KALKULUS 1. Oleh : SRI ESTI TRISNO SAMI, ST, MMSI /

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "KALKULUS 1. Oleh : SRI ESTI TRISNO SAMI, ST, MMSI /"

Transkripsi

1 Oleh : SRI ESTI TRISNO SAMI, ST, MMSI / Bahan Bacaan / Refferensi : 1. Frank Ayres J. R., Calculus, Shcaum s Outline Series, Mc Graw-Hill Book Company. 2. Yusuf Yahya, D. Suryadi H. S. Dan Agus S, Matematika untuk Perguruan Tinggi, Gahlia Indonesia. 3. Edwin J. Purcell dan Dale Varberg, Kalkulus dan Geometri Analitis, Penerbit Erlangga

2 1 FUNGSI DAN GRAFIK FUNGSI 1. Pengertian Fungsi Fungsi f adalah suatu aturan padanan yang menghubungkan tiap objek x dalam satu himpunanan, yang disebut daerah asal, dengan sebuah nilai unik f(x) dari himpunan kedua. Himpunan nilai yang diperoleh secara demikian disebut daerah hasil fungsi tersebut. Pandang himpunan A dan B. R adalah suatu cara yang menghubungkan elemen A dengan elemen B. Dikatakan terdapat suatu relasi R antara A dan B. Misalkan f suatu relasi antara A dan B dengan sifat f menghubungkan setiap elemen A, dengan satu dan hanya satu elemen B; f disebut fungsi dari A ke B, ditulis f : A B Fungsi dari himpunan A ke himpunan B adalah relasi khusus yang memasangkan setiap anggota himpunan A dengan tepat satu anggota himpunan B a) Misalkan A = {a, b, c, d}, B = {1, 2, 3} Definisikan suatu fungsi f : A B sebagai berikut : a 1, b 3,c 2, d 3 atau f(a) = 1, f(b) = 3, f(c) = 2, f(d) = 3 Gambarnya : a b c d Dikatakan bahwa peta dari a adalah 1 atau a merupakan prapeta dari 1. Fungsi dapat ditulis : F = {(a, 1), (b, 3), (c, 2), (d, 3)} A B

3 b) Yang berikut ini bukan fungsi (merupakan relasi biasa) a 1 a 1 b 2 b 2 c 3 c 3 d d A B A B Tidak semua elemen dari A dihubungkan dengan elemen B Ada elemen A yang dihubungkan dengan lebih dari satu elemen B c) Misalkan f menghubungkan setiap bilangan riil dengan kuadratnya. Jelaskan f : R R suatu fungsi himpunan bilangan riil R ke himpunan bilangan riil R antara lain : f(o) = 0, f(1) = 1, f(1 1 / 2 ) = 2 1 / 4, f( 2) = 2, f(-1) = 1, dll. Untuk menyatkan fungsi riil kita dapat mencari rumus umumnya. Jadi secara singkat f dapat ditulis : f(x) = x 2 atau y = x 2 atau dapat ditulis f = { (x, y), y = x 2, x riil) Latihan soal : 1. Dari relasi berikut, manakah yang merupakan fungsi : a) {(1, 2), (2, 3), (3, 4)} b) {(1, 2), (1, 3), (2, 4)} c) {(x, y) y = 2x +4} d) {(x, y) x + y 2 = 1} e) {(x, y) y + x 2 = 1} f) {(x, y) (x 2) 2 y 2 = 4} g) {(x, y) x + 1 / y = 7} h) {(x, y) x = y } 2. Diketahui A = {0, 1, 2, 3} merupakan daerah definisi dari fungsi-fungsi dengan rumus berikut. Tuliskan fungsi tersebut dalam bentuk himpunan pasangan terurut. a) f(x) = x 2

4 b) g(x) = 2 x c) h(x) = 2x d) j(x) = 1 3. Dari relasi dibawah ini mana yang merupakan fungsi : a) {(1, 1)} b) {(1, 1), (1, 2) c) {(-2, 2), (2, 2), (3, -2), (-2, 3)} d) {(a, b), (1, b), (2, 2), (b, 1)} 2. Daerah Definisi dan Daerah Nilai Pandang suatu fungsi f : A B. Himpunan A disebut daerah definisi (domain) dari f, ditulis A = Df. Himpunan B disebut codomain dari f. Rf ={ y y = f(x), x ϵ A}. Suatu himpunan bagian dari B merupakan himpunan semua peta dari f. Himpunan Rf disebut daerah nilai (range) dari fungsi t. Pada diagram panah berikut : Himpunan A = {1, 2, 3 } dinamakan Domain / daerah asal Himpunan B = { a, b, c } dinamakan Kodomain / daerah kawan Himpunan { a, b } dinamakan Range / daerah hasil Pemasangan yang terjadi oleh fungsi f adalah : Fungsi f memetakan semua anggota himpunan A dengan tepat satu anggota himpunan B,yaitu : f : 1 b f : 2 a f : 3 b

5 Notasi dan Rumus Fungsi Jika suatu fungsi f memetakan setiap x anggota himpunan A ke y anggota himpunan B, maka dapat ditulis dengan notasi fungsi yaitu: f : x y Fungsi f seperti dalam notasi tersebut di atas dapat juga dituliskan rumus fungsinya, yaitu: f(x) = y Diketahui himpunan A = { 1, 2, 3 } dan B = { 4, 5, 6,7,8 }. Fungsi f memetakan setiap x anggota A ke x + 4 anggota B. a. Nyatakan fungsi tersebut dengan diagram panah b. Nyatakan notasi fungsi tersebut c. Nyatakan rumus fungsi tersebut d. Nyatakan daerah asal e. Nyatakan daerah kawan f. Nyatakan daerah hasil Jawaban : Fungsi f memetakan setiap x anggota A ke x + 4 anggota B. a. diagram panah A B b. notasi fungsi adalah f : x x + 4 c. rumus fungsi adalah f (x) = x + 4 d. daerah asal adalah { 1, 2, 3 } e. daerah kawan adalah { 4, 5, 6, 7, 8 } f. daerah hasil adalah { 5, 6, 7 }

6 P = Himpunan bilangan bulat positif = {1, 2, 3, } N = Himpunan bilangan asli = {1, 2, } Z = Himpunan bilangan bulat = {, -2, -1, 0, 1, 2, } Q = Himpunan bilangan rasioanal (bilangan dalam bentuk a/b, dengan a dan b anggota bilangan bulat dan b 0) R = Himpunan bilangan riil (bilangan yang merupakan gabungan dari bilangan rasioanal dan bilangan irrasioanal sendiri). Bilangan irrasional adalah bilangan-bilangan yang tidak dapat dinyatakan sebagai pecahan, atau bilangan yang bukan bilangan rasional. Contohnya : 2, 3, 5 C = Himpunan bilangan kompleks (bilangan yang berbentuk a + bi) a) f : R R dimana x x 2. Maka Df = R, sedangkan Rf = {y y 0} = himpunan bilangan nonnegatif. b) Diketahui suatu fungsi riil dengan rumus f(x) = y = 1-x 2 Maka Df = { x 1-x 2 0} atau interval -1 x 1 Rf = { y 0 y 1}, karena harga dibawah tanda akar harus 0. Grafik f merupakan setengah lingkaran diatas sumbu x, pusat (0, 0), jarijari 1 Latihan Soal : 1. Carilah Df dan Rf dari fungsi berikut : a) {(1, 1)} b) {(a, b), (1, b), (2, 2), (b, 1)} c) {(1, 2), (2, 3), (3, 4)} d) {(1, 2),(2, 4), (3, 3), (4, 4)} 2. Carilah Df dari a) f(x) = b) f(x) = c)

7 3. Jika diketahui, tentukan: a. f(0) b. f(-1) c. f(2a) d. f(1/x) e. f(x+h) 4. Jika f(x) = 2 4, tunjukkan bahwa: a. f(x+3) f(x-1) = b. 5. Tentukan domain dari fungsi-fungsi: a. b. c. d. e. 6. Untuk f(x) = 3x 3 + x, hitunglah masing-masing nilai. a. F(-6) d. F(1/2) b. F(3,2) e. F( ) c. F( ) f. F(1/x) 3. Grafik Fungsi Suatu fungsi dapat digambar grafiknya dengan cara menggambar pasanganpasangan terurut dari fungsi tersebut. a) B c) y a b c d A -1 1 x f = {(a, 1), (b, 3), (c, 2), (d, 3)} Y = x 2

8 Grafik hanya pada interval tertentu a) Grafik y = x 2 pada -1 x 2 y 4 x b) Grafik y ={ 4 y Untuk x o grafik berbentuk garis lurus sedangkan untuk x o grafik berbentuk parabola 0 2 x Grafik yang mengandung harga mutlak Untuk menggambarnya kita ingat definisi harga mutlak sebagai berikut: { a) Grafik y = { y 0 x b) Grafik {

9 y 4 o 2 4 x c) Misalkan y = y 1 + y 2 di mana, { { Daerah terdefinisi terbagi 3 interval yaitu : x < -1, -1 x < 1, x 1 Untuk x < -1 : y = (-x 1) + (-x + 1) = -2x -1 x < 1 : y = (x + 1) + (-x + 1) = 2 x 1 : y = (x + 1) + (x - 1) = 2x y x Latihan Soal : a. Gambarlah grafiknya : 1) y = { 2) {

10 3) { 4) { 5) { 6) 7) 8) 9) 10) b. Gambarlah grafik-grafik dari fungsi-fungsi berikut, dan tentukan domain dan rangenya: 1) f(x) = -x ) { 3) 4) 5) 4. Bentuk Fungsi a) Fungsi Eksplisit Kalau rumus suatu fungsi ditulis dengan y dinyatakan secara langsung oleh x : y = f(x), dimana variabel y dan x terpisah pada ruas kiri dan kanan, maka fungsi disebut berbentuk eksplisit. y = x 2 + 3x -2 y = -3x 3 + cos x y = x e x, dll. b) Fungsi Implisit Adalah suatu fungsi dimana variabel y dan x terdapat dalam satu ruas.

11 yx 2 + 3x = 4 sin (x + y) = e -2x2y + xy, dll. Suatu fungsi implisit kadang-kadang sukar (bahkan tidak bisa) diubah ke bentuk eksplisit. Untuk mempermudah kita sebut saja fungsi berharga banyak. 3x 2y = 0 Y 2 = 1 1 / 2 x + 2 Bentuk ini bukan fungsi, hanya relasi biasa, karena misalnya untuk x = 4 y = ± 8. Bentuk ini kita sebut fungsi berharga dua. Contoh lainnya fungsi berharga dua : x 2 + y 2 = 9 y 2-4x 2 =16 y 2 = 4 c) Fungsi Parameter y = f(x) dinyatakan dalam parameter t sebagai : {, yang mana pelenyapan t menghasilkan y = f(x) { x 2 + y 2 = 9 sin 2 t + 9 cos 2 t = 9 (sin 2 t + cos 2 t) x 2 + y 2 = 9, pusatnya (0, 0), jari-jarinya 3 { Dari persamaan pertama t = 1 / 2 x yang disubstitusikan ke persamaan kedua y = 4( 1 / 2 x) 2 3 ( 1 / 2 x)

12 y = x / 2 x ; suatu parabola Fungsi kadang-kadang lebih mudah dinyatakan dalam bentuk parameter. Beberapa contoh fungsi dalam bentuk parameter : Sikloida Kalau suatu lingkaran berjari-jari sama dengan a dijalankan diatas sumbu x; suatu titik pada roda akan menjalani lintasan berupa sikloida. Persamaannya adalah : { y 2a 0 x = πa x = 2πa x t = π t = 2π Hiposikloida Kalau sebuah lingkaran dijalankan pada tepi dalam lingkaran lain yang lebih besar (jari-jat=ri a), terjadi sutu hiposikloida. Bila a = 4b, persamaaan berbentuk : { atau disebut Astroida

13 Latihan Soal : 1. Jika f(x) = x 2-4x + 6, tentukan : a) f(0) b) f(3) c) f(-2) Tunjukkan bahwa f( 1/ 2) = f( 7 / 2 ) dan f(2-h) = f(2 +h) 2. Jika, tentukan a) f(0) b) f(1) c) f(-2) Tunjukkan bahwa f(1/x) = -f(x) dan -f(1/x) = 3. Ubah ke bentuk biasa persamaan-persamaan berikut : a) { b) { c) { d) { 5. Jenis Fungsi Beberapa jenis fungsi riil : a) Fungsi Linier Fungsi linier adalah fungsi berderajat satu y = f(x) = ax + b y = 6x + 5 y = 10x y = 2x 9 b) Fungsi Kuadrat Fungsi kuadrat adalah fungsi berderajat dua

14 y = f(x) = ax 2 + bx +c y = 3x 2 + 2x + 1 y = x 2-7x - 8 y = 2x 2 + x 5 c) Fungsi Polinom Fungsi polinom adalah fungsi berderajat n y = f(x) = a 0 x n + a 1 x n a n-1 x + a n Dimana : a 1 = bilangan riil a 0 0 n = bilangan bulat positif f(x) = 5x 3 6x 2 +2x 8 adalah polinom berderajat 3 g(x) = 7x 5 8x + 12 adalah polinom berderajat 5 h(x) = x 4 + 3x 3 2x + 9 adalah polinom berderajat 4 d) Fungsi Rasional Bentuk umum fungsi rasional adalah f x= dengan p(x) dan q(x) merupakan fungsi polinom. Fungsi rasional f(x) tidak terdefinisi pada nilai x yang menyebabkan penyebut sama dengan nol atau q(x) = 0. Sedangkan pembuat nol dari pembilang atau p(x) tetapi bukan pembuat nol penyebut merupakan pembuat nol dari fungsi rasional f(x). e) Fungsi Aljabar Fungsi aljabar adalah fungsi f(x) yang memenuhi persamaan berbentuk : p 0 (x)y n +p 1 (x)y n p n-1 (x)y + p n (x) = 0 Dimana : p i (x) suatu polinom dalam x

15 Tunjukkan bahwa f(x) = x + Penyelesaian : adalah fungsi aljabar F(x) = y = x + y x = y 2-2xy + x 2 = x x 2 y 2-2xy + (2x 2 x) = 0 merupakan bentuk diatas, jadi benar fungsi aljabar f) Fungsi Transenden Merupakan fungsi yang bukan fungsi alajbar : 1. Fungsi Eksponensial f(x) = a x, a 0, 1 2. Fungsi Logaritma F(x) = a log x, a 0, 1 Jika a = e = 2,71828 Kita tulis f(x) = e log x = ln x disebut logaritma natural dari x Bila y = ln x maka e y = x 3. Fungsi Trigonometri Sin x, cos x, tg x =,,, Variabel x biasanya dinyatakan dalam radian (π radian = 180 o ) Beberapa sifat dari fungsi trigonometri : sin 2 x + cos 2 x = 1 tg 2 x + 1 = sec 2 x ctg 2 x + 1 = cosec 2 x sin (x ± y) = sin x cos y ± cos x sin y cos (x ± y) = cos x cos y ± sin x sin y tg (x ± y) = sin (-x) = - sin x

16 cos (-x) = - cos x tg (- x) = - tg x sin ( -x) = cos x cos ( -x) = sin x tg ( -x) = ctg x sin 2x = 2 sin x cos x cos 2x = cos 2 x sin 2 x = 2 cos 2 x - 1 = 1-2 sin 2 x Sin x + sin y = ( ) ( ) cos x + cos y = ( ) ( ) sin x sin y = -½ [cos (x + y) cos (x y)] cos x cos y = ½ [cos (x + y) + cos (x y) sin x cos y = ½ [sin (x + y) + sin (x y)] Fungsi siklometri (fungsi invers trigonometri) : y = arc sin x artinya x = sin y sehingga bila x = 1 / 2 y = arc sin 1 / 2 = π/6 (harga utama π/2 y π/2) y = arc cos x (harga utama 0 y π) y = arc tg x (harga utama π/2 < y < π/2) y = arc ctg x = π/2 arc tg x (harga utama 0 < y < π) y = arc sec x = arc cos 1/x (harga utama 0 y π) y = arc cosec x = arc sin 1/x (harga utama π/2 y π/2) Beberapa sifat : arc sin x + arc cos x =π/2 arc tg x + arc ctg x = π/2 arc sin x = arc cos arc tg x = arc ctg 1/x

17 KETERANGAN : td artinya tidak terdefinisi atau tidak memiliki nilai 1. cos (arc sin 3/2) = cos 60 = ½ 2. sin (arc tg - 3) = sin (120) = sin 120 = 1/ ctg (arc tg 3) = ctg 60 = Latihan soal : 1. tg ( ) 7. Tg ( ) 2. sec π 8. Ctg ( ) 3. sec 9. Tg ( - 4. cosec ( ) 10. Sec 5. ctg( ) 11. Cosec ( 6. tg (- ) 12. Cos

18 Buktikan! (1 cos 2 x) (1 + ctg 2 x) = Sin t (cosec t sin t) = cos 2 t = sec 2 t 16. = cosec 2 t

A B A B A B a 1 a 1 a 1 b 2 b 2 b 2 c 3 c 3 c 3 d d d. Gambar 1. Gambar 2. Gambar 3. Relasi Fungsi Relasi Bukan Fungsi Relasi Bukan Fungsi

A B A B A B a 1 a 1 a 1 b 2 b 2 b 2 c 3 c 3 c 3 d d d. Gambar 1. Gambar 2. Gambar 3. Relasi Fungsi Relasi Bukan Fungsi Relasi Bukan Fungsi sumbu y F U N G S I Definisi Fungsi Fungsi adalah pemetaan atau kejadian khusus dari suatu relasi. Jika himpunan A dan B memiliki relasi R sedemikian rupa sehingga setiap elemen himpunan A terhubung dengan

Lebih terperinci

Catatan Kuliah MA1123 Kalkulus Elementer I

Catatan Kuliah MA1123 Kalkulus Elementer I Catatan Kuliah MA1123 Kalkulus Elementer I Oleh Hendra Gunawan, Ph.D. Departemen Matematika ITB Sasaran Belajar Setelah mempelajari materi Kalkulus Elementer I, mahasiswa diharapkan memiliki (terutama):

Lebih terperinci

KALKULUS 1 HADI SUTRISNO. Pendidikan Matematika STKIP PGRI Bangkalan. Hadi Sutrisno/P.Matematika/STKIP PGRI Bangkalan

KALKULUS 1 HADI SUTRISNO. Pendidikan Matematika STKIP PGRI Bangkalan. Hadi Sutrisno/P.Matematika/STKIP PGRI Bangkalan KALKULUS 1 HADI SUTRISNO 1 Pendidikan Matematika STKIP PGRI Bangkalan BAB I PENDAHULUAN A. Sistem Bilangan Real Untuk mempelajari kalkulus kita terlebih dahulu perlu memahami bahasan tentang sistem bilangan

Lebih terperinci

SISTEM BILANGAN RIIL DAN FUNGSI

SISTEM BILANGAN RIIL DAN FUNGSI SISTEM BILANGAN RIIL DAN FUNGSI Matematika Juni 2016 Dosen : Dadang Amir Hamzah MATEMATIKA Juni 2016 1 / 67 Outline 1 Sistem Bilangan Riil Dosen : Dadang Amir Hamzah MATEMATIKA Juni 2016 2 / 67 Outline

Lebih terperinci

SEKOLAH TINGGI MANAJEMEN INFORMATIKA & KOMPUTER JAKARTA STI&K SATUAN ACARA PERKULIAHAN

SEKOLAH TINGGI MANAJEMEN INFORMATIKA & KOMPUTER JAKARTA STI&K SATUAN ACARA PERKULIAHAN SEKOLAH TINGGI MANAJEMEN INFORMAA & KOMPUTER JAKARTA STI&K SATUAN ACARA PERKULIAHAN Mata : Kalkulus 1 Kode Mata : DK - 11204 Jurusan / Jenjang : D3 TEKNIK KOMPUTER Tujuan Instruksional Umum : Agar mahasiswa

Lebih terperinci

PENGERTIAN FUNGSI JENIS-JENIS FUNGSI PENGGAMBARAN GRAFIK FUNGSI

PENGERTIAN FUNGSI JENIS-JENIS FUNGSI PENGGAMBARAN GRAFIK FUNGSI FUNGSI PENGERTIAN FUNGSI JENIS-JENIS FUNGSI PENGGAMBARAN GRAFIK FUNGSI PENGERTIAN FUNGSI Sebuah fungsi f dari himpunan A ke himpunan B adalah suatu aturan yang memasangkan setiap X anggota A dengan tepat

Lebih terperinci

KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia

KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN DEPARTEMEN TEKNIK KIMIA Universitas Indonesia BAB II. FUNGSI, LIMIT, DAN KEKONTINUAN Fungsi dan Operasi pada Fungsi Beberapa Fungsi Khusus Limit dan Limit

Lebih terperinci

KALKULUS BAB I. PENDAHULUAN DEPARTEMEN TEKNIK KIMIA

KALKULUS BAB I. PENDAHULUAN DEPARTEMEN TEKNIK KIMIA KALKULUS BAB I. PENDAHULUAN DEPARTEMEN TEKNIK KIMIA BAB I Bilangan Real dan Notasi Selang Pertaksamaan Nilai Mutlak Sistem Koordinat Cartesius dan Grafik Persamaan Bilangan Real dan Notasi Selang Bilangan

Lebih terperinci

FUNGSI DAN GRAFIKNYA KULIAH-4. Hadi Hermansyah,S.Si., M.Si. Politeknik Negeri Balikpapan PERTIDAKSAMAAN

FUNGSI DAN GRAFIKNYA KULIAH-4. Hadi Hermansyah,S.Si., M.Si. Politeknik Negeri Balikpapan PERTIDAKSAMAAN KULIAH-4 Modul Pembelajaran Matematika Kelas X semester 1 Modul Pembelajaran Matematika Kelas X semester 1 FUNGSI DAN GRAFIKNYA PERTIDAKSAMAAN Hadi Hermansyah,S.Si., M.Si. Politeknik Negeri Balikpapan

Lebih terperinci

Silabus. 1 Sistem Bilangan Real. 2 Fungsi Real. 3 Limit dan Kekontinuan. Kalkulus 1. Arrival Rince Putri. Sistem Bilangan Real.

Silabus. 1 Sistem Bilangan Real. 2 Fungsi Real. 3 Limit dan Kekontinuan. Kalkulus 1. Arrival Rince Putri. Sistem Bilangan Real. Silabus 1 2 3 Referensi E. J. Purcell, D. Varberg, and S. E. Rigdon, Kalkulus, Jilid 1 Edisi Kedelapan, Erlangga, 2003. Penilaian 1 Ujian Tengah Semester (UTS) : 30 2 Ujian Akhir Semester (UAS) : 20 3

Lebih terperinci

Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f.

Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f. Pertemuan ke 8 GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(,y): y = f(), D f } disebut grafik fungsi f. Grafik metode yang paling umum untuk menyatakan hubungan antara dua himpunan yaitu dengan menggunakan

Lebih terperinci

A B A B. ( a ) ( b )

A B A B. ( a ) ( b ) BAB. FUNGSI A. Relasi dan Fungsi Misalkan A dan B dua himpunan tak kosong. Relasi T dari himpunan A ke B adalah himpunan bagian dari A B. Jadi relasi A ke B merupakan himpunan (,y), dengan pada himpunan

Lebih terperinci

5 F U N G S I. 1 Matematika Ekonomi

5 F U N G S I. 1 Matematika Ekonomi 5 F U N G S I Pemahaman tentang konsep fungsi sangat penting dalam mempelajari ilmu ekonomi, mengingat kajian ekonomi banyak bekerja dengan fungsi. Fungsi dalam matematika menyatakan suatu hubungan formal

Lebih terperinci

Menurut jenisnya, fungsi dapat dibedakan menjadi (1) Fungsi aljabar (2) Fungsi transenden

Menurut jenisnya, fungsi dapat dibedakan menjadi (1) Fungsi aljabar (2) Fungsi transenden Lecture 3. Function (B) A. Macam-macam Fungsi Menurut jenisnya, fungsi dapat dibedakan menjadi (1) Fungsi aljabar (2) Fungsi transenden Fungsi aljabar dibedakan menjadi (1) Fungsi rasional (a) Fungsi konstan

Lebih terperinci

3. FUNGSI DAN GRAFIKNYA

3. FUNGSI DAN GRAFIKNYA 3. FUNGSI DAN GRAFIKNYA 3.1 Pengertian Relasi Misalkan A dan B suatu himpunan. anggota A dikaitkan dengan anggota B berdasarkan suatu hubungan tertentu maka diperoleh suatu relasi dari A ke B. : A = {1,

Lebih terperinci

Sistem Bilangan Real. Pendahuluan

Sistem Bilangan Real. Pendahuluan Sistem Bilangan Real Pendahuluan Kalkulus didasarkan pada sistem bilangan real dan sifat-sifatnya. Sistem bilangan real adalah himpunan bilangan real yang disertai operasi penjumlahan dan perkalian sehingga

Lebih terperinci

Sistem Bilangan Riil. Pendahuluan

Sistem Bilangan Riil. Pendahuluan Sistem Bilangan Riil Pendahuluan Kalkulus didasarkan pada sistem bilangan riil dan sifat-sifatnya. Sistem bilangan riil adalah himpunan bilangan riil yang disertai operasi penjumlahan dan perkalian sehingga

Lebih terperinci

MATEMATIKA 1. Achmad Basuki Departemen Teknologi Multimedia Kreatif Politeknik Elektronika Negeri 1

MATEMATIKA 1. Achmad Basuki Departemen Teknologi Multimedia Kreatif Politeknik Elektronika Negeri 1 MATEMATIKA 1 Achmad Basuki Departemen Teknologi Multimedia Kreatif Politeknik Elektronika Negeri 1 Materi Fungsi Grafik Fungsi Sifat Simetri Fungsi Genap dan Fungsi Ganjil Operasi Pada Beberapa Fungsi

Lebih terperinci

Zulfaneti Yulia Haryono Rina F ebriana. Berbasis Penemuan Terbimbing = = D(sec x)= sec x tan x, ( + ) ( ) ( )=

Zulfaneti Yulia Haryono Rina F ebriana. Berbasis Penemuan Terbimbing = = D(sec x)= sec x tan x, ( + ) ( ) ( )= Zulfaneti Yulia Haryono Rina F ebriana Berbasis Penemuan Terbimbing = = D(sec x)= sec x tan x, ()= (+) () Penyusun Zulfaneti Yulia Haryono Rina Febriana Nama NIm : : Untuk ilmu yang bermanfaat Untuk Harapan

Lebih terperinci

Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada,

Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada, Lecture 4. Limit B A. Continuity Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada, (2) lim f(x) ada, (3) lim f(x) =

Lebih terperinci

FUNGSI KOMPOSISI DAN FUNGSI INVERS

FUNGSI KOMPOSISI DAN FUNGSI INVERS FUNGSI KOMPOSISI DAN FUNGSI INVERS Jika A dan B adalah dua himpunan yang tidak kosong, fungsi f dari A ke B; f : A B atau A f B adalah cara pengawanan anggota A dengan anggota B yang memenuhi aturan setiap

Lebih terperinci

Mata Pelajaran Wajib. Disusun Oleh: Ngapiningsih

Mata Pelajaran Wajib. Disusun Oleh: Ngapiningsih Mata Pelajaran Wajib Disusun Oleh: Ngapiningsih Disklaimer Daftar isi Disklaimer Powerpoint pembelajaran ini dibuat sebagai alternatif guna membantu Bapak/Ibu Guru melaksanakan pembelajaran. Materi powerpoint

Lebih terperinci

FUNGSI dan LIMIT. 1.1 Fungsi dan Grafiknya

FUNGSI dan LIMIT. 1.1 Fungsi dan Grafiknya FUNGSI dan LIMIT 1.1 Fungsi dan Grafiknya Fungsi : suatu aturan yang menghubungkan setiap elemen suatu himpunan pertama (daerah asal) tepat kepada satu elemen himpunan kedua (daerah hasil) fungsi Daerah

Lebih terperinci

Sistem Bilangan Riil

Sistem Bilangan Riil Sistem Bilangan Riil Pendahuluan Kalkulus didasarkan pada sistem bilangan riil dan sifat-sifatnya. Sistem bilangan riil adalah himpunan bilangan riil yang disertai operasi penjumlahan dan perkalian sehingga

Lebih terperinci

fungsi Dan Grafik fungsi

fungsi Dan Grafik fungsi fungsi Dan Grafik fungsi Suatu fungsi adalah pemadanan dua himpunan tidak kosong dengan pasangan terurut (x, y) dimana tidak terdapat elemen kedua yang berbeda. Fungsi (pemetaan) himpunan A ke himpunan

Lebih terperinci

MBS - DTA. Sucipto UNTUK KALANGAN SENDIRI. SMK Muhammadiyah 3 Singosari

MBS - DTA. Sucipto UNTUK KALANGAN SENDIRI. SMK Muhammadiyah 3 Singosari MBS - DTA Sucipto UNTUK KALANGAN SENDIRI SMK Muhammadiyah Singosari SERI : MBS-DTA FUNGSI STANDAR KOMPETENSI Siswa mampu memecahkan masalah yang berkaitan dengan fungsi, persamaan fungsi linear dan fungsi

Lebih terperinci

DTH1B3 - MATEMATIKA TELEKOMUNIKASI I

DTH1B3 - MATEMATIKA TELEKOMUNIKASI I DTH1B3 - MATEMATIKA TELEKOMUNIKASI I Sistem Persamaan Linear By : Dwi Andi Nurmantris Capaian Pembelajaran Mampu menyelesaikan sistem persamaan linier dengan beberapa metode pencarian. Mampu menyelesaikan

Lebih terperinci

KALKULUS UNTUK STATISTIKA

KALKULUS UNTUK STATISTIKA Mulyana f( ) g( ).8.9.9 KALKULUS UNTUK STATISTIKA.8 8. BUKU AJAR g ( ) h ( ).. 8. UNIVERSITAS PADJADJARAN FAKULTAS MIPA JURUSAN STATISTIKA BANDUNG Kata Pengantar Diktat ini disusun dalam upaya pengadaan

Lebih terperinci

Aljabar 1. Modul 1 PENDAHULUAN

Aljabar 1. Modul 1 PENDAHULUAN Modul 1 Aljabar 1 Drs. H. Karso, M.Pd. PENDAHULUAN M odul yang sekarang Anda pelajari adalah modul yang pertama dari mata kuliah Materi Kurikuler Matematika SMA. Materi-materi yang disajikan dalam modul

Lebih terperinci

a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Pengantar Kalkulus Pertemuan - 1

a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Pengantar Kalkulus Pertemuan - 1 Mata Kuliah : Kalkulus Kode : TSP 102 SKS : 3 SKS Pengantar Kalkulus Pertemuan - 1 TIU : Mahasiswa dapat memahami dasar-dasar Kalkulus TIK : Mahasiswa mampu menjelaskan sistem bilangan real Mahasiswa mampu

Lebih terperinci

Modul Matematika MINGGU 4. g. Titik Potong fungsi linier

Modul Matematika MINGGU 4. g. Titik Potong fungsi linier MINGGU 4 Pokok Bahasan Sub Pokok Bahasan Tujuan Instruksional Umum : Hubungan dan : 1. Hubungan 2. a. Pengertian fungsi b. Jenis-jenis fungsi c. Diagram fungsi d. Pengertian fungsi linier e. Penggambaran

Lebih terperinci

Pengertian Fungsi. MA 1114 Kalkulus I 2

Pengertian Fungsi. MA 1114 Kalkulus I 2 Fungsi Pengertian Fungsi Relasi : aturan yang mengawankan himpunan Fungsi Misalkan A dan B himpunan. Relasi biner dari A ke B merupakan suatu ungsi jika setiap elemen di dalam A dihubungkan dengan tepat

Lebih terperinci

Kalkulus 1 MA1104. Fungsi. Dr. I W. Sudarsana. Program Studi Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Tadulako

Kalkulus 1 MA1104. Fungsi. Dr. I W. Sudarsana. Program Studi Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Tadulako Kalkulus 1 MA1104 Fungsi Dr. I W. Sudarsana Program Studi Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Tadulako Pengertian Fungsi Jika adalah ungsi dari A ke B kita menuliskan :

Lebih terperinci

BAB IV PERTIDAKSAMAAN. 1. Pertidaksamaan Kuadrat 2. Pertidaksamaan Bentuk Pecahan 3. Pertidaksamaan Bentuk Akar 4. Pertidaksamaan Nilai Mutlak

BAB IV PERTIDAKSAMAAN. 1. Pertidaksamaan Kuadrat 2. Pertidaksamaan Bentuk Pecahan 3. Pertidaksamaan Bentuk Akar 4. Pertidaksamaan Nilai Mutlak BAB IV PERTIDAKSAMAAN 1. Pertidaksamaan Kuadrat. Pertidaksamaan Bentuk Pecahan 3. Pertidaksamaan Bentuk Akar 4. Pertidaksamaan Nilai Mutlak 86 LEMBAR KERJA SISWA 1 Mata Pelajaran : Matematika Uraian Materi

Lebih terperinci

MAT 602 DASAR MATEMATIKA II

MAT 602 DASAR MATEMATIKA II MAT 60 DASAR MATEMATIKA II Disusun Oleh: Dr. St. Budi Waluya, M. Sc Jurusan Pendidikan Matematika Program Pascasarjana Unnes 1 HIMPUNAN 1. Notasi Himpunan. Relasi Himpunan 3. Operasi Himpunan A B : A B

Lebih terperinci

LIMIT DAN KEKONTINUAN

LIMIT DAN KEKONTINUAN LIMIT DAN KEKONTINUAN Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 37 Topik Bahasan 1 Limit Fungsi 2 Hukum Limit 3 Kekontinuan Fungsi (Departemen

Lebih terperinci

LAMPIRAN VIII BAHAN AJAR I

LAMPIRAN VIII BAHAN AJAR I 177 LAMPIRAN VIII BAHAN AJAR I A. Standar Kompetensi Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus B. Kompetensi Dasar Memahami relasi dan fungsi C. Tujuan Pembelajaran 1. Siswa dapat

Lebih terperinci

HUBUNGAN ANTARA DIFFERENSIAL DAN INTEGRAL

HUBUNGAN ANTARA DIFFERENSIAL DAN INTEGRAL HUBUNGAN ANTARA DIFFERENSIAL DAN INTEGRAL Dra.Sri Rejeki Dwi Putranti, M.Kes. Fakultas Teknik - Universitaas Yos Soedarso Surabaya Email : riccayusticia@gmail.com Abstrak Hubungan antara Differensial dan

Lebih terperinci

SATUAN ACARA PERKULIAHAN JURUSAN TEKNIK INFORMATIKA ITP

SATUAN ACARA PERKULIAHAN JURUSAN TEKNIK INFORMATIKA ITP SATUAN ACARA PERKULIAHAN JURUSAN TEKNIK INFORMATIKA ITP Mata kuliah : Kalkulus 1 Kode Mata Kuliah : TIS1213 SKS : 3 Waktu Pertemuan : 16 kali Pertemuan Deskripsi : Tujuan utama dari mata kuliah ini adalah

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH MATEMATIKA DASAR 1* (TEKNIK KOMPUTER/D3) KODE / SKS : IT / 2 SKS

SATUAN ACARA PERKULIAHAN MATA KULIAH MATEMATIKA DASAR 1* (TEKNIK KOMPUTER/D3) KODE / SKS : IT / 2 SKS Pertemuan ke 1 & 2 Pokok Bahasan dan TIU HIMPUNAN BILANGAN Mahasiswa memahami konsep himpunan bilangan; mampu mencari himpunan yang memenuhi sebuah pertidaksamaan; mampu menggunakan induksi lengkap untuk

Lebih terperinci

II. FUNGSI. 2.1 Pendahuluan

II. FUNGSI. 2.1 Pendahuluan II. FUNGSI. Pendahuluan A. Tujuan Setelah mempelajari bagian ini diharapkan mahasiswa dapat:. menyebutkan definisi fungsi;. menyebutkan macam-macam variabel dalam fungsi; 3. membedakan antara variabel

Lebih terperinci

Newton, Leibniz, dan Kalkulus.

Newton, Leibniz, dan Kalkulus. Bab 1 LIMIT Newton, Leibniz, dan Kalkulus www.calculusbook.net 1.1 Pengantar Limit Kenapa Limit Penting? Misalkan suatu objek selalu bergerak maju, dengan s(t) adalah posisi pada saat t. Kecepatan rata-rata

Lebih terperinci

MODUL 1. Teori Bilangan MATERI PENYEGARAN KALKULUS

MODUL 1. Teori Bilangan MATERI PENYEGARAN KALKULUS MODUL 1 Teori Bilangan Bilangan merupakan sebuah alat bantu untuk menghitung, sehingga pengetahuan tentang bilangan, mutlak diperlukan. Pada modul pertama ini akan dibahas mengenai bilangan (terutama bilangan

Lebih terperinci

Bilangan Real. Modul 1 PENDAHULUAN

Bilangan Real. Modul 1 PENDAHULUAN Modul 1 Bilangan Real S PENDAHULUAN Drs. Soemoenar emesta pembicaraan Kalkulus adalah himpunan bilangan real. Jadi jika akan belajar kalkulus harus paham terlebih dahulu tentang bilangan real. Bagaimanakah

Lebih terperinci

BAB 5 TEOREMA SISA. Menggunakan aturan sukubanyak dalam penyelesaian masalah. Kompetensi Dasar

BAB 5 TEOREMA SISA. Menggunakan aturan sukubanyak dalam penyelesaian masalah. Kompetensi Dasar Standar Kompetensi BAB 5 TEOREMA SISA Menggunakan aturan sukubanyak dalam penyelesaian masalah. Kompetensi Dasar Menggunakan algoritma pembagian sukubanyak untuk menentukan hasil bagi dan sisa pembagian

Lebih terperinci

MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral

MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegralan Do maths and you see the world Integral atau Anti-turunan? Integral atau pengintegral adalah salah satu konsep (penting) dalam matematika disamping

Lebih terperinci

Sistem Bilangan Riil. Kalkulus 1 MA1104. Dr. I W. Sudarsana

Sistem Bilangan Riil. Kalkulus 1 MA1104. Dr. I W. Sudarsana Kalkulus 1 MA1104 Sistem Bilangan Riil Dr. I W. Sudarsana Program Studi Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Tadulako Sistem bilangan N : 1,,,. Z :,-,-1,0,1,,.. N : bilangan

Lebih terperinci

KONSEP DASAR FUNGSI DAN GRAFIK. Oleh : Agus Arwani, SE, M.Ag

KONSEP DASAR FUNGSI DAN GRAFIK. Oleh : Agus Arwani, SE, M.Ag KONSEP DASAR FUNGSI DAN GRAFIK Oleh : Agus Arwani, SE, M.Ag KONSEP DASAR FUNGSI DAN GRAFIK Definisi : Fungsi f : A B adalah suatu aturan yang mengaitkan (memadankan) setiap dengan tepat satu A y B Notasi

Lebih terperinci

FUNGSI DAN GRAFIK FUNGSI

FUNGSI DAN GRAFIK FUNGSI FUNGSI DAN GRAFIK FUNGSI Apabila suatu besaran y memiliki nilai yang tergantung dari nilai besaran lain x, maka dikatakan bahwa besaran y tersebut merupakan fungsi besaran x. secara umum ditulis: y= f(x)

Lebih terperinci

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA Mata Kuliah : Matematika Dasar 1 Kode / SKS : IT012314 / 3 SKS Program Studi : Sistem Komputer Fakultas : Ilmu Komputer & Teknologi Informasi 1 & 2 HIMPUNAN BILANGAN Mahasiswa memahami konsep himpunan

Lebih terperinci

FUNGSI DAN MODEL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 63

FUNGSI DAN MODEL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 63 FUNGSI DAN MODEL Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 63 Topik Bahasan 1 Fungsi 2 Jenis-jenis Fungsi 3 Fungsi Baru dari Fungsi Lama 4

Lebih terperinci

TUJUAN INSTRUKSIONAL KHUSUS

TUJUAN INSTRUKSIONAL KHUSUS PREVIEW KALKULUS TUJUAN INSTRUKSIONAL KHUSUS Mahasiswa mampu: menyebutkan konsep-konsep utama dalam kalkulus dan contoh masalah-masalah yang memotivasi konsep tersebut; menjelaskan menyebutkan konsep-konsep

Lebih terperinci

Sedangkan bilangan real yang tidak dapat dinyatakan sebagai pembagian dua bilangan bulat adalah bilangan irasional, contohnya

Sedangkan bilangan real yang tidak dapat dinyatakan sebagai pembagian dua bilangan bulat adalah bilangan irasional, contohnya BAB I A. SISTEM BILANGAN REAL Sistem bilangan real dan berbagai sifatnya merupakan basis dari kalkulus. Sistem bilangan real terdiri dari himpunan unsur yang dinamakan Bilangan Real yang sering dinyatakan

Lebih terperinci

Fungsi. Pengertian Fungsi. Pengertian Fungsi ( ) ( )

Fungsi. Pengertian Fungsi. Pengertian Fungsi ( ) ( ) Fungsi Pengertian Fungsi Relasi : aturan yang mengawankan/ mengkaitkan/ menugaskan himpunan Fungsi Misalkan A dan B himpunan. Relasi biner dari A ke B merupakan suatu ungsi jika setiap elemen di dalam

Lebih terperinci

KOMPOSISI FUNGSI DAN FUNGSI INVERS

KOMPOSISI FUNGSI DAN FUNGSI INVERS 1 KOMPOSISI FUNGSI DAN FUNGSI INVERS Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) Relasi himpunan A ke himpunan B adalah relasi yang memasangkan/mengkawankan/mengkorepodensikan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Latar Belakang Historis Fondasi dari integral pertama kali dideklarasikan oleh Cavalieri, seorang ahli matematika berkebangsaan Italia pada tahun 1635. Cavalieri menemukan bahwa

Lebih terperinci

NAMA : KELAS : SMA TARAKANITA 1 JAKARTA theresiaveni.wordpress.com

NAMA : KELAS : SMA TARAKANITA 1 JAKARTA theresiaveni.wordpress.com 1 NAMA : KELAS : 2 KOMPOSISI FUNGSI DAN FUNGSI INVERS Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) Relasi himpunan A ke himpunan B adalah relasi yang memasangkan/mengkawankan/mengkorepodensikan

Lebih terperinci

APA ITU FUNGSI? x f : x y atau y=f(x) f : x y y=f(x) y=f(x)=x 2. Imajinasi : bermain golf

APA ITU FUNGSI? x f : x y atau y=f(x) f : x y y=f(x) y=f(x)=x 2. Imajinasi : bermain golf FUNGSI TEP FTP UB APA ITU FUNGSI? Imajinasi : bermain golf x f f : x y atau y=f(x) y Sebuah fungsi adalah transformasi dari input x pada output y = f(x). f : x y y=f(x) y=f(x)=x 2 Fungsi adalah hubungan

Lebih terperinci

MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral

MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegralan Do maths and you see the world Integral atau Anti-turunan? Integral atau pengintegral adalah salah satu konsep (penting) dalam matematika disamping

Lebih terperinci

Matematika Dasar FUNGSI DAN GRAFIK

Matematika Dasar FUNGSI DAN GRAFIK FUNGSI DAN GRAFIK Suatu pengaitan dari himpunan A ke himpunan B disebut fungsi bila mengaitkan setiap anggota dari himpunan A dengan tepat satu anggota dari himpunan B. Notasi : f : A B f() y Himpunan

Lebih terperinci

Seri : Modul Diskusi Fakultas Ilmu Komputer. FAKULTAS ILMU KOMPUTER Sistem Komputer & Sistem Informasi HANDOUT : KALKULUS DASAR

Seri : Modul Diskusi Fakultas Ilmu Komputer. FAKULTAS ILMU KOMPUTER Sistem Komputer & Sistem Informasi HANDOUT : KALKULUS DASAR Seri : Modul Diskusi Fakultas Ilmu Komputer FAKULTAS ILMU KOMPUTER Sistem Komputer & Sistem Informasi HANDOUT : KALKULUS DASAR Ole : Tony Hartono Bagio 00 KALKULUS DASAR Tony Hartono Bagio KATA PENGANTAR

Lebih terperinci

Komposisi fungsi dan invers fungsi. Syarat agar suatu fungsi mempunyai invers. Grafik fungsi invers

Komposisi fungsi dan invers fungsi. Syarat agar suatu fungsi mempunyai invers. Grafik fungsi invers Komposisi fungsi dan invers fungsi mempelajari Fungsi komposisi menentukan Fungsi invers terdiri dari Syarat dan aturan fungsi yang dapat dikomposisikan Nilai fungsi komposisi dan pembentuknya Syarat agar

Lebih terperinci

KALKULUS (IT 131) Fakultas Teknologi Informasi - Universitas Kristen Satya Wacana. Bagian 3. Fungsi & Model ALZ DANNY WOWOR

KALKULUS (IT 131) Fakultas Teknologi Informasi - Universitas Kristen Satya Wacana. Bagian 3. Fungsi & Model ALZ DANNY WOWOR KALKULUS (IT 131) Fakultas Teknologi Informasi - Universitas Kristen Satya Wacana Bagian 3 Fungsi & Model ALZ DANNY WOWOR 1. Fungsi Sebelum membahas fungsi, akan ditunjukkan pengertian dari relasi yang

Lebih terperinci

KALKULUS INTEGRAL 2013

KALKULUS INTEGRAL 2013 KALKULUS INTEGRAL 0 PENDAHULUAN A. DESKRIPSI MATA KULIAH Isi pokok mata kuliah ini memuat pemahaman tentang: () Anti turunan: pengertian anti turunan, teorema-teorema, dan teknik anti turunan, () Integral

Lebih terperinci

LOGO MAM 4121 KALKULUS 1. Dr. Wuryansari Muharini K.

LOGO MAM 4121 KALKULUS 1. Dr. Wuryansari Muharini K. LOGO MAM 4121 KALKULUS 1 Dr. Wuryansari Muharini K. BAB I. PENDAHULUAN SISTEM BILANGAN REAL, NOTASI SELANG, dan NILAI MUTLAK PERTAKSAMAAN SISTEM KOORDINAT GRAFIK PERSAMAAN SEDERHANA www.themegallery.com

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Aljabar dapat didefinisikan sebagai manipulasi dari simbol-simbol. Secara

BAB II TINJAUAN PUSTAKA. Aljabar dapat didefinisikan sebagai manipulasi dari simbol-simbol. Secara 4 BAB II TINJAUAN PUSTAKA A. Aljabar Definisi II.A.: Aljabar (Wahyudin, 989:) Aljabar dapat didefinisikan sebagai manipulasi dari simbol-simbol. Secara historis aljabar dibagi menjadi dua periode waktu,

Lebih terperinci

BAB 3 FUNGSI. 1. Pengertian Fungsi. dengan satu dan hanya satu elemen B; f disebut fungsi dari A ke B, ditulis f : A

BAB 3 FUNGSI. 1. Pengertian Fungsi. dengan satu dan hanya satu elemen B; f disebut fungsi dari A ke B, ditulis f : A BAB 3 FUNGSI 1. Pengertian Fungsi Fungsi f adalah suatu aturan padanan yang menghubungkan tiap objek x dalam satu himpunan, yang disebut daerah asal, dengan sebuah nilai unik f(x) dari himpunan kedua.

Lebih terperinci

F U N G S I. Oleh: Dimas Rahadian AM, S.TP. M.Sc.

F U N G S I. Oleh: Dimas Rahadian AM, S.TP. M.Sc. F U N G S I Oleh: Dimas Rahadian AM, S.TP. M.Sc Email: rahadiandimas@yahoo.com JURUSAN ILMU DAN TEKNOLOGI PANGAN UNIVERSITAS SEBELAS MARET SURAKARTA ...KONSEP DASAR Fungsi adalah suatu pemetaan dari satu

Lebih terperinci

Tinjauan Mata Kuliah

Tinjauan Mata Kuliah i M Tinjauan Mata Kuliah ata kuliah Kalkulus 1 diperuntukkan bagi mahasiswa yang mempelajari matematika baik untuk mengajar bidang matematika di tingkat Sekolah Lanjutan Tingkat Pertama (SLTP), Sekolah

Lebih terperinci

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a Soal - Soal UM UGM. Soal Matematika Dasar UM UGM 00. Jika x = 3 maka + 3 log 4 x =... a. b. c. d. e.. Jika x+y log = a dan x y log 8 = b dengan 0 < y < x maka 4 log (x y ) =... a. a + 3b ab b. a + b ab

Lebih terperinci

Outline: Sistem Koordinat Jarak Garis Fungsi

Outline: Sistem Koordinat Jarak Garis Fungsi FUNGSI 9//018 Outline: Sistem Koordinat Jarak Garis Fungsi 9//018 The RectanguLar Coordinate system (Sistem Koordinat Persegipanjang) Distance Formula (Rumus Jarak) Lingkaran Titik Tengah Kemiringan

Lebih terperinci

FUNGSI KOMPOSISI DAN FUNGSI INVERS

FUNGSI KOMPOSISI DAN FUNGSI INVERS FUNGSI KOMPOSISI DAN FUNGSI INVERS. Relasi dan Fungsi Pada saat di Sekolah Lanjutan Pertama (SMP) telah dipelajari tentang topik Relasi, Fungsi dan Grafik. Pada materi relasi ini selain menggunakan istilah

Lebih terperinci

Hendra Gunawan. 4 September 2013

Hendra Gunawan. 4 September 2013 MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 4 September 2013 Latihan (Kuliah yang Lalu) 1. Tentukan daerah asal dan daerah nilai fungsi 2 f(x) = 1 x. sudah dijawab 2. Gambar grafik fungsi

Lebih terperinci

Silabus. Nama Sekolah : SMA Mata Pelajaran : MATEMATIKA Kelas / Program : X / UMUM Semester : GANJIL

Silabus. Nama Sekolah : SMA Mata Pelajaran : MATEMATIKA Kelas / Program : X / UMUM Semester : GANJIL Silabus Nama Sekolah : SMA Mata Pelajaran : MATEMATIKA Kelas / Program : X / UMUM Semester : GANJIL Sandar Kompetensi:. Memecahkan masalah yang berkaitan dengan bentuk pangkat, akar, dan logaritma Kompetensi

Lebih terperinci

dengan X sebagai Domain dan Y sebagai Range, yang ditulis sebagai R: X Y. Jika setiap x X dapat dipetakan ke setiap y Y.

dengan X sebagai Domain dan Y sebagai Range, yang ditulis sebagai R: X Y. Jika setiap x X dapat dipetakan ke setiap y Y. 1 BAB. I RELASI DAN FUNGSI Dalam matematika modern, Relasi dan Fungsi digunakan untuk menunjukkan hubungan setiap elemen Domain dengan setiap elemenrange yang membentuk pasangan bilangan berurut. Hubungan

Lebih terperinci

Sistem Bilangan Real EXPERT COURSE. #bimbelnyamahasiswa

Sistem Bilangan Real EXPERT COURSE. #bimbelnyamahasiswa Sistem Bilangan Real EXPERT COURSE #bimbelnyamahasiswa Sistem bilangan N : bilangan asli Z : bilangan bulat Q : bilangan rasional R : bilangan real Garis bilangan Setiap bilangan real mempunyai posisi

Lebih terperinci

MATEMATIKA TEKNIK DASAR-I FUNGSI-2 SEBRIAN MIRDEKLIS BESELLY PUTRA TEKNIK PENGAIRAN

MATEMATIKA TEKNIK DASAR-I FUNGSI-2 SEBRIAN MIRDEKLIS BESELLY PUTRA TEKNIK PENGAIRAN MATEMATIKA TEKNIK DASAR-I FUNGSI-2 SEBRIAN MIRDEKLIS BESELLY PUTRA TEKNIK PENGAIRAN FUNGSI Perhatikan relasi {(x,y) x, y R; y=x 2 } Untuk tiap-tiap nilai x dalam wilayahnya, relasi itu hanya menyatakan

Lebih terperinci

BAB 3 FUNGSI & GRAFIKNYA

BAB 3 FUNGSI & GRAFIKNYA BAB 3 FUNGSI & GRAFIKNYA . DEFINISI RELASI Dua himpunan A dan B dikatakan mempunyai relasi apabila ada cara atau aturan tertentu untuk mengkaitkan antara anggota A dengan anggota B. Relasi antara himpunan

Lebih terperinci

Bab 0 Pendahuluan. MA1101 Matematika 1A Semester I Tahun 2018/2019 FMIPA (K-03) Dosen: Dr. Rinovia Simanjuntak

Bab 0 Pendahuluan. MA1101 Matematika 1A Semester I Tahun 2018/2019 FMIPA (K-03) Dosen: Dr. Rinovia Simanjuntak Bab 0 Pendahuluan MA1101 Matematika 1A Semester I Tahun 2018/2019 FMIPA (K-03) Dosen: Dr. Rinovia Simanjuntak 0.1 Bilangan Real Bilangan Real Desimal Berulang dan Tak Berulang Setiap bilangan rasional

Lebih terperinci

FUNGSI TRIGONOMETRI, FUNGSI EKSPONENSIAL, dan FUNGSI LOGARITMA

FUNGSI TRIGONOMETRI, FUNGSI EKSPONENSIAL, dan FUNGSI LOGARITMA FUNGSI TRIGONOMETRI, FUNGSI EKSPONENSIAL, dan FUNGSI LOGARITMA Makalah ini disusun untuk memenuhi tugas Mata Kuliah Kalkulus 1 Dosen Pengampu : Muhammad Istiqlal, M.Pd Disusun Oleh : 1. Sufi Anisa (23070160086)

Lebih terperinci

MATEMATIKA DASAR PENDIDIKAN BIOLOGI UPI 0LEH: UPI 0716

MATEMATIKA DASAR PENDIDIKAN BIOLOGI UPI 0LEH: UPI 0716 MATEMATIKA DASAR PENDIDIKAN BIOLOGI UPI 0LEH: UPI 0716 N0 TOPIK FUNGSI 2.1 DEFINISI FUNGSI 2.2 DAERAH DEFINISI DAN DAERAH HASIL 2.3 JENIS-JENIS FUNGSI 2.4 OPERASI ALJABAR FUNGSI 2.5 FUNGSI GENAP, GANJIL,

Lebih terperinci

Fakultas Teknik UNY Jurusan Pendidikan Teknik Otomotif INTEGRASI FUNGSI. 0 a b X A. b A = f (X) dx a. Penyusun : Martubi, M.Pd., M.T.

Fakultas Teknik UNY Jurusan Pendidikan Teknik Otomotif INTEGRASI FUNGSI. 0 a b X A. b A = f (X) dx a. Penyusun : Martubi, M.Pd., M.T. Kode Modul MAT. TKF 20-03 Fakultas Teknik UNY Jurusan Pendidikan Teknik Otomotif INTEGRASI FUNGSI Y Y = f (X) 0 a b X A b A = f (X) dx a Penyusun : Martubi, M.Pd., M.T. Sistem Perencanaan Penyusunan Program

Lebih terperinci

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN GURU KELAS SD

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN GURU KELAS SD SUMBER BELAJAR PENUNJANG PLPG 016 MATA PELAJARAN/PAKET KEAHLIAN GURU KELAS SD BAB II ALJABAR Dra.Hj.Rosdiah Salam, M.Pd. Dra. Nurfaizah, M.Hum. Drs. Latri S, S.Pd., M.Pd. Prof.Dr.H. Pattabundu, M.Ed. Widya

Lebih terperinci

Bab1. Sistem Bilangan

Bab1. Sistem Bilangan Modul Pra Kalkulus -0. Bab. Sistim Bilangan Bab. Sistem Bilangan. Sistim Bilangan Jenis bilangan berkembang sejalan dengan perkembangan peradaban dan ilmu pengetahuan. Jenis bilangan yang pertama kali

Lebih terperinci

Teknik Pengintegralan

Teknik Pengintegralan Jurusan Matematika 13 Nopember 2012 Review Rumus-rumus Integral yang Dikenal Pada beberapa subbab sebelumnya telah dijelaskan beberapa integral dari fungsi-fungsi tertentu. Berikut ini diberikan sebuah

Lebih terperinci

Suatu pemetaan f dari himpunan A ke himpunan B disebut fungsi jika setiap anggota dari himpunan A dipetakan atau dikaitkan dengan tepat satu anggota

Suatu pemetaan f dari himpunan A ke himpunan B disebut fungsi jika setiap anggota dari himpunan A dipetakan atau dikaitkan dengan tepat satu anggota Suatu pemetaan dari himpunan A ke himpunan B disebut ungsi jika setiap anggota dari himpunan A dipetakan atau dikaitkan dengan tepat satu anggota dari himpunan B Suatu Fungsi biasanya dinyatakan dengan

Lebih terperinci

Silabus. Kegiatan Pembelajaran Instrumen. Tugas individu.

Silabus. Kegiatan Pembelajaran Instrumen. Tugas individu. Silabus Jenjang : SMP dan MTs Mata Pelajaran : Matematika Kelas : VIII Semester : 1 Standar Kompetensi : ALJABAR 1. Memahami bentuk aljabar, relasi, fungsi, dan garis lurus. Kompetensi Dasar Materi Ajar

Lebih terperinci

MATEMATIKA EKONOMI 1 FUNGSI DAN GRAFIK. DOSEN Fitri Yulianti, SP, MSi.

MATEMATIKA EKONOMI 1 FUNGSI DAN GRAFIK. DOSEN Fitri Yulianti, SP, MSi. MATEMATIKA EKONOMI 1 FUNGSI DAN GRAFIK DOSEN Fitri Yulianti, SP, MSi. Fungsi Fungsi merupakan hubungan antara dua variabel atau lebih. Variabel dibedakan : 1. Variabel bebas yaitu variabel yang besarannya

Lebih terperinci

2.1 Fungsi dan Grafiknya

2.1 Fungsi dan Grafiknya FUNGSI DAN LIMIT 2.1 Fungsi dan Grafiknya Definisi Fungsi Sebuah fungsi f adalah suatu aturan padanan yang menghubungkan tiap obyek x dalam satu himpunan, yang disebut daerah asal, dengan sebuah nilai

Lebih terperinci

1 Sistem Bilangan Real

1 Sistem Bilangan Real Learning Outcome Rencana Pembelajaran Setelah mengikuti proses pembelajaran ini, diharapkan mahasiswa dapat ) Menentukan solusi pertidaksamaan aljabar ) Menyelesaikan pertidaksamaan dengan nilai mutlak

Lebih terperinci

Kalkulus II. Diferensial dalam ruang berdimensi n

Kalkulus II. Diferensial dalam ruang berdimensi n Kalkulus II Diferensial dalam ruang berdimensi n Minggu ke-9 DIFERENSIAL DALAM RUANG BERDIMENSI-n 1. Fungsi Dua Peubah atau Lebih 2. Diferensial Parsial 3. Limit dan Kekontinuan 1. Fungsi Dua Peubah atau

Lebih terperinci

Jika t = π, maka P setengah C P(x,y) jalan mengelilingi ligkaran, t y. P(-1,0). t = 3/2π, maka P(0,-1) t>2π, perlu lebih 1 putaran t<2π, maka = t

Jika t = π, maka P setengah C P(x,y) jalan mengelilingi ligkaran, t y. P(-1,0). t = 3/2π, maka P(0,-1) t>2π, perlu lebih 1 putaran t<2π, maka = t Fungsi Trigonometri Fungsi trigonometri berdasarkan lingkaran satuan (C), dengan jari-jari 1 dan pusat dititik asal. X 2 + y 2 = 1 Panjang busur AP = t Keliling C = 2π y Jika t = π, maka P setengah C P(,y)

Lebih terperinci

MATEMATIKA I (FIS 6111, Wajib, 3 SKS)

MATEMATIKA I (FIS 6111, Wajib, 3 SKS) MATEMATIKA I (FIS 6111, Wajib, 3 SKS) Kompetensi Umum Sistem bilangan real, fungsi, barisan dan deret bilangan real, Limit dan keontinuan, turunan dan penggunaannya, interpretasi derivatif. Teorema Rolle,

Lebih terperinci

PTE 4109, Agribisnis UB

PTE 4109, Agribisnis UB MATEMATIKA EKONOMI PTE 4109, Agribisnis UB 1 Materi ang dipelajari Pengertian dan Unsur- unsur Fungsi Jenis- jenis fungsi Penggambaran fungsi Linear Penggambaran fungsi non linear -Penggal -Simetri - Perpanjangan

Lebih terperinci

FUNGSI. range. Dasar Dasar Matematika I 1

FUNGSI. range. Dasar Dasar Matematika I 1 FUNGSI Pada bagian sebelumnya telah dibahas tentang relasi yaitu aturan yang menghubungkan elemen dua himpunan. Pada bagian ini akan dibahas satu jenis relasi yang lebih khusus yang dinamakan fungsi Suatu

Lebih terperinci

BAB 6 FUNGSI KOMPOSISI DAN FUNGSI INVERS Standar Kompetensi: Menentukan komposisi dua fungsi dan invers suatu fungsi

BAB 6 FUNGSI KOMPOSISI DAN FUNGSI INVERS Standar Kompetensi: Menentukan komposisi dua fungsi dan invers suatu fungsi BAB 6 FUNGSI KOMPOSISI DAN FUNGSI INVERS Standar Kompetensi: Menentukan komposisi dua fungsi dan invers suatu fungsi A. Fungsi dan Macam-macam Fungsi Pada saat di Sekolah Lanjutan Pertama (SMP) telah dipelajari

Lebih terperinci

SILABUS MATAKULIAH. Revisi : 2 Tanggal Berlaku : September Indikator Pokok Bahasan/Materi Strategi Pembelajaran

SILABUS MATAKULIAH. Revisi : 2 Tanggal Berlaku : September Indikator Pokok Bahasan/Materi Strategi Pembelajaran SILABUS MATAKULIAH Revisi : 2 Tanggal Berlaku : September 2014 A. Identitas 1. Nama Matakuliah : A11. 54101 / Kalkulus I 2. Program Studi : Teknik Informatika-S1 3. Fakultas : Ilmu Komputer 4. Bobot sks

Lebih terperinci

B I L A N G A N 1.1 SKEMA DARI HIMPUNAN BILANGAN. Bilangan Kompleks. Bilangan Nyata (Riil) Bilangan Khayal (Imajiner)

B I L A N G A N 1.1 SKEMA DARI HIMPUNAN BILANGAN. Bilangan Kompleks. Bilangan Nyata (Riil) Bilangan Khayal (Imajiner) 1 B I L A N G A N 1.1 SKEMA DARI HIMPUNAN BILANGAN Bilangan Kompleks Bilangan Nyata (Riil) Bilangan Khayal (Imajiner) Bilangan Rasional Bilangan Irrasional Bilangan Pecahan Bilangan Bulat Bilangan Bulat

Lebih terperinci

DIKTAT KALKULUS DASAR

DIKTAT KALKULUS DASAR DIKTAT KALKULUS DASAR Disusun oleh: Dwi Lestari, M.Sc Rosita Kusumawati, M.Sc Nikenasih Binatari, M.Si email: dwilestari@uny.ac.id JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

Lebih terperinci

19, 2. didefinisikan sebagai bilangan yang dapat ditulis dengan b

19, 2. didefinisikan sebagai bilangan yang dapat ditulis dengan b PENDAHULUAN. Sistem Bilangan Real Untuk mempelajari kalkulus perlu memaami baasan tentang system bilangan real karena kalkulus didasarkan pada system bilangan real dan sifatsifatnya. Sistem bilangan yang

Lebih terperinci