FUNGSI. A. Relasi dan Fungsi Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii)

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "FUNGSI. A. Relasi dan Fungsi Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii)"

Transkripsi

1 FUNGSI A. Relasi dan Fungsi Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) Relasi himpunan A ke himpunan B adalah relasi yang memasangkan/mengkawankan/mengkorepodensikan anggota-anggota himpunan A ke anggota-anggota himpunan A ke anggota-anggota himpunan B dengan syarat himpunan A dan himpunan B bukanlah himpunan kosong. Fungsi/pemetaan dari himpunan A ke himpunan B adalah relasi yang memasangkan/memetakan setiap anggota himpunan A ke tepat satu anggota himpunan B. Penyajian: 1. Diagram panah 2. Diagram cartesius 3. Himpunan pasangan berurutan 4. Menggunakan rumus Notasi Fungsi Himpunan A disebut domain/daerah asal (D f ). Himpunan B disebut kodomain/daerah kawan. Himpunan semua peta dari himpunan A disebut range/daerah hasil (R f ). Pemetaan dari himpunan A ke himpunan B yang memetakan setiap x A ke f(x) B dapat dinotasikan sebagai berikut: f(x) : A B catatan: x A disebut prapeta, f(x) B yang memiliki hubungan dengan x A disebut peta/bayangan dari A, ditulis y = f(x). Perbedaan relasi dan fungsi: Relasi Fungsi Anggota A tidak harus memiliki pasangan di B. Setiap anggota A harus memiliki pasangan di B. Anggota A boleh dipasangkan lebih dari satu kali. Anggota A hanya dapat dipasangkan tepat satu kali. Latihan Fungsi: 1. Manakah dari himpunan pasangan berurutan berikut yang merupakan pemetaan atau fungsi dari E = {a, b, c} ke F = {1, 2, 3, 4}? a. { (a,1), (a,2), (b,3), (c, 4)} b. { (a,1), (b,2), (c,2)} c. { (a,1), (b,2), (b,3)} d. { (a,2), (c,2), (c,4)} e. { (a, 4), (b,1), (c,3) f. { (a,3), (b,2), (c,1)} 1

2 2. Di antara relasi yang disajikan ini manakah yang merupakan fungsi? a. b. c. d. e. 3. Relasi pada R dinyatakan dengan grafik berikut, manakah yang merupakan grafik fungsi R : x y? a. b. c. d. e. f. B. Fungsi Linear Bentuk umum fungsi linear adalah f(x) = ax + b, bila fungsi linear dinyatakan dalam persamaan garis lurus menjadi y = ax + b. Jadi, y = f(x) = ax + b. Langkah-langkah dalam menggambar grafik fungsi linear y = f (x) = ax + b 1. Buat daftar nilai f dalam tabel. x y Ingat: Syarat menggambar sebuah garis lurus, minimal dibutuhkan dua titik (untuk dihubungkan menjadi sebuah garis lurus). 2. Tentukan titik potong dengan sumbu X, yaitu saat y = Tentukan titik potong dengan sumbu Y, yaitu saat x = Pilihlah beberapa nilai x kemudian carilah nilai y-nya dengan mensubstitusikan nilai x pada fungsi f (jika diperlukan). 5. Gambarkan titik-titik pada bidang koordinat. 6. Hubungkan titik-titik ini dengan garis. 2

3 Latihan 2: 1. Gambarlah grafik fungsi ini pada bidang cartesius dalam daerah asal D f = { x x R}: a. f(x) = 2 b. f(x) = 4x c. f(x) = 3-2x d. f(x) =3x + 1 e. y = 3x + 5 f. y = - 2x Diketahui f(x) = 3x -10. Tentukan nilai a jika f(a) = 14! 3. Diketahui f(x) = 12 5x, tentukan nilai f(3)! 4. Diketahui fungsi f (x) = 3x + 4. Tentukan nilai f(a - 3)! 5. Diketahui fungsi f (x) = - 2x Tentukan nilai f(x +4)! 1. Gradien Garis Lurus Fungsi Linear f(x) = mx + b, koefisien x, yaitu m menunjukkan gradien atau kemiringan garis. Jika sebuah garis melalui dua titik A (x 1, y 1 ) dan B (x 2, y 2 ) maka nilai gradiennya, yaitu m adalah sebagai berikut: m = y y 1 x 2 x 1 Pada titik (x, y), x adalah absis dan y adalah ordinat. 2. Persamaan Garis Lurus Persamaan garis lurus jika diketahui gradiennya (m) dan melalui (x 1, y 1 ) adalah: y y 1 = m (x x 1 ) Persamaan garis lurus jika diketahui melalui dua titik, yaitu (x 1, y 1 ) dan (x 2, y 2 ) adalah: y y 1 y 2 y 1 = x x 1 x 2 x 1 Khusus untuk persamaan garis yang memotong sumbu X di titik (b,0) dan sumbu Y di titik (0,a) dapat juga menggunakan rumus: ax + by = ab. Persamaan garis lurus jika diketahui gradiennya (m) dan melalui (x 1, y 1 ) adalah: y y 1 = m (x x 1 ) 3. Kedudukan Garis dalam Satu Bidang Diketahui persamaan garis k: y = m 1 x + p dan persamaan garis l: y = m 2 x + p a. Jika garis k l (saling sejajar) maka m 1 = m 2 b. Jika garis k l (saling tegak lurus) maka m 1. m 2 = -1 3

4 c. Jika garis k dan l saling berpotongan maka m 1 m 2 Koordinat titik potong kedua garis dapat ditentukan dengan caea eliminasi, substitusi, atau dilihat dari grafiknya. Gambar 1: Gambar 2: 1. Tentukan persamaan garis lurus jika melalui titik (2, 1) dan (4, 2) 2. Tentukan persamaan garis lurus pada grafik berikut ini: 3. Tentukan titik potong dari dua garis berikut: 4. Tentukan persamaan garis yang melalui titik (5, 2) dan gradiennya 5! 5. Tentukan persamaan garis lurus yang melalui titik (1, 2) dan tegak lurus dengan garis 2x y = 4! 6. Tentukan persamaan garis lurus yang sejajar dengan garis y 4x = 12 dan melalui titik ( -2, 0)! Latihan hal no. 1, 4, 5, 6. a, c, 7.c, C. Fungsi Kuadrat Bentuk umum: f(x) = ax 2 +bx+c, dengan a,b, dan c bilangan real dan a 0, dinamakan fungsi kuadrat dalam x. f(x)= x 2-1 f(x)= 2x 2-3x f(p)= p 2-4p +4 f(m)= m 2 +5m +6m Grafik fungsi kuadrat dapat dituliskan f(x)= y=ax 2 +bx+c dan grafik fungsi kuadrat disebut sebagai parabola. 4

5 Langkah-langkah dalam menggambar grafik fungsi kuadrat: 1. Tentukan titik potong dengan sumbu x dan y (jika ada) Titik potong dengan sumbu x (syarat y = 0). Titik potong dengan sumbu y (syarat x = 0) 2. Tentukan titik puncak atau titik baliknya : (x, y) =, ( ) atau (x, y) = D adalah nilai diskriminan, D = b 4ac, 3. Pilihlah beberapa nilai x kemudian carilah nilai y-nya dengan mensubstitusikan nilai x pada fungsi f. 4. Buat daftar nilai f dalam tabel. x y (x, y) 5. Gambarkan titik-titik pada bidang koordinat. 6. Hubungkan titik-titik ini dengan kurva yang mulus. 7. Tentukan persamaan sumbu simetrinya : x = 8. Tentukan nilai maksimum/ minimum (dapat dicari dari y = Gambarlah grafik fungsi berikut: a. y = x 2 b. f(x) = x 2 4 c. y = 2x 2-4x + 5 d. f(x) = x 2 + x -2 = ( ) Hubungan nilai diskriminan dengan Fungsi Kuadrat Jika D>0 maka parabola memotong sumbu x di dua titik yang berlainan. Jika D=0 maka parabola memotong sumbu x di satu titik. Jika D<0 maka parabola tidak memotong sumbu x. ) Hubungan nilai a pada fungsi kuadrat y=f(x)= ax 2 +bx+c dengan sketsa grafiknya: Jika nilai a> 0 maka grafik fungsi kuadrat terbuka ke atas. Karena grafik fungsi kuadrat terbuka ke atas maka grafik fungsi kuadrat ini memiliki titik balik minimum. Jika nilai a< 0 maka grafik fungsi kuadrat terbuka ke bawah. Karena grafik fungsi kuadrat terbuka ke atas maka grafik fungsi kuadrat ini memiliki titik balik maksimum. 5

6 Dengan memperhatikan nilai a dan D dari suatu fungsi kuadrat y=f(x)= ax 2 +bx+c, ada 6 kemungkinan kedudukan grafik fungsi kuadrat terhadap sumbu X. Keterangan: 1. Pada (a) dan (e) untuk D > 0 grafik memotong sumbu x di dua titik, jika a > 0 grafik membuka ke atas, sebaliknya untuk a < 0 grafik membuka ke bawah. 2. Pada (b) dan (f) untuk D = 0 grafik memotong di satu titik atau menyinggung sumbu x. 3. Pada (c) dan (g) grafik tidak memotong sumbu x. Untuk a > 0 dan D < 0 seluruh grafik berada di atas sumbu x artinya seluruh nilai fungsi bernilai positif untuk setiap nilai x yang diberikan, keadaan ini disebut definit negatif. Untuk a < 0 dan D < 0 seluruh grafik berada di bawah sumbu x artinya seluruh nilai fungsi bernilai negatif untuk setiap nilai x, keadaan ini disebut definit positif. 6

fungsi Dan Grafik fungsi

fungsi Dan Grafik fungsi fungsi Dan Grafik fungsi Suatu fungsi adalah pemadanan dua himpunan tidak kosong dengan pasangan terurut (x, y) dimana tidak terdapat elemen kedua yang berbeda. Fungsi (pemetaan) himpunan A ke himpunan

Lebih terperinci

MATERI PRASYARAT. ke y= f(x) =ax2 + bx +c

MATERI PRASYARAT. ke y= f(x) =ax2 + bx +c 1 MATERI PRASYARAT A. Fungsi Kuadrat Bentuk umum : y= f(x) = ax 2 + bx +c dengan a 0. Langkah-langkah dalam menggambar grafik fungsi kuadrat y= f(x) = ax 2 + bx +c 1. Tentukan titik potong dengan sumbu

Lebih terperinci

KOMPOSISI FUNGSI DAN FUNGSI INVERS

KOMPOSISI FUNGSI DAN FUNGSI INVERS 1 KOMPOSISI FUNGSI DAN FUNGSI INVERS Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) Relasi himpunan A ke himpunan B adalah relasi yang memasangkan/mengkawankan/mengkorepodensikan

Lebih terperinci

NAMA : KELAS : SMA TARAKANITA 1 JAKARTA theresiaveni.wordpress.com

NAMA : KELAS : SMA TARAKANITA 1 JAKARTA theresiaveni.wordpress.com 1 NAMA : KELAS : 2 KOMPOSISI FUNGSI DAN FUNGSI INVERS Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) Relasi himpunan A ke himpunan B adalah relasi yang memasangkan/mengkawankan/mengkorepodensikan

Lebih terperinci

MBS - DTA. Sucipto UNTUK KALANGAN SENDIRI. SMK Muhammadiyah 3 Singosari

MBS - DTA. Sucipto UNTUK KALANGAN SENDIRI. SMK Muhammadiyah 3 Singosari MBS - DTA Sucipto UNTUK KALANGAN SENDIRI SMK Muhammadiyah Singosari SERI : MBS-DTA FUNGSI STANDAR KOMPETENSI Siswa mampu memecahkan masalah yang berkaitan dengan fungsi, persamaan fungsi linear dan fungsi

Lebih terperinci

PERSAMAAN DAN FUNGSI KUADRAT

PERSAMAAN DAN FUNGSI KUADRAT Materi W2e PERSAMAAN DAN FUNGSI KUADRAT Kelas X, Semester 1 E. Grafik Fungsi Kuadrat www.yudarwi.com E. Grafik Fungsi Kuadrat Grafik fungsi kuadrat f(x) = ax 2 + bx + c dapat dilukis dengan langkah-langkah

Lebih terperinci

A. Kajian ulang tentang fungsi Pada gambar di bawah ini diberikan diagram panah suatu relasi dari himpunan

A. Kajian ulang tentang fungsi Pada gambar di bawah ini diberikan diagram panah suatu relasi dari himpunan MODUL MATEMATIKA UNTUK SMA istiyanto.com Mari Berbagi Ilmu Dengan Yang Lain Pesan soal-soal matematika untuk SD, SMP dan SMA? Soal ulangan harian, ulangan mid, ulangan semester, soal-soal UAN dll. Tulis

Lebih terperinci

6 FUNGSI LINEAR DAN FUNGSI

6 FUNGSI LINEAR DAN FUNGSI 6 FUNGSI LINEAR DAN FUNGSI KUADRAT 5.1. Fungsi Linear Pada Bab 5 telah dijelaskan bahwa fungsi linear merupakan fungsi yang variabel bebasnya paling tinggi berpangkat satu. Bentuk umum fungsi linear adalah

Lebih terperinci

KELAS XI PROGRAM KEAHLIAN : BISNIS DAN MANAJEMEN & PARIWISATA SMK NEGERI 1 SURABAYA. BY : Drs. Abd. Salam, MM

KELAS XI PROGRAM KEAHLIAN : BISNIS DAN MANAJEMEN & PARIWISATA SMK NEGERI 1 SURABAYA. BY : Drs. Abd. Salam, MM KELAS XI PROGRAM KEAHLIAN : BISNIS DAN MANAJEMEN & PARIWISATA SMK NEGERI 1 SURABAYA BAHAN AJAR FUNGSI LINIER & KUADRAT SMK NEGERI 1 SURABAYA Halaman 1 BAB FUNGSI A. FUNGSI DAN RELASI Topik penting yang

Lebih terperinci

Fungsi Linear dan Fungsi Kuadrat

Fungsi Linear dan Fungsi Kuadrat Modul 1 Fungsi Linear dan Fungsi Kuadrat Drs. Susiswo, M.Si. K PENDAHULUAN ompetensi umum yang diharapkan, setelah mempelajari modul ini, adalah Anda dapat memahami konsep tentang persamaan linear dan

Lebih terperinci

PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT

PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT LA - WB (Lembar Aktivitas Warga Belajar) PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X Created By Ita Yuliana

Lebih terperinci

Hand out_x_fungsi kuadrat

Hand out_x_fungsi kuadrat STANDAR KOMPETENSI: Memecahkan masalah yang berkaitan dengan fungsi, persamaan dan fungsi kuadrat serta pertidaksamaan kuadrat. KOMPETENSI DASAR: Menggambar grafik fungsi aljabar sederhana dan fungsi kuadrat

Lebih terperinci

y

y Menyelesaikan Persamaan Kuadrat dengan Grafik Menyesaikan persamaan ax 2 +bx+c=0. Berarti menentukan nilai-nilai x bila f(x) = 0, dimana f(x) = ax 2 +bx+c. apabila grafik fungsi f(x) telah dilukis, maka

Lebih terperinci

Komposisi fungsi dan invers fungsi. Syarat agar suatu fungsi mempunyai invers. Grafik fungsi invers

Komposisi fungsi dan invers fungsi. Syarat agar suatu fungsi mempunyai invers. Grafik fungsi invers Komposisi fungsi dan invers fungsi mempelajari Fungsi komposisi menentukan Fungsi invers terdiri dari Syarat dan aturan fungsi yang dapat dikomposisikan Nilai fungsi komposisi dan pembentuknya Syarat agar

Lebih terperinci

β α α β SOAL MATEMATIKA UNTUK SMA istiyanto.com Mari Berbagi Ilmu Dengan Yang Lain A. Persamaan Kuadrat dan Fungsi Kuadrat

β α α β SOAL MATEMATIKA UNTUK SMA istiyanto.com Mari Berbagi Ilmu Dengan Yang Lain A. Persamaan Kuadrat dan Fungsi Kuadrat A. Persamaan Kuadrat dan Fungsi Kuadrat 1. Salah satu akar persamaan kuadrat ( a 1) x + (3a 1) x 3a = 0 adalah 1, maka akar lainnya adalah.... Nilai m yang memenuhi agar persamaan kuadrat ( m + 1) x +

Lebih terperinci

Matematika Semester IV

Matematika Semester IV F U N G S I KOMPETENSI DASAR Mendeskripsikan perbedaan konsep relasi dan fungsi Menerapkan konsep fungsi linear Menggambar fungsi kuadrat Menerapkan konsep fungsi kuadrat Menerapkan konsep fungsi trigonometri

Lebih terperinci

PERSAMAAN GARIS LURUS

PERSAMAAN GARIS LURUS PERSAMAAN GARIS LURUS A. Menggambar grafik garis lurus Langkah langkah mengambar grafik persamaan garis lurus sama dengan langkahlangkah membuat grafik pada sistim koordinat. Gambarlah grafik persamaan

Lebih terperinci

King s Learning Be Smart Without Limits. (4) Grafik Fungsi kuadrat: (3) Titik lain (jika diperlukan) X Y. (4) Grafik Fungsi kuadrat:

King s Learning Be Smart Without Limits. (4) Grafik Fungsi kuadrat: (3) Titik lain (jika diperlukan) X Y. (4) Grafik Fungsi kuadrat: Nama Siswa : LEMBAR AKTIVITAS SISWA FUNGSI KUADRAT - Hubungkan titik-titik tersebut sehingga terbentuk kurva atau grafik yang mulus. Kelas : A. FUNGSI KUADRAT Bentuk umum fungsi kuadrat adalah: y = f(x)

Lebih terperinci

Fungsi, Persamaaan, Pertidaksamaan

Fungsi, Persamaaan, Pertidaksamaan Fungsi, Persamaaan, Pertidaksamaan Disampaikan pada Diklat Instruktur/Pengembang Matematika SMA Jenjang Dasar Tanggal 6 s.d. 9 Agustus 004 di PPPG Matematika Oleh: Drs. Markaban, M.Si. Widyaiswara PPPG

Lebih terperinci

5 F U N G S I. 1 Matematika Ekonomi

5 F U N G S I. 1 Matematika Ekonomi 5 F U N G S I Pemahaman tentang konsep fungsi sangat penting dalam mempelajari ilmu ekonomi, mengingat kajian ekonomi banyak bekerja dengan fungsi. Fungsi dalam matematika menyatakan suatu hubungan formal

Lebih terperinci

PERSAMAAN GARIS SINGGUNG PARABOLA

PERSAMAAN GARIS SINGGUNG PARABOLA 1 KEGIATAN BELAJAR 11 PERSAMAAN GARIS SINGGUNG PARABOLA Setelah mempelajari kegiatan belajar 11 ini, mahasiswa diharapkan mampu Menentukan Persamaan Garis Singgung Parabola, Titik dan Garis Polar Pada

Lebih terperinci

III. FUNGSI POLINOMIAL

III. FUNGSI POLINOMIAL III. FUNGSI POLINOMIAL 3. Pendahuluan A. Tujuan Setelah mempelajari bagian ini diharapkan mahasiswa dapat:. menuliskan bentuk umum fungsi polinomial;. menghitung nilai fungsi polinomial; 3. menuliskan

Lebih terperinci

BAB XI PERSAMAAN GARIS LURUS

BAB XI PERSAMAAN GARIS LURUS BAB XI PERSAMAAN GARIS LURUS A. Pengertian Pesamaan Garis Lurus Persamaan garis lurus adalah suatu fungsi yang apabila digambarkan ke dalam bidang Cartesius akan berbentuk garis lurus. Garis lurus ini

Lebih terperinci

Matematika Ekonomi KUADRAT DAN FUNGSI RASIONAL (FUNGSI PECAH) GRAFIK FUNGSI KUADRAT BERUPA PARABOLA GRAFIK FUNGSI RASIONAL BERUPA HIPERBOLA

Matematika Ekonomi KUADRAT DAN FUNGSI RASIONAL (FUNGSI PECAH) GRAFIK FUNGSI KUADRAT BERUPA PARABOLA GRAFIK FUNGSI RASIONAL BERUPA HIPERBOLA Fungsi Non Linier Diskripsi materi: -Harga ekstrim pada fungsi kuadrat 1 Fungsi non linier FUNGSI LINIER DAPT BERUPA FUNGSI KUADRAT DAN FUNGSI RASIONAL (FUNGSI PECAH) GRAFIK FUNGSI KUADRAT BERUPA PARABOLA

Lebih terperinci

Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f.

Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f. Pertemuan ke 8 GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(,y): y = f(), D f } disebut grafik fungsi f. Grafik metode yang paling umum untuk menyatakan hubungan antara dua himpunan yaitu dengan menggunakan

Lebih terperinci

LINGKARAN. Lingkaran. pusat lingkaran diskriminan posisi titik posisi garis garis kutub gradien. sejajar tegak lurus persamaan lingkaran

LINGKARAN. Lingkaran. pusat lingkaran diskriminan posisi titik posisi garis garis kutub gradien. sejajar tegak lurus persamaan lingkaran LINGKARAN Persamaan Persamaan garis singgung lingkaran Persamaan lingkaran berpusat di (0, 0) dan (a, b) Kedudukan titik dan garis terhadap lingkaran Merumuskan persamaan garis singgung yang melalui suatu

Lebih terperinci

Institut Manajemen Telkom

Institut Manajemen Telkom Institut Manajemen Telkom Osa Omar Sharif JENIS JENIS FUNGSI1 JENIS JENIS FUNGSI 2 Jenis Fungsi Gambar 1. FUNGSI POLINOM mengandung banyak suku (polinom) dalam variabel bebas y = a 0 + a 1 x + a 2 x 2

Lebih terperinci

Materi Fungsi Linear Fungsi Variabel, koefisien, dan konstanta Variabel variabel bebas Koefisien Konstanta 1). Pengertian fungsi linier

Materi Fungsi Linear Fungsi Variabel, koefisien, dan konstanta Variabel variabel bebas Koefisien Konstanta 1). Pengertian fungsi linier Materi Fungsi Linear Admin 8:32:00 PM Duhh akhirnya nongol lagi... kali ini saya akan bahas mengenai pelajaran yang paling disukai oleh hampir seluruh warga dunia :v... MATEMATIKA, ya itu namanya. materi

Lebih terperinci

2. PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT

2. PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT 2. PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT A. Persamaan Kuadrat 1) Bentuk umum persamaan kuadrat : ax 2 + bx + c =, a 2) Nilai determinan persamaan kuadrat : D = b 2 4ac 3) Akar-akar persamaan kuadrat

Lebih terperinci

Rchmd: rls&fngs-smk2004 1

Rchmd: rls&fngs-smk2004 1 BAB I PENDAHULUAN A. Latar Belakang Apabila kita cermati, hampir semua fenomena ang terjadi di jagad raa ini mengikuti hukum sebab akibat. Adana pergantian siang dan malam adalah sebagai akibat dari perputaran

Lebih terperinci

MATEMATIKA DASAR TAHUN 1987

MATEMATIKA DASAR TAHUN 1987 MATEMATIKA DASAR TAHUN 987 MD-87-0 Garis singgung pada kurva y di titik potong nya dengan sumbu yang absisnya positif mempunyai gradien 0 MD-87-0 Titik potong garis y + dengan parabola y + ialah P (5,

Lebih terperinci

A. DEFINISI DAN BENTUK UMUM SISTEM PERSAMAAN LINEAR KUADRAT

A. DEFINISI DAN BENTUK UMUM SISTEM PERSAMAAN LINEAR KUADRAT K-13 Kelas X matematika PEMINATAN SISTEM PERSAMAAN LINEAR KUADRAT TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi dan bentuk umum sistem

Lebih terperinci

Penerapan Turunan MAT 4 D. PERSAMAAN GARIS SINGGUNG KURVA A. PENDAHULUAN B. DALIL L HÔPITAL C. PERSAMAAN PADA KINEMATIKA GERAK TURUNAN. materi78.co.

Penerapan Turunan MAT 4 D. PERSAMAAN GARIS SINGGUNG KURVA A. PENDAHULUAN B. DALIL L HÔPITAL C. PERSAMAAN PADA KINEMATIKA GERAK TURUNAN. materi78.co. Penerapan Turunan A. PENDAHULUAN Turunan dapat digunakan untuk: 1) Perhitungan nilai limit dengan dalil l Hôpital 2) Menentukan persamaan fungsi kecepatan dan percepatan dari persamaan fungsi posisi )

Lebih terperinci

2. FUNGSI KUADRAT. , D = b 2 4ac

2. FUNGSI KUADRAT. , D = b 2 4ac . FUNGSI KUADRAT A. Persamaan Kuadrat 1) Bentuk umum persamaan kuadrat : ax + bx + c =, a ) Akar akar persamaan kuadrat dapat dicari dengan memfaktorkan ataupun dengan rumus: x 1, b D, D = b 4ac a 3) Jumlah,

Lebih terperinci

Pengertian Persamaan Garis Lurus 1. Koordinat Cartesius a. Menggambar Titik pada Koordinat Cartesius b. Menggambar Garis pada Koordinat Cartesius

Pengertian Persamaan Garis Lurus 1. Koordinat Cartesius a. Menggambar Titik pada Koordinat Cartesius b. Menggambar Garis pada Koordinat Cartesius Pengertian Persamaan Garis Lurus Sebelum memahami pengertian persamaan garis lurus, ada baiknya kamu mengingat kembali materi tentang koordinat Cartesius persamaan garis lurus selalu digambarkan dalam

Lebih terperinci

I. PETUNJUK: Untuk soal nomor 1 sampai dengan nomor, pilihlah salah satu jawaban yang paling tepat!

I. PETUNJUK: Untuk soal nomor 1 sampai dengan nomor, pilihlah salah satu jawaban yang paling tepat! I. PETUNJUK: Untuk soal nomor sampai dengan nomor, pilihlah salah satu jawaban yang paling tepat!. Persamaan ( p + ) x ( p + ) x + ( p ) = 0, p, merupakan persamaan kuadrat dalam x untuk nilai p... p c.

Lebih terperinci

Modul Matematika 2012

Modul Matematika 2012 Modul Matematika MINGGU V Pokok Bahasan : Fungsi Non Linier Sub Pokok Bahasan :. Pendahuluan. Fungsi kuadrat 3. Fungsi pangkat tiga. Fungsi Rasional 5. Lingkaran 6. Ellips Tujuan Instruksional Umum : Agar

Lebih terperinci

JENIS JENIS FUNGSI 2. Gambar. Jenis Fungsi. mengandung banyak suku (polinom) dalam variabel bebas y = a 0 + a 1 x + a 2 x a n x n

JENIS JENIS FUNGSI 2. Gambar. Jenis Fungsi. mengandung banyak suku (polinom) dalam variabel bebas y = a 0 + a 1 x + a 2 x a n x n Telkom University Alamanda JENIS JENIS FUNGSI1 JENIS JENIS FUNGSI 2 Jenis Fungsi Gambar 1. FUNGSI POLINOM mengandung banyak suku (polinom) dalam variabel bebas y = a 0 + a 1 x + a 2 x 2 + + a n x n 2.

Lebih terperinci

Peta Konsep. Standar Kompetensi. Kompetensi Dasar. Memahami bentuk aljabar, relasi, fungsi. persamaan garis lurus

Peta Konsep. Standar Kompetensi. Kompetensi Dasar. Memahami bentuk aljabar, relasi, fungsi. persamaan garis lurus PErSamaan GarIS lurus Untuk SMP Kelas VIII Peta Konsep Standar Kompetensi Memahami bentuk aljabar, relasi, fungsi dan persamaan garis lurus Kompetensi Dasar Menentukan gradien, persamaan dan grafik garis

Lebih terperinci

FUNGSI DAN PERSAMAAN LINEAR. EvanRamdan

FUNGSI DAN PERSAMAAN LINEAR. EvanRamdan FUNGSI DAN PERSAMAAN LINEAR TEORI FUNGSI Fungsi yaitu hubungan matematis antara suatu variabel dengan variabel lainnya. Unsur-unsur pembentukan fungsi yaitu variabel (terikat dan bebas), koefisien dan

Lebih terperinci

Modul Matrikulasi, SMA Labschool Kebayoran 2017 Page 1

Modul Matrikulasi, SMA Labschool Kebayoran 2017 Page 1 Modul : Grafik Fungsi Kuadrat Teori: Bagian bagian grafik fungsi kuadrat = a + b + c, a 0 Grafik fungsi kuadrat Titik ekstrim fungsi kuadrat = f () = a + b + c D = 0 Memiliki dua akar kembar Grafik fungsi

Lebih terperinci

Materi Matematika Persamaan dan Pertidaksamaan kuadrat Persamaan Linear Persamaan Kuadrat Contoh : Persamaan Derajat Tinggi

Materi Matematika Persamaan dan Pertidaksamaan kuadrat Persamaan Linear Persamaan Kuadrat Contoh : Persamaan Derajat Tinggi Materi Matematika Persamaan dan Pertidaksamaan kuadrat Persamaan Linear Persamaan linear dengan n peubah adalah persamaan dengan bentuk : dengan adalah bilangan- bilangan real, dan adalah peubah. Secara

Lebih terperinci

E. Grafik Fungsi Kuadrat

E. Grafik Fungsi Kuadrat /9/05 Jurnal Materi Umum Persamaan Kuadrat Peta Konsep Fungsi Kuadrat Peta Konsep Daftar Hadir MateriE SoalLatihan5 PERSAMAAN DAN FUNGSI KUADRAT Kelas X, Semester E. Grafik Fungsi Kuadrat Menelesaikan

Lebih terperinci

Matematik Ekonom Fungsi nonlinear

Matematik Ekonom Fungsi nonlinear 1 FUNGSI Fungsi adalah hubungan antara 2 buah variabel atau lebih, dimana masing-masing dari dua variabel atau lebih tersebut saling pengaruh mempengaruhi. Variabel merupakan suatu besaran yang sifatnya

Lebih terperinci

1. Jika f ( x ) = sin² ( 2x + ), maka nilai f ( 0 ) =. a. 2 b. 2 c. 2. Diketahui f(x) = sin³ (3 2x). Turunan pertama fungsi f adalah f (x) =.

1. Jika f ( x ) = sin² ( 2x + ), maka nilai f ( 0 ) =. a. 2 b. 2 c. 2. Diketahui f(x) = sin³ (3 2x). Turunan pertama fungsi f adalah f (x) =. 1. Jika f ( x ) sin² ( 2x + ), maka nilai f ( 0 ). a. 2 b. 2 c. d. e. 2. Diketahui f(x) sin³ (3 2x). Turunan pertama fungsi f adalah f (x). a. 6 sin² (3 2x) cos (3 2x) b. 3 sin² (3 2x) cos (3 2x) c. 2

Lebih terperinci

BEBERAPA MACAM FUNGSI DALAM ALJABAR

BEBERAPA MACAM FUNGSI DALAM ALJABAR BEBEAA MACAM FUNGI DALAM ALJABA 1. Fungsi Komposisi Dari dua jenis fungsi f dan g kita dapat membentuk sebuah fungsi baru dengan menggunakan sistem operasi komposisi. operasi komposisi biasa dilambangkan

Lebih terperinci

1. Fungsi Objektif z = ax + by

1. Fungsi Objektif z = ax + by Nilai Optimum Suatu Fungsi Objektif, Program Linear, Fungsi Objektif, Cara Menentukan, Contoh Soal, Rumus, Pembahasan, Metode Uji Titik Sudut, Metode Garis Selidik, Matematika Nilai Optimum Suatu Fungsi

Lebih terperinci

Sistem PERSAMAAN dan PERTIDAKSAMAAN linier

Sistem PERSAMAAN dan PERTIDAKSAMAAN linier Materi W4a Sistem PERSAMAAN dan PERTIDAKSAMAAN linier Kelas X, Semester 1 A. Sistem Persamaan Linier dengan Dua Variabel www.yudarwi.com A. Sistem Persamaan Linier dengan dua Variabel Bentuk umum : ax

Lebih terperinci

CONTOH SOAL MATEMATIKA KELAS 8 PERSAMAAN GARIS LURUS

CONTOH SOAL MATEMATIKA KELAS 8 PERSAMAAN GARIS LURUS CONTOH SOAL MATEMATIKA KELAS 8 PERSAMAAN GARIS LURUS 1. Diketahui titik-titik pada bidang koordinat Cartesius sebagai berikut. a. (10, 5) c. ( 7, 3) e. ( 4, 9) b. (2, 8) d. (6, 1) Tentukan absis dan ordinat

Lebih terperinci

APLIKASI TURUNAN ALJABAR. Tujuan Pembelajaran. ) kemudian menyentuh bukit kedua pada titik B(x 2

APLIKASI TURUNAN ALJABAR. Tujuan Pembelajaran. ) kemudian menyentuh bukit kedua pada titik B(x 2 Kurikulum 3/6 matematika K e l a s XI APLIKASI TURUNAN ALJABAR Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Dapat menerapkan aturan turunan aljabar untuk

Lebih terperinci

UJIAN SARINGAN MASUK PERGURUAN TINGGI NEGERI MATEMATIKA DASAR FUNGSI KUADRAT. A. 1 B. 2 C. 3 D. 5 E. 7 Solusi: [D]

UJIAN SARINGAN MASUK PERGURUAN TINGGI NEGERI MATEMATIKA DASAR FUNGSI KUADRAT. A. 1 B. 2 C. 3 D. 5 E. 7 Solusi: [D] UJIAN SARINGAN MASUK PERGURUAN TINGGI NEGERI MATEMATIKA DASAR FUNGSI KUADRAT. SBMPTN MADAS 4 Jika fungsi f x a x x c menyinggung sumbu x di x, maka a A. B. C. D. 5 E. 7 Solusi: [D] 6 f x a x x c f ' x

Lebih terperinci

matematika PEMINATAN Kelas X SISTEM PERTIDAKSAMAAN LINEAR DAN KUADRAT K13 A. Pertidaksamaan Linear B. Daerah Pertidaksamaan Linear

matematika PEMINATAN Kelas X SISTEM PERTIDAKSAMAAN LINEAR DAN KUADRAT K13 A. Pertidaksamaan Linear B. Daerah Pertidaksamaan Linear K13 Kelas matematika PEMINATAN SISTEM PERTIDAKSAMAAN LINEAR DAN KUADRAT Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi pertidaksamaan

Lebih terperinci

Persamaan Lingkaran. Pusat Jari-jari Pusat. Jari-jari Menentukan persamaan lingkaran atau garis singgung lingkaran. Persamaan Lingkaran

Persamaan Lingkaran. Pusat Jari-jari Pusat. Jari-jari Menentukan persamaan lingkaran atau garis singgung lingkaran. Persamaan Lingkaran 2. 5. Menentukan persamaan lingkaran atau garis singgung lingkaran. Persamaan Lingkaran Persamaan Lingkaran () () Bentuk Umum 0 dibagi (2) Pusat Jari-jari Pusat (,), Jumlah kuadrat pusat dikurangi Jari-jari

Lebih terperinci

Persamaan dan pertidaksamaan kuadrat BAB II

Persamaan dan pertidaksamaan kuadrat BAB II BAB II Misalkan a,b,c Є R dan a 0 maka persamaan yang berbentuk dinamakan persamaan kuadrat dalam peubah x. Dalam persamaan kuadrat ax bx c 0, a adalah koefisien dari x, b adalah koefisien dari x dan c

Lebih terperinci

RINGKASAN IRISAN KERUCUT (PARABOLA, ELIPS, DAN HIPERBOLA)

RINGKASAN IRISAN KERUCUT (PARABOLA, ELIPS, DAN HIPERBOLA) NAMA: KELAS: PENGERTIAN IRISAN KERUCUT Bangun Ruang Kerucut yang dipotong oleh sebuah bidang datar. RINGKASAN IRISAN KERUCUT (PARABOLA, ELIPS, DAN HIPERBOLA) Macam-macam Irisan Kerucut: 1. Parabola 2.

Lebih terperinci

A. Sistem Persamaan Linier dengan dua Variabel

A. Sistem Persamaan Linier dengan dua Variabel Jurnal Materi Umum Peta Konsep Peta Konsep Daftar Hadir MateriA SISTEM PERSAMAAN DAN PERTIDAKSAMAAN LINIER Kelas X, Semester 1 Sistem Persamaan Linier Dua Variabel Tiga Variabel Sistem Pertidaksamaan linier

Lebih terperinci

MODUL 8 FUNGSI LINGKARAN & ELLIPS

MODUL 8 FUNGSI LINGKARAN & ELLIPS MODUL 8 FUNGSI LINGKARAN & ELLIPS 8.1. LINGKARAN A. PERSAMAAN LINGKARAN DENGAN PUSAT PADA TITIK ASAL DAN JARI-JARI R Persamaan lingkaran dengan pusat (0,0) dan jari jari R adalah : x 2 + y 2 = R 2 B. PERSAMAAN

Lebih terperinci

KALKULUS BAB I. PENDAHULUAN DEPARTEMEN TEKNIK KIMIA

KALKULUS BAB I. PENDAHULUAN DEPARTEMEN TEKNIK KIMIA KALKULUS BAB I. PENDAHULUAN DEPARTEMEN TEKNIK KIMIA BAB I Bilangan Real dan Notasi Selang Pertaksamaan Nilai Mutlak Sistem Koordinat Cartesius dan Grafik Persamaan Bilangan Real dan Notasi Selang Bilangan

Lebih terperinci

Mata Pelajaran Wajib. Disusun Oleh: Ngapiningsih

Mata Pelajaran Wajib. Disusun Oleh: Ngapiningsih Mata Pelajaran Wajib Disusun Oleh: Ngapiningsih Disklaimer Daftar isi Disklaimer Powerpoint pembelajaran ini dibuat sebagai alternatif guna membantu Bapak/Ibu Guru melaksanakan pembelajaran. Materi powerpoint

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA1201 MATEMATIKA 2A Hendra Gunawan Semester II, 2016/2017 15 Maret 2017 Kuliah yang Lalu 10.1-2 Parabola, Elips, dan Hiperbola 10.4 Persamaan Parametrik Kurva di Bidang 10.5 Sistem Koordinat Polar 11.1

Lebih terperinci

Silabus. 1 Sistem Bilangan Real. 2 Fungsi Real. 3 Limit dan Kekontinuan. Kalkulus 1. Arrival Rince Putri. Sistem Bilangan Real.

Silabus. 1 Sistem Bilangan Real. 2 Fungsi Real. 3 Limit dan Kekontinuan. Kalkulus 1. Arrival Rince Putri. Sistem Bilangan Real. Silabus 1 2 3 Referensi E. J. Purcell, D. Varberg, and S. E. Rigdon, Kalkulus, Jilid 1 Edisi Kedelapan, Erlangga, 2003. Penilaian 1 Ujian Tengah Semester (UTS) : 30 2 Ujian Akhir Semester (UAS) : 20 3

Lebih terperinci

PERSAMAAN GARIS SINGGUNG ELLIPS

PERSAMAAN GARIS SINGGUNG ELLIPS 1 KEGIATAN BELAJAR 13 PERSAMAAN GARIS SINGGUNG ELLIPS Setelah mempelajari kegiatan belajar 13 ini, mahasiswa diharapkan mampu Menentukan Persamaan Garis Singgung Elips, Titik Singung dan Garis Pada kegiatan

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Satuan Pendidikan Mata Pelajaran Kelas/Semester Alokasi waktu : SMA Negeri 1 Sukasada : Matematika : X/1 (Ganjil) : 2 x 45 menit (1 pertemuan) I. Standar Kompetensi

Lebih terperinci

K13 Revisi Antiremed Kelas 10 Matematika Wajib

K13 Revisi Antiremed Kelas 10 Matematika Wajib K Revisi Antiremed Kelas 0 Matematika Wajib Fungsi Kuadrat - Latihan Soal Doc. Name: RKAR0MATWJB050 Version : 06-0 halaman 0. Ordinat titik balik grafik fungsi arabola y x x (5 9) adalah 5, > 0. Absis

Lebih terperinci

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a Soal - Soal UM UGM. Soal Matematika Dasar UM UGM 00. Jika x = 3 maka + 3 log 4 x =... a. b. c. d. e.. Jika x+y log = a dan x y log 8 = b dengan 0 < y < x maka 4 log (x y ) =... a. a + 3b ab b. a + b ab

Lebih terperinci

Persamaan Garis singgung Melalui titik (x 1, y 1 ) diluar lingkaran. Pusat Lingkaran (a, b) Persamaan Garis singgung. Jari Jari r.

Persamaan Garis singgung Melalui titik (x 1, y 1 ) diluar lingkaran. Pusat Lingkaran (a, b) Persamaan Garis singgung. Jari Jari r. PERSAMAAN LINGKARAN Pusat Lingkaran (0, 0) Melalui titik (x, y ) pada lingkaran Jika diketahui gradient m xx y mx r yy r m x y r Persamaan Garis singgung Melalui titik (x, y ) diluar lingkaran Jari Jari

Lebih terperinci

Modul Matematika SMA i

Modul Matematika SMA i Modul Matematika SMA i Tim Penyusun : Liya Nur Qori ah (1724143141) Lusiana Dian Silviani (1724143146) Masdain Rifa I (1724143153) Muchamad Misbakhudin (1724143158) Muhammad Eko Budi Rismanto (172143170)

Lebih terperinci

FUNGSI KUADRAT. SOAL DAN PEMBAHASAN 3.1 Soal dan pembahasan titik potong Soal titik potong dapat diselesaikan dengan menggunakan konsep 3.

FUNGSI KUADRAT. SOAL DAN PEMBAHASAN 3.1 Soal dan pembahasan titik potong Soal titik potong dapat diselesaikan dengan menggunakan konsep 3. FUNGSI KUADRAT Jenis-jenis soal fungsi kuadrat yang sering diujikan adalah soal-soal tentang : 1. Titik potong 2. Titik puncak 3. Menggambar grafik 4. Menentukan tanda a, b, c dan D 5. Menentukan persamaan

Lebih terperinci

2.6 FUNGSI DAN RELASI

2.6 FUNGSI DAN RELASI 177 Bab 3 FUNGSI P ernahkah anda memperhatikan gerakan bola yang dilempar ke atas oleh seseorang. Secara tidak langsung ternyata anda telah memperhatikan gerakan bola tersebut membentuk sebuah fungsi yang

Lebih terperinci

Aljabar 1. Modul 1 PENDAHULUAN

Aljabar 1. Modul 1 PENDAHULUAN Modul 1 Aljabar 1 Drs. H. Karso, M.Pd. PENDAHULUAN M odul yang sekarang Anda pelajari adalah modul yang pertama dari mata kuliah Materi Kurikuler Matematika SMA. Materi-materi yang disajikan dalam modul

Lebih terperinci

BAB 3 FUNGSI. f : x y

BAB 3 FUNGSI. f : x y . Hubungan Relasi dengan Fungsi FUNGSI Relasi dari himpunan P ke himpunan Q disebut fungsi atau pemetaan, jika dan hanya jika tiap unsur pada himpunan P berpasangan tepat hanya dengan sebuah unsur pada

Lebih terperinci

(A) 3 (B) 5 (B) 1 (C) 8

(A) 3 (B) 5 (B) 1 (C) 8 . Turunan dari f ( ) = + + (E) 7 + +. Turunan dari y = ( ) ( + ) ( ) ( + ) ( ) ( + ) ( + ) ( + ) ( ) ( + ) (E) ( ) ( + ) 7 5 (E) 9 5 9 7 0. Jika f ( ) = maka f () = 8 (E) 8. Jika f () = 5 maka f (0) +

Lebih terperinci

BAB VI FUNGSI KUADRAT (PARABOLA) a < 0 dan D = 0 a < 0 dan D < 0. a < 0 0 x 0 x

BAB VI FUNGSI KUADRAT (PARABOLA) a < 0 dan D = 0 a < 0 dan D < 0. a < 0 0 x 0 x BAB VI FUNGSI KUADRAT (PARABOLA) Secara umum, persamaan kuadrat dituliskan sebagai ax 2 + bx + c = 0 atau dalam bentuk fungsi dituliskan sebagai f(x) = ax 2 + bx + c. Sifat matematis dari persamaan kuadrat

Lebih terperinci

SISTEM PERSAMAAN LINEAR, KUADRAT DAN PERTIDAKSAMAAN SATU VARIABEL

SISTEM PERSAMAAN LINEAR, KUADRAT DAN PERTIDAKSAMAAN SATU VARIABEL LA - WB (Lembar Aktivitas Warga Belajar) SISTEM PERSAMAAN LINEAR, KUADRAT DAN PERTIDAKSAMAAN SATU VARIABEL Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X

Lebih terperinci

Bilangan Real. Modul 1 PENDAHULUAN

Bilangan Real. Modul 1 PENDAHULUAN Modul 1 Bilangan Real S PENDAHULUAN Drs. Soemoenar emesta pembicaraan Kalkulus adalah himpunan bilangan real. Jadi jika akan belajar kalkulus harus paham terlebih dahulu tentang bilangan real. Bagaimanakah

Lebih terperinci

KURVA DAN PENCOCOKAN KURVA. Matematika Industri 1 TIP FTP UB

KURVA DAN PENCOCOKAN KURVA. Matematika Industri 1 TIP FTP UB KURVA DAN PENCOCOKAN KURVA TIP FTP UB Pokok Bahasan Pendahuluan Kurva-kurva standar Asimtot Penggambaran kurva secara sistematis, jika persamaan kurvanya diketahui Pencocokan kurva Metode kuadrat terkecil

Lebih terperinci

BAB 5 TEOREMA SISA. Menggunakan aturan sukubanyak dalam penyelesaian masalah. Kompetensi Dasar

BAB 5 TEOREMA SISA. Menggunakan aturan sukubanyak dalam penyelesaian masalah. Kompetensi Dasar Standar Kompetensi BAB 5 TEOREMA SISA Menggunakan aturan sukubanyak dalam penyelesaian masalah. Kompetensi Dasar Menggunakan algoritma pembagian sukubanyak untuk menentukan hasil bagi dan sisa pembagian

Lebih terperinci

Matematika Dasar NILAI EKSTRIM

Matematika Dasar NILAI EKSTRIM NILAI EKSTRIM Misal diberikan kurva f( ) dan titik ( a,b ) merupakan titik puncak ( titik maksimum atau minimum ). Maka garis singgung kurva di titik ( a,b ) akan sejajar sumbu X atau [ ] mempunyai gradien

Lebih terperinci

PERSAMAAN GARIS BAHAN BELAJAR MANDIRI 4

PERSAMAAN GARIS BAHAN BELAJAR MANDIRI 4 BAHAN BELAJAR MANDIRI 4 PERSAMAAN GARIS PENDAHULUAN Secara umum bahan belajar mandiri ini menjelaskan tentang konsep garis, dan persamaan garis lurus yang dinyatakan ke dalam bentuk implisit maupun bentuk

Lebih terperinci

Fungsi kuadrat. Hafidh munawir

Fungsi kuadrat. Hafidh munawir Fungsi kuadrat Hafidh munawir Bentuk Umum Persamaan Kuadrat Bentuk umum atau Bentuk Baku persamaan kuadrat adalah: a + b + c = Dengan a,b,c R dan a serta adalah peubah (variabel) a merupakan koefisien

Lebih terperinci

matematika KTSP & K-13 GARIS SINGGUNG LINGKARAN K e a s A. Definisi Garis Singgung Lingkaran Tujuan Pembelajaran

matematika KTSP & K-13 GARIS SINGGUNG LINGKARAN K e a s A. Definisi Garis Singgung Lingkaran Tujuan Pembelajaran KTSP & K-3 matematika K e l a s XI GARIS SINGGUNG LINGKARAN Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Memahami definisi garis singgung lingkaran..

Lebih terperinci

RELASI DAN FUNGSI A. Relasi 1. Pengertian Perhatikan gambar dibawah ini.

RELASI DAN FUNGSI A. Relasi 1. Pengertian Perhatikan gambar dibawah ini. RELASI DAN FUNGSI A. Relasi 1. Pengertian Perhatikan gambar dibawah ini. Gambar 1.1 Gambar 1.1 menunjukkan suatu kumpulan anak yang terdiri atas Tino, Atu, Togar, dan Nia berada di sebuah toko alat tulis.

Lebih terperinci

LINGKARAN. Bab. Di unduh dari : Bukupaket.com

LINGKARAN. Bab. Di unduh dari : Bukupaket.com Bab 9 LINGKARAN A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR Kompetensi Dasar Setelah mengikuti pembelajaran lingkaran siswa mampu: 1. Mendeskripsikan konsep persamaan lingkaran dan menganalisis sifat garis

Lebih terperinci

b. Titik potong grafik dengan sumbu y, dengan mengambil x = 0

b. Titik potong grafik dengan sumbu y, dengan mengambil x = 0 B.3 Fungsi Kuadrat a. Tujuan Setelah mempelajari uraian kompetensi dasar ini, anda dapat: Menentukan titik potong grafik fungsi dengan sumu koordinat, sumu simetri dan nilai ekstrim suatu fungsi Menggamar

Lebih terperinci

F U N G S I. Oleh: Dimas Rahadian AM, S.TP. M.Sc.

F U N G S I. Oleh: Dimas Rahadian AM, S.TP. M.Sc. F U N G S I Oleh: Dimas Rahadian AM, S.TP. M.Sc Email: rahadiandimas@yahoo.com JURUSAN ILMU DAN TEKNOLOGI PANGAN UNIVERSITAS SEBELAS MARET SURAKARTA ...KONSEP DASAR Fungsi adalah suatu pemetaan dari satu

Lebih terperinci

Antiremed Kelas 10 Matematika

Antiremed Kelas 10 Matematika Antiremed Kelas 0 Matematika Persamaan dan Fungsi Kuadrat - Fungsi Kuadrat - Pilihan Ganda Doc. Name: AR0MAT00 Version : 0-07 halaman 0. Ordinat titik balik grafik fungsi arabola y x x (5 9) adalah 5,

Lebih terperinci

PENGERTIAN FUNGSI JENIS-JENIS FUNGSI PENGGAMBARAN GRAFIK FUNGSI

PENGERTIAN FUNGSI JENIS-JENIS FUNGSI PENGGAMBARAN GRAFIK FUNGSI FUNGSI PENGERTIAN FUNGSI JENIS-JENIS FUNGSI PENGGAMBARAN GRAFIK FUNGSI PENGERTIAN FUNGSI Sebuah fungsi f dari himpunan A ke himpunan B adalah suatu aturan yang memasangkan setiap X anggota A dengan tepat

Lebih terperinci

4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN

4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN 4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN 4.1 Persamaan Garis a. Bentuk umum persamaan garis Garis lurus yang biasa disebut garis merupakan kurva yang paling sederhana dari semua kurva. Misalnya titik A(2,1)

Lebih terperinci

PROGRAM LINEAR. Ingat: Langkah-langkah dalam menggambar ax + by = c 1. Buat daftar nilai x dan y pada tabel.

PROGRAM LINEAR. Ingat: Langkah-langkah dalam menggambar ax + by = c 1. Buat daftar nilai x dan y pada tabel. NAMA : KELAS : 1 2 Ingat: Langkah-langkah dalam menggambar ax + by = c 1. Buat daftar nilai x dan y pada tabel. x y PROGRAM LINEAR 2. Tentukan titik potong dengan sumbu X, yaitu saat y = 0. 3. Tentukan

Lebih terperinci

http://meetabied.wordpress.com Matematika X Semester 1 SMAN 1 Bone-Bone Kita dibentuk oleh sesuatu yang kita lakukan berulang kali. Keunggulan, bukan hasil dari satu tindakan, melainkan dari kebiasaan.

Lebih terperinci

BAB II. indonesia yang berarti kuasa (bisa, sanggup, melakukan sesuatu, dapat, berada, kaya, mempunyai harta berlebihan). Menurut Akhmat Sudrajat

BAB II. indonesia yang berarti kuasa (bisa, sanggup, melakukan sesuatu, dapat, berada, kaya, mempunyai harta berlebihan). Menurut Akhmat Sudrajat 7 BAB II KAJIAN TEORI 2.1 Kemampuan Kemampuan berasal dari kata mampu yang dalam kamus besar bahasa indonesia yang berarti kuasa (bisa, sanggup, melakukan sesuatu, dapat, berada, kaya, mempunyai harta

Lebih terperinci

MAKALAH FUNGSI KUADRAT GRAFIK FUNGSI,&SISTEM PERSAMAAN KUADRAT

MAKALAH FUNGSI KUADRAT GRAFIK FUNGSI,&SISTEM PERSAMAAN KUADRAT MAKALAH FUNGSI KUADRAT GRAFIK FUNGSI,&SISTEM PERSAMAAN KUADRAT Kelompok 3 : 1.Suci rachmawati (ekonomi akuntansi) 2.Fitri rachmad (ekonomi akuntansi) 3.Elif (ekonomi akuntansi) 4.Dewi shanty (ekonomi management)

Lebih terperinci

MATEMATIKA TURUNAN FUNGSI

MATEMATIKA TURUNAN FUNGSI MATEMATIKA TURUNAN FUNGSI lim h 0 f ( x h) f( x) h KELAS : XII IIS SEMESTER GANJIL SMA Santa Angela Bandung Tahun Pelajaran 017/018 XII IIS Semester 1 Tahun Pelajaran 017/018 PENGANTAR : TURUNAN FUNGSI

Lebih terperinci

sama dengan p q. Perhatikan tabel berikut. p q B B S S B S S B S S B B S S S B B S B S S S S B B S B B

sama dengan p q. Perhatikan tabel berikut. p q B B S S B S S B S S B B S S S B B S B S S S S B B S B B Soal nomor 1, dengan soal sebagai berikut: Jawab : D Pernyataan majemuk pada soal ini adalah suatu disjungsi. Misalkan p: Petani panen beras. q: Harga beras murah., pernyataan di atas dapat dinotasikan

Lebih terperinci

SOAL-SOAL LATIHAN FUNGSI KUADRAT UJIAN NASIONAL

SOAL-SOAL LATIHAN FUNGSI KUADRAT UJIAN NASIONAL SAL-SAL LATIHAN FUNGSI KUADRAT UJIAN NASINAL Peserta didik memiliki kemampuan memahami konsep pada topik fungsi kuadrat. Peserta didik memilki kemampuan mengaplikan konsep kalkulus dalam masalah kontekstual

Lebih terperinci

KUMPULAN SOAL MATEMATIKA SMP KELAS 8

KUMPULAN SOAL MATEMATIKA SMP KELAS 8 KUMPULAN SOAL MATEMATIKA SMP KELAS 8 Dirangkum oleh Moch. Fatkoer Rohman Website: http://fatkoer.co.cc http://zonamatematika.co,cc Email: fatkoer@gmail.com 009 Evaluasi Bab 1 Untuk nomor 1 sampai 5 pilihlah

Lebih terperinci

SEKOLAH MENENGAH PERTAMA (SMP) NEGERI 103 JAKARTA

SEKOLAH MENENGAH PERTAMA (SMP) NEGERI 103 JAKARTA PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN SEKOLAH MENENGAH PERTAMA (SMP) NEGERI 103 JAKARTA SEKOLAH STANDAR NASIONAL (SSN) Jl. RA Fadillah Komp. Kopassus Cijantung Telp. 8400005,

Lebih terperinci

B. 30 X + 10 Y 300; 20 X + 20 Y 400; X 0, Y 0 C. 10 X + 30 Y 300; 20 X + 20 Y 400, X 0, Y 0 D. 10 X + 30 Y 300, 20 X + 20 Y 400, X 0, Y 0

B. 30 X + 10 Y 300; 20 X + 20 Y 400; X 0, Y 0 C. 10 X + 30 Y 300; 20 X + 20 Y 400, X 0, Y 0 D. 10 X + 30 Y 300, 20 X + 20 Y 400, X 0, Y 0 BIDANG STUDI : MATEMATIKA 1. Harga 3 kg pepaya dan 5 kg jeruk adalah Rp 13.000, sedangkan harga 4 kg papaya dan 3 kg jeruk adalah Rp 10.000, maka harga 2 kg papaya dan 4 kg jeruk adalah. A. Rp 10.000 B.

Lebih terperinci

LINGKARAN 2. A. Kedudukan titik dan Garis terhadap Lingkaran 11/18/2015. Peta Konsep. A. Kedudukan Titik dan Garis Terhadap. Lingkaran.

LINGKARAN 2. A. Kedudukan titik dan Garis terhadap Lingkaran 11/18/2015. Peta Konsep. A. Kedudukan Titik dan Garis Terhadap. Lingkaran. /8/205 Peta Konsep Jurnal Materi MIPA Peta Konsep Lingkaran Daftar Hadir MateriA LINGKARAN 2 Kelas XI, Semester 3 Berpusat di O(0, 0) Berpusat di P(a, b) A. Kedudukan Titik dan Garis Terhadap Lingkaran

Lebih terperinci

TEOREMA SISA 1. Nilai Sukubanyak Tugas 1

TEOREMA SISA 1. Nilai Sukubanyak Tugas 1 TEOREMA SISA 1. Nilai Sukubanyak Apa yang dimaksud sukubanyak (polinom)? Ingat kembali bentuk linear seperti 2x + 1 atau bentuk kuadrat 2x 2-3x + 5 dan juga bentuk pangkat tiga 2x 3 x 2 + x 7. Bentuk-bentuk

Lebih terperinci