajar: Utrwe

Lebih terperinci

b) Untuk data berfrekuensi fixi Data (Xi)

b) Untuk data berfrekuensi fixi Data (Xi) B. Meghtug ukura pemusata, ukura letak da ukura peyebara data serta peafsraya A. Ukura Pemusata Data Msalka kumpula data berkut meujukka hasl pegukura tgg bada dar orag sswa. 0 cm 30 cm 5 cm 5 cm 35 cm

Lebih terperinci

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu BAB II LADASA TEORI Dalam pegambla sampel dar suatu populas, dperluka suatu tekk pegambla sampel yag tepat sesua dega keadaa populas tersebut. Sehgga sampel yag dperoleh adalah sampel yag dapat mewakl

Lebih terperinci

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai BAB LANDASAN TEORI. Kosep Dasar Aalss Regres Aalss regres regressso aalyss merupaka suatu tekk utuk membagu persamaa da megguaka persamaa tersebut utuk membuat perkraa predcto. Dega demka, aalss regres

Lebih terperinci

BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI

BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI 9.1. Dstrbus Kotu Dstrbus memlk sfat kotu dmaa data yag damat berjala secara kesambuga da tdak terputus. Maksudya adalah bahwa data yag damat tersebut tergatug

Lebih terperinci

UKURAN SIMPANGAN DAN UKURAN VARIASI UKURAN SIMPANGAN. Rentang= 4/1/2013 KANIA EVITA DEWI S.PD., M.SI.

UKURAN SIMPANGAN DAN UKURAN VARIASI UKURAN SIMPANGAN. Rentang= 4/1/2013 KANIA EVITA DEWI S.PD., M.SI. //03 UKURAN SIMPANGAN DAN UKURAN VARIASI KANIA EVITA DEWI S.PD., M.SI. UKURAN SIMPANGAN Ukura mpaga merupaka tattk yag meggambarka peympaga data-data terhadap rata-rataya Semak bear ukura mpaga emak meyebar

Lebih terperinci

UKURAN PEMUSATAN & PENYEBARAN

UKURAN PEMUSATAN & PENYEBARAN UKURAN PEMUSATAN & PENYEBARAN RATA - RATA UKURAN PEMUSATAN MEDIAN MODUS Rata rata htug (mea) Merupaka hasl bag dar sejumlah skr dega bayakya respde Utuk Data Tdak Berkelmpk x Dmaa : = la samapa x = la

Lebih terperinci

BAB 2. Tinjauan Teoritis

BAB 2. Tinjauan Teoritis BAB Tjaua Teorts.1 Regres Lear Sederhaa Regres lear adalah alat statstk yag dperguaka utuk megetahu pegaruh atara satu atau beberapa varabel terhadap satu buah varabel. Varabel yag mempegaruh serg dsebut

Lebih terperinci

MATEMATIKA INTEGRAL RIEMANN

MATEMATIKA INTEGRAL RIEMANN MATEMATIKA KELAS XII IPA - KURIKULUM GABUNGAN Ses NGAN INTEGRAL RIEMANN A. NOTASI SIGMA a. Defs Notas Sgma Sgma (Σ) adalah otas matematka megguaka smbol yag mewakl pejumlaha da beberapa suku yag memlk

Lebih terperinci

III. METODE PENELITIAN. yang hidup dan berguna bagi masyarakat, maupun bagi peneliti sendiri

III. METODE PENELITIAN. yang hidup dan berguna bagi masyarakat, maupun bagi peneliti sendiri III. METODE PEELITIA A. Metodolog Peelta Metodolog peelta adalah cara yag dlakuka secara sstemats megkut atura-atura, recaaka oleh para peeltutuk memecahka permasalaha yag hdup da bergua bag masyarakat,

Lebih terperinci

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten BAB III METODE PENELITIAN 3. Tempat da Waktu Peelta 3.. Tempat Tempat peelta dlaksaaka d SMP Neger 4 Tlamuta Kabupate Boalemo pada sswa kelas VIII. 3.. Waktu Peelta dlaksaaka dalam waktu 3 bula yatu dar

Lebih terperinci

9/22/2009. Materi 2. Outline. Graphical Techniques. Penyajian Data. Numerical Techniques

9/22/2009. Materi 2. Outline. Graphical Techniques. Penyajian Data. Numerical Techniques Mater Outle Graphcal Techques Peyaja Data Numercal Techques Tekk Grafk (Graphcal Techques) Secara vsual, grafs merupaka gambar-gambar yag meujukka data berupa agka yag basaya dbuat berdasarka tabel yag

Lebih terperinci

1. Ruang Sampel dan Peristiwa

1. Ruang Sampel dan Peristiwa . Ruag Sampel da Perstwa. Ruag Sampel Defs Ruag sampel (Sample Space), S : totaltas semua hasl yag mugk dar sebuah percobaa. Ttk sampel atau outcome : eleme dar tap sel. Perstwa/kejada (Evet) : kumpula

Lebih terperinci

BAB III INTEGRAL RIEMANN-STIELTJES. satu pendekatan untuk membentuk proses titik. Berkaitan dengan masalah

BAB III INTEGRAL RIEMANN-STIELTJES. satu pendekatan untuk membentuk proses titik. Berkaitan dengan masalah BAB III INEGRAL RIEMANN-SIELJES. Pedahulua Pada Bab, telah dsggug bahwa ukura meghtug merupaka salah satu pedekata utuk membetuk proses ttk. Berkata dega masalah perhtuga, ada hal meark yag perlu amat,

Lebih terperinci

PENDAHULUAN. Tabel nilai statistika Nilai Jumlah Mahasiswa A 5 B 9 C 25 D 3 E

PENDAHULUAN. Tabel nilai statistika Nilai Jumlah Mahasiswa A 5 B 9 C 25 D 3 E 1 PENDAHULUAN 1.1. Pegerta statstk da statstka Statstk adalah kumpula data, blaga maupu o blaga yag dsusu dalam table da atau dagram yag melukska suatu persoala Tabel la statstka Nla Jumlah Mahasswa A

Lebih terperinci

KALKULUS LANJUT. Pertemuan ke-4. Reny Rian Marliana, S.Si.,M.Stat.

KALKULUS LANJUT. Pertemuan ke-4. Reny Rian Marliana, S.Si.,M.Stat. KALKULUS LANJUT Pertemua ke-4 Rey Ra Marlaa, S.S.,M.Stat. Plot Mater Notas Jumlah & Sgma Itegral Tetu Jumlah Rema Pedahulua Luas Notas Jumlah & Sgma Purcell, et all. (page 226,2003): Sebuah fugs yag daerah

Lebih terperinci

Tabel Distribusi Frekuensi

Tabel Distribusi Frekuensi Tabel Dstrbus Frekues Tabel dstrbus frekues adalah susua data meurut kelas-kelas terval tertetu atau meurut kategor tertetu dalam sebuah daftar. Dar dstrbus frekues, dapat dperoleh keteraga atau gambara

Lebih terperinci

Uji Statistika yangb digunakan dikaitan dengan jenis data

Uji Statistika yangb digunakan dikaitan dengan jenis data Uj Statstka yagb dguaka dkata dega jes data Jes Data omal Ordal Iterval da Raso Uj Statstka Koefse Kotges Rak Spearma Kedall Tau Korelas Parsal Kedall Tau Koefse Kokordas Kedall W Pearso Korelas Gada Korelas

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 1 Pegerta Regres Istlah regres pertama kal dperkealka oleh Fracs Galto Meurut Galto, aalss regres berkeaa dega stud ketergatuga dar suatu varabel yag dsebut tak bebas depedet varable,

Lebih terperinci

8. MENGANALISIS HASIL EVALUASI

8. MENGANALISIS HASIL EVALUASI 8. MENGANALISIS HASIL EVALUASI Tujua : Mampu megaalsa tgkat kesukara hasl evaluas utuk megkatka hasl proses pembelajara Kegata megaals hasl evaluas merupaka upaya utuk memperbak programprogram pembelajara

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI. Defes Aalss Korelas da Regres a Aalss Korelas adalah metode statstka yag dguaka utuk meetuka kuatya atau derajat huuga lear atara dua varael atau leh. Semak yata huuga ler gars lurus,

Lebih terperinci

Created by Simpo PDF Creator Pro (unregistered version)

Created by Simpo PDF Creator Pro (unregistered version) Created by Smpo PDF Creator Pro (uregstered verso) http://www.smpopdf.com Statst Bss : BAB V. UKURA PEYEBARA DATA.1 Peyebara Uura peyebara data adalah uura statst yag meggambara bagamaa berpecarya data

Lebih terperinci

UKURAN SIMPANGAN UKURAN SIMPANGAN DAN UKURAN VARIASI. Rentang Antar Kuartil. Rentang= 3/26/2012

UKURAN SIMPANGAN UKURAN SIMPANGAN DAN UKURAN VARIASI. Rentang Antar Kuartil. Rentang= 3/26/2012 /6/0 UKURAN SIMPANGAN UKURAN SIMPANGAN DAN UKURAN VARIASI KANIA EVITA DEWI S.PD., M.SI. Ukura mpaga merupaka tattk yag meggambarka peympaga data-data terhadap rata-rataya Semak bear ukura mpaga emak meyebar

Lebih terperinci

Bab I Pendahuluan & Statistika Deskriptif

Bab I Pendahuluan & Statistika Deskriptif Bab I Pedahulua & Statstka Deskrptf Pegerta Statstka Dstrbus Frekues Cetral Tedecy Measure of Dsperso Pegerta Statstka Statstk (statstc) vs statstka (statstcs) Statstk: agka-agka Statstka: pegguaa data

Lebih terperinci

Statistika. Menyajikan Data dalam Bentuk Diagram ;

Statistika. Menyajikan Data dalam Bentuk Diagram ; Statstka Meyajka Data dalam Betuk Dagram ; Meyajka Data dalam Betuk Tabel Dstrbus Frekues ; Meghtug Ukura Pemusata, Ukura Letak, da Ukura ; Peyebara Data Kalau kamu ke kator keluraha, kator pajak, kator

Lebih terperinci

47 Soal dengan Pembahasan, 46 Soal Latihan

47 Soal dengan Pembahasan, 46 Soal Latihan Galer Soal 7 Soal dega Pembahasa, Soal Latha Dragkum Oleh: ag Wbowo, S.Pd Jauar 0 MatkZoe s Seres Emal : matkzoe@gmal.com log : www.matkzoe.wordpress.com HP : 0 97 97 Hak pta Dldug Udag-udag. Dlarag megkutp

Lebih terperinci

Statistik Industri. Pengertian

Statistik Industri. Pengertian Statstk Idustr Pertemua ke- Pegerta Ilmu megumpulka, megolah, mergkas, meya jka da terpretas data utuk dasar pegambla keputusa Pegelompoka Deskrpt: Statstka yag megguaka data pada suatu kelompok utuk mejelaska

Lebih terperinci

9. SOAL-SOAL STATISTIKA

9. SOAL-SOAL STATISTIKA 9. SOAL-SOAL STATISTIKA UN00SMK. Dagram lgara d bawah meyaja jes estrauruler d suatu SMK yag dut oleh 500 orag sswa. Baya sswa yag tda megut estrauruler Pasbra adalah.. A. 00 sswa Olah B. 50 sswa Pasbra

Lebih terperinci

9. SOAL-SOAL STATISTIKA

9. SOAL-SOAL STATISTIKA 9. SOAL-SOAL STATISTIKA UN00SMK. Dagram lgara d bawah meyaja jes estrauruler d suatu SMK yag dut oleh 500 orag sswa. Baya sswa yag tda megut estrauruler Pasbra adalah.. A. 00 sswa Olah B. 50 sswa Pasbra

Lebih terperinci

BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP

BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP Msal dguaka kode ler C[, k, d] dega matrks pembagu G da matrks cek partas H. Sebuah blok formas x = x 1 x 2 x k, x = 0 atau 1, yag aka dkrm terlebh

Lebih terperinci

Ukuran Pusat, Letak, dan Penyimpangan Data

Ukuran Pusat, Letak, dan Penyimpangan Data Uura Pusat, Leta, da Peympaga Data Dsusu oleh Putraj Hedawat, S.S., M.Pd., M.Sc. Dr. Scolasta Mara, M.S.. Uura Pemusata Data Data yag telah dumpula dapat dpresetasa dalam betu tabel da gra yag bertujua

Lebih terperinci

BAB 1 STATISTIKA. Gambar 1.1

BAB 1 STATISTIKA. Gambar 1.1 STANDAR KOMPETENSI: BAB 1 STATISTIKA Megguaka atura statstka, kadah pecacaha, da sat-sat peluag dalam pemecaha masalah. Kompetes Dasar 1. Membaca data dalam betuk tabel da dagram batag, gars, lgkara, da

Lebih terperinci

BAB 2 : BUNGA, PERTUMBUHAN DAN PELURUHAN

BAB 2 : BUNGA, PERTUMBUHAN DAN PELURUHAN Jl. Raya Wagu Kel. Sdagsar Kota Bogor Telp. 0251-8242411, emal: prohumas@smkwkrama.et, webste : www.smkwkrama.et BAB 2 : BUNGA, PERTUBUHAN DAN PELURUHAN PENGERTIAN BUNGA Buga adalah jasa dar smpaa atau

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel

BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel BAB I PENDAHULUAN 1.1 Statstka Deskrptf da Statstka Iferesal Dewasa d berbaga bdag lmu da kehdupa utuk memaham/megetahu sesuatu dperluka dat Sebaga cotoh utuk megetahu berapa bayak rakyat Idoesa yag memerluka

Lebih terperinci

FMDAM (2) TOPSIS TOPSIS TOPSIS. Charitas Fibriani

FMDAM (2) TOPSIS TOPSIS TOPSIS. Charitas Fibriani FMDAM (2) Chartas Fbra Techque for Order Preferece by Smlarty to Ideal Soluto () ddasarka pada kosep dmaa alteratf terplh yag terbak tdak haya memlk jarak terpedek dar solus deal postf, amu juga memlk

Lebih terperinci

PEMBENTUKAN MODEL PROBIT BIVARIAT

PEMBENTUKAN MODEL PROBIT BIVARIAT PEMBENTUKAN MODEL PROBIT BIVARIAT SKRIPSI Dsusu Oleh : Yudh Cadra JE 003 66 PROGRAM STUDI STATISTIKA JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS DIPONEGORO SEMARANG 009

Lebih terperinci

STATISTIKA Matematika Kelas XI MIA

STATISTIKA Matematika Kelas XI MIA STATISTIKA Matematka Kelas XI MIA 90 0 70 0 50 40 30 0 0 1st Qtr d Qtr 3rd Qtr 4th Qtr East West North Dsusu oleh : Markus Yuarto, S.S Tahu Pelajara 01 017 SMA Sata Agela Jl. Merdeka No. 4 Badug PENGANTAR

Lebih terperinci

LANGKAH-LANGKAH UJI HIPOTESIS DENGAN 2 (Untuk Data Nominal)

LANGKAH-LANGKAH UJI HIPOTESIS DENGAN 2 (Untuk Data Nominal) LANGKAH-LANGKAH UJI HIPOTESIS DENGAN (Utuk Data Nomal). Merumuska hpotess (termasuk rumusa hpotess statstk). Data hasl peelta duat dalam etuk tael slag (tael frekues oservas) 3. Meetuka krtera uj atau

Lebih terperinci

titik tengah kelas ke i k = banyaknya kelas

titik tengah kelas ke i k = banyaknya kelas STATISTIKA Bab 0 UKURAN PEMUSATAN DAN PENYEBARAN. Mea X. a. Data Tuggal... 3 b. Data Kelompo ( dstrbus frewes) f. f. f.... f. 3 3 f f f... f = f. f 3 Ket : tt tegah elas e = bayaya elas f frewes elas e

Lebih terperinci

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL Hesty ala, Arsma Ada, Bustam hestyfala@ymalcom Mahasswa Program S Matematka MIPA-UR Dose Matematka MIPA-UR

Lebih terperinci

SOLUSI TUGAS I HIMPUNAN

SOLUSI TUGAS I HIMPUNAN Program Stud S1 Tekk Iformatka Fakultas Iformatka, Telkom Uversty SOLUSI TUGAS I HIMPUNAN Matematka Dskrt (MUG2A3) Halama 1 dar 6 Soal 1 Tetukalah eleme-eleme dar hmpua berkut! 2 x x adalah blaga real

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1 Pedahulua Sebelum membahas megea prosedur peguja hpotess, terlebh dahulu aka djelaska beberapa teor da metode yag meujag utuk mempermudah pembahasa. Adapu teor da metode tersebut

Lebih terperinci

Integrasi 1. Metode Integral Reimann Metode Integral Trapezoida Metode Integral Simpson. Integrasi 1

Integrasi 1. Metode Integral Reimann Metode Integral Trapezoida Metode Integral Simpson. Integrasi 1 Itegras Metode Itegral Rema Metode Itegral Trapezoda Metode Itegral Smpso Itegras Permasalaa Itegras Pertuga tegral adala pertuga dasar yag dguaka dalam kalkulus, dalam bayak keperlua. Itegral secara det

Lebih terperinci

KOMBINASI PENAKSIR RASIO UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN KOEFISIEN REGRESI, KOEFISIEN KURTOSIS DAN KOEFISIEN VARIASI

KOMBINASI PENAKSIR RASIO UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN KOEFISIEN REGRESI, KOEFISIEN KURTOSIS DAN KOEFISIEN VARIASI KOMBINASI PENAKSIR RASIO UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN KOEFISIEN REGRESI, KOEFISIEN KURTOSIS DAN KOEFISIEN VARIASI Defl Ardh 1, Frdaus, Haposa Srat defl_math@ahoo.com

Lebih terperinci

Notasi Sigma. Fadjar Shadiq, M.App.Sc &

Notasi Sigma. Fadjar Shadiq, M.App.Sc & Notas Sgma Fadjar Shadq, M.App.Sc (fadjar_pg@yahoo.com & www.fadjarpg.wordpress.com Notas sgma memag jarag djumpa dalam kehdupa sehar-har, tetap otas tersebut aka bayak djumpa pada baga matematka yag la,

Lebih terperinci

ANALISIS ALGORITMA REKURSIF DAN NONREKURSIF

ANALISIS ALGORITMA REKURSIF DAN NONREKURSIF ANALISIS ALGORITMA REKURSIF DAN NONREKURSIF KELOMPOK A I GUSTI BAGUS HADI WIDHINUGRAHA (0860500) NI PUTU SINTYA DEWI (0860507) LUH GEDE PUTRI SUARDANI (0860508) I PUTU INDRA MAHENDRA PRIYADI (0860500)

Lebih terperinci

BAB II TINJAUAN TEORITIS. Statistik merupakan cara cara tertentu yang digunakan dalam mengumpulkan,

BAB II TINJAUAN TEORITIS. Statistik merupakan cara cara tertentu yang digunakan dalam mengumpulkan, BAB II TINJAUAN TEORITIS.1 Kosep Dasar Statstka Statstk merupaka cara cara tertetu yag dguaka dalam megumpulka, meyusu atau megatur, meyajka, megaalsa da member terpretas terhadap sekumpula data, sehgga

Lebih terperinci

POLIGON TERBUKA TERIKAT SEMPURNA

POLIGON TERBUKA TERIKAT SEMPURNA MODUL KULIAH ILMU UKUR TANAH POLIGON TERBUKA TERIKAT SEMPURNA Pegerta : peetua azmuth awal da akhr, peetuat kesalaha peutup sudut,koreks sudut, kesalaha lear da koreks lear kearah sumbu X da Y, Peetua

Lebih terperinci

PEDOMAN STATISTIK UJI PROFISIENSI

PEDOMAN STATISTIK UJI PROFISIENSI DPLP 3 Rev. 0 PEDOMAN STATISTIK UJI PROFISIENSI Komte Akredtas Nasoal Natoal Accredtato Body of Idoesa Gedug Maggala Waabakt, Blok IV, Lt. 4 Jl. Jed. Gatot Subroto, Seaya, Jakarta 070 Idoesa Tel. : 6 5747043,

Lebih terperinci

NPV DAN IRR IR. ASEP TOTO KARTAMAN, MENG

NPV DAN IRR IR. ASEP TOTO KARTAMAN, MENG DAN IRR IR. ASEP TOTO KARTAMAN, MENG SEMESTER PENDEK SEMESTER TAHUN AKADEMIK 03-04 Prod Tekk Idustr Fakultas Tekk Uverstas Pasuda Badug 04 PERHITUNGAN KELAYAKAN INVESTASI. Net Preset Value () merupaka

Lebih terperinci

11/10/2010 REGRESI LINEAR SEDERHANA DAN KORELASI TUJUAN

11/10/2010 REGRESI LINEAR SEDERHANA DAN KORELASI TUJUAN // REGRESI LINEAR SEDERHANA DAN KORELASI. Model Regres Lear. Peaksr Kuadrat Terkecl 3. Predks Nla Respos 4. Iferes Utuk Parameter-parameter Regres 5. Kecocoka Model Regres 6. Korelas Utrwe Mukhayar MA

Lebih terperinci

PRINSIP INKLUSI- EKSKLUSI INCLUSION- EXCLUSION PRINCIPLE

PRINSIP INKLUSI- EKSKLUSI INCLUSION- EXCLUSION PRINCIPLE RISI IKLUSI- EKSKLUSI ICLUSIO- EXCLUSIO RICILE rsp Iklus-Eksklus Ada berapa aggota dalam gabuga dua hmpua hgga? A A = A A - A A Cotoh Ada berapa blaga bulat postf lebh kecl atau sama dega 00 yag habs dbag

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB METODE PENELTAN 3.1 Tempat da Waktu Peelta Peelta dlaksaaka d areal/wlaah koses huta PT. Sarmeto Parakata Tmber, Kalmata Tegah pada bula Aprl sampa dega Me 007. 3. Baha da Alat Baha ag dguaka utuk

Lebih terperinci

III. METODOLOGI PENELITIAN. Metode penelitian merupakan strategi umum yang di anut dalam

III. METODOLOGI PENELITIAN. Metode penelitian merupakan strategi umum yang di anut dalam III. METODOLOGI PENELITIAN A. Metode Peelta Metode peelta merupaka strateg umum yag d aut dalam pegumpula data da aalss data yag dperluka, gua mejawab persoala yag dhadap. Meurut Arkuto (006 : 3) peelta

Lebih terperinci

PRAKTIKUM 5 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel

PRAKTIKUM 5 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel Praktkum 5 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel PRAKTIKUM 5 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel Tujua : Mempelajar metode Secat dega modfkas tabel utuk peelesaa

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. Statistik merupakan cara cara tertentu yang digunakan dalam mengumpulkan,

BAB 2 TINJAUAN TEORITIS. Statistik merupakan cara cara tertentu yang digunakan dalam mengumpulkan, BAB TINJAUAN TEORITIS 1 Kosep Dasar Statstka Statstk merupaka cara cara tertetu yag dguaka dalam megumpulka, meyusu atau megatur, meyajka, megaalsa da member terpretas terhadap sekumpula data, sehgga kumpula

Lebih terperinci

Penarikan Contoh Acak Sederhana (Simple Random Sampling)

Penarikan Contoh Acak Sederhana (Simple Random Sampling) Pearka Cotoh Acak Sederhaa (Smple Radom Samplg) Defs Jka sebuah cotoh berukura dambl dar suatu populas sedemka rupa sehgga setap cotoh berukura ag mugk memlk peluag sama utuk terambl, maka prosedur tu

Lebih terperinci

ANALISIS INDEKS DISTURBANCES STORM TIME DENGAN KOMPONEN H GEOMAGNET

ANALISIS INDEKS DISTURBANCES STORM TIME DENGAN KOMPONEN H GEOMAGNET Prosdg Semar Nasoal Peelta, Peddka da Peerapa MIPA Fakultas MIPA, Uverstas Neger Yogyakarta, 6 Me 9 ANALISIS INDEKS DISTURBANCES STORM TIME DENGAN KOMPONEN H GEOMAGNET Sty Rachyay Pusat Pemafaata Sas Atarksa,

Lebih terperinci

BAB 5 BARISAN DAN DERET KOMPLEKS. Secara esensi, pembahasan tentang barisan dan deret komlpeks sama dengan barisan dan deret real.

BAB 5 BARISAN DAN DERET KOMPLEKS. Secara esensi, pembahasan tentang barisan dan deret komlpeks sama dengan barisan dan deret real. BAB 5 BARIAN DAN DERET KOMPLEK ecara eses, pembahasa tetag barsa da deret komlpeks sama dega barsa da deret real. 5. Barsa Barsa merupaka sebuah fugs dega doma berupa hmpua blaga asl N. ebuah barsa kompleks

Lebih terperinci

PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN

PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN Idah Vltr, Harso, Haposa Srat Mahassa Program S Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu

Lebih terperinci

BAB III PERSAMAAN PANAS DIMENSI SATU

BAB III PERSAMAAN PANAS DIMENSI SATU BAB III PERSAMAAN PANAS DIMENSI SAU Pada baga sebelumya, kta telah membahas peerapa metoda Ruge-Kutta orde 4 utuk meyelesaka masalah la awal dar persamaa dferesal basa orde. Pada bab, kta aka melakuka

Lebih terperinci

; θ ) dengan parameter θ,

; θ ) dengan parameter θ, Vol. 4. No. 3, 5-59, Desember 00, ISSN : 40-858 APLIKASI METODE BESARAN PIVOTAL DALAM PENENTUAN SELANG KEYAKINAN TAKSIRAN PARAMETER POPULASI. Agus Rusgyoo Jurusa Matematka FMIPA UNDIP Abstraks Dberka populas

Lebih terperinci

BAB 6 PRINSIP INKLUSI DAN EKSKLUSI

BAB 6 PRINSIP INKLUSI DAN EKSKLUSI BB 6 PRINSIP INKLUSI DN EKSKLUSI Pada baga aka ddskuska topk berkutya yatu eumeras yag damaka Prsp Iklus da Eksklus. Kosep dalam bab merupaka perluasa de dalam Dagram Ve beserta oepras rsa da gabuga, amu

Lebih terperinci

Pertemuan 3 Luas Daerah Bidang Datar, dan Volume Benda Padat dengan Metode Bidang Irisan Sejajar

Pertemuan 3 Luas Daerah Bidang Datar, dan Volume Benda Padat dengan Metode Bidang Irisan Sejajar ertemua 3 Luas Daerah Bdag Datar, da Volume Beda adat dega Metode Bdag Irsa Sejajar A. Luas Daerah Bdag Datar 1. Luas Daerah Bdag Datar Yag Datas Oleh Kura f, sumu X, Gars a da Gars DEFINISI: Msalka D

Lebih terperinci

BAB 2 LANDASAN TEORI. Analisis regresi adalah suatu proses memperkirakan secara sistematis tentang apa yang paling

BAB 2 LANDASAN TEORI. Analisis regresi adalah suatu proses memperkirakan secara sistematis tentang apa yang paling BAB LANDASAN TEORI Kosep Dasar Aalss Regres Aalss regres adalah suatu proses memperkraka secara sstemats tetag apa yag palg mugk terjad dmasa yag aka datag berdasarka formas yag sekarag dmlk agar memperkecl

Lebih terperinci

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD Eka Mer Krst ), Arsma Ada ), Sgt Sugarto ) ekamer_tross@ymal.com ) Mahasswa Program S Matematka FMIPA-UR

Lebih terperinci

Pada saat upacara bendera, kita sering memperhatikan teman-teman kita.

Pada saat upacara bendera, kita sering memperhatikan teman-teman kita. Bab Ukura Data Pada saat upacara bedera, kta serg memperhatka tema-tema kta. Terkadag tapa sadar kta membadgka tgg redah sswa dalam upacara tersebut. Ada yag tggya 170 cm, 165 cm, 150 cm atau bahka 140

Lebih terperinci

Regresi & Korelasi Linier Sederhana. Gagasan perhitungan ditetapkan oleh Sir Francis Galton ( )

Regresi & Korelasi Linier Sederhana. Gagasan perhitungan ditetapkan oleh Sir Francis Galton ( ) Regres & Korelas Ler Sederhaa 1. Pedahulua Gagasa perhtuga dtetapka oleh Sr Fracs Galto (18-1911) Persamaa regres :Persamaa matematk yag memugkka peramala la suatu peubah takbebas (depedet varable) dar

Lebih terperinci

PRAKTIKUM 7 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel

PRAKTIKUM 7 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel Praktkum 7 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel PRAKTIKUM 7 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel Tujua : Mempelajar metode Secat dega modfkas tabel utuk peelesaa

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di SMP Negeri 15 di kota Gorontalo

BAB III METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di SMP Negeri 15 di kota Gorontalo BAB III METODOLOGI PENELITIAN 3. Tempat Da Waktu Peelta 3.. Tempat peelta Peelta dlaksaaka d SMP Neger 5 d kota Gorotalo 3.. Waktu peelta Peelta dlaksaaka sejak bula oktober hgga bula desember, yag melput

Lebih terperinci

STATISTIKA: UKURAN PENYEBARAN DATA. Tujuan Pembelajaran

STATISTIKA: UKURAN PENYEBARAN DATA. Tujuan Pembelajaran KTSP & K-3 matemata K e l a s XI STATISTIKA: UKURAN PENYEBARAN DATA Tujua Pembelajara Setelah mempelajar mater, amu dharapa meml emampua berut.. Memaham defs uura peyebara data da jes-jesya.. Dapat meetua

Lebih terperinci

HAND OUT STATISTIKA DASAR (MT308) Oleh : Dewi Rachmatin, S.Si., M.Si.

HAND OUT STATISTIKA DASAR (MT308) Oleh : Dewi Rachmatin, S.Si., M.Si. HAND OUT STATISTIKA DASAR (MT308) Oleh : Dew Rachmat, S.S., M.S. JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS PENDIDIKAN MATEMATIKA DAN IPA UNIVERSITAS PENDIDIKAN INDONESIA 008 Idettas Mata Kulah. Nama Mata

Lebih terperinci

CAL ( ) ( ) E r. Var rp i M im

CAL ( ) ( ) E r. Var rp i M im LAIRAN 3 Lampra Bukt ersamaa ( Gambar: Kurva Froter da CAL E ( r CAL E ( r ( E r r roter r ( E r r Kemrga gars CAL adalah, merupaka market prce o rsk (rsko harga pasar da dsebut raso mbal hasl terhadap

Lebih terperinci