MAT 602 DASAR MATEMATIKA II

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "MAT 602 DASAR MATEMATIKA II"

Transkripsi

1 MAT 60 DASAR MATEMATIKA II Disusun Oleh: Dr. St. Budi Waluya, M. Sc Jurusan Pendidikan Matematika Program Pascasarjana Unnes 1

2 HIMPUNAN 1. Notasi Himpunan. Relasi Himpunan 3. Operasi Himpunan A B : A B A = B :( i) A B ( ii) B A

3 Quiz A maka tunjukkan A = B\ ( B\ A ) 1. Jika B 3

4 Pengertian Fungsi Relasi : aturan yang mengawankan himpunan Fungsi Misalkan A dan B himpunan. Relasi biner dari A ke B merupakan suatu ungsi jika setiap elemen di dalam A dihubungkan dengan tepat satu elemen di dalam B, artinya : 1 A, jika 1 =, ( ) ( ), maka = 1 4

5 Pengertian Fungsi Jika adalah ungsi dari A ke B kita menuliskan : A B yang artinya memetakan A ke B. A disebut daerah asal (domain) dari dan B disebut daerah hasil (codomain) dari. Relasi di bawah ini merupakan ungsi A a i u e o i B

6 Pengertian Fungsi Relasi di bawah ini bukan merupakan ungsi : A a i u e o a mempunyai nilai B Himpunan yang berisi semua nilai pemetaan disebut jelajah (range) / jangkauan dari. Perhatikan bahwa jelajah dari adalah himpunan bagian dari B. 6

7 Pengertian Fungsi Jelajah : y ( ) { = y, A} B Jelajah/range/jangkauan dinotasikan dengan R Contoh : 1. Carilah domain dan range dari ungsi : ( ) Jawab : = a. Mencari domain 7

8 Pengertian Fungsi syarat agar ungsi tersebut terdeinisi adalah : Sehingga D b. Mencari Range {} =,, 4 4 R = R = (,0) ( 0, ) atau R atau 3 R 4 Hal ini dikarenakan () tidak mungkin bernilai nol 8

9 Contoh. Carilah domain dan range dari ungsi : + ( ) = a. Mencari domain Syarat agar ungsi tersebut terdeinisi adalah : Sehingga 0 D t 1 1 =,, 3 3 9

10 Contoh b. Range ( ) = y = y + y = + 3y = y ( 3y 1) = y y = 3 y 1 Syarat ungsi tersebut terdeinisi, 3y 1 0 y R Jadi Atau =,, R 3 10

11 Contoh 3. Carilah domain dan range dari ungsi : ( ) = 5 6 a. Mencari domain Syarat agar ungsi tersebut terdeinisi adalah : ( )( ) 0 TP = -, Jadi = [ 3, ] D 11

12 Contoh b. Mencari Range ( ) = y = 5 6 y = ( y + 6) = 0 Agar R, maka D y 4y ( y + 6)

13 Contoh TP ( 1+ y)( 1 y) =, Jadi, R =,, [ 0 ) 1 = 1 0, 13

14 Macam-macam Fungsi Macam-macam ungsi : 1. Fungsi polinom n ( ) = a + a + a +... a n + -Fungsi konstan, 0 ( ) a0 = -Fungsi linier, 1 ( ) = a a Fungsi kuadrat, ( ) = a + a a

15 Macam-macam Fungsi. Fungsi Rasional Bentuk umum : p q ( ) ( ) contoh : ( ) = ( + 1) 3 + p(), q() = ungsi polinom dengan q() Fungsi harga/nilai mutlak Fungsi yang mengandung harga mutlak, contoh : ( ) =

16 Macam-macam Fungsi 4. Fungsi bilangan bulat terbesar = Bilangan bulat terbesar yang lebih kecil atau sama dengan = n n n = 5 3, = 3 1, = 5. Fungsi Genap Disebut ungsi genap jika terhadap sumbu y ( ) ( ) = dan graiknya simetris 16

17 Macam-macam Fungsi Contoh : ( ) = ( ) = ( ) = cos( ) 6. Fungsi Ganjil Disebut ungsi ganjil jika simetris terhadap titik asal, contoh : ( ) = sin( ) 3 ( ) = ( ) = ( ) dan graiknya 17

18 Macam-macam Fungsi 7. Fungsi Komposisi Diberikan ungsi ( ) dan g( ) ( ) g ( ) ( o g)( ) = ( g( ) ) ( o g)( ) g ( ) sehingga g( ) di dalam, komposisi ungsi antara dan ditulis Domain dari adalah himpunan semua bilangan dengan domain Syarat agar dua ungsi bisa dikomposisikan, maka harus terpenuhi R g D φ D 18

19 Fungsi Komposisi Hal tersebut dapat diilustrasikan sebagai berikut : R g D φ 19

20 Fungsi Komposisi Dengan cara yang sama, ( g o )( ) = g( ( ) ) Syarat agar dua ungsi bisa dikomposisikan, terpenuhi R D g φ maka harus Domain dari komposisi ungsi dan g dideinisikan sbb : D D o g g o = = { D ( ) } g g D D ( ) D { } g Sedangkan deinisi dari Range komposisi ungsi komposisi R R g o o g = = { g() t R t R } g { () t R t R } g atau atau R R g o o g { y R ( ) } g y = g t t R { y R y = ( t) t R } =, =, g 0

21 Fungsi Komposisi Siat-siat ungsi komposisi : ( o g)( ) ( g o )( ) (( o g) o h)( ) = ( o ( g o h) )( ) Contoh : 1. Jika diketahui g o D R dan = [ 0, ) = [ 0, ) o ( ) = g( ) = 1 g D g R g Tentukan beserta domain dan range-nya! = R = (,1] 1

22 Contoh Karena terdeinisi R [, ) φ D g ( g o )( ) g ( ) D g o = = 0, maka ungsi g o ( ) = g( ) = = 1 a. Mencari Domain g o { D ( ) D } { [ ) } 0, R = { } 0 < < = g

23 Contoh { } 0 0 = { 0 0} = [ 0, ) [ 0 ) [ 0 ) =, =, b. Mencari Range R R g o g o Jadi g o { y R ( ) } g y = g t t R y (,1] y = 1 t, t [ 0 ) =, { } =, R go = y (, 1] (,1] = y (,1] 3

24 Contoh Karena o g R D = ( 1] [ 0, ) = g terdeinisi dengan ( o g)( )= ( g( ) ) =, [ 0,1] φ ( 1 ) = 1, maka ungsi c.domain D o g = o g { D ( ) } g g D R1 [ 0 ) { } { R1 0} =, = { R 1 1} = R [ 1,1 ] = 1,1 = [ ] 4

25 Contoh d. Range R o g o g { y R y = ( t) t R } =, { [ ) ( ]} y 0, y = t,,1 = t { } y 0 y = t,0 1 = t { y 0 0 1} = y = = [ 0, ) [ 0,1] [ 0,1] g 5

26 Contoh. Jika diketahui ungsi ( ) = g( ) = 1 D = R Tentukan R g o = R R g = R R D g = R R = R φ, sehingga g o terdeinisi a. Domain g o D g o = D g = R beserta domain dan range-nya! { D ( ) D } { R R} = = R R = R g 6

27 Contoh b. Range R g o g o { y R y = g( t) t R } =, g { y R y = t 1, R} = t = R R = R 7

28 Graik dari ungsi 1. Garis Lurus y = m + c persamaan garis lurus yang melewati (0,c) contoh : y =

29 Garis Lurus ( y y ) = m( ) 1 1 Persamaan garis lurus melalui y y y 1 y 1 = Persamaan garis lurus melalui 1 1 ( ) 1, y 1 (, y )& ( y ) 1 1,. Graik ungsi kuadrat (parabola) y = a + b + c Diskriminan D = b 4ac 9

30 Graik Fungsi Kuadrat Titik puncak = y b a, D 4a a >0 D>0 D=0 D<0 30

31 Graik Fungsi Kuadrat Contoh : Gambarlah graik ungsi y = a =1 jadi a > 0 graik menghadap ke atas D = b 4ac = 1 4 = -3 < 0 tidak menyinggung sumbu 31

32 Graik Fungsi Kuadrat Titik potong dengan sumbu koordinat Karena D<0, maka titik potong dengan sumbu tidak ada Titik potong dengan sumbu y = 0 y = 1 dengan demikian graik melalui (0,1) Titik puncak = b a, 1 3 =, 4 D 4a 3

33 Graik Fungsi Kuadrat Gambar graik ungsi y = Untuk persamaan kuadrat = ay + by + c Titik puncak = Sumbu simetri = D 4a, b a b a

34 Graik Fungsi Majemuk/banyak aturan 3. Graik Fungsi Majemuk Contoh : 1. Gambarkan graik ungsi =,, < 0 0 ( ) = y=- y= 34

35 Graik Fungsi Majemuk. Gambarkan graik ungsi ( ) 1 = + > Graiknya terdiri dari y bagian, yaitu garis untuk dan garis y = + untuk > = 1 y = y =

36 Graik Fungsi Majemuk 3. Gambarkan graik dari ungsi ( ) 4 = () terdeinisi untuk setiap kecuali, sehingga domain dari () adalah semua bilangan riil kecuali Fungsi () dapat diuraikan sebagai berikut : ( ) = ( + )( ) ( ) 36

37 Graik Fungsi Majemuk atau ( ) = +, jika Range dari () adalah semua bilangan riil kecuali 4. Jadi graiknya terdiri dari semua titik pada garis y = + kecuali titik (,4). 4 y = + 37

38 Graik Fungsi Majemuk 3. Gambarkan graik dari ungsi ( ) = 1 3 Kita deinisikan : = < y = 1+ 3 y =

39 Translasi Untuk ungsi yang dinyatakan sebagai y = ( a) ( a) y = + ( ) a y = + y = graik graik graik ( ) a graik y = y = y = y = ( ) ( ) ( ) ( ) y = ( ) mengalami pergeseran sejauh a ke kanan mengalami pergeseran sejauh a ke kiri mengalami pergeseran sejauh a ke atas, a > 0 mengalami pergeseran sejauh a ke bawah 39

40 Translasi Untuk ungsi yang dinyatakan sebagai = ( y a) ( y a) = + ( y) a = + = graik graik graik ( y) a graik = = = = ( y) ( y) ( y) ( y) = ( y) mengalami pergeseran sejauh a ke atas mengalami pergeseran sejauh a ke bawah mengalami pergeseran sejauh a ke kanan, a > 0 mengalami pergeseran sejauh a ke kiri 40

41 Contoh Translasi 1. Gambarkan graik dari ungsi ( ) = ( 4 + 4) = = ( ) y = ( ) y = y = ( ) y = digeser sejauh ke kanan 41

42 Contoh Translasi Kemudian y = ( ) maka akan terbentuk y digeser sejauh 1 ke atas = ( ) + 1 y = ( ) y = ( ) 4

43 Contoh Translasi. Gambarkan graik ungsi Kita lihat dahulu graik ( ) = 1 3 y = 3 3 y = 3 y = 3 : 43

44 Contoh Translasi Graik y = 3 y = 1 3 dapat dipandang sebagai graik yang digeser 1 ke atas sejauh 1 satuan y = 1 3 y = 3 44

45 Limit ε>0, δ>0 sehingga () L < ε apabila 0 < c < δ. 45

46 Contoh: Tunjukan bahwa Bukti: lim ( ) 15 + = 3 I I = I( + 5)( - 3)I = I + 5II - 3I Misal untuk δ 1, I 3I<1 atau (, 4) Jadi +5 (7, 9) atau +5 < 9 I I = I( + 5)( - 3)I < 9δ apabila 0 < I -3I < δ 1 46

47 Ambil ε>0 sebarang ε Pilih δ = min{1, }, maka untuk 0 < I - 3I < δ 9 I I = I( + 5)( - 3)I < 9δ apabila 0 < - 3 < δ 1 Ambil sembarang ε > 0 1 ε Pilih δ = min,. maka untuk 0 < - 3 < δ, diperoleh : 9 = ( + 5) ( - 3) + 15 < 9δ ε. lim Ini menunjukkan bahwa + =

48 Contoh Bukti : Tulis ()=b, R Ambil sembarang ε > 0. Pilih δ = 1 > 0. Dipunyai 0 < - c < 1. Jelas () b = b b = 0 < 1 = ε Jadi ε > 0 δ > 0 () b < ε apabila 0< - c < δ 48

49 . Buktikan Bukti : lim c = c Tulis () = Ambil sembarang ε > 0 Pilih δ = min 1 1, c + Dipunyai 0 < - c <δ. Dicari batas + 1 pada 0 < - c < 1 Jelas 0 < c < 1 c 1 < < c + 1 c < + 1 < c + 49

50 + 1 < c + c +. Jadi () c = -c = c + c < δ ( c + ) Jadi ε > 0 δ > 0 () b < ε apabila 0< - c < δ. Jadi c lim = c 50

51 Soal Latihan, Tentukan domain dan range dari ungsi di bawah ini 1 5 ( ) = ( ) = Diketahui ( 3) 1 ( ) = ( + ) ( ) = 3 + ( ) = ( ) = 4 g ( ) = Apakah o g terdeinisi? Bila ya, tentukan rumusan dari o g dan domain dari o g. Gambarkan graik dari ungsi di bawah ini 6 7 ( ) = 3 51

52 Sistem bilangan N : bilangan asli Z : bilangan bulat Q : bilangan rasional R : bilangan real N : 1,,3,. Z :,-,-1,0,1,,.. Q : a q =, a, b Z, b 0 b R = Q Irasional Contoh Bil Irasional, 3,π 5

53 Garis bilangan Setiap bilangan real mempunyai posisi pada suatu garis yang disebut dengan garis bilangan(real) π Selang Himpunan bagian dari garis bilangan disebut selang 53

54 Selang Jenis-jenis selang Himpunan selang < a (,a) { } { } a (,a] { } < ( ) a < b { } a b a,b [ a,b] { } > b ( b, ) { } b [ b, ) { R} (, ) Graik a a a a b b b b 54

55 Siat siat bilangan real Siat-siat urutan : Trikotomi Jika dan y adalah suatu bilangan, maka pasti berlaku salah satu dari < y atau > y atau = y Ketransitian Jika < y dan y < z maka < z Perkalian Misalkan z bilangan positi dan < y maka z < yz, sedangkan bila z bilangan negati, maka z > yz 55

56 Pertidaksamaan Pertidaksamaan satu variabel adalah suatu bentuk aljabar dengan satu variabel yang dihubungkan dengan relasi urutan. Bentuk umum pertidaksamaan : A B ( ) ( ) < D( ) E( ) dengan A(), B(), D(), E() adalah suku banyak (polinom) dan B() 0, E() 0 56

57 Pertidaksamaan Menyelesaikan suatu pertidaksamaan adalah mencari semua himpunan bilangan real yang membuat pertidaksamaan berlaku. Himpunan bilangan real ini disebut juga Himpunan Penyelesaian (HP) Cara menentukan HP : 1. Bentuk pertidaksamaan diubah menjadi : P( ) Q( ) <, dengan cara : 0 57

58 Pertidaksamaan Ruas kiri atau ruas kanan dinolkan Menyamakan penyebut dan menyederhanakan bentuk pembilangnya. Dicari titik-titik pemecah dari pembilang dan penyebut dengan cara P() dan Q() diuraikan menjadi aktor-aktor linier dan/ atau kuadrat 3. Gambarkan titik-titik pemecah tersebut pada garis bilangan, kemudian tentukan tanda (+, -) pertidaksamaan di setiap selang bagian yang muncul 58

59 Contoh : Menentukan Himpunan Penyelesaian Hp = [ 4,8]

60 Contoh : Menentukan Himpunan Penyelesaian < < 4 8 > 4 4 < 8 1 < 8 Hp 1 1 =, 60

61 Contoh : Menentukan Himpunan Penyelesaian < 0 ( + 1)( 3) < 0 Titik Pemecah (TP) : 1 = dan = 3 Hp = ,

62 Contoh : Menentukan Himpunan Penyelesaian dan dan dan dan dan 0 6

63 Contoh : Menentukan Himpunan Penyelesaian 10 9 Hp =, [ 0, ) Dari gambar tersebut dapat disimpulkan : Hp = 10 0, 9 63

64 Contoh : Menentukan Himpunan Penyelesaian 1 5. < < 0 ( 3 1) ( + ) ( + 1)( 3 1) 3 ( + 1)( 3 1) < 0 < Hp = ( ) 3 1, 1, 3 3 TP : -1, 1 3, 3 64

65 65 Contoh : Menentukan Himpunan Penyelesaian ( )( ) ( ) ( )( ) ( )( )

66 Contoh : Menentukan Himpunan Penyelesaian Untuk pembilang mempunyai nilai Diskriminan (D) < 0, sehingga nilainya selalu positi, Jadi TP :,-3 Pembilang tidak menghasilkan titik pemecah Hp = (, 3) (, ) 66

67 Pertidaksamaan nilai mutlak Nilai mutlak ( ) dideinisikan sebagai jarak dari titik pusat pada garis bilangan, sehingga jarak selalu bernilai positi. Deinisi nilai mutlak : =,, <

68 68 Pertidaksamaan nilai mutlak Siat-siat nilai mutlak: y y = = a a a a 0, a a a 0, atau a y y 6. Ketaksamaan segitiga y y y y

69 Contoh : Menentukan Himpunan Penyelesaian Contoh : 1. 5 < 3 Kita bisa menggunakan siat ke-. 3 < 5 < < < < < 8 1 < < 4 1,4 Hp = ( )

70 Contoh : Menentukan Himpunan Penyelesaian. 5 < 3 Kita bisa juga menggunakan siat ke-4, karena ruas kiri maupun kanan keduanya positi. ( 5) < < < < 0 ( )( 4) < 0 TP : 1, 4 ++ Hp = ( 1,4 )

71 Contoh : Menentukan Himpunan Penyelesaian Kita bisa menggunakan siat 4 ( + 3) ( 4 + 5) TP :,

72 Contoh : Menentukan Himpunan Penyelesaian Jika digambar pada garis bilangan : ++ Hp = , 1 3 7

73 Contoh : Menentukan Himpunan Penyelesaian atau atau 9 10 atau 18 Hp = (, 18] [ 10, )

74 Contoh : Menentukan Himpunan Penyelesaian Kita deinisikan dahulu : = < + 1 = < 1 Jadi kita mempunyai 3 interval : I (, 1) II III [ 1,) [, ) -1 74

75 Contoh : Menentukan Himpunan Penyelesaian < 1 (, 1) I. Untuk interval atau ( ) ( 1) atau, 9 75

76 Contoh : Menentukan Himpunan Penyelesaian Jadi Hp1 = 9, (, 1) -1 9 Dari gambar garis bilangan tersebut dapat disimpulkan bahwa hasil irisan kedua interval tersebut adalah (, 1) sehingga Hp1 = (, 1) 76

77 Contoh : Menentukan Himpunan Penyelesaian II. Untuk interval 1 < atau [ 1,) ( ) ( + 1) atau,

78 Contoh : Menentukan Himpunan Penyelesaian 7 4 Jadi Hp =, [ 1, ) Dari gambar garis bilangan tersebut dapat disimpulkan bahwa hasil irisan dua interval tersebut adalah 7 1, 7 4 sehingga Hp = 1, 4 78

79 Contoh : Menentukan Himpunan Penyelesaian III. Untuk interval ( ) ( + 1) atau atau [, ) 5, 79

80 Contoh : Menentukan Himpunan Penyelesaian 5 Jadi Hp3 =, [, ) 5 Dari gambar garis bilangan tersebut dapat disimpulkan bahwa hasil irisan dua interval tersebut adalah 5 sehingga, Hp3 = 5, 80

81 Contoh : Menentukan Himpunan Penyelesaian Hp = Hp1 Hp Hp3 7 5 Hp =, 4 ( ), 1 1, Untuk lebih mempermudah, masing-masing interval digambarkan dalam sebuah garis bilangan 81

82 Contoh : Menentukan Himpunan Penyelesaian Jadi Hp = 7 5,, 4 8

83 83 Soal Latihan Cari himpunan penyelesaian dari pertidaksamaan

Pengertian Fungsi. MA 1114 Kalkulus I 2

Pengertian Fungsi. MA 1114 Kalkulus I 2 Fungsi Pengertian Fungsi Relasi : aturan yang mengawankan himpunan Fungsi Misalkan A dan B himpunan. Relasi biner dari A ke B merupakan suatu ungsi jika setiap elemen di dalam A dihubungkan dengan tepat

Lebih terperinci

Fungsi. Pengertian Fungsi. Pengertian Fungsi ( ) ( )

Fungsi. Pengertian Fungsi. Pengertian Fungsi ( ) ( ) Fungsi Pengertian Fungsi Relasi : aturan yang mengawankan/ mengkaitkan/ menugaskan himpunan Fungsi Misalkan A dan B himpunan. Relasi biner dari A ke B merupakan suatu ungsi jika setiap elemen di dalam

Lebih terperinci

Sistem Bilangan Riil

Sistem Bilangan Riil Sistem Bilangan Riil Sistem bilangan N : 1,,,. Z :,-,-1,0,1,,.. N : bilangan asli Z : bilangan bulat Q : bilangan rasional R : bilangan real Q : q R a b, a, b Z, b Q Irasional Contoh Bil Irasional,, 0

Lebih terperinci

Sistem Bilangan Ri l

Sistem Bilangan Ri l Sistem Bilangan Riil Sistem bilangan N : bilangan asli Z : bilangan bulat Q : bilangan rasional R : bilangan real N : 1,,,. Z :,-,-1,0,1,,.. Q : a q =, a, b Z, b 0 b R = Q Irasional Contoh Bil Irasional,,π

Lebih terperinci

Pengertian Fungsi. Kalkulus Dasar 2

Pengertian Fungsi. Kalkulus Dasar 2 Funsi Penertian Funsi Relasi : aturan an menawankan himpunan Funsi Misalkan A dan B himpunan. Relasi biner dari A ke B merupakan suatu unsi jika setiap elemen di dalam A dihubunkan denan tepat satu elemen

Lebih terperinci

Sistem Bilangan Real. Pendahuluan

Sistem Bilangan Real. Pendahuluan Sistem Bilangan Real Pendahuluan Kalkulus didasarkan pada sistem bilangan real dan sifat-sifatnya. Sistem bilangan real adalah himpunan bilangan real yang disertai operasi penjumlahan dan perkalian sehingga

Lebih terperinci

03/08/2015. Sistem Bilangan Riil. Simbol-Simbol dalam Matematikaa

03/08/2015. Sistem Bilangan Riil. Simbol-Simbol dalam Matematikaa 0/08/015 Sistem Bilangan Riil Simbol-Simbol dalam Matematikaa 1 0/08/015 Simbol-Simbol dalam Matematikaa Simbol-Simbol dalam Matematikaa 4 0/08/015 Simbol-Simbol dalam Matematikaa 5 Sistem bilangan N :

Lebih terperinci

Sistem Bilangan Riil. Pendahuluan

Sistem Bilangan Riil. Pendahuluan Sistem Bilangan Riil Pendahuluan Kalkulus didasarkan pada sistem bilangan riil dan sifat-sifatnya. Sistem bilangan riil adalah himpunan bilangan riil yang disertai operasi penjumlahan dan perkalian sehingga

Lebih terperinci

1 Sistem Bilangan Real

1 Sistem Bilangan Real Learning Outcome Rencana Pembelajaran Setelah mengikuti proses pembelajaran ini, diharapkan mahasiswa dapat ) Menentukan solusi pertidaksamaan aljabar ) Menyelesaikan pertidaksamaan dengan nilai mutlak

Lebih terperinci

Sistem Bilangan Riil

Sistem Bilangan Riil Sistem Bilangan Riil Pendahuluan Kalkulus didasarkan pada sistem bilangan riil dan sifat-sifatnya. Sistem bilangan riil adalah himpunan bilangan riil yang disertai operasi penjumlahan dan perkalian sehingga

Lebih terperinci

INTERVAL, PERTIDAKSAMAAN, DAN NILAI MUTLAK

INTERVAL, PERTIDAKSAMAAN, DAN NILAI MUTLAK INTERVAL, PERTIDAKSAMAAN, DAN NILAI MUTLAK Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 19 Topik Bahasan 1 Sistem Bilangan Real 2 Interval 3

Lebih terperinci

Matematika Dasar FUNGSI DAN GRAFIK

Matematika Dasar FUNGSI DAN GRAFIK FUNGSI DAN GRAFIK Suatu pengaitan dari himpunan A ke himpunan B disebut fungsi bila mengaitkan setiap anggota dari himpunan A dengan tepat satu anggota dari himpunan B. Notasi : f : A B f() y Himpunan

Lebih terperinci

KALKULUS 1 UNTUK MAHASISWA CALON GURU MATEMATIKA OLEH: DADANG JUANDI, DKK PROGRAM STUDI PENDIDIKAN MATEMATIKA FPMIPA UNIVERSITAS PENDIDIKAN INDONESIA

KALKULUS 1 UNTUK MAHASISWA CALON GURU MATEMATIKA OLEH: DADANG JUANDI, DKK PROGRAM STUDI PENDIDIKAN MATEMATIKA FPMIPA UNIVERSITAS PENDIDIKAN INDONESIA KALKULUS UNTUK MAHASISWA 9 CALON GURU MATEMATIKA OLEH: DADANG JUANDI, DKK PROGRAM STUDI PENDIDIKAN MATEMATIKA FPMIPA UNIVERSITAS PENDIDIKAN INDONESIA BAB I PENDAHULUAN. Sistem Bilangan Real Dalam Uraian

Lebih terperinci

Suatu pemetaan f dari himpunan A ke himpunan B disebut fungsi jika setiap anggota dari himpunan A dipetakan atau dikaitkan dengan tepat satu anggota

Suatu pemetaan f dari himpunan A ke himpunan B disebut fungsi jika setiap anggota dari himpunan A dipetakan atau dikaitkan dengan tepat satu anggota Suatu pemetaan dari himpunan A ke himpunan B disebut ungsi jika setiap anggota dari himpunan A dipetakan atau dikaitkan dengan tepat satu anggota dari himpunan B Suatu Fungsi biasanya dinyatakan dengan

Lebih terperinci

Catatan Kuliah MA1123 Kalkulus Elementer I

Catatan Kuliah MA1123 Kalkulus Elementer I Catatan Kuliah MA1123 Kalkulus Elementer I Oleh Hendra Gunawan, Ph.D. Departemen Matematika ITB Sasaran Belajar Setelah mempelajari materi Kalkulus Elementer I, mahasiswa diharapkan memiliki (terutama):

Lebih terperinci

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Kalkulus Kode : CIV 101. Limit Fungsi. Pertemuan - 2

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Kalkulus Kode : CIV 101. Limit Fungsi. Pertemuan - 2 Respet, Proessionalism, & Entrepreneurship Mata Kuliah : Kalkulus Kode : CIV 101 SKS : 3 SKS Limit Fungsi Pertemuan - Respet, Proessionalism, & Entrepreneurship Kemampuan Akhir yang Diharapkan Mahasiswa

Lebih terperinci

Sistem Bilangan Real. Apa yang dimaksud dengan bilangan real, rasional dan bilangan irasional?

Sistem Bilangan Real. Apa yang dimaksud dengan bilangan real, rasional dan bilangan irasional? Oleh: Endang Ded Sistem Bilangan Real Apa ang dimaksud dengan bilangan real, rasional dan bilangan irasional? Bilangan Real adalah bilangan-bilangan ang merupakan gabungan dari bilangan rasional dan bilangan

Lebih terperinci

FUNGSI DAN GRAFIK FUNGSI.

FUNGSI DAN GRAFIK FUNGSI. FUNGSI DAN GRAFIK FUNGSI Materi ke-4 eko@uns.ac.id Materi Fungsi Fungsi Surjekti, Fungsi Injekti, dan Fungsi Bijekti Operasi Pada Fungsi Fungsi Invers Fungsi Komposisi Graik Fungsi Dalam Sistem Koordinat

Lebih terperinci

FUNGSI DAN GRAFIK FUNGSI.

FUNGSI DAN GRAFIK FUNGSI. FUNGSI DAN GRAFIK FUNGSI Materi ke-4 eko@uns.ac.id ekop2003@yahoo.com Materi Fungsi ( deinisi, daerah asal dan daerah hasil ) Fungsi Surjekti, Injekti, Bijekti dan Invers Operasi Pada Fungsi dan Fungsi

Lebih terperinci

KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia

KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN DEPARTEMEN TEKNIK KIMIA Universitas Indonesia BAB II. FUNGSI, LIMIT, DAN KEKONTINUAN Fungsi dan Operasi pada Fungsi Beberapa Fungsi Khusus Limit dan Limit

Lebih terperinci

TUJUAN INSTRUKSIONAL KHUSUS

TUJUAN INSTRUKSIONAL KHUSUS PREVIEW KALKULUS TUJUAN INSTRUKSIONAL KHUSUS Mahasiswa mampu: menyebutkan konsep-konsep utama dalam kalkulus dan contoh masalah-masalah yang memotivasi konsep tersebut; menjelaskan menyebutkan konsep-konsep

Lebih terperinci

-LIMIT- -KONTINUITAS- -BARISAN- Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ

-LIMIT- -KONTINUITAS- -BARISAN- Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ -LIMIT- -KONTINUITAS- -BARISAN- Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ agustina.mipa@unej.ac.id Konsep Limit Fungsi mendasari pembentukan kalkulus dierensial dan integral. Konsep ini

Lebih terperinci

FUNGSI DAN GRAFIK KED. Fungsi Bukan Fungsi Definisi

FUNGSI DAN GRAFIK KED. Fungsi Bukan Fungsi Definisi FUNGSI DAN GRAFIK Deinisi Funsi adalah suatu aturan padanan yan menhubunkan tiap objek x dalam satu himpunan, yan disebut daerah asal, denan sebuah nilai unik x dari himpunan kedua. Himpunan nilai ya diperoleh

Lebih terperinci

SRI REDJEKI KALKULUS I

SRI REDJEKI KALKULUS I SRI REDJEKI KALKULUS I KLASIFIKASI BILANGAN RIIL n Bilangan yang paling sederhana adalah bilangan asli : n 1, 2, 3, 4, 5,. n n Bilangan asli membentuk himpunan bagian dari klas himpunan bilangan yang lebih

Lebih terperinci

KALKULUS 1 HADI SUTRISNO. Pendidikan Matematika STKIP PGRI Bangkalan. Hadi Sutrisno/P.Matematika/STKIP PGRI Bangkalan

KALKULUS 1 HADI SUTRISNO. Pendidikan Matematika STKIP PGRI Bangkalan. Hadi Sutrisno/P.Matematika/STKIP PGRI Bangkalan KALKULUS 1 HADI SUTRISNO 1 Pendidikan Matematika STKIP PGRI Bangkalan BAB I PENDAHULUAN A. Sistem Bilangan Real Untuk mempelajari kalkulus kita terlebih dahulu perlu memahami bahasan tentang sistem bilangan

Lebih terperinci

Bagian 2 Matriks dan Determinan

Bagian 2 Matriks dan Determinan Bagian Matriks dan Determinan Materi mengenai fungsi, limit, dan kontinuitas akan kita pelajari dalam Bagian Fungsi dan Limit. Pada bagian Fungsi akan mempelajari tentang jenis-jenis fungsi dalam matematika

Lebih terperinci

a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Limit Fungsi Pertemuan - 2

a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Limit Fungsi Pertemuan - 2 a home base to eellene Mata Kuliah : Kalkulus Kode : TSP 0 SKS : 3 SKS Limit Fungsi Pertemuan - a home base to eellene TIU : Mahasiswa dapat memahami it ungsi TIK : Mahasiswa mampu menyelesaikan it ungsi

Lebih terperinci

fungsi Dan Grafik fungsi

fungsi Dan Grafik fungsi fungsi Dan Grafik fungsi Suatu fungsi adalah pemadanan dua himpunan tidak kosong dengan pasangan terurut (x, y) dimana tidak terdapat elemen kedua yang berbeda. Fungsi (pemetaan) himpunan A ke himpunan

Lebih terperinci

Silabus. 1 Sistem Bilangan Real. 2 Fungsi Real. 3 Limit dan Kekontinuan. Kalkulus 1. Arrival Rince Putri. Sistem Bilangan Real.

Silabus. 1 Sistem Bilangan Real. 2 Fungsi Real. 3 Limit dan Kekontinuan. Kalkulus 1. Arrival Rince Putri. Sistem Bilangan Real. Silabus 1 2 3 Referensi E. J. Purcell, D. Varberg, and S. E. Rigdon, Kalkulus, Jilid 1 Edisi Kedelapan, Erlangga, 2003. Penilaian 1 Ujian Tengah Semester (UTS) : 30 2 Ujian Akhir Semester (UAS) : 20 3

Lebih terperinci

FUNGSI dan LIMIT. 1.1 Fungsi dan Grafiknya

FUNGSI dan LIMIT. 1.1 Fungsi dan Grafiknya FUNGSI dan LIMIT 1.1 Fungsi dan Grafiknya Fungsi : suatu aturan yang menghubungkan setiap elemen suatu himpunan pertama (daerah asal) tepat kepada satu elemen himpunan kedua (daerah hasil) fungsi Daerah

Lebih terperinci

LIMIT & KEKONTINUAN IRA PRASETYANINGRUM

LIMIT & KEKONTINUAN IRA PRASETYANINGRUM LIMIT & KEKONTINUAN IRA PRASETYANINGRUM Bilangan Tidak Tertentu Nol = Bilangan yang menyatakan banyaknya elemen himpunan kosong Misal : A={Orang yang Istrinya } Terdapat bilangan mendekati dari kiri/bawah/negati

Lebih terperinci

Mata Pelajaran Wajib. Disusun Oleh: Ngapiningsih

Mata Pelajaran Wajib. Disusun Oleh: Ngapiningsih Mata Pelajaran Wajib Disusun Oleh: Ngapiningsih Disklaimer Daftar isi Disklaimer Powerpoint pembelajaran ini dibuat sebagai alternatif guna membantu Bapak/Ibu Guru melaksanakan pembelajaran. Materi powerpoint

Lebih terperinci

SISTEM BILANGAN RIIL DAN FUNGSI

SISTEM BILANGAN RIIL DAN FUNGSI SISTEM BILANGAN RIIL DAN FUNGSI Matematika Juni 2016 Dosen : Dadang Amir Hamzah MATEMATIKA Juni 2016 1 / 67 Outline 1 Sistem Bilangan Riil Dosen : Dadang Amir Hamzah MATEMATIKA Juni 2016 2 / 67 Outline

Lebih terperinci

MBS - DTA. Sucipto UNTUK KALANGAN SENDIRI. SMK Muhammadiyah 3 Singosari

MBS - DTA. Sucipto UNTUK KALANGAN SENDIRI. SMK Muhammadiyah 3 Singosari MBS - DTA Sucipto UNTUK KALANGAN SENDIRI SMK Muhammadiyah Singosari SERI : MBS-DTA FUNGSI STANDAR KOMPETENSI Siswa mampu memecahkan masalah yang berkaitan dengan fungsi, persamaan fungsi linear dan fungsi

Lebih terperinci

MA5032 ANALISIS REAL

MA5032 ANALISIS REAL (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. August 16, 2011 Pada bab ini anda diasumsikan telah mengenal dengan cukup baik bilangan asli, bilangan bulat, dan bilangan

Lebih terperinci

KALKULUS BAB I. PENDAHULUAN DEPARTEMEN TEKNIK KIMIA

KALKULUS BAB I. PENDAHULUAN DEPARTEMEN TEKNIK KIMIA KALKULUS BAB I. PENDAHULUAN DEPARTEMEN TEKNIK KIMIA BAB I Bilangan Real dan Notasi Selang Pertaksamaan Nilai Mutlak Sistem Koordinat Cartesius dan Grafik Persamaan Bilangan Real dan Notasi Selang Bilangan

Lebih terperinci

Zulfaneti Yulia Haryono Rina F ebriana. Berbasis Penemuan Terbimbing = = D(sec x)= sec x tan x, ( + ) ( ) ( )=

Zulfaneti Yulia Haryono Rina F ebriana. Berbasis Penemuan Terbimbing = = D(sec x)= sec x tan x, ( + ) ( ) ( )= Zulfaneti Yulia Haryono Rina F ebriana Berbasis Penemuan Terbimbing = = D(sec x)= sec x tan x, ()= (+) () Penyusun Zulfaneti Yulia Haryono Rina Febriana Nama NIm : : Untuk ilmu yang bermanfaat Untuk Harapan

Lebih terperinci

Himpunan dari Bilangan-Bilangan

Himpunan dari Bilangan-Bilangan Program Studi Pendidikan Matematika STKIP YPM Bangko October 22, 2014 1 Khususnya dalam analisis, maka yang teristimewa penting adalah himpunan dari bilangan-bilangan riil, yang dinyatakan dengan R. Himpunan

Lebih terperinci

Bilangan Real. Modul 1 PENDAHULUAN

Bilangan Real. Modul 1 PENDAHULUAN Modul 1 Bilangan Real S PENDAHULUAN Drs. Soemoenar emesta pembicaraan Kalkulus adalah himpunan bilangan real. Jadi jika akan belajar kalkulus harus paham terlebih dahulu tentang bilangan real. Bagaimanakah

Lebih terperinci

B I L A N G A N 1.1 SKEMA DARI HIMPUNAN BILANGAN. Bilangan Kompleks. Bilangan Nyata (Riil) Bilangan Khayal (Imajiner)

B I L A N G A N 1.1 SKEMA DARI HIMPUNAN BILANGAN. Bilangan Kompleks. Bilangan Nyata (Riil) Bilangan Khayal (Imajiner) 1 B I L A N G A N 1.1 SKEMA DARI HIMPUNAN BILANGAN Bilangan Kompleks Bilangan Nyata (Riil) Bilangan Khayal (Imajiner) Bilangan Rasional Bilangan Irrasional Bilangan Pecahan Bilangan Bulat Bilangan Bulat

Lebih terperinci

PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT

PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT LA - WB (Lembar Aktivitas Warga Belajar) PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X Created By Ita Yuliana

Lebih terperinci

Untuk mencari akar-akar dari persamaan kuadrat, dapat menggunakan rumus :

Untuk mencari akar-akar dari persamaan kuadrat, dapat menggunakan rumus : RUMUS-RUMUS PERSAMAAN KUADRAT Bentuk umum: ax 2 + bx + c = 0, a 0 AKAR-AKAR PERSAMAAN KUADRAT Untuk mencari akar-akar dari persamaan kuadrat, dapat menggunakan rumus : X 1.2 = Dengan : D = b 2 4ac, dan

Lebih terperinci

LIMIT DAN KEKONTINUAN

LIMIT DAN KEKONTINUAN LIMIT DAN KEKONTINUAN Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 37 Topik Bahasan 1 Limit Fungsi 2 Hukum Limit 3 Kekontinuan Fungsi (Departemen

Lebih terperinci

FUNGSI DAN GRAFIK KED

FUNGSI DAN GRAFIK KED FUNGSI DAN GRAFIK 1.1 Pendahuluan Deinisi unsi adalah suatu aturan padanan yan menhubunkan tiap objek x dalam satu himpunan, yan disebut daerah asal, denan sebuah nilai unik x dari himpunan kedua. Himpunan

Lebih terperinci

Ringkasan Materi Kuliah Bab II FUNGSI

Ringkasan Materi Kuliah Bab II FUNGSI Ringkasan Materi Kuliah Bab II FUNGSI. FUNGSI REAL, FUNGSI ALJABAR, DAN FUNGSI TRIGONOMETRI. TOPIK-TOPIK YANG BERKAITAN DENGAN FUNGSI.3 FUNGSI KOMPOSISI DAN FUNGSI INVERS. FUNGSI REAL, FUNGSI ALJABAR,

Lebih terperinci

Komposisi fungsi dan invers fungsi. Syarat agar suatu fungsi mempunyai invers. Grafik fungsi invers

Komposisi fungsi dan invers fungsi. Syarat agar suatu fungsi mempunyai invers. Grafik fungsi invers Komposisi fungsi dan invers fungsi mempelajari Fungsi komposisi menentukan Fungsi invers terdiri dari Syarat dan aturan fungsi yang dapat dikomposisikan Nilai fungsi komposisi dan pembentuknya Syarat agar

Lebih terperinci

Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f.

Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f. Pertemuan ke 8 GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(,y): y = f(), D f } disebut grafik fungsi f. Grafik metode yang paling umum untuk menyatakan hubungan antara dua himpunan yaitu dengan menggunakan

Lebih terperinci

Fungsi dan Limit Fungsi 23. Contoh 5. lim. Buktikan, jika c > 0, maka

Fungsi dan Limit Fungsi 23. Contoh 5. lim. Buktikan, jika c > 0, maka Contoh 5 Buktikan jika c > 0 maka c c Analisis Pendahuluan Akan dicari bilangan δ > 0 sedemikian sehingga apabila c < ε untuk setiap ε > 0. 0 < c < δ berlaku Perhatikan: c ( c)( c) c c c c c c c Dapat

Lebih terperinci

SISTEM BILANGAN REAL. 1. Sistem Bilangan Real. Terlebih dahulu perhatikan diagram berikut: Bilangan. Bilangan Rasional. Bilangan Irasional

SISTEM BILANGAN REAL. 1. Sistem Bilangan Real. Terlebih dahulu perhatikan diagram berikut: Bilangan. Bilangan Rasional. Bilangan Irasional SISTEM BILANGAN REAL Sebelum membahas tentag konsep sistem bilangan real, terlebih dahulu ingat kembali tentang konsep himpunan. Konsep dasar dalam matematika adalah berkaitan dengan himpunan atau kelas

Lebih terperinci

Bagian 1 Sistem Bilangan

Bagian 1 Sistem Bilangan Bagian 1 Sistem Bilangan Dalam bagian 1 Sistem Bilangan kita akan mempelajari berbagai jenis bilangan, pemakaian tanda persamaan dan pertidaksamaan, menggambarkan himpunan penyelesaian pada selang bilangan,

Lebih terperinci

MATEMATIKA DASAR TAHUN 1987

MATEMATIKA DASAR TAHUN 1987 MATEMATIKA DASAR TAHUN 987 MD-87-0 Garis singgung pada kurva y di titik potong nya dengan sumbu yang absisnya positif mempunyai gradien 0 MD-87-0 Titik potong garis y + dengan parabola y + ialah P (5,

Lebih terperinci

KALKULUS UNTUK STATISTIKA

KALKULUS UNTUK STATISTIKA Mulyana f( ) g( ).8.9.9 KALKULUS UNTUK STATISTIKA.8 8. BUKU AJAR g ( ) h ( ).. 8. UNIVERSITAS PADJADJARAN FAKULTAS MIPA JURUSAN STATISTIKA BANDUNG Kata Pengantar Diktat ini disusun dalam upaya pengadaan

Lebih terperinci

6 FUNGSI LINEAR DAN FUNGSI

6 FUNGSI LINEAR DAN FUNGSI 6 FUNGSI LINEAR DAN FUNGSI KUADRAT 5.1. Fungsi Linear Pada Bab 5 telah dijelaskan bahwa fungsi linear merupakan fungsi yang variabel bebasnya paling tinggi berpangkat satu. Bentuk umum fungsi linear adalah

Lebih terperinci

MATEMATIKA EKONOMI 1 HIMPUNAN BILANGAN. Dosen : Fitri Yulianti, SP. MSi

MATEMATIKA EKONOMI 1 HIMPUNAN BILANGAN. Dosen : Fitri Yulianti, SP. MSi MATEMATIKA EKONOMI 1 HIMPUNAN BILANGAN Dosen : Fitri Yulianti, SP. MSi Skema Himpunan Kompleks Real Rasional Bulat Cacah Asli Genap Ganjil Prima Komposit Nol Bulat Negatif Pecahan Irasional Imajiner Pengertian

Lebih terperinci

SOAL DAN JAWABAN TENTANG NILAI MUTLAK. Tentukan himpunan penyelesaian dari persamaan nilai Mutlak di bawah ini.

SOAL DAN JAWABAN TENTANG NILAI MUTLAK. Tentukan himpunan penyelesaian dari persamaan nilai Mutlak di bawah ini. SOAL DAN JAWABAN TENTANG NILAI MUTLAK Tentukan himpunan penyelesaian dari persamaan nilai Mutlak di bawah ini. Jawaban: Bentuk-Bentuk persamaan nilai mutlak di atas dapat diselesaikan sebagai berikut.

Lebih terperinci

FUNGSI KOMPOSISI DAN FUNGSI INVERS

FUNGSI KOMPOSISI DAN FUNGSI INVERS FUNGSI KOMPOSISI DAN FUNGSI INVERS Jika A dan B adalah dua himpunan yang tidak kosong, fungsi f dari A ke B; f : A B atau A f B adalah cara pengawanan anggota A dengan anggota B yang memenuhi aturan setiap

Lebih terperinci

BAB 2 PERSAMAAN DAN PERTIDAKSAMAAN LINEAR

BAB 2 PERSAMAAN DAN PERTIDAKSAMAAN LINEAR BAB 2 PERSAMAAN DAN PERTIDAKSAMAAN LINEAR MATERI A. Persamaan dan Pertidaksamaan Nilai Mutlak A. PERSAMAAN DAN PERTIDAKSAMAAN YANG MEMUAT NILAI MUTLAK Dalam matematika, sesuatu yang nilainya selalu positif

Lebih terperinci

MAKALAH FUNGSI KUADRAT GRAFIK FUNGSI,&SISTEM PERSAMAAN KUADRAT

MAKALAH FUNGSI KUADRAT GRAFIK FUNGSI,&SISTEM PERSAMAAN KUADRAT MAKALAH FUNGSI KUADRAT GRAFIK FUNGSI,&SISTEM PERSAMAAN KUADRAT Kelompok 3 : 1.Suci rachmawati (ekonomi akuntansi) 2.Fitri rachmad (ekonomi akuntansi) 3.Elif (ekonomi akuntansi) 4.Dewi shanty (ekonomi management)

Lebih terperinci

19, 2. didefinisikan sebagai bilangan yang dapat ditulis dengan b

19, 2. didefinisikan sebagai bilangan yang dapat ditulis dengan b PENDAHULUAN. Sistem Bilangan Real Untuk mempelajari kalkulus perlu memaami baasan tentang system bilangan real karena kalkulus didasarkan pada system bilangan real dan sifatsifatnya. Sistem bilangan yang

Lebih terperinci

Fungsi, Persamaaan, Pertidaksamaan

Fungsi, Persamaaan, Pertidaksamaan Fungsi, Persamaaan, Pertidaksamaan Disampaikan pada Diklat Instruktur/Pengembang Matematika SMA Jenjang Dasar Tanggal 6 s.d. 9 Agustus 004 di PPPG Matematika Oleh: Drs. Markaban, M.Si. Widyaiswara PPPG

Lebih terperinci

BAB I PERTIDAKSAMAAN RASIONAL, IRASIONAL & MUTLAK

BAB I PERTIDAKSAMAAN RASIONAL, IRASIONAL & MUTLAK Matematika Peminatan SMA kelas X Kurikulum 2013 BAB I PERTIDAKSAMAAN RASIONAL, IRASIONAL & MUTLAK I. Pertidaksamaan Rasional (Bentuk Pecahan) A. Pengertian Secara umum, terdapat empat macam bentuk umum

Lebih terperinci

Materi Matematika Persamaan dan Pertidaksamaan kuadrat Persamaan Linear Persamaan Kuadrat Contoh : Persamaan Derajat Tinggi

Materi Matematika Persamaan dan Pertidaksamaan kuadrat Persamaan Linear Persamaan Kuadrat Contoh : Persamaan Derajat Tinggi Materi Matematika Persamaan dan Pertidaksamaan kuadrat Persamaan Linear Persamaan linear dengan n peubah adalah persamaan dengan bentuk : dengan adalah bilangan- bilangan real, dan adalah peubah. Secara

Lebih terperinci

KALKULUS 1. Oleh : SRI ESTI TRISNO SAMI, ST, MMSI /

KALKULUS 1. Oleh : SRI ESTI TRISNO SAMI, ST, MMSI / Oleh : SRI ESTI TRISNO SAMI, ST, MMSI 08125218506 / 082334051234 E-mail : sriestits2@gmail.com Bahan Bacaan / Refferensi : 1. Frank Ayres J. R., Calculus, Shcaum s Outline Series, Mc Graw-Hill Book Company.

Lebih terperinci

Homepage : ekopujiyanto.wordpress.com HP :

Homepage : ekopujiyanto.wordpress.com    HP : Kuliah ke-2: Sistem Bilangan Real Homepage : ekopujiyanto.wordpress.com E-mail : ekop2003@yahoo.com eko@uns.ac.id HP : 081 2278 3991 Materi Kuliah ke-2 Sistem Bilangan Real Sifat-sifat Relasi Urutan Garis

Lebih terperinci

LOGO MAM 4121 KALKULUS 1. Dr. Wuryansari Muharini K.

LOGO MAM 4121 KALKULUS 1. Dr. Wuryansari Muharini K. LOGO MAM 4121 KALKULUS 1 Dr. Wuryansari Muharini K. BAB I. PENDAHULUAN SISTEM BILANGAN REAL, NOTASI SELANG, dan NILAI MUTLAK PERTAKSAMAAN SISTEM KOORDINAT GRAFIK PERSAMAAN SEDERHANA www.themegallery.com

Lebih terperinci

matematika PEMINATAN Kelas X PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN K13 A. PERSAMAAN EKSPONEN BERBASIS KONSTANTA

matematika PEMINATAN Kelas X PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN K13 A. PERSAMAAN EKSPONEN BERBASIS KONSTANTA K1 Kelas X matematika PEMINATAN PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami bentuk-bentuk persamaan

Lebih terperinci

YAYASAN PRAWITAMA SMK WIKRAMA BOGOR

YAYASAN PRAWITAMA SMK WIKRAMA BOGOR Telp. 051-84411, email: prohumasi@smkwikrama.net, FUNGSI KOMPOSISI DAN INVERS Pembahasan : 1. Pengertian ungsi, daerah asal daerah hasil Fungsi merupakan Daerah Asal : Suatu ungsi : A B, dengan daerah

Lebih terperinci

SISTEM PERSAMAAN LINEAR, KUADRAT DAN PERTIDAKSAMAAN SATU VARIABEL

SISTEM PERSAMAAN LINEAR, KUADRAT DAN PERTIDAKSAMAAN SATU VARIABEL LA - WB (Lembar Aktivitas Warga Belajar) SISTEM PERSAMAAN LINEAR, KUADRAT DAN PERTIDAKSAMAAN SATU VARIABEL Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X

Lebih terperinci

3 LIMIT DAN KEKONTINUAN

3 LIMIT DAN KEKONTINUAN Menurut Bartle dan Sherbet (994), Analisis matematika secara umum dipahami sebagai tubuh matematika yang dibangun oleh berbagai konsep limit. Pada bab sebelumnya kita telah mempelajari limit barisan, kekonvergenan

Lebih terperinci

FUNGSI DAN MODEL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 63

FUNGSI DAN MODEL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 63 FUNGSI DAN MODEL Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 63 Topik Bahasan 1 Fungsi 2 Jenis-jenis Fungsi 3 Fungsi Baru dari Fungsi Lama 4

Lebih terperinci

Sedangkan bilangan real yang tidak dapat dinyatakan sebagai pembagian dua bilangan bulat adalah bilangan irasional, contohnya

Sedangkan bilangan real yang tidak dapat dinyatakan sebagai pembagian dua bilangan bulat adalah bilangan irasional, contohnya BAB I A. SISTEM BILANGAN REAL Sistem bilangan real dan berbagai sifatnya merupakan basis dari kalkulus. Sistem bilangan real terdiri dari himpunan unsur yang dinamakan Bilangan Real yang sering dinyatakan

Lebih terperinci

MATEMATIKA DASAR PENDIDIKAN BIOLOGI UPI 0LEH: UPI 0716

MATEMATIKA DASAR PENDIDIKAN BIOLOGI UPI 0LEH: UPI 0716 MATEMATIKA DASAR PENDIDIKAN BIOLOGI UPI 0LEH: UPI 0716 N0 TOPIK FUNGSI 2.1 DEFINISI FUNGSI 2.2 DAERAH DEFINISI DAN DAERAH HASIL 2.3 JENIS-JENIS FUNGSI 2.4 OPERASI ALJABAR FUNGSI 2.5 FUNGSI GENAP, GANJIL,

Lebih terperinci

3 LIMIT DAN KEKONTINUAN

3 LIMIT DAN KEKONTINUAN Menurut Bartle dan Sherbet (1994), Analisis matematika secara umum dipahami sebagai tubuh matematika yang dibangun dari berbagai konsep limit. Pada bab sebelumnya kita telah mempelajari limit barisan,

Lebih terperinci

Pembahasan Soal SIMAK UI 2012 SELEKSI MASUK UNIVERSITAS INDONESIA. Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS. Matematika IPA

Pembahasan Soal SIMAK UI 2012 SELEKSI MASUK UNIVERSITAS INDONESIA. Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS. Matematika IPA Pembahasan Soal SIMAK UI 0 SELEKSI MASUK UNIVERSITAS INDONESIA Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS Matematika IPA Disusun Oleh : Pak Anang Kumpulan SMART SOLUTION dan TRIK SUPERKILAT Pembahasan

Lebih terperinci

MODUL 1. Teori Bilangan MATERI PENYEGARAN KALKULUS

MODUL 1. Teori Bilangan MATERI PENYEGARAN KALKULUS MODUL 1 Teori Bilangan Bilangan merupakan sebuah alat bantu untuk menghitung, sehingga pengetahuan tentang bilangan, mutlak diperlukan. Pada modul pertama ini akan dibahas mengenai bilangan (terutama bilangan

Lebih terperinci

PERTIDAKSAMAAN PECAHAN

PERTIDAKSAMAAN PECAHAN PERTIDAKSAMAAN PECAHAN LESSON Pada topik sebelumnya, kalian telah mempelajari topik tentang konsep pertidaksamaan dan nilai mutlak. Dalam topik ini, kalian akan belajar tentang masalah pertidaksamaan pecahan.

Lebih terperinci

Fungsi dan Limit Fungsi 23. Contoh 5. lim. Buktikan, jika c 0, maka

Fungsi dan Limit Fungsi 23. Contoh 5. lim. Buktikan, jika c 0, maka Contoh 5 Buktikan jika c 0 maka c c Analisis Pendahuluan Akan dicari bilangan 0 sedemikian sehingga apabila c untuk setiap 0. 0 c berlaku Perhatikan: c ( c)( c) c c c c Dapat dipilih c Bukti: c c c Ambil

Lebih terperinci

Persamaan dan pertidaksamaan kuadrat BAB II

Persamaan dan pertidaksamaan kuadrat BAB II BAB II Misalkan a,b,c Є R dan a 0 maka persamaan yang berbentuk dinamakan persamaan kuadrat dalam peubah x. Dalam persamaan kuadrat ax bx c 0, a adalah koefisien dari x, b adalah koefisien dari x dan c

Lebih terperinci

RELASI DAN FUNGSI. A. Pengertian Relasi dan Fungsi

RELASI DAN FUNGSI. A. Pengertian Relasi dan Fungsi RELASI DAN FUNGSI A. Pengertian Relasi dan Fungsi Banyak enomena atau kejadian alam yang dapat dihubungkan dengan suatu relasi Sebagai contoh, misalkan diberikan dua himpunan : A = {sepeda, sepeda motor,

Lebih terperinci

Materi Fungsi Linear Fungsi Variabel, koefisien, dan konstanta Variabel variabel bebas Koefisien Konstanta 1). Pengertian fungsi linier

Materi Fungsi Linear Fungsi Variabel, koefisien, dan konstanta Variabel variabel bebas Koefisien Konstanta 1). Pengertian fungsi linier Materi Fungsi Linear Admin 8:32:00 PM Duhh akhirnya nongol lagi... kali ini saya akan bahas mengenai pelajaran yang paling disukai oleh hampir seluruh warga dunia :v... MATEMATIKA, ya itu namanya. materi

Lebih terperinci

PERTIDAKSAMAAN RASIONAL. Tujuan Pembelajaran

PERTIDAKSAMAAN RASIONAL. Tujuan Pembelajaran Kurikulum 1 Kelas matematika PEMINATAN PERTIDAKSAMAAN RASIONAL Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi pertidaksamaan rasional..

Lebih terperinci

MATEMATIKA DASAR 16. Jika maka Jawab : E 17. Diketahui premis-premis sebagai berikut : 1) Jika maka 2) atau Jika adalah peubah pada himpunan bilangan real, nilai yang memenuhi agar kesimpulan dari kedua

Lebih terperinci

PENGERTIAN FUNGSI JENIS-JENIS FUNGSI PENGGAMBARAN GRAFIK FUNGSI

PENGERTIAN FUNGSI JENIS-JENIS FUNGSI PENGGAMBARAN GRAFIK FUNGSI FUNGSI PENGERTIAN FUNGSI JENIS-JENIS FUNGSI PENGGAMBARAN GRAFIK FUNGSI PENGERTIAN FUNGSI Sebuah fungsi f dari himpunan A ke himpunan B adalah suatu aturan yang memasangkan setiap X anggota A dengan tepat

Lebih terperinci

PERTIDAKSAMAAN

PERTIDAKSAMAAN PERTIDAKSAMAAN A. Pengertian 1. Notasi Pertidaksamaan Misalnya ada dua bilangan riil a dan b. Ada beberapa notasi yang bisa dibuat yaitu: a. a dikatakan kurang dari b, ditulis a b jika dan hanya jika a

Lebih terperinci

y

y Menyelesaikan Persamaan Kuadrat dengan Grafik Menyesaikan persamaan ax 2 +bx+c=0. Berarti menentukan nilai-nilai x bila f(x) = 0, dimana f(x) = ax 2 +bx+c. apabila grafik fungsi f(x) telah dilukis, maka

Lebih terperinci

BEBERAPA MACAM FUNGSI DALAM ALJABAR

BEBERAPA MACAM FUNGSI DALAM ALJABAR BEBEAA MACAM FUNGI DALAM ALJABA 1. Fungsi Komposisi Dari dua jenis fungsi f dan g kita dapat membentuk sebuah fungsi baru dengan menggunakan sistem operasi komposisi. operasi komposisi biasa dilambangkan

Lebih terperinci

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang Pertemuan 2. BAHAN AJAR ANALISIS REAL Matematika STKIP Tuanku Tambusai Bangkinang 0. Bilangan Real 0. Bilangan Real sebagai bentuk desimal Pada pembahasan berikutnya kita diasumsikan telah mengetahui dengan

Lebih terperinci

KONSEP DASAR FUNGSI DAN GRAFIK. Oleh : Agus Arwani, SE, M.Ag

KONSEP DASAR FUNGSI DAN GRAFIK. Oleh : Agus Arwani, SE, M.Ag KONSEP DASAR FUNGSI DAN GRAFIK Oleh : Agus Arwani, SE, M.Ag KONSEP DASAR FUNGSI DAN GRAFIK Definisi : Fungsi f : A B adalah suatu aturan yang mengaitkan (memadankan) setiap dengan tepat satu A y B Notasi

Lebih terperinci

Menurut jenisnya, fungsi dapat dibedakan menjadi (1) Fungsi aljabar (2) Fungsi transenden

Menurut jenisnya, fungsi dapat dibedakan menjadi (1) Fungsi aljabar (2) Fungsi transenden Lecture 3. Function (B) A. Macam-macam Fungsi Menurut jenisnya, fungsi dapat dibedakan menjadi (1) Fungsi aljabar (2) Fungsi transenden Fungsi aljabar dibedakan menjadi (1) Fungsi rasional (a) Fungsi konstan

Lebih terperinci

MATEMATIKA EKONOMI DAN BISNIS. Nuryanto.ST.,MT

MATEMATIKA EKONOMI DAN BISNIS. Nuryanto.ST.,MT MATEMATIKA EKONOMI DAN BISNIS Fungsi Non Linear Fungsi non-linier merupakan bagian yang penting dalam matematika untuk ekonomi, karena pada umumnya fungsi-fungsi yang menghubungkan variabel-variabel ekonomi

Lebih terperinci

LIMIT KED. Perhatikan fungsi di bawah ini:

LIMIT KED. Perhatikan fungsi di bawah ini: LIMIT Perhatikan fungsi di bawah ini: f x = x2 1 x 1 Perhatikan gambar di samping, untuk nilai x = 1 nilai f x tidak ada. Tetapi jikakita coba dekati nilai x = 1 dari sebelah kiri dan kanan maka dapat

Lebih terperinci

BAHAN AJAR MATEMATIKA WAJIB KELAS X MATERI POKOK: PERTIDAKSAMAAN RASIONAL DAN IRASIONAL

BAHAN AJAR MATEMATIKA WAJIB KELAS X MATERI POKOK: PERTIDAKSAMAAN RASIONAL DAN IRASIONAL BAHAN AJAR MATEMATIKA WAJIB KELAS X MATERI POKOK: PERTIDAKSAMAAN RASIONAL DAN IRASIONAL A. Pertidaksamaan Rasional Pada sistem bilangan, terdapat dua jenis bilangan yaitu bilangan real dan imajiner. Jika

Lebih terperinci

1 Mengapa Perlu Belajar Geometri Daftar Pustaka... 1

1 Mengapa Perlu Belajar Geometri Daftar Pustaka... 1 Daftar Isi 1 Mengapa Perlu Belajar Geometri 1 1.1 Daftar Pustaka.................................... 1 2 Ruang Euclid 3 2.1 Geometri Euclid.................................... 8 2.2 Pencerminan dan Transformasi

Lebih terperinci

I. SISTEM BILANGAN RIIL, PERTIDAKSAMAAN DAN NILAI MUTLAK. 3. Selesaikan pertidaksamaan berikut dan gambarkan solusinya pada garis bilangan.

I. SISTEM BILANGAN RIIL, PERTIDAKSAMAAN DAN NILAI MUTLAK. 3. Selesaikan pertidaksamaan berikut dan gambarkan solusinya pada garis bilangan. I. SISTEM BILANGAN RIIL, PERTIDAKSAMAAN DAN NILAI MUTLAK. Buatlah diagram sistem bilangan riil.. Buktikan bahwa rata-rata dua buah bilangan terletak di antara kedua bilangan itu. a b a b a b. Selesaikan

Lebih terperinci

BAB I. SISTEM KOORDINAT, NOTASI & FUNGSI

BAB I. SISTEM KOORDINAT, NOTASI & FUNGSI BAB I. SISTEM KRDINAT, NTASI & FUNGSI (Pertemuan ke 1 & 2) PENDAHULUAN Diskripsi singkat Pada bab ini akan dijelaskan tentang bilangan riil, sistem koordinat Cartesius, notasi-notasi ang sering digunakan

Lebih terperinci

3 LIMIT DAN KEKONTINUAN

3 LIMIT DAN KEKONTINUAN Menurut Bartle dan Sherbet (1994), Analisis matematika secara umum dipahami sebagai tubuh matematika yang dibangun oleh berbagai konsep limit. Pada bab sebelumnya kita telah mempelajari limit barisan,

Lebih terperinci

3. FUNGSI DAN GRAFIKNYA

3. FUNGSI DAN GRAFIKNYA 3. FUNGSI DAN GRAFIKNYA 3.1 Pengertian Relasi Misalkan A dan B suatu himpunan. anggota A dikaitkan dengan anggota B berdasarkan suatu hubungan tertentu maka diperoleh suatu relasi dari A ke B. : A = {1,

Lebih terperinci

SISTEM BILANGAN REAL

SISTEM BILANGAN REAL DAFTAR ISI 1 SISTEM BILANGAN REAL 1 1.1 Sifat Aljabar Bilangan Real..................... 1 1.2 Sifat Urutan Bilangan Real..................... 6 1.3 Nilai Mutlak dan Jarak Pada Bilangan Real............

Lebih terperinci

Turunan Fungsi dan Aplikasinya

Turunan Fungsi dan Aplikasinya Bab 8 Sumber: www.duniacyber.com Turunan Fungsi dan Aplikasinya Setelah mempelajari bab ini, Anda harus mampu menggunakan konsep, siat, dan aturan dalam perhitungan turunan ungsi; menggunakan turunan untuk

Lebih terperinci

BAB II TINJAUAN PUSTAKA. tegak, perlu diketahui tentang materi-materi sebagai berikut.

BAB II TINJAUAN PUSTAKA. tegak, perlu diketahui tentang materi-materi sebagai berikut. BAB II TINJAUAN PUSTAKA Sebelum pembahasan mengenai irisan bidang datar dengan tabung lingkaran tegak, perlu diketahui tentang materi-materi sebagai berikut. A. Matriks Matriks adalah himpunan skalar (bilangan

Lebih terperinci