KONSEP DASAR FUNGSI DAN GRAFIK. Oleh : Agus Arwani, SE, M.Ag

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "KONSEP DASAR FUNGSI DAN GRAFIK. Oleh : Agus Arwani, SE, M.Ag"

Transkripsi

1 KONSEP DASAR FUNGSI DAN GRAFIK Oleh : Agus Arwani, SE, M.Ag

2 KONSEP DASAR FUNGSI DAN GRAFIK Definisi : Fungsi f : A B adalah suatu aturan yang mengaitkan (memadankan) setiap dengan tepat satu A y B Notasi : f : A B y = f () Ilustrasi : A B f Gambar fungsi y = f()

3 Definisi : Misalkan A dan B dua himpunan takkosong. Fungsi dari A ke B adalah aturan yang mengaitkan setiap anggota A dengan tepat satu anggota B. ATURAN : setiap anggota A harus habis terpasang dengan anggota B. tidak boleh membentuk cabang seperti ini. A B

4 Contoh : A B Fungsi Bukan fungsi, sebab ada elemen A yang mempunyai 2 kawan. Bukan fungsi, sebab ada elemen A yang tidak mempunyai kawan.

5 5 Domain / daerah asal dari f(), notasi D f, yaitu Daerah nilai / Range /Kodomain dari f(), notasi R f, yaitu Himpunan titik di bidang, disebut grafik fungsi f Contoh : Misalkan, maka f(1) = 8, f(-2) = 5 Misalkan, maka } ) ( { R f R Df B D R f R f f } ) ( { }, ), ( ), {( f f R y D f y y 5 2 ) ( 2 f ) 2( 1) ( 1) ( 2 2 h h h h h f ) [4,, f f R R D 4 1) ( ) ( 2 f

6 FUNGSI FUNGSI ALJABAR FUNGSI NON ALJABAR ATAU TRANSSEDEN FUNGSI IRRASIONAL FUNGSI RASIONAL FUNGSI POLINOM FUNGSI LINIER FUNGSI KUADRAT FUNGSI KUBIK FUNGSI BIKUADRAT FUNGSI PANGKAT FUNGSI EKSPONEN FUNGSI LOGARITMA FUNGSI TRIGONOMETRI FUNGSI HIPERBOL

7 FUNGSI IRRASIONAL : Y = ( 1 + 2X 3X 2 + 4X X 11 ) 1/11 (Fungsi yang memiliki bentuk umum Y dimana n aalah bilangan bulat positif) FUNGSI POLINOM : Y = 1 + 2X 3X 2 + 4X X 11 FUNGSI LINIER : Y = 1 + 2X FUNGSI KUADRAT : Y = 1 + 2X 3X 2 FUNGSI KUBIK : Y = 1 + 2X 3X 2 + 4X 3 FUNGSI BIKUADRAT : Y = 1 + 2X 3X 2 + 4X 3 + 5X 4 (Fungsi polinom yang variabel bebasnya memiliki pangkat paling tinggi adalah empat) FUNGSI PANGKAT : Y = X n, n = bulat positif FUNGSI EKSPONEN : Y = 2 X FUNGSI LOGARITMA : Y = n Log X FUNGSI HIPERBOLA : Y = X n, n = riil negatif n (a 0 a1x1 a2x2 a3x3... anxn)

8 (c) Kemiringan nol (d) Kemiringan tak tentu KEMIRINGAN DAN TITIK POTONG SUMBU Kemiringan (slope) dari fungsi linier dengan satu variabel bebas X adalah sama dengan perubahan dalam variabel terikat (dependent) dibagi dengan perubahan dalam variabel bebas (independent). Dan biasanya dilambangkan dengan huruf m. Jadi, ΔY Y 2 Y 1 Kemiringan = m = atau ΔX X 2 X 1 (a) Kemiringan positif (b) Kemiringan negatif Y Y

9 BENTUK UMUM FUNGSI LINIER Y=a 0 + a 1 X di mana a, tidak sama dengan nol. Bentuk ini disebut sebagai bentuk kemiringan-titik potong (slope-intercept). Bentuk seperti ini bila dilihat dari letak kedua variabel X dab Y, maka bentuk ini dapat disebut sebagai eksplisit. Karena variabel bebas X dan variabel terikat Y saling terpisah oleh tanda sama dengan (=)

10 MENENTUKAN PERSAMAAN GARIS (1). Metode Dua Titik Y Y 1 Y 2 Y 1 Y = X X 1 X 2 X 1 A (X, Y) A (X 1, Y 1 ) A (X 2, Y 2 ) 0 X

11 Carilah persamaan garis yang melalui titik (3, 2) dan (4,6) Penyelesaian : X 1 = 3, X 2 = 4, Y 1 = 2, dan Y 2 = 6 Persamaan garis Y = 4-10 ini grafiknya ditunjukkan oleh gambar 4.3. Y Y 1 = Y 2 Y 1 X X 1 X 2 X 1 Y Y = X Y = 4X Y 2 = (X 3) X Y 2 = 4 (X 3) Y = 4 X 12 Y = 4 X (0,-10)

12 (2). METODE SATU TITIK DAN SATU KEMIRINGAN Y Y 1 = m (X X 1 ) Contoh Carilah persamaan garis yang melalui titik (6, 4) dan kemiringannya -2/3 Penyelesaian : Diketahui (X 1, Y 1 ) = (6, 4) dan m = - 2/3 Y Y Y 1 = m (X X 1 ) Y 4 = -2/3 (X 6) Y = -2/3X Y = -2/3X + 8 Persamaan garis Y = -2/3X + 8 ini grafiknya ditunjukkan oleh gambar (0,8) 6 Y = - 2/3 X (12,0) X

13 HUBUNGAN DUA GARIS LURUS y 1 =a 0 + a 1 dan y 2 =b 0 + b 1 Y Y a 1 b 1 a 1 = b 1 y 1 a o b 0 a o b 0 y 1 y 2 X 0 0 (a) Berpotongan y 2 (b) Sejajar X Y a 1 = b 1 a o = b 0 Y a 1.b 1 = -1 y 1 y 1 a o b 0 y 2 X 0 0 (c) Berimpit y 2 (d) Tegak Lurus X

14 SISTEM PERSAMAAN LINIER PENYELESAIAN SISTEM PERSAMAAN LINIER: DUA PERSAMAAN DENGAN DUA VARIABEL METODE ELIMINASI Contoh 5.1. Carilah nilai-nilai dari variabel X dan Y yang dapat memenuhi kedua persamaan berikut ini : 3X 2Y = 7 2X + 4Y = 10 (5.1) (5.2) Penyelesaian : 1. Variabel yang akan dieliminasikan adalah variabel Y. 2. Karena variabel Y yang dipilih, maka Persamaan (5.1) harus dikalikan dengan konstanta 2, dan Persamaan (5.2) dikalikan dengan konstanta 1, sehingga kedua persamaan menjadi, 3X 2Y = 7 (kalikan dengan 2), maka 6X 4Y = 14 2X + 4Y = 10 (kalikan dengan 1), maka 2X + 4Y = Karena kedua koefisien dari variabel Y tandanya berbeda, maka harus dijumlahkan, dan menjadi, 6X 4Y = 14 2X + 4Y = X + 0 = 24 X = 3 4. Subtitusikan nilai X = 3 kedalam salah satu persamaan semula agar diperoleh nilai Y. Bila disubtitusikan pada Persamaan (5.1), maka akan menghasilkan, 3 (3) -2Y = 7-2Y = 7 9 Y = 1

15 METODE SUBSTITUSI Contoh X 2Y = 7 (5.1) 2X + 4Y = 10 (5.2) Misalkan variabel X yang dipilih pada persamaan (5.2), maka akan menjadi, 2X = 10 4Y X = 5 2Y (koefisien variabel X=1) Karena Persamaan (5.2) yang dipilih, maka subtitusikan kedalam persamaan pertama, sehingga menjadi, 3 (5 2Y) 2Y = Y 2Y = Y = 7-8Y = 7 15 Y = 1 Substitusikan nilai Y = 1 ini kedalam salah satu persamaan mula-mula, misalkan Persamaan (5.1), sehingga memperoleh hasil, 3X 2 (1) = 7 3X = X = 3 Jadi, himpunan penyelesaian yang memenuhi kedua persamaan tersebut adalah himpunan pasangan urut (3.1).

16 Fungsi Kuadrat Bentuk umum dari fungsi kuadrat adalah Maka, y = a 2 + b + c y a b 2a 2 D 4a D = b 2 4ac Bentuk grafik dari fungsi kuadrat adalah PARABOLA a + a -

17 Koordinat titik puncak diperoleh dgn rumus: Koordinat titik puncak diperoleh dgn rumus: - b - (b 2 4ac) Titik puncak = -----, a 4a -b ± (b 2 4ac) X1.2 = a Contoh: Jika fungsi kuadrat Y = X 2 8X + 12 Carilah koordinat titik puncak dan gambarkan - b - (b 2 4ac) Koordinat Titik puncak = -----, a 4a

18 Contoh : Jika fungsi kuadrat Y = X 2 8X + 12, carilah koordinat titik puncak dan gambarkanlah parabolanya? Penyelesaian : Koordinat titik puncak b, 2a ( 4, 4) 2 ( b 4ac 4a 8 (64 48, 2 4 Untuk X = 0, maka Y = 12 Titik potong sumbu Y adalah (0,12) Untuk Y = 0, maka X 2 8X + 12 = 0

19 Titik potong sumbu X adalah (2,0) dan (6,0). Berdasarkan nilai-nilai penyelesaian dari titik puncak dan titik potong sumbu X dan Y, maka kurva parabolannya dapat digambarkan seperti 7.3.

20 Y (0,12) (8,12) Y = a 0 = a 1 X + a 2 X 2 +a 3 X 3 (2,0) 2

21 Fungsi Kuadrat Bentuk umum dari fungsi kuadrat adalah Maka, y = a 2 + b + c y a b 2a 2 D 4a D = b 2 4ac Bentuk grafik dari fungsi kuadrat adalah PARABOLA a + a -

22 Titik Ekstrem Parabola Titik Maksimum dan titik Minimum Fungsi Maksimum dan minimum fungsi sangat ditentukan oleh nilai dari a y = a 2 + b + c Titik Maksimum didapat jika a, dan titik maksimumnya 1 2 a - 2 b a, 4 D a Titik Miminum didapat jika a, dan titik minimumnya 1 2 a + 2 b a, 4 D a Titik 1,2 dapat dicari dengan: b 2a D

23 Posisi Parabola Jika D, maka parabola memotong sb pada titik ( 1,0) dan ( 2,0) a + a - Jika D = 0, maka parabola menyinggung sb pada titik b, 0 2a - b/2a a + a - - b/2a Jika D, maka parabola TIDAK memotong sb a + a - Definit Positif Definit Negatif

24 FUNGSI PANGKAT TIGA Polinomial tingkat 3 dengan satu variabel bebas disebut sebagai kubik, dan mempunyai bentuk umum : Y = a 0 + a 1 X + a 2 X 2 + a 3 X 3 dimana : a 3 tidak sama dengan nol. fungsi kubik ini bila digambarkan dalam bidang koordinat Cartesius, kurvanya mempunyai dua lengkung (concave) yaitu : lengkung ke atas dan lengkung ke bawah, seperti tampak pada gambar di samping. a 0 Y 0 Y = a 0 = a 1 X + a 2 X 2 +a 3 X 3

25 PENERAPAN FUNGSI DIBIDANG EKONOMI Fungsi linier adalah suatu fungsi yang sangat sering digunakan oleh para ahli ekonomi dan bisnis dalam menganalisa dan memecahkan masalah-masalah ekonomi. Hal ini dikarenakan bahwa kebanyakan masalah ekonomi dan bisnis dapat disederhanakan atau diterjemahkan ke dalam model yang berbentuk linier.

26 Beberapa penerapan fungsi linier dalam bidang ekonomi dan bisnis adalah: a. Fungsi permintaan, fungsi penawaran dan keseimbangan pasar b. Keseimbangan Pasar Dua Macam Produk c. Pengaruh Pajak dan Subsidi Terhadap Keseimbangan Pasar. d. Fungsi biaya, fungsi pendapatan dan analisis Pulang Pokok (BEP=Break Even Point) e. Fungsi Konsumsi dan Tabungan f. Model Penentuan Pendapatan Nasional

Modul Matematika MINGGU 4. g. Titik Potong fungsi linier

Modul Matematika MINGGU 4. g. Titik Potong fungsi linier MINGGU 4 Pokok Bahasan Sub Pokok Bahasan Tujuan Instruksional Umum : Hubungan dan : 1. Hubungan 2. a. Pengertian fungsi b. Jenis-jenis fungsi c. Diagram fungsi d. Pengertian fungsi linier e. Penggambaran

Lebih terperinci

fungsi Dan Grafik fungsi

fungsi Dan Grafik fungsi fungsi Dan Grafik fungsi Suatu fungsi adalah pemadanan dua himpunan tidak kosong dengan pasangan terurut (x, y) dimana tidak terdapat elemen kedua yang berbeda. Fungsi (pemetaan) himpunan A ke himpunan

Lebih terperinci

Matematika Ekonomi KUADRAT DAN FUNGSI RASIONAL (FUNGSI PECAH) GRAFIK FUNGSI KUADRAT BERUPA PARABOLA GRAFIK FUNGSI RASIONAL BERUPA HIPERBOLA

Matematika Ekonomi KUADRAT DAN FUNGSI RASIONAL (FUNGSI PECAH) GRAFIK FUNGSI KUADRAT BERUPA PARABOLA GRAFIK FUNGSI RASIONAL BERUPA HIPERBOLA Fungsi Non Linier Diskripsi materi: -Harga ekstrim pada fungsi kuadrat 1 Fungsi non linier FUNGSI LINIER DAPT BERUPA FUNGSI KUADRAT DAN FUNGSI RASIONAL (FUNGSI PECAH) GRAFIK FUNGSI KUADRAT BERUPA PARABOLA

Lebih terperinci

Modul Matematika 2012

Modul Matematika 2012 Modul Matematika MINGGU V Pokok Bahasan : Fungsi Non Linier Sub Pokok Bahasan :. Pendahuluan. Fungsi kuadrat 3. Fungsi pangkat tiga. Fungsi Rasional 5. Lingkaran 6. Ellips Tujuan Instruksional Umum : Agar

Lebih terperinci

fungsi rasional adalah rasio dari dua polinomial. Secara umum,

fungsi rasional adalah rasio dari dua polinomial. Secara umum, fungsi rasional adalah rasio dari dua polinomial. Secara umum, Fungsi Rasional Fungsi rasional adalah fungsi yang memiliki bentuk Dengan p dan d merupakan polinomial dan d(x) 0. Domain dari V(x) adalah

Lebih terperinci

PENGERTIAN FUNGSI JENIS-JENIS FUNGSI PENGGAMBARAN GRAFIK FUNGSI

PENGERTIAN FUNGSI JENIS-JENIS FUNGSI PENGGAMBARAN GRAFIK FUNGSI FUNGSI PENGERTIAN FUNGSI JENIS-JENIS FUNGSI PENGGAMBARAN GRAFIK FUNGSI PENGERTIAN FUNGSI Sebuah fungsi f dari himpunan A ke himpunan B adalah suatu aturan yang memasangkan setiap X anggota A dengan tepat

Lebih terperinci

BAB 3 FUNGSI & GRAFIKNYA

BAB 3 FUNGSI & GRAFIKNYA BAB 3 FUNGSI & GRAFIKNYA . DEFINISI RELASI Dua himpunan A dan B dikatakan mempunyai relasi apabila ada cara atau aturan tertentu untuk mengkaitkan antara anggota A dengan anggota B. Relasi antara himpunan

Lebih terperinci

MBS - DTA. Sucipto UNTUK KALANGAN SENDIRI. SMK Muhammadiyah 3 Singosari

MBS - DTA. Sucipto UNTUK KALANGAN SENDIRI. SMK Muhammadiyah 3 Singosari MBS - DTA Sucipto UNTUK KALANGAN SENDIRI SMK Muhammadiyah Singosari SERI : MBS-DTA FUNGSI STANDAR KOMPETENSI Siswa mampu memecahkan masalah yang berkaitan dengan fungsi, persamaan fungsi linear dan fungsi

Lebih terperinci

Jenis Jenis--jenis jenis fungsi dan fungsi linier Hafidh Munawir

Jenis Jenis--jenis jenis fungsi dan fungsi linier Hafidh Munawir Jenis-jenis fungsi dan fungsi linier Hafidh Munawir Diskripsi Mata Kuliah Memperkenalkan unsur-unsur fungsi ialah variabel bebas dan variabel terikat, koefisien, dan konstanta, yang saling berkaitan satu

Lebih terperinci

FUNGSI DAN PERSAMAAN LINEAR. EvanRamdan

FUNGSI DAN PERSAMAAN LINEAR. EvanRamdan FUNGSI DAN PERSAMAAN LINEAR TEORI FUNGSI Fungsi yaitu hubungan matematis antara suatu variabel dengan variabel lainnya. Unsur-unsur pembentukan fungsi yaitu variabel (terikat dan bebas), koefisien dan

Lebih terperinci

5 F U N G S I. 1 Matematika Ekonomi

5 F U N G S I. 1 Matematika Ekonomi 5 F U N G S I Pemahaman tentang konsep fungsi sangat penting dalam mempelajari ilmu ekonomi, mengingat kajian ekonomi banyak bekerja dengan fungsi. Fungsi dalam matematika menyatakan suatu hubungan formal

Lebih terperinci

PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT

PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT LA - WB (Lembar Aktivitas Warga Belajar) PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X Created By Ita Yuliana

Lebih terperinci

FUNGSI. A. Relasi dan Fungsi Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii)

FUNGSI. A. Relasi dan Fungsi Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) FUNGSI A. Relasi dan Fungsi Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) Relasi himpunan A ke himpunan B adalah relasi yang memasangkan/mengkawankan/mengkorepodensikan

Lebih terperinci

JENIS JENIS FUNGSI 2. Gambar. Jenis Fungsi. mengandung banyak suku (polinom) dalam variabel bebas y = a 0 + a 1 x + a 2 x a n x n

JENIS JENIS FUNGSI 2. Gambar. Jenis Fungsi. mengandung banyak suku (polinom) dalam variabel bebas y = a 0 + a 1 x + a 2 x a n x n Telkom University Alamanda JENIS JENIS FUNGSI1 JENIS JENIS FUNGSI 2 Jenis Fungsi Gambar 1. FUNGSI POLINOM mengandung banyak suku (polinom) dalam variabel bebas y = a 0 + a 1 x + a 2 x 2 + + a n x n 2.

Lebih terperinci

Institut Manajemen Telkom

Institut Manajemen Telkom Institut Manajemen Telkom Osa Omar Sharif JENIS JENIS FUNGSI1 JENIS JENIS FUNGSI 2 Jenis Fungsi Gambar 1. FUNGSI POLINOM mengandung banyak suku (polinom) dalam variabel bebas y = a 0 + a 1 x + a 2 x 2

Lebih terperinci

Matematik Ekonom Fungsi nonlinear

Matematik Ekonom Fungsi nonlinear 1 FUNGSI Fungsi adalah hubungan antara 2 buah variabel atau lebih, dimana masing-masing dari dua variabel atau lebih tersebut saling pengaruh mempengaruhi. Variabel merupakan suatu besaran yang sifatnya

Lebih terperinci

MAKALAH FUNGSI KUADRAT GRAFIK FUNGSI,&SISTEM PERSAMAAN KUADRAT

MAKALAH FUNGSI KUADRAT GRAFIK FUNGSI,&SISTEM PERSAMAAN KUADRAT MAKALAH FUNGSI KUADRAT GRAFIK FUNGSI,&SISTEM PERSAMAAN KUADRAT Kelompok 3 : 1.Suci rachmawati (ekonomi akuntansi) 2.Fitri rachmad (ekonomi akuntansi) 3.Elif (ekonomi akuntansi) 4.Dewi shanty (ekonomi management)

Lebih terperinci

KELAS XI PROGRAM KEAHLIAN : BISNIS DAN MANAJEMEN & PARIWISATA SMK NEGERI 1 SURABAYA. BY : Drs. Abd. Salam, MM

KELAS XI PROGRAM KEAHLIAN : BISNIS DAN MANAJEMEN & PARIWISATA SMK NEGERI 1 SURABAYA. BY : Drs. Abd. Salam, MM KELAS XI PROGRAM KEAHLIAN : BISNIS DAN MANAJEMEN & PARIWISATA SMK NEGERI 1 SURABAYA BAHAN AJAR FUNGSI LINIER & KUADRAT SMK NEGERI 1 SURABAYA Halaman 1 BAB FUNGSI A. FUNGSI DAN RELASI Topik penting yang

Lebih terperinci

Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f.

Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f. Pertemuan ke 8 GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(,y): y = f(), D f } disebut grafik fungsi f. Grafik metode yang paling umum untuk menyatakan hubungan antara dua himpunan yaitu dengan menggunakan

Lebih terperinci

Fungsi Linier & Grafik Fungsi Aplikasi dalam Ekonomi

Fungsi Linier & Grafik Fungsi Aplikasi dalam Ekonomi Fungsi Linier & Grafik Fungsi Aplikasi dalam Ekonomi Diskripsi materi: -Bentuk umum dari fungsi linier dan menggambarkan grafik fungsi linier -Menentukan koefisien arah/ Kemiringan -Cara-cara pembentukan

Lebih terperinci

Dosen Pengampu: Prof. Dr. H. Almasdi Syahza, SE., MP. Website : HUBUNGAN NONLINEAR

Dosen Pengampu: Prof. Dr. H. Almasdi Syahza, SE., MP.   Website :  HUBUNGAN NONLINEAR Dosen Pengampu: Prof. Dr. H. Almasdi Syahza, SE., MP. Email : asyahza@yahoo.co.id Website : http://almasdi.unri,ac,id HUBUNGAN NONLINEAR a. Fungsi Kuadrat b. Fungsi Kubik c. Penerapan Ekonomi Permintaan,

Lebih terperinci

Outline: Sistem Koordinat Jarak Garis Fungsi

Outline: Sistem Koordinat Jarak Garis Fungsi FUNGSI 9//018 Outline: Sistem Koordinat Jarak Garis Fungsi 9//018 The RectanguLar Coordinate system (Sistem Koordinat Persegipanjang) Distance Formula (Rumus Jarak) Lingkaran Titik Tengah Kemiringan

Lebih terperinci

A. Kajian ulang tentang fungsi Pada gambar di bawah ini diberikan diagram panah suatu relasi dari himpunan

A. Kajian ulang tentang fungsi Pada gambar di bawah ini diberikan diagram panah suatu relasi dari himpunan MODUL MATEMATIKA UNTUK SMA istiyanto.com Mari Berbagi Ilmu Dengan Yang Lain Pesan soal-soal matematika untuk SD, SMP dan SMA? Soal ulangan harian, ulangan mid, ulangan semester, soal-soal UAN dll. Tulis

Lebih terperinci

Materi Matematika Persamaan dan Pertidaksamaan kuadrat Persamaan Linear Persamaan Kuadrat Contoh : Persamaan Derajat Tinggi

Materi Matematika Persamaan dan Pertidaksamaan kuadrat Persamaan Linear Persamaan Kuadrat Contoh : Persamaan Derajat Tinggi Materi Matematika Persamaan dan Pertidaksamaan kuadrat Persamaan Linear Persamaan linear dengan n peubah adalah persamaan dengan bentuk : dengan adalah bilangan- bilangan real, dan adalah peubah. Secara

Lebih terperinci

6 FUNGSI LINEAR DAN FUNGSI

6 FUNGSI LINEAR DAN FUNGSI 6 FUNGSI LINEAR DAN FUNGSI KUADRAT 5.1. Fungsi Linear Pada Bab 5 telah dijelaskan bahwa fungsi linear merupakan fungsi yang variabel bebasnya paling tinggi berpangkat satu. Bentuk umum fungsi linear adalah

Lebih terperinci

FUNGSI. Riri Irawati, M.Kom 3 sks

FUNGSI. Riri Irawati, M.Kom 3 sks FUNGSI Riri Irawati, M.Kom 3 sks Agenda 1. Sistem Koordinat Kartesius. Garis Lurus 3. Grafik persamaan Tujuan Agar mahasiswa dapat : Menggunakan sistem koordinat untuk menentukan titik-titik dan kurva-kurva.

Lebih terperinci

LAMPIRAN VIII BAHAN AJAR I

LAMPIRAN VIII BAHAN AJAR I 177 LAMPIRAN VIII BAHAN AJAR I A. Standar Kompetensi Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus B. Kompetensi Dasar Memahami relasi dan fungsi C. Tujuan Pembelajaran 1. Siswa dapat

Lebih terperinci

BEBERAPA FUNGSI KHUSUS

BEBERAPA FUNGSI KHUSUS BEBERAPA FUNGSI KHUSUS ). Fungsi Konstan ). Fungsi Identitas 3). Fungsi Modulus 4). Fungsi Genap dan Fungsi Ganjil Fungsi genap jika f(x) = f(x), dan Fungsi ganjil jika f(x) = f(x) 5). Fungsi Tangga dan

Lebih terperinci

BAB 1 PERSAMAAN. a) 2x + 3 = 9 a) 5 = b) x 2 9 = 0 b) = 12 c) x = 0 c) 2 adalah bilangan prima genap d) 3x 2 = 3x + 5

BAB 1 PERSAMAAN. a) 2x + 3 = 9 a) 5 = b) x 2 9 = 0 b) = 12 c) x = 0 c) 2 adalah bilangan prima genap d) 3x 2 = 3x + 5 BAB PERSAMAAN Sifat Sifat Persamaan Persamaan adalah kalimat matematika terbuka yang menyatakan hubungan sama dengan. Sedangkan kesamaan adalah kalimat matematika tertutup yang menyatakan hubungan sama

Lebih terperinci

PTE 4109, Agribisnis UB

PTE 4109, Agribisnis UB MATEMATIKA EKONOMI PTE 4109, Agribisnis UB 1 Materi ang dipelajari Pengertian dan Unsur- unsur Fungsi Jenis- jenis fungsi Penggambaran fungsi Linear Penggambaran fungsi non linear -Penggal -Simetri - Perpanjangan

Lebih terperinci

Pengertian Fungsi. MA 1114 Kalkulus I 2

Pengertian Fungsi. MA 1114 Kalkulus I 2 Fungsi Pengertian Fungsi Relasi : aturan yang mengawankan himpunan Fungsi Misalkan A dan B himpunan. Relasi biner dari A ke B merupakan suatu ungsi jika setiap elemen di dalam A dihubungkan dengan tepat

Lebih terperinci

Fungsi. Pengertian Fungsi. Pengertian Fungsi ( ) ( )

Fungsi. Pengertian Fungsi. Pengertian Fungsi ( ) ( ) Fungsi Pengertian Fungsi Relasi : aturan yang mengawankan/ mengkaitkan/ menugaskan himpunan Fungsi Misalkan A dan B himpunan. Relasi biner dari A ke B merupakan suatu ungsi jika setiap elemen di dalam

Lebih terperinci

Fungsi Linear dan Fungsi Kuadrat

Fungsi Linear dan Fungsi Kuadrat Modul 1 Fungsi Linear dan Fungsi Kuadrat Drs. Susiswo, M.Si. K PENDAHULUAN ompetensi umum yang diharapkan, setelah mempelajari modul ini, adalah Anda dapat memahami konsep tentang persamaan linear dan

Lebih terperinci

MATEMATIKA EKONOMI ( FUNGSI LINIER, GRAFIK FUNGSI DAN SISTEM PERSAMAAN LINIER )

MATEMATIKA EKONOMI ( FUNGSI LINIER, GRAFIK FUNGSI DAN SISTEM PERSAMAAN LINIER ) MATEMATIKA EKONOMI ( FUNGSI LINIER, GRAFIK FUNGSI DAN SISTEM PERSAMAAN LINIER ) KELOMPOK 2 1. UMAR ATTAMIMI (01212043) 2. SITI WASI ATUL MUFIDA (01212096) 3. DEVI PRATNYA. P. (01212078) 4. POPPY MERLIANA

Lebih terperinci

Silabus. Kegiatan Pembelajaran Instrumen. Tugas individu.

Silabus. Kegiatan Pembelajaran Instrumen. Tugas individu. Silabus Jenjang : SMP dan MTs Mata Pelajaran : Matematika Kelas : VIII Semester : 1 Standar Kompetensi : ALJABAR 1. Memahami bentuk aljabar, relasi, fungsi, dan garis lurus. Kompetensi Dasar Materi Ajar

Lebih terperinci

MATEMATIKA 1. Achmad Basuki Departemen Teknologi Multimedia Kreatif Politeknik Elektronika Negeri 1

MATEMATIKA 1. Achmad Basuki Departemen Teknologi Multimedia Kreatif Politeknik Elektronika Negeri 1 MATEMATIKA 1 Achmad Basuki Departemen Teknologi Multimedia Kreatif Politeknik Elektronika Negeri 1 Materi Fungsi Grafik Fungsi Sifat Simetri Fungsi Genap dan Fungsi Ganjil Operasi Pada Beberapa Fungsi

Lebih terperinci

BAB II PERSAMAAN KUADRAT DAN FUNGSI KUADRAT

BAB II PERSAMAAN KUADRAT DAN FUNGSI KUADRAT BAB II PERSAMAAN KUADRAT DAN FUNGSI KUADRAT 1. Menentukan koefisien persamaan kuadrat 2. Jenis-jenis akar persamaan kuadrat 3. Menyusun persamaan kuadrat yang akarnya diketahui 4. Fungsi kuadrat dan grafiknya

Lebih terperinci

BAB IV PENYAJIAN DATA DAN ANALISIS DATA. A. Deskripsi Buku Ajar Matematika SMA/MA Kelas X yang digunakan di

BAB IV PENYAJIAN DATA DAN ANALISIS DATA. A. Deskripsi Buku Ajar Matematika SMA/MA Kelas X yang digunakan di BAB IV PENYAJIAN DATA DAN ANALISIS DATA A. Deskripsi Buku Ajar Matematika SMA/MA Kelas X yang digunakan di SMA/MA Kecamatan Anjir Muara Berdasarkan BAB III telah diuraikan bahwa penelitian ini bertujuan

Lebih terperinci

III. FUNGSI POLINOMIAL

III. FUNGSI POLINOMIAL III. FUNGSI POLINOMIAL 3. Pendahuluan A. Tujuan Setelah mempelajari bagian ini diharapkan mahasiswa dapat:. menuliskan bentuk umum fungsi polinomial;. menghitung nilai fungsi polinomial; 3. menuliskan

Lebih terperinci

FUNGSI, SISTEM PERSAMAAN LINIER DAN MENGGAMBAR GRAFIK

FUNGSI, SISTEM PERSAMAAN LINIER DAN MENGGAMBAR GRAFIK FUNGSI, SISTEM PERSAMAAN LINIER DAN MENGGAMBAR GRAFIK TUGAS MATEMATIKA EKONOMI DISUSUN OLEH : DENY PRASETYA 01212074 IAN ANUGERAH 01212035 M. UMAR A 01212016 ARON GARDIKA 01212140 SAIFUL RAHMAN 01212020

Lebih terperinci

Materi Fungsi Linear Fungsi Variabel, koefisien, dan konstanta Variabel variabel bebas Koefisien Konstanta 1). Pengertian fungsi linier

Materi Fungsi Linear Fungsi Variabel, koefisien, dan konstanta Variabel variabel bebas Koefisien Konstanta 1). Pengertian fungsi linier Materi Fungsi Linear Admin 8:32:00 PM Duhh akhirnya nongol lagi... kali ini saya akan bahas mengenai pelajaran yang paling disukai oleh hampir seluruh warga dunia :v... MATEMATIKA, ya itu namanya. materi

Lebih terperinci

Kalkulus 1 MA1104. Fungsi. Dr. I W. Sudarsana. Program Studi Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Tadulako

Kalkulus 1 MA1104. Fungsi. Dr. I W. Sudarsana. Program Studi Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Tadulako Kalkulus 1 MA1104 Fungsi Dr. I W. Sudarsana Program Studi Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Tadulako Pengertian Fungsi Jika adalah ungsi dari A ke B kita menuliskan :

Lebih terperinci

Komposisi fungsi dan invers fungsi. Syarat agar suatu fungsi mempunyai invers. Grafik fungsi invers

Komposisi fungsi dan invers fungsi. Syarat agar suatu fungsi mempunyai invers. Grafik fungsi invers Komposisi fungsi dan invers fungsi mempelajari Fungsi komposisi menentukan Fungsi invers terdiri dari Syarat dan aturan fungsi yang dapat dikomposisikan Nilai fungsi komposisi dan pembentuknya Syarat agar

Lebih terperinci

KALKULUS 1 HADI SUTRISNO. Pendidikan Matematika STKIP PGRI Bangkalan. Hadi Sutrisno/P.Matematika/STKIP PGRI Bangkalan

KALKULUS 1 HADI SUTRISNO. Pendidikan Matematika STKIP PGRI Bangkalan. Hadi Sutrisno/P.Matematika/STKIP PGRI Bangkalan KALKULUS 1 HADI SUTRISNO 1 Pendidikan Matematika STKIP PGRI Bangkalan BAB I PENDAHULUAN A. Sistem Bilangan Real Untuk mempelajari kalkulus kita terlebih dahulu perlu memahami bahasan tentang sistem bilangan

Lebih terperinci

BAB I. SISTEM KOORDINAT, NOTASI & FUNGSI

BAB I. SISTEM KOORDINAT, NOTASI & FUNGSI BAB I. SISTEM KRDINAT, NTASI & FUNGSI (Pertemuan ke 1 & 2) PENDAHULUAN Diskripsi singkat Pada bab ini akan dijelaskan tentang bilangan riil, sistem koordinat Cartesius, notasi-notasi ang sering digunakan

Lebih terperinci

A. MENYELESAIKAN PERSAMAAN KUADRAT

A. MENYELESAIKAN PERSAMAAN KUADRAT A. MENYELESAIKAN PERSAMAAN KUADRAT STANDAR KOMPETENSI Memecahkan masalah yang berkaitan dengan fungsi, persamaan dan fungsi kuadrat serta pertidaksamaan kuadrat KOMPETENSI DASAR Menggunakan sifat dan aturan

Lebih terperinci

MATEMATIKA BISNIS I. M Riza Radyanto, S.T, M.T. Akademi Keuangan dan Perbankan Widya Buana

MATEMATIKA BISNIS I. M Riza Radyanto, S.T, M.T. Akademi Keuangan dan Perbankan Widya Buana MATEMATIKA BISNIS I M Riza Radyanto, S.T, M.T Akademi Keuangan dan Perbankan Widya Buana 2013 BAB I FUNGSI Pengetahuan dan pemahaman akan konsep fungsi baik berbentuk persamaan maupun pertidaksamaan dalam

Lebih terperinci

Macam-macam fungsi. Fungsi Polinomial. Fungsi Linier. Grafik Fungsi Linier. Fungsi

Macam-macam fungsi. Fungsi Polinomial. Fungsi Linier. Grafik Fungsi Linier. Fungsi Fungsi Macam-macam fungsi Polinomial (sampai dengan derajat 2) Akar kuadrat Rasional Ekponensial Logaritma Fungsi Polinomial Bentuk Umum: f (x) = a 0 + a 1 x + a 2 x 2 + + a n x n, dengan a 0, a 1, a 2,

Lebih terperinci

Hand out_x_fungsi kuadrat

Hand out_x_fungsi kuadrat STANDAR KOMPETENSI: Memecahkan masalah yang berkaitan dengan fungsi, persamaan dan fungsi kuadrat serta pertidaksamaan kuadrat. KOMPETENSI DASAR: Menggambar grafik fungsi aljabar sederhana dan fungsi kuadrat

Lebih terperinci

Silabus. Nama Sekolah : SMA Mata Pelajaran : MATEMATIKA Kelas / Program : X / UMUM Semester : GANJIL

Silabus. Nama Sekolah : SMA Mata Pelajaran : MATEMATIKA Kelas / Program : X / UMUM Semester : GANJIL Silabus Nama Sekolah : SMA Mata Pelajaran : MATEMATIKA Kelas / Program : X / UMUM Semester : GANJIL Sandar Kompetensi:. Memecahkan masalah yang berkaitan dengan bentuk pangkat, akar, dan logaritma Kompetensi

Lebih terperinci

MATERI PRASYARAT. ke y= f(x) =ax2 + bx +c

MATERI PRASYARAT. ke y= f(x) =ax2 + bx +c 1 MATERI PRASYARAT A. Fungsi Kuadrat Bentuk umum : y= f(x) = ax 2 + bx +c dengan a 0. Langkah-langkah dalam menggambar grafik fungsi kuadrat y= f(x) = ax 2 + bx +c 1. Tentukan titik potong dengan sumbu

Lebih terperinci

6/28/2016 al muiz

6/28/2016 al muiz 6/28/2016 al muiz 2013 1 Unsur-unsur dalam model matematis Varia bel Kons tanta Para meter Unsur model matematis 6/28/2016 al muiz 2013 2 Variabel adalah sesuatu yang besarnya dapat berubah, misalnya sesuatu

Lebih terperinci

A. PERSAMAAN GARIS LURUS

A. PERSAMAAN GARIS LURUS A. PERSAMAAN GARIS LURUS Persamaan garis lurus adalah hubungan nilai x dan nilai y yang terletak pada garis lurus serta dapat di tulis px + qy = r dengan p, q, r bilangan real dan p, q 0. Persamaan dalam

Lebih terperinci

BAB VI FUNGSI KUADRAT (PARABOLA) a < 0 dan D = 0 a < 0 dan D < 0. a < 0 0 x 0 x

BAB VI FUNGSI KUADRAT (PARABOLA) a < 0 dan D = 0 a < 0 dan D < 0. a < 0 0 x 0 x BAB VI FUNGSI KUADRAT (PARABOLA) Secara umum, persamaan kuadrat dituliskan sebagai ax 2 + bx + c = 0 atau dalam bentuk fungsi dituliskan sebagai f(x) = ax 2 + bx + c. Sifat matematis dari persamaan kuadrat

Lebih terperinci

(2) Titik potong kurva dengan sumbu y, bila x = 0, diperoleh x = 0 y = mx + n y = m(0) + n y = n Jadi, titik potongnya dengan sumbu y, adalah (0, n) y

(2) Titik potong kurva dengan sumbu y, bila x = 0, diperoleh x = 0 y = mx + n y = m(0) + n y = n Jadi, titik potongnya dengan sumbu y, adalah (0, n) y BAB 3 FUNGSI LINIER DAN PERSAMAAN GARIS LURUS 3.1 Pengantar Fungsi linier adalah bentuk fungsi yang paling sederhana. Banyak hubungan antara variable ekonomi, dalam jangka pendek dianggap linier. Pengetahuan

Lebih terperinci

Matematika Dasar FUNGSI DAN GRAFIK

Matematika Dasar FUNGSI DAN GRAFIK FUNGSI DAN GRAFIK Suatu pengaitan dari himpunan A ke himpunan B disebut fungsi bila mengaitkan setiap anggota dari himpunan A dengan tepat satu anggota dari himpunan B. Notasi : f : A B f() y Himpunan

Lebih terperinci

APLIKASI FUNGSI LINIER DALAM BIDANG EKONOMI FUNGSI PERMINTAAN & PENAWARAN. Oleh : Agus Arwani, SE, M.Ag.

APLIKASI FUNGSI LINIER DALAM BIDANG EKONOMI FUNGSI PERMINTAAN & PENAWARAN. Oleh : Agus Arwani, SE, M.Ag. APLIKASI FUNGSI LINIER DALAM BIDANG EKONOMI FUNGSI PERMINTAAN & PENAWARAN Oleh : Agus Arwani, SE, M.Ag. FUNGSI PERMINTAAN Q dx,t = ƒ (P x,t, P y,t, Y t, P e X,t+1,S t ) Dimana Q dx,t = Jumlah produk X

Lebih terperinci

A. Kajian ulang tentang fungsi Pada gambar di bawah ini diberikan diagram panah suatu relasi dari himpunan

A. Kajian ulang tentang fungsi Pada gambar di bawah ini diberikan diagram panah suatu relasi dari himpunan MODUL FUNGSI KUADRAT Materi: Fungsi Kuadrat A Kajian ulang tentang fungsi B Fungsi kuadrat dan grafiknya C Menentukan fungsi kuadrat D Menentukan sumu simetri, titik puncak, sifat definit positif atau

Lebih terperinci

SISTEM BILANGAN RIIL DAN FUNGSI

SISTEM BILANGAN RIIL DAN FUNGSI SISTEM BILANGAN RIIL DAN FUNGSI Matematika Juni 2016 Dosen : Dadang Amir Hamzah MATEMATIKA Juni 2016 1 / 67 Outline 1 Sistem Bilangan Riil Dosen : Dadang Amir Hamzah MATEMATIKA Juni 2016 2 / 67 Outline

Lebih terperinci

BAB XI PERSAMAAN GARIS LURUS

BAB XI PERSAMAAN GARIS LURUS BAB XI PERSAMAAN GARIS LURUS A. Pengertian Pesamaan Garis Lurus Persamaan garis lurus adalah suatu fungsi yang apabila digambarkan ke dalam bidang Cartesius akan berbentuk garis lurus. Garis lurus ini

Lebih terperinci

Modul Matematika SMA i

Modul Matematika SMA i Modul Matematika SMA i Tim Penyusun : Liya Nur Qori ah (1724143141) Lusiana Dian Silviani (1724143146) Masdain Rifa I (1724143153) Muchamad Misbakhudin (1724143158) Muhammad Eko Budi Rismanto (172143170)

Lebih terperinci

MATEMATIKA EKONOMI DAN BISNIS. Nuryanto.ST.,MT

MATEMATIKA EKONOMI DAN BISNIS. Nuryanto.ST.,MT MATEMATIKA EKONOMI DAN BISNIS Fungsi Non Linear Fungsi non-linier merupakan bagian yang penting dalam matematika untuk ekonomi, karena pada umumnya fungsi-fungsi yang menghubungkan variabel-variabel ekonomi

Lebih terperinci

atau y= f(x) = ax 2 + bx + c (3.17) y= f(x) = a 2 x + a 0 x 2 + a 1

atau y= f(x) = ax 2 + bx + c (3.17) y= f(x) = a 2 x + a 0 x 2 + a 1 i. Fungsi kuadrat - Penyelesaian fungsi kuadrat dengan pemfaktoran Fungsi kuadrat adalah fungsi polinomial yang mempunyai derajad dua dan mempunyai bentuk umum : y= f(x) = a 2 x 2 + a 1 x + a 0 atau y=

Lebih terperinci

DTH1B3 - MATEMATIKA TELEKOMUNIKASI I

DTH1B3 - MATEMATIKA TELEKOMUNIKASI I DTH1B3 - MATEMATIKA TELEKOMUNIKASI I Sistem Persamaan Linear By : Dwi Andi Nurmantris Capaian Pembelajaran Mampu menyelesaikan sistem persamaan linier dengan beberapa metode pencarian. Mampu menyelesaikan

Lebih terperinci

Bilangan Real. Modul 1 PENDAHULUAN

Bilangan Real. Modul 1 PENDAHULUAN Modul 1 Bilangan Real S PENDAHULUAN Drs. Soemoenar emesta pembicaraan Kalkulus adalah himpunan bilangan real. Jadi jika akan belajar kalkulus harus paham terlebih dahulu tentang bilangan real. Bagaimanakah

Lebih terperinci

MATEMATIKA EKONOMI Program Studi Agribisnis

MATEMATIKA EKONOMI Program Studi Agribisnis MATEMATIKA EKONOMI Program Studi Agribisnis Dosen Pengampu: Prof. Dr. H. Almasdi Syahza, SE., MP. Email : asyahza@yahoo.co.id Website: http://almasdi.unri.ac.id HUBUNGAN FUNGSIONAL Pengertian dan unsur-unsur

Lebih terperinci

BAB IV FUNGSI. Modul Matematika Bisnis

BAB IV FUNGSI. Modul Matematika Bisnis BAB IV FUNGSI ILUSTRASI Pada tahun anggaran 2003 ini, pemerintah Indonesia menetapkan anggaran defisit, yaitu manakala pendapatan lebih rendah dibandingkan pengeluaran. Salah satu penyebab ketidakseimbangan

Lebih terperinci

FUNGSI. Berdasarkan hubungan antara variabel bebas dan terikat, fungsi dibedakan dua: fungsi eksplisit dan fungsi implisit.

FUNGSI. Berdasarkan hubungan antara variabel bebas dan terikat, fungsi dibedakan dua: fungsi eksplisit dan fungsi implisit. FUNGSI Fungsi merupakan hubungan antara dua variabel atau lebih. Variabel dibedakan :. Variabel bebas yaitu variabel yang besarannya dpt ditentukan sembarang, mis:,, 6, 0 dll.. Variabel terikat yaitu variabel

Lebih terperinci

BAB I INTEGRAL TAK TENTU ( ANTIDEFFERENSIAL) : Kompetensi Dasar

BAB I INTEGRAL TAK TENTU ( ANTIDEFFERENSIAL) : Kompetensi Dasar BAB I INTEGRAL TAK TENTU ( ANTIDEFFERENSIAL) : Kompetensi Dasar.0 Mendeskripsikan integral tak tentu (anti turunan) fungsi aljabar dan menganalisis sifat-sifatnya berdasarkan sifat-sifat turunan fungsi.0

Lebih terperinci

FUNGSI. Matematika Dasar 9/18/2013. TEP-FTP-UB MatDas_Meet 2 APA ITU FUNGSI? DOMAIN, KODOMAIN, RANGE. x f : x y / y=f(x) f : x y y=f(x) y=f(x)=x 2

FUNGSI. Matematika Dasar 9/18/2013. TEP-FTP-UB MatDas_Meet 2 APA ITU FUNGSI? DOMAIN, KODOMAIN, RANGE. x f : x y / y=f(x) f : x y y=f(x) y=f(x)=x 2 APA ITU FUNGSI? FUNGSI Imajinasi : bermain golf f f : / =f() TEP FTP UB Sebuah fungsi adalah transformasi dari input pada output = f(). f : =f() =f()= DOMAIN, KODOMAIN, RANGE Fungsi adalah hubungan antara

Lebih terperinci

PERSAMAAN DAN FUNGSI KUADRAT

PERSAMAAN DAN FUNGSI KUADRAT Materi W2e PERSAMAAN DAN FUNGSI KUADRAT Kelas X, Semester 1 E. Grafik Fungsi Kuadrat www.yudarwi.com E. Grafik Fungsi Kuadrat Grafik fungsi kuadrat f(x) = ax 2 + bx + c dapat dilukis dengan langkah-langkah

Lebih terperinci

Fungsi, Persamaaan, Pertidaksamaan

Fungsi, Persamaaan, Pertidaksamaan Fungsi, Persamaaan, Pertidaksamaan Disampaikan pada Diklat Instruktur/Pengembang Matematika SMA Jenjang Dasar Tanggal 6 s.d. 9 Agustus 004 di PPPG Matematika Oleh: Drs. Markaban, M.Si. Widyaiswara PPPG

Lebih terperinci

BEBERAPA MACAM FUNGSI DALAM ALJABAR

BEBERAPA MACAM FUNGSI DALAM ALJABAR BEBEAA MACAM FUNGI DALAM ALJABA 1. Fungsi Komposisi Dari dua jenis fungsi f dan g kita dapat membentuk sebuah fungsi baru dengan menggunakan sistem operasi komposisi. operasi komposisi biasa dilambangkan

Lebih terperinci

2.1 Fungsi dan Grafiknya

2.1 Fungsi dan Grafiknya FUNGSI DAN LIMIT 2.1 Fungsi dan Grafiknya Definisi Fungsi Sebuah fungsi f adalah suatu aturan padanan yang menghubungkan tiap obyek x dalam satu himpunan, yang disebut daerah asal, dengan sebuah nilai

Lebih terperinci

KALKULUS 1. Oleh : SRI ESTI TRISNO SAMI, ST, MMSI /

KALKULUS 1. Oleh : SRI ESTI TRISNO SAMI, ST, MMSI / Oleh : SRI ESTI TRISNO SAMI, ST, MMSI 08125218506 / 082334051234 E-mail : sriestits2@gmail.com Bahan Bacaan / Refferensi : 1. Frank Ayres J. R., Calculus, Shcaum s Outline Series, Mc Graw-Hill Book Company.

Lebih terperinci

APA ITU FUNGSI? x f : x y atau y=f(x) f : x y y=f(x) y=f(x)=x 2. Imajinasi : bermain golf

APA ITU FUNGSI? x f : x y atau y=f(x) f : x y y=f(x) y=f(x)=x 2. Imajinasi : bermain golf FUNGSI TEP FTP UB APA ITU FUNGSI? Imajinasi : bermain golf x f f : x y atau y=f(x) y Sebuah fungsi adalah transformasi dari input x pada output y = f(x). f : x y y=f(x) y=f(x)=x 2 Fungsi adalah hubungan

Lebih terperinci

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN GURU KELAS SD

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN GURU KELAS SD SUMBER BELAJAR PENUNJANG PLPG 016 MATA PELAJARAN/PAKET KEAHLIAN GURU KELAS SD BAB II ALJABAR Dra.Hj.Rosdiah Salam, M.Pd. Dra. Nurfaizah, M.Hum. Drs. Latri S, S.Pd., M.Pd. Prof.Dr.H. Pattabundu, M.Ed. Widya

Lebih terperinci

SISTEM PERTIDAKSAMAAN KUADRAT DUA VARIABEL SPtKDV

SISTEM PERTIDAKSAMAAN KUADRAT DUA VARIABEL SPtKDV SISTEM PERTIDAKSAMAAN KUADRAT DUA VARIABEL SPtKDV A. Pertidaksamaan Kuadrat Dua Variabel Pertidaksamaan kuadrat dua variabel adalah kalimat terbuka matematika yang memuat dua variabel dengan setidaknya

Lebih terperinci

PERSAMAAN GARIS SINGGUNG PARABOLA

PERSAMAAN GARIS SINGGUNG PARABOLA 1 KEGIATAN BELAJAR 11 PERSAMAAN GARIS SINGGUNG PARABOLA Setelah mempelajari kegiatan belajar 11 ini, mahasiswa diharapkan mampu Menentukan Persamaan Garis Singgung Parabola, Titik dan Garis Polar Pada

Lebih terperinci

Matematika Semester IV

Matematika Semester IV F U N G S I KOMPETENSI DASAR Mendeskripsikan perbedaan konsep relasi dan fungsi Menerapkan konsep fungsi linear Menggambar fungsi kuadrat Menerapkan konsep fungsi kuadrat Menerapkan konsep fungsi trigonometri

Lebih terperinci

Fungsi kuadrat. Hafidh munawir

Fungsi kuadrat. Hafidh munawir Fungsi kuadrat Hafidh munawir Bentuk Umum Persamaan Kuadrat Bentuk umum atau Bentuk Baku persamaan kuadrat adalah: a + b + c = Dengan a,b,c R dan a serta adalah peubah (variabel) a merupakan koefisien

Lebih terperinci

Bab 0 Pendahuluan. MA1101 Matematika 1A Semester I Tahun 2018/2019 FMIPA (K-03) Dosen: Dr. Rinovia Simanjuntak

Bab 0 Pendahuluan. MA1101 Matematika 1A Semester I Tahun 2018/2019 FMIPA (K-03) Dosen: Dr. Rinovia Simanjuntak Bab 0 Pendahuluan MA1101 Matematika 1A Semester I Tahun 2018/2019 FMIPA (K-03) Dosen: Dr. Rinovia Simanjuntak 0.1 Bilangan Real Bilangan Real Desimal Berulang dan Tak Berulang Setiap bilangan rasional

Lebih terperinci

MATEMATIKA BISNIS FUNGSI LINIER

MATEMATIKA BISNIS FUNGSI LINIER MODUL MATEMATIKA BISNIS 2 FUNGSI LINIER Definisi Fungsi linier adalah fungsi paling sederhana karena hanya mempunyai satu variabel bebas dan berpangkat satu pada variabel tersebut, atau dengan kata lain

Lebih terperinci

TEOREMA SISA 1. Nilai Sukubanyak Tugas 1

TEOREMA SISA 1. Nilai Sukubanyak Tugas 1 TEOREMA SISA 1. Nilai Sukubanyak Apa yang dimaksud sukubanyak (polinom)? Ingat kembali bentuk linear seperti 2x + 1 atau bentuk kuadrat 2x 2-3x + 5 dan juga bentuk pangkat tiga 2x 3 x 2 + x 7. Bentuk-bentuk

Lebih terperinci

Bab 1. Fungsi, Grafik, dan Limit

Bab 1. Fungsi, Grafik, dan Limit Bab 1 Fungsi, Grafik, dan Limit MA1103 Matematika Bisnis I Semester I Tahun 2018/2019 SBM K- Dosen: Dr. Rinovia Simanjuntak rino@math.itb.ac.id CAS Lt. 3 1.1 Fungsi 2 Fungsi Fungsi adalah aturan yang mengaitkan

Lebih terperinci

y

y Menyelesaikan Persamaan Kuadrat dengan Grafik Menyesaikan persamaan ax 2 +bx+c=0. Berarti menentukan nilai-nilai x bila f(x) = 0, dimana f(x) = ax 2 +bx+c. apabila grafik fungsi f(x) telah dilukis, maka

Lebih terperinci

dengan X sebagai Domain dan Y sebagai Range, yang ditulis sebagai R: X Y. Jika setiap x X dapat dipetakan ke setiap y Y.

dengan X sebagai Domain dan Y sebagai Range, yang ditulis sebagai R: X Y. Jika setiap x X dapat dipetakan ke setiap y Y. 1 BAB. I RELASI DAN FUNGSI Dalam matematika modern, Relasi dan Fungsi digunakan untuk menunjukkan hubungan setiap elemen Domain dengan setiap elemenrange yang membentuk pasangan bilangan berurut. Hubungan

Lebih terperinci

TURUNAN DALAM RUANG DIMENSI-n

TURUNAN DALAM RUANG DIMENSI-n TURUNAN DALAM RUANG DIMENSI-n A. Fungsi Dua Variabel atau Lebih Dalam subbab ini, fungsi dua variabel atau lebih dikaji dari tiga sudut pandang: secara verbal (melalui uraian dalam kata-kata) secara aljabar

Lebih terperinci

KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia

KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN DEPARTEMEN TEKNIK KIMIA Universitas Indonesia BAB II. FUNGSI, LIMIT, DAN KEKONTINUAN Fungsi dan Operasi pada Fungsi Beberapa Fungsi Khusus Limit dan Limit

Lebih terperinci

MACAM-MACAM FUNGSI DALAM EKONOMI DAN BISNIS Bagian 3 Pertemuan 4, 5 dan 6. MATEMATIKA BISNIS Tonaas Marentek, M.Si

MACAM-MACAM FUNGSI DALAM EKONOMI DAN BISNIS Bagian 3 Pertemuan 4, 5 dan 6. MATEMATIKA BISNIS Tonaas Marentek, M.Si MACAM-MACAM FUNGSI DALAM EKONOMI DAN BISNIS Bagian 3 Pertemuan 4, 5 dan 6 MATEMATIKA BISNIS Tonaas Marentek, M.Si MACAM-MACAM FUNGSI DALAM EKONOMI DAN BISNIS 1. FUNGSI 2. FUNGSI LINIER 3. SISTEM PERSAMAAN

Lebih terperinci

Peminatan Matematika dan Ilmu-Ilmu Alam. Disusun Oleh: Miyanto

Peminatan Matematika dan Ilmu-Ilmu Alam. Disusun Oleh: Miyanto MATEMATIKA Peminatan Matematika dan Ilmu-Ilmu Alam Disusun Oleh: Miyanto Disklaimer Daftar isi Disklaimer Powerpoint pembelajaran ini dibuat sebagai alternatif guna membantu Bapak/Ibu Guru melaksanakan

Lebih terperinci

Catatan Kuliah MA1123 Kalkulus Elementer I

Catatan Kuliah MA1123 Kalkulus Elementer I Catatan Kuliah MA1123 Kalkulus Elementer I Oleh Hendra Gunawan, Ph.D. Departemen Matematika ITB Sasaran Belajar Setelah mempelajari materi Kalkulus Elementer I, mahasiswa diharapkan memiliki (terutama):

Lebih terperinci

Sistem PERSAMAAN dan PERTIDAKSAMAAN linier

Sistem PERSAMAAN dan PERTIDAKSAMAAN linier Materi W4a Sistem PERSAMAAN dan PERTIDAKSAMAAN linier Kelas X, Semester 1 A. Sistem Persamaan Linier dengan Dua Variabel www.yudarwi.com A. Sistem Persamaan Linier dengan dua Variabel Bentuk umum : ax

Lebih terperinci

FUNGSI DAN MODEL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 63

FUNGSI DAN MODEL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 63 FUNGSI DAN MODEL Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 63 Topik Bahasan 1 Fungsi 2 Jenis-jenis Fungsi 3 Fungsi Baru dari Fungsi Lama 4

Lebih terperinci

FUNGSI dan LIMIT. 1.1 Fungsi dan Grafiknya

FUNGSI dan LIMIT. 1.1 Fungsi dan Grafiknya FUNGSI dan LIMIT 1.1 Fungsi dan Grafiknya Fungsi : suatu aturan yang menghubungkan setiap elemen suatu himpunan pertama (daerah asal) tepat kepada satu elemen himpunan kedua (daerah hasil) fungsi Daerah

Lebih terperinci

MAT 602 DASAR MATEMATIKA II

MAT 602 DASAR MATEMATIKA II MAT 60 DASAR MATEMATIKA II Disusun Oleh: Dr. St. Budi Waluya, M. Sc Jurusan Pendidikan Matematika Program Pascasarjana Unnes 1 HIMPUNAN 1. Notasi Himpunan. Relasi Himpunan 3. Operasi Himpunan A B : A B

Lebih terperinci

KALKULUS UNTUK STATISTIKA

KALKULUS UNTUK STATISTIKA Mulyana f( ) g( ).8.9.9 KALKULUS UNTUK STATISTIKA.8 8. BUKU AJAR g ( ) h ( ).. 8. UNIVERSITAS PADJADJARAN FAKULTAS MIPA JURUSAN STATISTIKA BANDUNG Kata Pengantar Diktat ini disusun dalam upaya pengadaan

Lebih terperinci

HUBUNGAN FUNGSI NON-LINEAR DALAM PENERAPAN EKONOMI. Disusun Guna Memenuhi Tugas Matematika Ekonomi. Dosen Pengampu : Rombel 1 Oleh:

HUBUNGAN FUNGSI NON-LINEAR DALAM PENERAPAN EKONOMI. Disusun Guna Memenuhi Tugas Matematika Ekonomi. Dosen Pengampu : Rombel 1 Oleh: HUBUNGAN FUNGSI NON-LINEAR DALAM PENERAPAN EKONOMI Disusun Guna Memenuhi Tugas Matematika Ekonomi Dosen Pengampu : Wardono Rombel 1 Oleh: 1. Farah Anisah Zahra 4101413064. Rizky Rahman 4101413066 3. Hana

Lebih terperinci

SISTEM PERSAMAAN LINEAR, KUADRAT DAN PERTIDAKSAMAAN SATU VARIABEL

SISTEM PERSAMAAN LINEAR, KUADRAT DAN PERTIDAKSAMAAN SATU VARIABEL LA - WB (Lembar Aktivitas Warga Belajar) SISTEM PERSAMAAN LINEAR, KUADRAT DAN PERTIDAKSAMAAN SATU VARIABEL Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X

Lebih terperinci

BAB III TURUNAN DALAM RUANG DIMENSI-n

BAB III TURUNAN DALAM RUANG DIMENSI-n BAB III TURUNAN DALAM RUANG DIMENSI-n 1. FUNGSI DUA PEUBAH ATAU LEBIH fungsi bernilai riil dari peubah riil, fungsi bernilai vektor dari peubah riil Fungsi bernilai riil dari dua peubah riil yakni, fungsi

Lebih terperinci