Institut Manajemen Telkom

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Institut Manajemen Telkom"

Transkripsi

1 Institut Manajemen Telkom

2 Osa Omar Sharif

3 JENIS JENIS FUNGSI1

4 JENIS JENIS FUNGSI 2 Jenis Fungsi Gambar 1. FUNGSI POLINOM mengandung banyak suku (polinom) dalam variabel bebas y = a 0 + a 1 x + a 2 x a n x n 2. FUNGSI LINEAR Pangkat tertinggi dari variabelnya adalah pangkat satu y = a 0 + a 1 x, a 0 = konstanta ; a 1 0

5 JENIS JENIS FUNGSI 3 Jenis Fungsi Gambar 3. FUNGSI KUADRAT Disebut fungsi berderajat dua y = a 0 + a 1 x + a 2 x 2, a 0 = konstanta, a1 dan a 2 = koefisien, a FUNGSI KUBIK y = a 0 + a 1 x + a 2 x a 2 x 3

6 JENIS JENIS FUNGSI 4 Jenis Fungsi Gambar 5. FUNGSI EKSPONENSIAL Variabel bebasnya merupakan pangkat dari suatu konstanta bukan nol y = n x, n > 0 6. FUNGSI LOGARITMIK Kebalikan eksponensial, variabel bebasnya merupakan bilangan logaritmik y = n log x 7. FUNGSI TRIGONOMETRIK DAN HIPERBOLIK Variabel bebasnya merupakan bilangan bilangan goneometrik. Contoh persamaan hiperbolik : y = arc cos 2 x

7 Tujuan Matematika Ekonomi Matematikawan Matematika sebagai tools dalam mengambil keputusan bisnis

8 LATIHAN Dumairy: hal. 40 (no. 1, 2); hal. 89 (no. 1, 3, 4, 5, 7) Kalangi, Josep Bintang: hal. 21 (no. 6, 7, 8, 9, 10, 11); hal. 50 (no. 1)

9 Fungsi Matematika (1) Model matematika dalam masalah Ekonomi dan Bisnis Fungsi adalah hubungan antara variabel tidak bebas (dependent variable) dan variabel bebas (independent variable) Contoh : Variabel harga dan jumlah Variabel konsumsi dan pendapatan

10 Fungsi Matematika (2) Notasi fungsi: Misal y variabel tidak bebas dan x variabel bebas Setiap nilai y tergantung dari besarnya nilai x yang ditetapkan Definisi fungsi: setiap nilai x tertentu memiliki hubungan dengan satu dan hanya satu nilai y Hubungan fungsional tersebut ditulis, y=f(x) Jenis fungsi: Fungsi dengan satu variabel bebas, y=f(x)=a 0 +a 1 x Fungsi dengan dua atau lebih variabel bebas, y=f(x 1,x 2,...,x n )=a 1 x a n x n

11

12 Fungsi Linier Permasalahan dalam Ekonomi dan Bisnis sering kali disederhanakan menjadi model-model yang bersifat linier Secara umum, fungsi linier ditulis dalam bentuk Ax + By + C = 0 Contoh: 5x + 3y -12 = 0 x + y 6 = 0 5x - 0.5y +2 = 0

13 Gradient dan Intercept Ax + By + C = 0 By = -Ax + -C y = (-A/B)x + (-C/B) y = ax + b a = -A/B adalah gradient / slope / kemiringan b = -C/B adalah intercept atau titik potong dengan sumbu y y=0 adalah absis atau titik potong dengan sumbu x Contoh soal: 5x + 3y -12 = 0

14 Soal Latihan 1 Tentukan gradient dan titik potong dari fungsi linier di bawah ini: a. x + y 6 = 0 b. 5x - 0.5y +2 = 0 c. -3x + 2y +8 = 0 d. x + y 10 = 0 e. 4x - 3y -25 = 0

15 Grafik Fungsi Linier A. Langkah menggambar grafik fungsi linier 1. Model fungsi linier 2. Titik potong dengan sumbu x dan y B. Tipe soal: a) Menggambar grafik fungsi jika diketahui dua buah titik, yaitu (x1, y1) dan (x2, y2). b) Menggambar grafik fungsi jika diketahui satu buah titik, yaitu (x1, y1), dan kemiringan m.

16 Fungsi Linear (2) Rumus persamaan garis linear yang melalui 2 titik y y 2 y 1 y 1 Tentukan persamaan garis yang melalui titik (2,5) dan (4,9). x x 2 x 1 x 1 16

17 Fungsi Linear (3) Rumus persamaan garis linear yang diketahui slope atau kemiringannya y y 1 x b( x 1) Tentukan persamaan garis yang melalui titik (2,3) dan kemiringannya 0,5. 17

18 Contoh Soal Grafik Fungsi Linier a) Jika diketahui A(3,7) dan B(12,6), maka tentukan persamaan garis dan grafik fungsi liniernya! b) Jika diketahui m=2/3 dan titik koordinat A(5,6), maka tentukan bentuk persamaan garis dan grafik fungsinya!

19 Soal Latihan 2 1. Diketahui titik-titik koordinat seperti berikut: a. A(3,4) dan B(-3,-4) b. A(12,4) dan B(-5,7) c. A(1/2,-3/4) dan B(-3,-5) d. A(4,3) dan B(-3,2) Tentukan persamaan garis, gradien, dan grafik fungsinya! 2. Jika diketahui a. m=1/2 dan titik A(3,-4) b. m=-2/3 dan titik A(2,5) c. m=-2/3 dan titik A(-6,-2) Tentukan persamaan garis dan grafik fungsinya!

20

21 Bentuk Umum Bentuk umum fungsi kuadrat dimana variabel bergantung variabel bebas konstanta (a 0)

22 Grafik Fungsi (2) Titik potong dengan sumbu y pada saat x=0 Nilai diskriminan Koordinat titik puncak Titik potong dengan sumbu x

23 Catatan Nilai parameter a Jika a positif maka kurva terbuka ke atas Jika a negatif maka kurva terbuka ke bawah Nilai diskriminan D D>0 memotong sumbu x pada dua titik D=0 menyinggung sumbu x D<0 tidak dapat digambar pada garis bilangan real

24 Contoh Soal Misal Tentukan koordinat titik puncak dan grafik fungsi tsb!

25 Soal Latihan 3 Tentukan koordinat titik potong dan grafik fungsi berikut:

26 KUIS 1 Waktunya 15 menit!

27 Kuis 1 1. Tentukan gradient, intercept, dan absis dari fungsi linier 3x - 0.3y +1 = 0 2. Tentukan persamaan garis dan grafik fungsinya jika diketahui m=1/3 dan titik A(-3,2)! 3. Tentukan intercept, absis, titik puncak, dan grafik dari y=4x 2 +5x-6!

JENIS JENIS FUNGSI 2. Gambar. Jenis Fungsi. mengandung banyak suku (polinom) dalam variabel bebas y = a 0 + a 1 x + a 2 x a n x n

JENIS JENIS FUNGSI 2. Gambar. Jenis Fungsi. mengandung banyak suku (polinom) dalam variabel bebas y = a 0 + a 1 x + a 2 x a n x n Telkom University Alamanda JENIS JENIS FUNGSI1 JENIS JENIS FUNGSI 2 Jenis Fungsi Gambar 1. FUNGSI POLINOM mengandung banyak suku (polinom) dalam variabel bebas y = a 0 + a 1 x + a 2 x 2 + + a n x n 2.

Lebih terperinci

Matematik Ekonom Fungsi nonlinear

Matematik Ekonom Fungsi nonlinear 1 FUNGSI Fungsi adalah hubungan antara 2 buah variabel atau lebih, dimana masing-masing dari dua variabel atau lebih tersebut saling pengaruh mempengaruhi. Variabel merupakan suatu besaran yang sifatnya

Lebih terperinci

MATEMATIKA EKONOMI Program Studi Agribisnis

MATEMATIKA EKONOMI Program Studi Agribisnis MATEMATIKA EKONOMI Program Studi Agribisnis Dosen Pengampu: Prof. Dr. H. Almasdi Syahza, SE., MP. Email : asyahza@yahoo.co.id Website: http://almasdi.unri.ac.id HUBUNGAN FUNGSIONAL Pengertian dan unsur-unsur

Lebih terperinci

F U N G S I A. PENGERTIAN DAN UNSUR-UNSUR FUNGSI

F U N G S I A. PENGERTIAN DAN UNSUR-UNSUR FUNGSI F U N G S I A. PENGERTIAN DAN UNSUR-UNSUR FUNGSI Fungsi Fungsi ialah suatu bentuk hubungan matematis yang menyatakan hubungan ketergantungan (hubungan fungsional) antara satu variabel dengan variabel lain.

Lebih terperinci

PTE 4109, Agribisnis UB

PTE 4109, Agribisnis UB MATEMATIKA EKONOMI PTE 4109, Agribisnis UB 1 Materi ang dipelajari Pengertian dan Unsur- unsur Fungsi Jenis- jenis fungsi Penggambaran fungsi Linear Penggambaran fungsi non linear -Penggal -Simetri - Perpanjangan

Lebih terperinci

PENGERTIAN FUNGSI JENIS-JENIS FUNGSI PENGGAMBARAN GRAFIK FUNGSI

PENGERTIAN FUNGSI JENIS-JENIS FUNGSI PENGGAMBARAN GRAFIK FUNGSI FUNGSI PENGERTIAN FUNGSI JENIS-JENIS FUNGSI PENGGAMBARAN GRAFIK FUNGSI PENGERTIAN FUNGSI Sebuah fungsi f dari himpunan A ke himpunan B adalah suatu aturan yang memasangkan setiap X anggota A dengan tepat

Lebih terperinci

PERTEMUAN 2-3 FUNGSI LINIER

PERTEMUAN 2-3 FUNGSI LINIER PERTEMUAN 2-3 FUNGSI LINIER Fungsi Fungsi ialah suatu bentuk hubungan matematis yang menyatakan hubungan ketergantungan (hubungan fungsional) antara satu variabel dengan variabel lainnya. Unsur-unsur pembentuk

Lebih terperinci

Dosen Pengampu: Prof. Dr. H. Almasdi Syahza, SE., MP. Website : HUBUNGAN NONLINEAR

Dosen Pengampu: Prof. Dr. H. Almasdi Syahza, SE., MP.   Website :  HUBUNGAN NONLINEAR Dosen Pengampu: Prof. Dr. H. Almasdi Syahza, SE., MP. Email : asyahza@yahoo.co.id Website : http://almasdi.unri,ac,id HUBUNGAN NONLINEAR a. Fungsi Kuadrat b. Fungsi Kubik c. Penerapan Ekonomi Permintaan,

Lebih terperinci

5 F U N G S I. 1 Matematika Ekonomi

5 F U N G S I. 1 Matematika Ekonomi 5 F U N G S I Pemahaman tentang konsep fungsi sangat penting dalam mempelajari ilmu ekonomi, mengingat kajian ekonomi banyak bekerja dengan fungsi. Fungsi dalam matematika menyatakan suatu hubungan formal

Lebih terperinci

APA ITU FUNGSI? x f : x y atau y=f(x) f : x y y=f(x) y=f(x)=x 2. Imajinasi : bermain golf

APA ITU FUNGSI? x f : x y atau y=f(x) f : x y y=f(x) y=f(x)=x 2. Imajinasi : bermain golf FUNGSI TEP FTP UB APA ITU FUNGSI? Imajinasi : bermain golf x f f : x y atau y=f(x) y Sebuah fungsi adalah transformasi dari input x pada output y = f(x). f : x y y=f(x) y=f(x)=x 2 Fungsi adalah hubungan

Lebih terperinci

FUNGSI. A. Relasi dan Fungsi Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii)

FUNGSI. A. Relasi dan Fungsi Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) FUNGSI A. Relasi dan Fungsi Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) Relasi himpunan A ke himpunan B adalah relasi yang memasangkan/mengkawankan/mengkorepodensikan

Lebih terperinci

Fungsi Linier & Grafik Fungsi Aplikasi dalam Ekonomi

Fungsi Linier & Grafik Fungsi Aplikasi dalam Ekonomi Fungsi Linier & Grafik Fungsi Aplikasi dalam Ekonomi Diskripsi materi: -Bentuk umum dari fungsi linier dan menggambarkan grafik fungsi linier -Menentukan koefisien arah/ Kemiringan -Cara-cara pembentukan

Lebih terperinci

FUNGSI DAN PERSAMAAN LINEAR. EvanRamdan

FUNGSI DAN PERSAMAAN LINEAR. EvanRamdan FUNGSI DAN PERSAMAAN LINEAR TEORI FUNGSI Fungsi yaitu hubungan matematis antara suatu variabel dengan variabel lainnya. Unsur-unsur pembentukan fungsi yaitu variabel (terikat dan bebas), koefisien dan

Lebih terperinci

fungsi Dan Grafik fungsi

fungsi Dan Grafik fungsi fungsi Dan Grafik fungsi Suatu fungsi adalah pemadanan dua himpunan tidak kosong dengan pasangan terurut (x, y) dimana tidak terdapat elemen kedua yang berbeda. Fungsi (pemetaan) himpunan A ke himpunan

Lebih terperinci

FUNGSI. Matematika Dasar 9/18/2013. TEP-FTP-UB MatDas_Meet 2 APA ITU FUNGSI? DOMAIN, KODOMAIN, RANGE. x f : x y / y=f(x) f : x y y=f(x) y=f(x)=x 2

FUNGSI. Matematika Dasar 9/18/2013. TEP-FTP-UB MatDas_Meet 2 APA ITU FUNGSI? DOMAIN, KODOMAIN, RANGE. x f : x y / y=f(x) f : x y y=f(x) y=f(x)=x 2 APA ITU FUNGSI? FUNGSI Imajinasi : bermain golf f f : / =f() TEP FTP UB Sebuah fungsi adalah transformasi dari input pada output = f(). f : =f() =f()= DOMAIN, KODOMAIN, RANGE Fungsi adalah hubungan antara

Lebih terperinci

6 FUNGSI LINEAR DAN FUNGSI

6 FUNGSI LINEAR DAN FUNGSI 6 FUNGSI LINEAR DAN FUNGSI KUADRAT 5.1. Fungsi Linear Pada Bab 5 telah dijelaskan bahwa fungsi linear merupakan fungsi yang variabel bebasnya paling tinggi berpangkat satu. Bentuk umum fungsi linear adalah

Lebih terperinci

Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f.

Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f. Pertemuan ke 8 GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(,y): y = f(), D f } disebut grafik fungsi f. Grafik metode yang paling umum untuk menyatakan hubungan antara dua himpunan yaitu dengan menggunakan

Lebih terperinci

Jenis Jenis--jenis jenis fungsi dan fungsi linier Hafidh Munawir

Jenis Jenis--jenis jenis fungsi dan fungsi linier Hafidh Munawir Jenis-jenis fungsi dan fungsi linier Hafidh Munawir Diskripsi Mata Kuliah Memperkenalkan unsur-unsur fungsi ialah variabel bebas dan variabel terikat, koefisien, dan konstanta, yang saling berkaitan satu

Lebih terperinci

MBS - DTA. Sucipto UNTUK KALANGAN SENDIRI. SMK Muhammadiyah 3 Singosari

MBS - DTA. Sucipto UNTUK KALANGAN SENDIRI. SMK Muhammadiyah 3 Singosari MBS - DTA Sucipto UNTUK KALANGAN SENDIRI SMK Muhammadiyah Singosari SERI : MBS-DTA FUNGSI STANDAR KOMPETENSI Siswa mampu memecahkan masalah yang berkaitan dengan fungsi, persamaan fungsi linear dan fungsi

Lebih terperinci

4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN

4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN 4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN 4.1 Persamaan Garis a. Bentuk umum persamaan garis Garis lurus yang biasa disebut garis merupakan kurva yang paling sederhana dari semua kurva. Misalnya titik A(2,1)

Lebih terperinci

Matematika Ekonomi KUADRAT DAN FUNGSI RASIONAL (FUNGSI PECAH) GRAFIK FUNGSI KUADRAT BERUPA PARABOLA GRAFIK FUNGSI RASIONAL BERUPA HIPERBOLA

Matematika Ekonomi KUADRAT DAN FUNGSI RASIONAL (FUNGSI PECAH) GRAFIK FUNGSI KUADRAT BERUPA PARABOLA GRAFIK FUNGSI RASIONAL BERUPA HIPERBOLA Fungsi Non Linier Diskripsi materi: -Harga ekstrim pada fungsi kuadrat 1 Fungsi non linier FUNGSI LINIER DAPT BERUPA FUNGSI KUADRAT DAN FUNGSI RASIONAL (FUNGSI PECAH) GRAFIK FUNGSI KUADRAT BERUPA PARABOLA

Lebih terperinci

Modul Matematika MINGGU 4. g. Titik Potong fungsi linier

Modul Matematika MINGGU 4. g. Titik Potong fungsi linier MINGGU 4 Pokok Bahasan Sub Pokok Bahasan Tujuan Instruksional Umum : Hubungan dan : 1. Hubungan 2. a. Pengertian fungsi b. Jenis-jenis fungsi c. Diagram fungsi d. Pengertian fungsi linier e. Penggambaran

Lebih terperinci

MATEMATIKA EKONOMI ( FUNGSI LINIER, GRAFIK FUNGSI DAN SISTEM PERSAMAAN LINIER )

MATEMATIKA EKONOMI ( FUNGSI LINIER, GRAFIK FUNGSI DAN SISTEM PERSAMAAN LINIER ) MATEMATIKA EKONOMI ( FUNGSI LINIER, GRAFIK FUNGSI DAN SISTEM PERSAMAAN LINIER ) KELOMPOK 2 1. UMAR ATTAMIMI (01212043) 2. SITI WASI ATUL MUFIDA (01212096) 3. DEVI PRATNYA. P. (01212078) 4. POPPY MERLIANA

Lebih terperinci

MATERI PRASYARAT. ke y= f(x) =ax2 + bx +c

MATERI PRASYARAT. ke y= f(x) =ax2 + bx +c 1 MATERI PRASYARAT A. Fungsi Kuadrat Bentuk umum : y= f(x) = ax 2 + bx +c dengan a 0. Langkah-langkah dalam menggambar grafik fungsi kuadrat y= f(x) = ax 2 + bx +c 1. Tentukan titik potong dengan sumbu

Lebih terperinci

Modul Matematika 2012

Modul Matematika 2012 Modul Matematika MINGGU V Pokok Bahasan : Fungsi Non Linier Sub Pokok Bahasan :. Pendahuluan. Fungsi kuadrat 3. Fungsi pangkat tiga. Fungsi Rasional 5. Lingkaran 6. Ellips Tujuan Instruksional Umum : Agar

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam kehidupan sehari-hari tidak terlepas dari data, baik itu bersifat kuantitatif maupun kualitatif. Apabila dikumpulkan data dari seluruh elemen dalam suatu populasi,

Lebih terperinci

III. FUNGSI POLINOMIAL

III. FUNGSI POLINOMIAL III. FUNGSI POLINOMIAL 3. Pendahuluan A. Tujuan Setelah mempelajari bagian ini diharapkan mahasiswa dapat:. menuliskan bentuk umum fungsi polinomial;. menghitung nilai fungsi polinomial; 3. menuliskan

Lebih terperinci

Materi Fungsi Linear Fungsi Variabel, koefisien, dan konstanta Variabel variabel bebas Koefisien Konstanta 1). Pengertian fungsi linier

Materi Fungsi Linear Fungsi Variabel, koefisien, dan konstanta Variabel variabel bebas Koefisien Konstanta 1). Pengertian fungsi linier Materi Fungsi Linear Admin 8:32:00 PM Duhh akhirnya nongol lagi... kali ini saya akan bahas mengenai pelajaran yang paling disukai oleh hampir seluruh warga dunia :v... MATEMATIKA, ya itu namanya. materi

Lebih terperinci

y

y Menyelesaikan Persamaan Kuadrat dengan Grafik Menyesaikan persamaan ax 2 +bx+c=0. Berarti menentukan nilai-nilai x bila f(x) = 0, dimana f(x) = ax 2 +bx+c. apabila grafik fungsi f(x) telah dilukis, maka

Lebih terperinci

FUNGSI. Berdasarkan hubungan antara variabel bebas dan terikat, fungsi dibedakan dua: fungsi eksplisit dan fungsi implisit.

FUNGSI. Berdasarkan hubungan antara variabel bebas dan terikat, fungsi dibedakan dua: fungsi eksplisit dan fungsi implisit. FUNGSI Fungsi merupakan hubungan antara dua variabel atau lebih. Variabel dibedakan :. Variabel bebas yaitu variabel yang besarannya dpt ditentukan sembarang, mis:,, 6, 0 dll.. Variabel terikat yaitu variabel

Lebih terperinci

sama dengan p q. Perhatikan tabel berikut. p q B B S S B S S B S S B B S S S B B S B S S S S B B S B B

sama dengan p q. Perhatikan tabel berikut. p q B B S S B S S B S S B B S S S B B S B S S S S B B S B B Soal nomor 1, dengan soal sebagai berikut: Jawab : D Pernyataan majemuk pada soal ini adalah suatu disjungsi. Misalkan p: Petani panen beras. q: Harga beras murah., pernyataan di atas dapat dinotasikan

Lebih terperinci

TEOREMA SISA 1. Nilai Sukubanyak Tugas 1

TEOREMA SISA 1. Nilai Sukubanyak Tugas 1 TEOREMA SISA 1. Nilai Sukubanyak Apa yang dimaksud sukubanyak (polinom)? Ingat kembali bentuk linear seperti 2x + 1 atau bentuk kuadrat 2x 2-3x + 5 dan juga bentuk pangkat tiga 2x 3 x 2 + x 7. Bentuk-bentuk

Lebih terperinci

BAB 5 TEOREMA SISA. Menggunakan aturan sukubanyak dalam penyelesaian masalah. Kompetensi Dasar

BAB 5 TEOREMA SISA. Menggunakan aturan sukubanyak dalam penyelesaian masalah. Kompetensi Dasar Standar Kompetensi BAB 5 TEOREMA SISA Menggunakan aturan sukubanyak dalam penyelesaian masalah. Kompetensi Dasar Menggunakan algoritma pembagian sukubanyak untuk menentukan hasil bagi dan sisa pembagian

Lebih terperinci

(2) Titik potong kurva dengan sumbu y, bila x = 0, diperoleh x = 0 y = mx + n y = m(0) + n y = n Jadi, titik potongnya dengan sumbu y, adalah (0, n) y

(2) Titik potong kurva dengan sumbu y, bila x = 0, diperoleh x = 0 y = mx + n y = m(0) + n y = n Jadi, titik potongnya dengan sumbu y, adalah (0, n) y BAB 3 FUNGSI LINIER DAN PERSAMAAN GARIS LURUS 3.1 Pengantar Fungsi linier adalah bentuk fungsi yang paling sederhana. Banyak hubungan antara variable ekonomi, dalam jangka pendek dianggap linier. Pengetahuan

Lebih terperinci

MATEMATIKA DASAR TAHUN 1987

MATEMATIKA DASAR TAHUN 1987 MATEMATIKA DASAR TAHUN 987 MD-87-0 Garis singgung pada kurva y di titik potong nya dengan sumbu yang absisnya positif mempunyai gradien 0 MD-87-0 Titik potong garis y + dengan parabola y + ialah P (5,

Lebih terperinci

KURVA DAN PENCOCOKAN KURVA. Matematika Industri 1 TIP FTP UB

KURVA DAN PENCOCOKAN KURVA. Matematika Industri 1 TIP FTP UB KURVA DAN PENCOCOKAN KURVA TIP FTP UB Pokok Bahasan Pendahuluan Kurva-kurva standar Asimtot Penggambaran kurva secara sistematis, jika persamaan kurvanya diketahui Pencocokan kurva Metode kuadrat terkecil

Lebih terperinci

UJIAN SARINGAN MASUK PERGURUAN TINGGI NEGERI MATEMATIKA DASAR FUNGSI KUADRAT. A. 1 B. 2 C. 3 D. 5 E. 7 Solusi: [D]

UJIAN SARINGAN MASUK PERGURUAN TINGGI NEGERI MATEMATIKA DASAR FUNGSI KUADRAT. A. 1 B. 2 C. 3 D. 5 E. 7 Solusi: [D] UJIAN SARINGAN MASUK PERGURUAN TINGGI NEGERI MATEMATIKA DASAR FUNGSI KUADRAT. SBMPTN MADAS 4 Jika fungsi f x a x x c menyinggung sumbu x di x, maka a A. B. C. D. 5 E. 7 Solusi: [D] 6 f x a x x c f ' x

Lebih terperinci

Fungsi Linear dan Fungsi Kuadrat

Fungsi Linear dan Fungsi Kuadrat Modul 1 Fungsi Linear dan Fungsi Kuadrat Drs. Susiswo, M.Si. K PENDAHULUAN ompetensi umum yang diharapkan, setelah mempelajari modul ini, adalah Anda dapat memahami konsep tentang persamaan linear dan

Lebih terperinci

PERSAMAAN GARIS LURUS

PERSAMAAN GARIS LURUS PERSAMAAN GARIS LURUS A. Menggambar grafik garis lurus Langkah langkah mengambar grafik persamaan garis lurus sama dengan langkahlangkah membuat grafik pada sistim koordinat. Gambarlah grafik persamaan

Lebih terperinci

MATEMATIKA BISNIS FUNGSI LINIER

MATEMATIKA BISNIS FUNGSI LINIER MODUL MATEMATIKA BISNIS 2 FUNGSI LINIER Definisi Fungsi linier adalah fungsi paling sederhana karena hanya mempunyai satu variabel bebas dan berpangkat satu pada variabel tersebut, atau dengan kata lain

Lebih terperinci

Matematika Dasar NILAI EKSTRIM

Matematika Dasar NILAI EKSTRIM NILAI EKSTRIM Misal diberikan kurva f( ) dan titik ( a,b ) merupakan titik puncak ( titik maksimum atau minimum ). Maka garis singgung kurva di titik ( a,b ) akan sejajar sumbu X atau [ ] mempunyai gradien

Lebih terperinci

Minggu 11. MA2151 Simulasi dan Komputasi Matematika

Minggu 11. MA2151 Simulasi dan Komputasi Matematika Minggu 11 MA2151 Simulasi dan Komputasi Matematika Model Berdasarkan Data Model Berdasarkan Data Kadangkala kita dituntut untuk membangun suatu model berdasarkan data (yang terbatas). Untuk melakukan ini,

Lebih terperinci

BAB 2 LANDASAN TEORI. Metode peramalan adalah suatu cara memperkirakan atau memprediksikan apa yang

BAB 2 LANDASAN TEORI. Metode peramalan adalah suatu cara memperkirakan atau memprediksikan apa yang BAB 2 LANDASAN TEORI 2.1 Pengertian Metode Peramalan Metode peramalan adalah suatu cara memperkirakan atau memprediksikan apa yang akan terjadi pada masa depan berdasarkan data yang relevan pada masa lampau.

Lebih terperinci

Fungsi kuadrat. Hafidh munawir

Fungsi kuadrat. Hafidh munawir Fungsi kuadrat Hafidh munawir Bentuk Umum Persamaan Kuadrat Bentuk umum atau Bentuk Baku persamaan kuadrat adalah: a + b + c = Dengan a,b,c R dan a serta adalah peubah (variabel) a merupakan koefisien

Lebih terperinci

MATEMATIKA EKONOMI 1 FUNGSI DAN GRAFIK. DOSEN Fitri Yulianti, SP, MSi.

MATEMATIKA EKONOMI 1 FUNGSI DAN GRAFIK. DOSEN Fitri Yulianti, SP, MSi. MATEMATIKA EKONOMI 1 FUNGSI DAN GRAFIK DOSEN Fitri Yulianti, SP, MSi. Fungsi Fungsi merupakan hubungan antara dua variabel atau lebih. Variabel dibedakan : 1. Variabel bebas yaitu variabel yang besarannya

Lebih terperinci

Hand out_x_fungsi kuadrat

Hand out_x_fungsi kuadrat STANDAR KOMPETENSI: Memecahkan masalah yang berkaitan dengan fungsi, persamaan dan fungsi kuadrat serta pertidaksamaan kuadrat. KOMPETENSI DASAR: Menggambar grafik fungsi aljabar sederhana dan fungsi kuadrat

Lebih terperinci

PERSAMAAN GARIS BAHAN BELAJAR MANDIRI 4

PERSAMAAN GARIS BAHAN BELAJAR MANDIRI 4 BAHAN BELAJAR MANDIRI 4 PERSAMAAN GARIS PENDAHULUAN Secara umum bahan belajar mandiri ini menjelaskan tentang konsep garis, dan persamaan garis lurus yang dinyatakan ke dalam bentuk implisit maupun bentuk

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 10 BAB 2 LANDASAN TEORI 2.1 Analisa Regresi Regresi pertama kali dipergunakan sebagai konsep statistik pada tahun 1877 oleh Sir Francis Galton. Galton melakukan studi tentang kecenderungan tinggi badan

Lebih terperinci

MAKALAH FUNGSI KUADRAT GRAFIK FUNGSI,&SISTEM PERSAMAAN KUADRAT

MAKALAH FUNGSI KUADRAT GRAFIK FUNGSI,&SISTEM PERSAMAAN KUADRAT MAKALAH FUNGSI KUADRAT GRAFIK FUNGSI,&SISTEM PERSAMAAN KUADRAT Kelompok 3 : 1.Suci rachmawati (ekonomi akuntansi) 2.Fitri rachmad (ekonomi akuntansi) 3.Elif (ekonomi akuntansi) 4.Dewi shanty (ekonomi management)

Lebih terperinci

PERSAMAAN DAN FUNGSI KUADRAT

PERSAMAAN DAN FUNGSI KUADRAT Materi W2e PERSAMAAN DAN FUNGSI KUADRAT Kelas X, Semester 1 E. Grafik Fungsi Kuadrat www.yudarwi.com E. Grafik Fungsi Kuadrat Grafik fungsi kuadrat f(x) = ax 2 + bx + c dapat dilukis dengan langkah-langkah

Lebih terperinci

β α α β SOAL MATEMATIKA UNTUK SMA istiyanto.com Mari Berbagi Ilmu Dengan Yang Lain A. Persamaan Kuadrat dan Fungsi Kuadrat

β α α β SOAL MATEMATIKA UNTUK SMA istiyanto.com Mari Berbagi Ilmu Dengan Yang Lain A. Persamaan Kuadrat dan Fungsi Kuadrat A. Persamaan Kuadrat dan Fungsi Kuadrat 1. Salah satu akar persamaan kuadrat ( a 1) x + (3a 1) x 3a = 0 adalah 1, maka akar lainnya adalah.... Nilai m yang memenuhi agar persamaan kuadrat ( m + 1) x +

Lebih terperinci

Letak Sebuah Titik :

Letak Sebuah Titik : BAB V FUNGSI Letak Sebuah Titik : Y+ Kuadran II Kuadran I X+ Kuadran III Kuadran IV Fungsi ialah : Suatu bentuk hubungan matematis yg menyatakan hub. Ketergantungan/ fungsional antara satu variabel dengan

Lebih terperinci

Matematika Semester IV

Matematika Semester IV F U N G S I KOMPETENSI DASAR Mendeskripsikan perbedaan konsep relasi dan fungsi Menerapkan konsep fungsi linear Menggambar fungsi kuadrat Menerapkan konsep fungsi kuadrat Menerapkan konsep fungsi trigonometri

Lebih terperinci

MATEMATIKA BISNIS I. M Riza Radyanto, S.T, M.T. Akademi Keuangan dan Perbankan Widya Buana

MATEMATIKA BISNIS I. M Riza Radyanto, S.T, M.T. Akademi Keuangan dan Perbankan Widya Buana MATEMATIKA BISNIS I M Riza Radyanto, S.T, M.T Akademi Keuangan dan Perbankan Widya Buana 2013 BAB I FUNGSI Pengetahuan dan pemahaman akan konsep fungsi baik berbentuk persamaan maupun pertidaksamaan dalam

Lebih terperinci

SISTEM BILANGAN RIIL DAN FUNGSI

SISTEM BILANGAN RIIL DAN FUNGSI SISTEM BILANGAN RIIL DAN FUNGSI Matematika Juni 2016 Dosen : Dadang Amir Hamzah MATEMATIKA Juni 2016 1 / 67 Outline 1 Sistem Bilangan Riil Dosen : Dadang Amir Hamzah MATEMATIKA Juni 2016 2 / 67 Outline

Lebih terperinci

PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT

PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT LA - WB (Lembar Aktivitas Warga Belajar) PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X Created By Ita Yuliana

Lebih terperinci

A. DEFINISI DAN BENTUK UMUM SISTEM PERSAMAAN LINEAR KUADRAT

A. DEFINISI DAN BENTUK UMUM SISTEM PERSAMAAN LINEAR KUADRAT K-13 Kelas X matematika PEMINATAN SISTEM PERSAMAAN LINEAR KUADRAT TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi dan bentuk umum sistem

Lebih terperinci

PERSAMAAN & SISTEM PERSAMAAN LINEAR

PERSAMAAN & SISTEM PERSAMAAN LINEAR PERSAMAAN & SISTEM PERSAMAAN LINEAR Persamaan Sistem Persamaan Linear DEFINISI PERSAMAAN Persamaan adalah kalimat matematika terbuka yang memuat hubungan sama dengan. Sedangkan kalimat matematika tertutup

Lebih terperinci

Matematika Bisnis (Pengaruh Subsidi terhadap Keseimbangan Pasar)

Matematika Bisnis (Pengaruh Subsidi terhadap Keseimbangan Pasar) Company LOGO Matematika Bisnis (Pengaruh Subsidi terhadap Keseimbangan Pasar) Dosen Febriyanto, SE., MM. www.febriyanto79.wordpress.com Fungsi Company name Pemahaman akan konsep fungsi sangat penting dalam

Lebih terperinci

MODUL 8 FUNGSI LINGKARAN & ELLIPS

MODUL 8 FUNGSI LINGKARAN & ELLIPS MODUL 8 FUNGSI LINGKARAN & ELLIPS 8.1. LINGKARAN A. PERSAMAAN LINGKARAN DENGAN PUSAT PADA TITIK ASAL DAN JARI-JARI R Persamaan lingkaran dengan pusat (0,0) dan jari jari R adalah : x 2 + y 2 = R 2 B. PERSAMAAN

Lebih terperinci

Pengertian Persamaan Garis Lurus 1. Koordinat Cartesius a. Menggambar Titik pada Koordinat Cartesius b. Menggambar Garis pada Koordinat Cartesius

Pengertian Persamaan Garis Lurus 1. Koordinat Cartesius a. Menggambar Titik pada Koordinat Cartesius b. Menggambar Garis pada Koordinat Cartesius Pengertian Persamaan Garis Lurus Sebelum memahami pengertian persamaan garis lurus, ada baiknya kamu mengingat kembali materi tentang koordinat Cartesius persamaan garis lurus selalu digambarkan dalam

Lebih terperinci

(A) 3 (B) 5 (B) 1 (C) 8

(A) 3 (B) 5 (B) 1 (C) 8 . Turunan dari f ( ) = + + (E) 7 + +. Turunan dari y = ( ) ( + ) ( ) ( + ) ( ) ( + ) ( + ) ( + ) ( ) ( + ) (E) ( ) ( + ) 7 5 (E) 9 5 9 7 0. Jika f ( ) = maka f () = 8 (E) 8. Jika f () = 5 maka f (0) +

Lebih terperinci

Pembahasan Matematika IPA SIMAK UI 2009

Pembahasan Matematika IPA SIMAK UI 2009 Pembahasan Matematika IPA SIMAK UI 2009 Kode 924 Oleh Kak Mufidah 1. Diketahui fungsi. Agar fungsi tersebut senantiasa berada di bawah sumbu x, maka nilai m yang mungkin adalah Agar fungsi tersebut senantiasa

Lebih terperinci

MATEMATIKA EKONOMI DAN BISNIS. Nuryanto.ST.,MT

MATEMATIKA EKONOMI DAN BISNIS. Nuryanto.ST.,MT MATEMATIKA EKONOMI DAN BISNIS Fungsi Non Linear Fungsi non-linier merupakan bagian yang penting dalam matematika untuk ekonomi, karena pada umumnya fungsi-fungsi yang menghubungkan variabel-variabel ekonomi

Lebih terperinci

Persamaan Garis singgung Melalui titik (x 1, y 1 ) diluar lingkaran. Pusat Lingkaran (a, b) Persamaan Garis singgung. Jari Jari r.

Persamaan Garis singgung Melalui titik (x 1, y 1 ) diluar lingkaran. Pusat Lingkaran (a, b) Persamaan Garis singgung. Jari Jari r. PERSAMAAN LINGKARAN Pusat Lingkaran (0, 0) Melalui titik (x, y ) pada lingkaran Jika diketahui gradient m xx y mx r yy r m x y r Persamaan Garis singgung Melalui titik (x, y ) diluar lingkaran Jari Jari

Lebih terperinci

TURUNAN FUNGSI. dy (y atau f (x) atau ) dx. Hal-hal yang perlu diingat untuk menyelesaikan turunan fungsi aljabar adalah :

TURUNAN FUNGSI. dy (y atau f (x) atau ) dx. Hal-hal yang perlu diingat untuk menyelesaikan turunan fungsi aljabar adalah : TURUNAN FUNGSI dy (y atau f () atau ) d Hal-hal yang perlu diingat untuk menyelesaikan turunan fungsi aljabar adalah :. ( a + b) = ( a + ab + b ). ( a b) = ( a ab + b ) m n m n. a = a 4. a m = a m m m.

Lebih terperinci

FUNGSI. Sesi XI 12/4/2015

FUNGSI. Sesi XI 12/4/2015 Mata Kuliah : Matematika Rekayasa Lanjut Kode MK : TKS 8105 Pengampu : Achfas Zacoeb Sesi XI FUNGSI dan GRAFIK e-mail : zacoeb@ub.ac.id www.zacoeb.lecture.ub.ac.id Hp. 081233978339 FUNGSI Secara intuitif,

Lebih terperinci

I. PETUNJUK: Untuk soal nomor 1 sampai dengan nomor, pilihlah salah satu jawaban yang paling tepat!

I. PETUNJUK: Untuk soal nomor 1 sampai dengan nomor, pilihlah salah satu jawaban yang paling tepat! I. PETUNJUK: Untuk soal nomor sampai dengan nomor, pilihlah salah satu jawaban yang paling tepat!. Persamaan ( p + ) x ( p + ) x + ( p ) = 0, p, merupakan persamaan kuadrat dalam x untuk nilai p... p c.

Lebih terperinci

Materi Matematika Persamaan dan Pertidaksamaan kuadrat Persamaan Linear Persamaan Kuadrat Contoh : Persamaan Derajat Tinggi

Materi Matematika Persamaan dan Pertidaksamaan kuadrat Persamaan Linear Persamaan Kuadrat Contoh : Persamaan Derajat Tinggi Materi Matematika Persamaan dan Pertidaksamaan kuadrat Persamaan Linear Persamaan linear dengan n peubah adalah persamaan dengan bentuk : dengan adalah bilangan- bilangan real, dan adalah peubah. Secara

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bagian ini diberikan beberapa konsep dasar yang menjadi landasan berpikir dalam penelitian ini, seperti fungsi nonlinier, fungsi smooth, fungsi nonsmooth, turunan fungsi smooth,

Lebih terperinci

PERSAMAAN KUADRAT. Persamaan. Sistem Persamaan Linear

PERSAMAAN KUADRAT. Persamaan. Sistem Persamaan Linear Persamaan Sistem Persamaan Linear PENGERTIAN Definisi Persamaan kuadrat adalah kalimat matematika terbuka yang memuat hubungan sama dengan yang pangkat tertinggi dari variabelnya adalah 2. Bentuk umum

Lebih terperinci

PERSAMAAN GARIS LURUS

PERSAMAAN GARIS LURUS 1 KEGIATAN BELAJAR 3 PERSAMAAN GARIS LURUS Setelah mempelajari kegiatan belajar 3 ini, mahasiswa diharapkan mampu: 1. menentukan persamaan gradien garis lurus, 2. menentukan persamaan vektoris dan persamaan

Lebih terperinci

LEMBAR KEGIATAN SISWA 1 PERSAMAAN KUADRAT

LEMBAR KEGIATAN SISWA 1 PERSAMAAN KUADRAT 1 LEMBAR KEGIATAN SISWA 1 PERSAMAAN KUADRAT Masalah 1 : Pak Amat dan pak Aman masing-masing merahasiakan suatu bilangan real. Bilangan pak Aman lebih 11 daripada bilangan pak Amat. Dua kali bilangan pak

Lebih terperinci

MATEMATIKA EKONOMI FUNGSI DAN

MATEMATIKA EKONOMI FUNGSI DAN MATEMATIKA EKONOMI BAB IV FUNGSI DAN KURVA NONLINIER By Bambang Suprayitno 1 FUNGSI NONLINIER DENGAN SATU VARIABEL INDEPENDENT Fungsi nonlinier adalah fungsi yang dibentuk dari persamaan yang membentuk

Lebih terperinci

PERSAMAAN GARIS SINGGUNG PARABOLA

PERSAMAAN GARIS SINGGUNG PARABOLA 1 KEGIATAN BELAJAR 11 PERSAMAAN GARIS SINGGUNG PARABOLA Setelah mempelajari kegiatan belajar 11 ini, mahasiswa diharapkan mampu Menentukan Persamaan Garis Singgung Parabola, Titik dan Garis Polar Pada

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi pertama kali dipergunakan sebagai konsep statistik pada tahun 1877 oleh Sir francis

BAB 2 LANDASAN TEORI. Regresi pertama kali dipergunakan sebagai konsep statistik pada tahun 1877 oleh Sir francis BAB 2 LANDASAN TEORI 2.1 Analisis Regresi Regresi pertama kali dipergunakan sebagai konsep statistik pada tahun 1877 oleh Sir francis Galton. Galton melakukan studi tentang kecenderungan tinggi badan anak.

Lebih terperinci

FUNGSI DAN GRAFIK KED

FUNGSI DAN GRAFIK KED FUNGSI DAN GRAFIK 1.1 Pendahuluan Deinisi unsi adalah suatu aturan padanan yan menhubunkan tiap objek x dalam satu himpunan, yan disebut daerah asal, denan sebuah nilai unik x dari himpunan kedua. Himpunan

Lebih terperinci

Matematika Bisnis (Fungsi)

Matematika Bisnis (Fungsi) Company LOGO Matematika Bisnis (Fungsi) Dosen Febriyanto, SE., MM. Fungsi Company name Pemahaman akan konsep fungsi sangat penting dalam mempelajari disiplin ilmu ekonomi, karena telaah-telaah ekonomi

Lebih terperinci

Matematika Ekonomi (Fungsi)

Matematika Ekonomi (Fungsi) Company LOGO Matematika Ekonomi (Fungsi) Dosen Febriyanto, SE., MM. Fungsi Pemahaman akan konsep fungsi sangat penting dalam mempelajari disiplin ilmu ekonomi, karena telaah-telaah ekonomi banyak bekerja

Lebih terperinci

BAB 2 LANDASAN TEORI. disebut dengan bermacam-macam istilah: variabel penjelas, variabel

BAB 2 LANDASAN TEORI. disebut dengan bermacam-macam istilah: variabel penjelas, variabel BAB LANDASAN TEORI.1 Pengertian Regresi Regresi dalam statistika adalah salah satu metode untuk menentukan tingkat pengaruh suatu variabel terhadap variabel yang lain. Variabel yang pertama disebut dengan

Lebih terperinci

LOGO MAM 4121 KALKULUS 1. Dr. Wuryansari Muharini K.

LOGO MAM 4121 KALKULUS 1. Dr. Wuryansari Muharini K. LOGO MAM 4121 KALKULUS 1 Dr. Wuryansari Muharini K. BAB I. PENDAHULUAN SISTEM BILANGAN REAL, NOTASI SELANG, dan NILAI MUTLAK PERTAKSAMAAN SISTEM KOORDINAT GRAFIK PERSAMAAN SEDERHANA www.themegallery.com

Lebih terperinci

MODUL 2 GARIS LURUS. Mesin Antrian Bank

MODUL 2 GARIS LURUS. Mesin Antrian Bank 1 MODUL 2 GARIS LURUS Gambar 4. 4 Mesin Antrian Bank Persamaan garis lurus sangat berperan penting terhadap kemajuan teknologi sekarang ini. Bagi programmer handal, banyak aplikasi yang membutuhkan persamaan

Lebih terperinci

KELAS XI PROGRAM KEAHLIAN : BISNIS DAN MANAJEMEN & PARIWISATA SMK NEGERI 1 SURABAYA. BY : Drs. Abd. Salam, MM

KELAS XI PROGRAM KEAHLIAN : BISNIS DAN MANAJEMEN & PARIWISATA SMK NEGERI 1 SURABAYA. BY : Drs. Abd. Salam, MM KELAS XI PROGRAM KEAHLIAN : BISNIS DAN MANAJEMEN & PARIWISATA SMK NEGERI 1 SURABAYA BAHAN AJAR FUNGSI LINIER & KUADRAT SMK NEGERI 1 SURABAYA Halaman 1 BAB FUNGSI A. FUNGSI DAN RELASI Topik penting yang

Lebih terperinci

MATEMATIKA TURUNAN FUNGSI

MATEMATIKA TURUNAN FUNGSI MATEMATIKA TURUNAN FUNGSI lim h 0 f ( x h) f( x) h KELAS : XI MIA SEMESTER : (DUA) SMA Santa Angela Bandung Tahun Pelajaran 06-07 XI MIA Semester Tahun Pelajaran 06 07 PENGANTAR : TURUNAN FUNGSI Modul

Lebih terperinci

6/28/2016 al muiz

6/28/2016 al muiz 6/28/2016 al muiz 2013 1 Unsur-unsur dalam model matematis Varia bel Kons tanta Para meter Unsur model matematis 6/28/2016 al muiz 2013 2 Variabel adalah sesuatu yang besarnya dapat berubah, misalnya sesuatu

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Konsep dan Definisi Pendapatan Regional adalah tingkat (besarnya) pendapatan masyarakat pada wilayah analisis. Tingkat pendapatan dapat diukur dari total pendapatan wilayah maupun

Lebih terperinci

FUNGSI, SISTEM PERSAMAAN LINIER DAN MENGGAMBAR GRAFIK

FUNGSI, SISTEM PERSAMAAN LINIER DAN MENGGAMBAR GRAFIK FUNGSI, SISTEM PERSAMAAN LINIER DAN MENGGAMBAR GRAFIK TUGAS MATEMATIKA EKONOMI DISUSUN OLEH : DENY PRASETYA 01212074 IAN ANUGERAH 01212035 M. UMAR A 01212016 ARON GARDIKA 01212140 SAIFUL RAHMAN 01212020

Lebih terperinci

PREDIKSI UAN MATEMATIKA SESUAI KISI-KISI PEMERINTAH

PREDIKSI UAN MATEMATIKA SESUAI KISI-KISI PEMERINTAH PREDIKSI UAN MATEMATIKA SESUAI KISI-KISI PEMERINTAH. Apabila P dan q kalimat pernyataan, di mana ~p q kalimat bernilai salah, maka kalimat yang benar berikut ini, kecuali (d) p q (~p ~q) (~p ~q) ~ (~p

Lebih terperinci

SRI REDJEKI KALKULUS I

SRI REDJEKI KALKULUS I SRI REDJEKI KALKULUS I KLASIFIKASI BILANGAN RIIL n Bilangan yang paling sederhana adalah bilangan asli : n 1, 2, 3, 4, 5,. n n Bilangan asli membentuk himpunan bagian dari klas himpunan bilangan yang lebih

Lebih terperinci

BAB I. SISTEM KOORDINAT, NOTASI & FUNGSI

BAB I. SISTEM KOORDINAT, NOTASI & FUNGSI BAB I. SISTEM KRDINAT, NTASI & FUNGSI (Pertemuan ke 1 & 2) PENDAHULUAN Diskripsi singkat Pada bab ini akan dijelaskan tentang bilangan riil, sistem koordinat Cartesius, notasi-notasi ang sering digunakan

Lebih terperinci

MATEMATIKA TURUNAN FUNGSI

MATEMATIKA TURUNAN FUNGSI MATEMATIKA TURUNAN FUNGSI lim h 0 f ( x h) f( x) h KELAS : XII IIS SEMESTER GANJIL SMA Santa Angela Bandung Tahun Pelajaran 017/018 XII IIS Semester 1 Tahun Pelajaran 017/018 PENGANTAR : TURUNAN FUNGSI

Lebih terperinci

MODUL MATEMATIKA SEKOLAH

MODUL MATEMATIKA SEKOLAH 1 MODUL MATEMATIKA SEKOLAH 1 Oleh: DIDIK HERMANTO, M. Pd. STKIP PGRI BANGKALAN PRODI S1PENDIDIKAN MATEMATIKA 2014 2 BAB I PENDAHULUAN I. PENGERTIAN Matematika sekolah adalah bagian matematika yang diberikan

Lebih terperinci

PERTIDAKSAMAAN PECAHAN

PERTIDAKSAMAAN PECAHAN PERTIDAKSAMAAN PECAHAN LESSON Pada topik sebelumnya, kalian telah mempelajari topik tentang konsep pertidaksamaan dan nilai mutlak. Dalam topik ini, kalian akan belajar tentang masalah pertidaksamaan pecahan.

Lebih terperinci

BEBERAPA MACAM FUNGSI DALAM ALJABAR

BEBERAPA MACAM FUNGSI DALAM ALJABAR BEBEAA MACAM FUNGI DALAM ALJABA 1. Fungsi Komposisi Dari dua jenis fungsi f dan g kita dapat membentuk sebuah fungsi baru dengan menggunakan sistem operasi komposisi. operasi komposisi biasa dilambangkan

Lebih terperinci

BAB 2 LANDASAN TEORI. Istilah regresi pertama kali digunakan oleh Francis Galton. Dalam papernya yang

BAB 2 LANDASAN TEORI. Istilah regresi pertama kali digunakan oleh Francis Galton. Dalam papernya yang 13 BAB 2 LANDASAN TEORI 2.1 Analisis Regresi Istilah regresi pertama kali digunakan oleh Francis Galton. Dalam papernya yang terkenal Galton menemukan bahwa meskipun terdapat tendensi atau kecenderungan

Lebih terperinci

Q dx,t = ƒ (P x,t, P y,t, Y t, P e X,t+1,S t )

Q dx,t = ƒ (P x,t, P y,t, Y t, P e X,t+1,S t ) FUNGSI PERMINTAAN Q dx,t = ƒ (P x,t, P y,t, Y t, P e X,t+1,S t ) DimanaQ dx,t = Jumlah produk X yang dibeli/diminta oleh konsumsi dalam periode t. P x,t = Harga produk X dalam periode t. P y,t t = Harga

Lebih terperinci

Lingkaran adalah tempat kedudukan titik-titik pada bidang yang berjarak

Lingkaran adalah tempat kedudukan titik-titik pada bidang yang berjarak 4 Lingkaran 4.1. Persamaan Lingkaran Bentuk Baku. Lingkaran adalah tempat kedudukan titik-titik pada bidang yang berjarak tetap dari suatu titik tetap. Titik tetap dari lingkaran disebut pusat lingkaran,

Lebih terperinci

PERSAMAAN GARIS. Dua garis sejajar mempunyai gradien sama, sehingga persamaan garis yang sejajar l dan melalui titik (3,4) adalah

PERSAMAAN GARIS. Dua garis sejajar mempunyai gradien sama, sehingga persamaan garis yang sejajar l dan melalui titik (3,4) adalah PERSAMAAN GARIS. SIMAK UI Matematika Dasar 9, 9 Diketahui adalah garis l yang dinyatakan oleh det( A) dimana A x y, persamaan garis yang sejajar l dan melalui titik (,4) adalah... A. x y 7 C. x y E. x

Lebih terperinci

BAB IV FUNGSI. Modul Matematika Bisnis

BAB IV FUNGSI. Modul Matematika Bisnis BAB IV FUNGSI ILUSTRASI Pada tahun anggaran 2003 ini, pemerintah Indonesia menetapkan anggaran defisit, yaitu manakala pendapatan lebih rendah dibandingkan pengeluaran. Salah satu penyebab ketidakseimbangan

Lebih terperinci

Dosen Pengampu: Prof. Dr. H. Almasdi Syahza, SE., MP. Website:

Dosen Pengampu: Prof. Dr. H. Almasdi Syahza, SE., MP.   Website: MATEMATIKA EKONOMI Program Studi Agribisnis Dosen Pengampu: Prof. Dr. H. Almasdi Syahza, SE., MP. Email : asyahza@yahoo.co.id Website: http://almasdi.unri.ac.id HUBUNGAN LINEAR a. Penggal dan Lereng Garis

Lebih terperinci