A B A B. ( a ) ( b )

Save this PDF as:

Ukuran: px
Mulai penontonan dengan halaman:

Download "A B A B. ( a ) ( b )"

Transkripsi

1 BAB. FUNGSI A. Relasi dan Fungsi Misalkan A dan B dua himpunan tak kosong. Relasi T dari himpunan A ke B adalah himpunan bagian dari A B. Jadi relasi A ke B merupakan himpunan (,y), dengan pada himpunan bagian A dan y pada himpunan bagian B. contoh 1 : { (,y) : -3 3 dan + y = 9,, y R } Fungsi adalah aturan perkawanan antara anggota-anggota himpunan A dan himpunan B yang memenuhi syarat-syarat setiap anggota himpunan A mempunyai kawan tunggal anggota himpunan B. A B A B ( a ) ( b ) A B (c) Gambar 1. Fungsi dari A ke B

2 Bab. Fungsi 15 Selanjutnya ; - f disebut fungsi dari A ke B ditulis f : A B - f disebut fungsi dari A ke B jika f A B dengan syarat komponen pertama yaitu anggota A hanya timbul ( terjadi ) tepat satu kali. f() disebut nilai fungsi f di A= D f disebut domain (daerah asal) fungsi f B= C f disebut Kodomain fungsi f R f = { f() : D f } disebut Range (daerah hasil) dari f Setiap unsur A dengan kawannya y= f() B, dapat disusun sebagai pasangan berurutan (,y), sehingga f dapat ditulis sebagai himpunan pasangan pasangan berurutan sebagai berikut : f = { (,y) : y = f(), A } = { (, f() ): A } Selanjutnya pada pembicaraan berikutnya,unsur-unsur pada himpunan adalah bilangan nyata. Contoh : A : { -,-1,0,1 } dengan rumus f() = + 1 maka f ={ (-,5),(-1,),(0,1),(1,) } Contoh 3 : g ={ (,y) : y =, > 0 } bukan fungsi, karena untuk setiap bilangan nyata > 0, mempunyai dua kawan y = ±. Jika pada suatu fungsi domain tidak disebutkan secara khusus, maka domain diambil bilangan nyata yang mempunyai nilai fungsi nyata. Contoh 4 : f : f() = 9 domainnya himpunan bilangan nyata, sehingga 3.

3 Bab. Fungsi 16 Pada contoh di atas D f = { R : f() = bilangan nyata } dan R f = { 9 : 3 } = { R : 9 = bilangan nyata } = { R : 9 0 } = { R : 3 } Jika f suatu fumgsi, maka grafik f adalah himpunan semua titik T(,y) dimana (,y) f. contoh 5 : Buatlah sketsa grafik dari f() : 1 Penyelesaian. Dalam kasus ini daerah asal fungsi f adalah himpuan semua bilangan nyata R.Untuk menggambar grafiknya bisa dimulai dengan membuat titik-titik ysng berpadanan, kemudian menghubungkan titik-titik tersbut dengan kurva mulus, sehingga kita peroleh grafik seperti yang diperlihatkan pada gambar 1. berikut ; y 0-1 Gambar Untuk menggambar suatu grafik dengan mudah, terlebih dahulu perlu dilakukan suatu analisa tentang persamaan fungsinya. Antara lain apakah grafik tersebut mempunyai titik/garis simetri, titik ekstrem, asimtot dan lain-lain. Hal ini akan dibahas pada bagian lain.

4 Bab. Fungsi 17 B. Operasi pada fungsi Seperti halnya bilangan, fungsi juga dapat dioperasikan satu dengan yang lain untuk menghasilkan fungsi yang baru. Jika f dan g dua buah fungsi, maka didefinisikan operasi-operasi berikut : a. ( f + g ) () = f() + g() b. ( f g ) () = f() g() c. ( f. g ) () = f(). g() f f ( ) d. ( ) () = g g( ) Daerah asal dari fungsi-fungsi diatas adalah sama,yaitu D f + g = D f g = D f. D g, kecuali kita harus mengecualikan 0 (nol) dari daerah asal oleh nol. contoh 6 : f g untuk menghindari pembagian Misalkan f = f() = + 1, g = g() = 4, D f = [-1, + ] dan D g = [4, + ] maka (f + g) () = ( f g) () = ( f. g ) () = f + 1 ( ) () = g 4 dengan D f + g = D f g = D f. D g = [4, + ], dan D f /g = (4, + ] Jika f = y = f() fungsi berkorespondensi 1-1, maka invers dari f ditulis f -1 didefinisikan sebagai = f (y) bila dan hanya bila y = f() dengan D f = R f, D f = R f. Jadi = f -1 (f()) untuk setiap D f dan y = f ( f -1-1 () ) untuk setiap y D f contoh 7 : Invers dari fungsi y = f() = + adalah f -1 () =

5 Bab. Fungsi 18 Diberikan dua buah fungsi f dan g, maka fungsi bersusun f o g adalah fungsi yang didefinisikan sebagai (f o g ) () = f (g() ) Pada fungsi bersusun ini D f o g D g dan R f o g R f contoh 8 : f = f() = +1 dan g = g() = maka f = (f o g ): f( g() ) = f( ) = himpunan semua bilangan nyata. +1 dengan D f o g adalah Misalkan g dan h dua buah fungsi dengan g = {(t,) : = g(t) } dan h = { (t,y) : y = h(t)} maka dapat disusun relasi {(,y) := g(t) dan y= h(t) } dengan t D g D h dan jika g mempunyai invers g -1 : g -1 () = t maka y = h(t) = h(g -1 ()) menentukan fungsi dari ke y, misalkan f. Sehingga relasi diatas menjadi fungsi : f ={ (,y) : y = (g -1 () )} dengan D f = R g Fungsi f yang didefinisikan sebagai : = g (t) y = h (t) disebut fungsi parameter dengan t sebagai parameternya. contoh 9 : = a cos t y = sin t C. Jenis-jenis fungsi Secara garis besar fungsi dikelompokan menjadi dua, yaitu fungsi aljabar dan fungsi transenden. a. Fungsi Aljabar Fungsi yang dapat disusun dari fungsi identitas f() = dan fungsi konstan f() = k ( k konstanta nyata ) yang didalamnya memuat operasi-operasi penjumlahan, pengurangan, pembagian, perpangkatan atau pengambilan akar disebut fungsi aljabar. Termasuk dalam fungsi aljabar adalah fungsi rasional dan fungsi irrasional

6 Bab. Fungsi 19 contoh 10 : f() = ( fungsi rasional bulat) g() = b. Fungsi transenden ( fungsi rasional pecah) Yang termasuk fungsi transenden adalah fungsi goniometri, fungsi siklometri, fungsi logaritma,fungsi eksponensial. (i). Fungsi Goniometri Termasuk jenis fungsi ini adalah fungsi sinus, kosinus, tangen, kotangen, sekan, dan kosekan. Biasa kita tulis y = sin, y = cos, y = tan = dinama dinyatakan dalam radian sin cos, dan seterusmya, Untuk diingat bahwa sudut biasanya diukur dalam derajat atau dalam radian, dimana sudut yang berpadanan dengan satu putaran penuh berukuran atau π radian. Jadi = π radian. Rumus-rumus penting yang perlu diingat : Kesamaan ganjil-genap: sin (-) = - sin Kesamaan fungsi ko-: sin ( π - ) = cos cos(-) = cos cos ( π - ) = sin Kesaman pythagoras : sin + cos = tan = sec Kesamaan penambahan : sin ( + y) = sin cos y +cos sin y cos ( + y) = cos cos y sin sin y Kesamaan sudut ganda: sin = sin cos

7 Bab. Fungsi 0 cos = cos sin = 1 sin = cos 1 Kesamaan setengah sudut: sin = 1 (1 cos ) cos = 1 (1 + cos ) Kesamaan jumlah: sin + sin y = sin + y cos y + y cos + cos y = cos cos y Kesamaan hasilkali: sin sin y = - 1 [cos ( + y) cos( - y)] cos cos y = 1 [ cos ( + y) + cos( - y)] sin cos y = 1 [sin ( + y) + sin ( - y)] (ii). Fungsi Siklometri Fungsi siklometri adalah invers dari fungsi goniometri. π π y = arc sin adalah invers dari y = sin, dimana 1 1, - y = arc sin bila hanya bila = sin y y = arc cos bila hanya bila = cos y y = arc tan bila hanya bila = tan y, dan seterusnya. (iii). Fungsi eksponensial

8 Bab. Fungsi 1 Adalah fungsi yang memetakan setiap bilangan nyata menjadi perpangkatan dalam bilngan pokok a, dan didefinisikan sebagai : f : f() = a, dimana a bilangan nyata positif, dan R a disebut basis fungsi eksponen y y 0 0 f() = a, 0 < a < 1 f() = a, a > 0 gambar 1.3 Sifat Fungsi Eksponen untuk y = f( ) = a, yaitu : 1. Nilai fungsi definit positif ( kurva selalu berada diatas sumbu ).. memotong sumbu kartesius di sumbu y di ( 0,1 ). 3. mempunyai asimtot mendatar y = 0 ( sumbu ). 4. monoton naik untuk a > 1 dan monoton turun untuk 0< a < Mempunyai fungsi invers yaitu fungsi logaritma. (iv). Fungsi logaritma Fungsi logaritma berbentuk y = a log, dengan a > 0 merupakan invers dari fungsi eksponensial basis a. Jadi y = a log adalah invers dari y = a. Jika a = 10 biasanya cukup ditulis y = log, dan jika a = e =, disebut logaritma alam dan biasanya cukup ditulis y = ln ( ln = e log ). a Sifat fungsi logaritma untuk y = g( ) = log, yaitu : 1. Kurvanya berada di sebelah kanan sumbu y.. memotong sumbu kartesius di sumbu di titik ( 1,0 ). 3. Mempunyai asimtot tegak = monoton naik untuk a > 1 monoton turun untuk 0< a < merupakan fungsi invers dari fungsi eksponen.

9 Bab. Fungsi (v). Fungsi hiperbolikus Fungsi hiperbolik adalah fungsi yang didefinisikan sebagai : e sinh = e cosh = e + e sinh tanh = cosh, dan seterusnya. Rumus-rumus penting : cosh sinh = 1 sech = 1 tanh cosech = coth 1 Rumus-rumus diatas dengan mudah dapat dibuktikan dengan definisi diatas. Soal-soal Latihan Jika f() = +, hitunglah masing-masing nilai : a. f(1) c. f(k) 1 b. f(-) d. f( ). Manakah dari yang berikut menentukan suatu fungsi f dengan rumus y = f()? a. + y = 9 c. y + y + 3 = 4

10 Bab. Fungsi 3 b. = 3 y + 1 d. 3 = y y 3 3. Jika g(t) = cari dan sederhanakan [ g( + h) g()]/ h! t 4. Tentukan daerah asal (domain) fungsi berikut : +1 a. f() = 9 c. g() = b. f() = d. h() = 4 5. Jika f() = 1 dan g() = 1+ tentukan jika mungkin : a. (f + g) () c. (g/f) (3) b. (f o g) ( 8 ) d. (f. g) (0) 6. Tentukan f dan g,jika h() = f o g () : a. h() = + 6 b. h() = ( + ) 1 7. Andaikan f() = 16 dan g() =. Tentukan manakah daerah asal: a. f o g b. g o f 8. Sketsakan grafik fungsi berikut : a. f() =, jika 0 b. y = - 1 6, jika >

FUNGSI HIPERBOLIK Matematika

FUNGSI HIPERBOLIK Matematika FUNGSI HIPERBOLIK FTP UB Pokok Bahasan Pendahuluan Grafik dari fungsi hiperbolik Menentukan nilai fungsi hiperbolik Fungsi hiperbolik invers Bentuk log dari fungsi hiperbolik invers Identitas hiperbolik

Lebih terperinci

Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f.

Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f. Pertemuan ke 8 GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(,y): y = f(), D f } disebut grafik fungsi f. Grafik metode yang paling umum untuk menyatakan hubungan antara dua himpunan yaitu dengan menggunakan

Lebih terperinci

FUNGSI DAN MODEL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 63

FUNGSI DAN MODEL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 63 FUNGSI DAN MODEL Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 63 Topik Bahasan 1 Fungsi 2 Jenis-jenis Fungsi 3 Fungsi Baru dari Fungsi Lama 4

Lebih terperinci

BAB II MACAM-MACAM FUNGSI

BAB II MACAM-MACAM FUNGSI BAB II MACAM-MACAM FUNGSI (Pertemuan ke 3) PENDAHULUAN Diskripsi singkat Pada bab ini dibahas tentang macam-macam fungsi, yaitu fungsi aljabar, fungsi trigonometri, fungsi logaritma, fungsi eksponensial,

Lebih terperinci

Menurut jenisnya, fungsi dapat dibedakan menjadi (1) Fungsi aljabar (2) Fungsi transenden

Menurut jenisnya, fungsi dapat dibedakan menjadi (1) Fungsi aljabar (2) Fungsi transenden Lecture 3. Function (B) A. Macam-macam Fungsi Menurut jenisnya, fungsi dapat dibedakan menjadi (1) Fungsi aljabar (2) Fungsi transenden Fungsi aljabar dibedakan menjadi (1) Fungsi rasional (a) Fungsi konstan

Lebih terperinci

BAB 2. FUNGSI & GRAFIKNYA

BAB 2. FUNGSI & GRAFIKNYA . Fungsi BAB. FUNGSI & GRAFIKNYA Seara intuitif, kita pandang sebagai fungsi dari jika terdapat aturan dimana nilai (tunggal) mengkait nilai. Contoh:. a. 5 b. Definisi: Suatu fungsi adalah suatu himpunan

Lebih terperinci

3. FUNGSI DAN GRAFIKNYA

3. FUNGSI DAN GRAFIKNYA 3. FUNGSI DAN GRAFIKNYA 3.1 Pengertian Relasi Misalkan A dan B suatu himpunan. anggota A dikaitkan dengan anggota B berdasarkan suatu hubungan tertentu maka diperoleh suatu relasi dari A ke B. : A = {1,

Lebih terperinci

FUNGSI dan LIMIT. 1.1 Fungsi dan Grafiknya

FUNGSI dan LIMIT. 1.1 Fungsi dan Grafiknya FUNGSI dan LIMIT 1.1 Fungsi dan Grafiknya Fungsi : suatu aturan yang menghubungkan setiap elemen suatu himpunan pertama (daerah asal) tepat kepada satu elemen himpunan kedua (daerah hasil) fungsi Daerah

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Aljabar dapat didefinisikan sebagai manipulasi dari simbol-simbol. Secara

BAB II TINJAUAN PUSTAKA. Aljabar dapat didefinisikan sebagai manipulasi dari simbol-simbol. Secara 4 BAB II TINJAUAN PUSTAKA A. Aljabar Definisi II.A.: Aljabar (Wahyudin, 989:) Aljabar dapat didefinisikan sebagai manipulasi dari simbol-simbol. Secara historis aljabar dibagi menjadi dua periode waktu,

Lebih terperinci

PENGERTIAN FUNGSI JENIS-JENIS FUNGSI PENGGAMBARAN GRAFIK FUNGSI

PENGERTIAN FUNGSI JENIS-JENIS FUNGSI PENGGAMBARAN GRAFIK FUNGSI FUNGSI PENGERTIAN FUNGSI JENIS-JENIS FUNGSI PENGGAMBARAN GRAFIK FUNGSI PENGERTIAN FUNGSI Sebuah fungsi f dari himpunan A ke himpunan B adalah suatu aturan yang memasangkan setiap X anggota A dengan tepat

Lebih terperinci

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran.

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran. 4 INTEGRAL Definisi 4. Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika untuk setiap D. F () f() Fungsi integral tak tentu f dinotasikan dengan f ( ) d dan f () dinamakan

Lebih terperinci

BAB 1 PERSAMAAN. a) 2x + 3 = 9 a) 5 = b) x 2 9 = 0 b) = 12 c) x = 0 c) 2 adalah bilangan prima genap d) 3x 2 = 3x + 5

BAB 1 PERSAMAAN. a) 2x + 3 = 9 a) 5 = b) x 2 9 = 0 b) = 12 c) x = 0 c) 2 adalah bilangan prima genap d) 3x 2 = 3x + 5 BAB PERSAMAAN Sifat Sifat Persamaan Persamaan adalah kalimat matematika terbuka yang menyatakan hubungan sama dengan. Sedangkan kesamaan adalah kalimat matematika tertutup yang menyatakan hubungan sama

Lebih terperinci

Ringkasan Materi Kuliah Bab II FUNGSI

Ringkasan Materi Kuliah Bab II FUNGSI Ringkasan Materi Kuliah Bab II FUNGSI. FUNGSI REAL, FUNGSI ALJABAR, DAN FUNGSI TRIGONOMETRI. TOPIK-TOPIK YANG BERKAITAN DENGAN FUNGSI.3 FUNGSI KOMPOSISI DAN FUNGSI INVERS. FUNGSI REAL, FUNGSI ALJABAR,

Lebih terperinci

BAB VII. FUNGSI TRANSEDEN. Perhatikan adanya kesenjangan tentang turunan berikut.

BAB VII. FUNGSI TRANSEDEN. Perhatikan adanya kesenjangan tentang turunan berikut. 64 BAB VII. FUNGSI TRANSEDEN 7.. Fungsi Logaritma Asli Perhatikan adanya kesenjangan tentang turunan berikut. D ( 3 /3) D ( /) D () 0 D (???) - D (- - ) - D (- - /3) -3 Definisi: Fungsi logaritma asli

Lebih terperinci

FUNGSI TRIGONOMETRI, FUNGSI EKSPONENSIAL, dan FUNGSI LOGARITMA

FUNGSI TRIGONOMETRI, FUNGSI EKSPONENSIAL, dan FUNGSI LOGARITMA FUNGSI TRIGONOMETRI, FUNGSI EKSPONENSIAL, dan FUNGSI LOGARITMA Makalah ini disusun untuk memenuhi tugas Mata Kuliah Kalkulus 1 Dosen Pengampu : Muhammad Istiqlal, M.Pd Disusun Oleh : 1. Sufi Anisa (23070160086)

Lebih terperinci

FUNGSI LOGARITMA ASLI

FUNGSI LOGARITMA ASLI FUNGSI LOGARITMA ASLI............ Definisi Fungsi logaritma asli, dinyatakan oleh ln, didefinisikan sebagai ln (Daerah asalnya adalah., 0 Turunan Logaritma Asli ln, 0 Lebih umumnya, Jika 0 dan f terdifferensialkan,

Lebih terperinci

KALKULUS 1. Oleh : SRI ESTI TRISNO SAMI, ST, MMSI /

KALKULUS 1. Oleh : SRI ESTI TRISNO SAMI, ST, MMSI / Oleh : SRI ESTI TRISNO SAMI, ST, MMSI 08125218506 / 082334051234 E-mail : sriestits2@gmail.com Bahan Bacaan / Refferensi : 1. Frank Ayres J. R., Calculus, Shcaum s Outline Series, Mc Graw-Hill Book Company.

Lebih terperinci

Teknik Pengintegralan

Teknik Pengintegralan Jurusan Matematika 13 Nopember 2012 Review Rumus-rumus Integral yang Dikenal Pada beberapa subbab sebelumnya telah dijelaskan beberapa integral dari fungsi-fungsi tertentu. Berikut ini diberikan sebuah

Lebih terperinci

KALKULUS 1 HADI SUTRISNO. Pendidikan Matematika STKIP PGRI Bangkalan. Hadi Sutrisno/P.Matematika/STKIP PGRI Bangkalan

KALKULUS 1 HADI SUTRISNO. Pendidikan Matematika STKIP PGRI Bangkalan. Hadi Sutrisno/P.Matematika/STKIP PGRI Bangkalan KALKULUS 1 HADI SUTRISNO 1 Pendidikan Matematika STKIP PGRI Bangkalan BAB I PENDAHULUAN A. Sistem Bilangan Real Untuk mempelajari kalkulus kita terlebih dahulu perlu memahami bahasan tentang sistem bilangan

Lebih terperinci

FUNGSI Matematika Industri I

FUNGSI Matematika Industri I FUNGSI TIP FTP UB Pokok Bahasan Memproses bilangan Komposisi fungsi dari fungsi Jenis fungsi Fungsi trigonometrik Fungsi eksponensial dan logaritmik Fungsi ganjil dan fungsi genap Pokok Bahasan Memproses

Lebih terperinci

FUNGSI. Berdasarkan hubungan antara variabel bebas dan terikat, fungsi dibedakan dua: fungsi eksplisit dan fungsi implisit.

FUNGSI. Berdasarkan hubungan antara variabel bebas dan terikat, fungsi dibedakan dua: fungsi eksplisit dan fungsi implisit. FUNGSI Fungsi merupakan hubungan antara dua variabel atau lebih. Variabel dibedakan :. Variabel bebas yaitu variabel yang besarannya dpt ditentukan sembarang, mis:,, 6, 0 dll.. Variabel terikat yaitu variabel

Lebih terperinci

5 F U N G S I. 1 Matematika Ekonomi

5 F U N G S I. 1 Matematika Ekonomi 5 F U N G S I Pemahaman tentang konsep fungsi sangat penting dalam mempelajari ilmu ekonomi, mengingat kajian ekonomi banyak bekerja dengan fungsi. Fungsi dalam matematika menyatakan suatu hubungan formal

Lebih terperinci

A B A B A B a 1 a 1 a 1 b 2 b 2 b 2 c 3 c 3 c 3 d d d. Gambar 1. Gambar 2. Gambar 3. Relasi Fungsi Relasi Bukan Fungsi Relasi Bukan Fungsi

A B A B A B a 1 a 1 a 1 b 2 b 2 b 2 c 3 c 3 c 3 d d d. Gambar 1. Gambar 2. Gambar 3. Relasi Fungsi Relasi Bukan Fungsi Relasi Bukan Fungsi sumbu y F U N G S I Definisi Fungsi Fungsi adalah pemetaan atau kejadian khusus dari suatu relasi. Jika himpunan A dan B memiliki relasi R sedemikian rupa sehingga setiap elemen himpunan A terhubung dengan

Lebih terperinci

Peminatan Matematika dan Ilmu-Ilmu Alam. Disusun Oleh: Miyanto

Peminatan Matematika dan Ilmu-Ilmu Alam. Disusun Oleh: Miyanto MATEMATIKA Peminatan Matematika dan Ilmu-Ilmu Alam Disusun Oleh: Miyanto Disklaimer Daftar isi Disklaimer Powerpoint pembelajaran ini dibuat sebagai alternatif guna membantu Bapak/Ibu Guru melaksanakan

Lebih terperinci

atau y= f(x) = ax 2 + bx + c (3.17) y= f(x) = a 2 x + a 0 x 2 + a 1

atau y= f(x) = ax 2 + bx + c (3.17) y= f(x) = a 2 x + a 0 x 2 + a 1 i. Fungsi kuadrat - Penyelesaian fungsi kuadrat dengan pemfaktoran Fungsi kuadrat adalah fungsi polinomial yang mempunyai derajad dua dan mempunyai bentuk umum : y= f(x) = a 2 x 2 + a 1 x + a 0 atau y=

Lebih terperinci

[FUNGSI DAN LIMIT] KALKULUS 1 FUNGSI DAN LIMIT R E L A S I

[FUNGSI DAN LIMIT] KALKULUS 1 FUNGSI DAN LIMIT R E L A S I FUNGSI DAN LIMIT R E L A S I Ω Definisi Relasi himpunan A ke himpunan B adalah aturan yang memasangkan anggota himpunan A dan anggota himpunan B dengan aturan tertentu. Himpunan anak yang beranggotakan

Lebih terperinci

FUNGSI. Matematika Dasar 9/18/2013. TEP-FTP-UB MatDas_Meet 2 APA ITU FUNGSI? DOMAIN, KODOMAIN, RANGE. x f : x y / y=f(x) f : x y y=f(x) y=f(x)=x 2

FUNGSI. Matematika Dasar 9/18/2013. TEP-FTP-UB MatDas_Meet 2 APA ITU FUNGSI? DOMAIN, KODOMAIN, RANGE. x f : x y / y=f(x) f : x y y=f(x) y=f(x)=x 2 APA ITU FUNGSI? FUNGSI Imajinasi : bermain golf f f : / =f() TEP FTP UB Sebuah fungsi adalah transformasi dari input pada output = f(). f : =f() =f()= DOMAIN, KODOMAIN, RANGE Fungsi adalah hubungan antara

Lebih terperinci

Matematika Dasar FUNGSI DAN GRAFIK

Matematika Dasar FUNGSI DAN GRAFIK FUNGSI DAN GRAFIK Suatu pengaitan dari himpunan A ke himpunan B disebut fungsi bila mengaitkan setiap anggota dari himpunan A dengan tepat satu anggota dari himpunan B. Notasi : f : A B f() y Himpunan

Lebih terperinci

APA ITU FUNGSI? x f : x y atau y=f(x) f : x y y=f(x) y=f(x)=x 2. Imajinasi : bermain golf

APA ITU FUNGSI? x f : x y atau y=f(x) f : x y y=f(x) y=f(x)=x 2. Imajinasi : bermain golf FUNGSI TEP FTP UB APA ITU FUNGSI? Imajinasi : bermain golf x f f : x y atau y=f(x) y Sebuah fungsi adalah transformasi dari input x pada output y = f(x). f : x y y=f(x) y=f(x)=x 2 Fungsi adalah hubungan

Lebih terperinci

MODUL 1. Teori Bilangan MATERI PENYEGARAN KALKULUS

MODUL 1. Teori Bilangan MATERI PENYEGARAN KALKULUS MODUL 1 Teori Bilangan Bilangan merupakan sebuah alat bantu untuk menghitung, sehingga pengetahuan tentang bilangan, mutlak diperlukan. Pada modul pertama ini akan dibahas mengenai bilangan (terutama bilangan

Lebih terperinci

MA1101 MATEMATIKA 1A Hendra Gunawan

MA1101 MATEMATIKA 1A Hendra Gunawan MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2019/2020 27 Agustus 2019 Bab 0. Pendahuluan 0.1 Bilangan Real 0.2 Pertaksamaan dan Nilai Mutlak 0.3 Sistem Koordinat 0.4 Grafik Persamaan 0.5 Fungsi dan

Lebih terperinci

FUNGSI EKSPONENSIAL & FUNGSI LOGARITMA

FUNGSI EKSPONENSIAL & FUNGSI LOGARITMA FUNGSI EKSPONENSIAL & FUNGSI LOGARITMA NAMA: KELAS: 1 P a g e FUNGSI EKSPONENSIAL DAN LOGARITMA I. FUNGSI EKSPONEN Fungsi eksponen f dengan bilangan pokok a (a konstan) adalah fungsi yang didefinsikan

Lebih terperinci

Fungsi dan Limit Fungsi 23. Contoh 5. lim. Buktikan, jika c > 0, maka

Fungsi dan Limit Fungsi 23. Contoh 5. lim. Buktikan, jika c > 0, maka Contoh 5 Buktikan jika c > 0 maka c c Analisis Pendahuluan Akan dicari bilangan δ > 0 sedemikian sehingga apabila c < ε untuk setiap ε > 0. 0 < c < δ berlaku Perhatikan: c ( c)( c) c c c c c c c Dapat

Lebih terperinci

BAB 3 FUNGSI KOMPOSISI DAN FUNGSI INVERS Standar Kompetensi: Menentukan komposisi dua fungsi dan invers suatu fungsi Kompetensi Dasar:

BAB 3 FUNGSI KOMPOSISI DAN FUNGSI INVERS Standar Kompetensi: Menentukan komposisi dua fungsi dan invers suatu fungsi Kompetensi Dasar: BAB 3 FUNGSI KOMPOSISI DAN FUNGSI INVERS Standar Kompetensi: Menentukan komposisi dua fungsi dan invers suatu fungsi Kompetensi Dasar:. Menentukan komposisi fungsi dari dua fungsi. Menentukan invers suatu

Lebih terperinci

Fungsi dan Limit Fungsi 23. Contoh 5. lim. Buktikan, jika c 0, maka

Fungsi dan Limit Fungsi 23. Contoh 5. lim. Buktikan, jika c 0, maka Contoh 5 Buktikan jika c 0 maka c c Analisis Pendahuluan Akan dicari bilangan 0 sedemikian sehingga apabila c untuk setiap 0. 0 c berlaku Perhatikan: c ( c)( c) c c c c Dapat dipilih c Bukti: c c c Ambil

Lebih terperinci

FUNGSI LOGARITMA ASLI

FUNGSI LOGARITMA ASLI D.. = D.. = D.. = = 0 D.. = D.. = D.. = 3 FUNGSI LOGARITMA ASLI Definisi Fungsi logaritma asli, dinyatakan oleh ln, didefinisikan sebagai ln = (Daerah asalnya adalah R). t dt, > 0 Turunan Logaritma Asli

Lebih terperinci

Matematika SMA (Program Studi IPA)

Matematika SMA (Program Studi IPA) Smart Solution UJIAN NASIONAL TAHUN PELAJARAN 0/0 Disusun Sesuai Indikator Kisi-Kisi UN 0 Matematika SMA (Program Studi IPA) Disusun oleh : Hario Pamungkas 4.. Menyelesaikan persamaan trigonometri. Nilai

Lebih terperinci

FUNGSI KOMPOSISI DAN FUNGSI INVERS

FUNGSI KOMPOSISI DAN FUNGSI INVERS FUNGSI KOMPOSISI DAN FUNGSI INVERS Jika A dan B adalah dua himpunan yang tidak kosong, fungsi f dari A ke B; f : A B atau A f B adalah cara pengawanan anggota A dengan anggota B yang memenuhi aturan setiap

Lebih terperinci

SISTEM BILANGAN RIIL DAN FUNGSI

SISTEM BILANGAN RIIL DAN FUNGSI SISTEM BILANGAN RIIL DAN FUNGSI Matematika Juni 2016 Dosen : Dadang Amir Hamzah MATEMATIKA Juni 2016 1 / 67 Outline 1 Sistem Bilangan Riil Dosen : Dadang Amir Hamzah MATEMATIKA Juni 2016 2 / 67 Outline

Lebih terperinci

Seri : Modul Diskusi Fakultas Ilmu Komputer. FAKULTAS ILMU KOMPUTER Sistem Komputer & Sistem Informasi HANDOUT : KALKULUS DASAR

Seri : Modul Diskusi Fakultas Ilmu Komputer. FAKULTAS ILMU KOMPUTER Sistem Komputer & Sistem Informasi HANDOUT : KALKULUS DASAR Seri : Modul Diskusi Fakultas Ilmu Komputer FAKULTAS ILMU KOMPUTER Sistem Komputer & Sistem Informasi HANDOUT : KALKULUS DASAR Ole : Tony Hartono Bagio 00 KALKULUS DASAR Tony Hartono Bagio KATA PENGANTAR

Lebih terperinci

FUNGSI KOMPOSISI DAN FUNGSI INVERS

FUNGSI KOMPOSISI DAN FUNGSI INVERS FUNGSI KOMPOSISI DAN FUNGSI INVERS. Relasi dan Fungsi Pada saat di Sekolah Lanjutan Pertama (SMP) telah dipelajari tentang topik Relasi, Fungsi dan Grafik. Pada materi relasi ini selain menggunakan istilah

Lebih terperinci

MATEMATIKA DASAR PENDIDIKAN BIOLOGI UPI 0LEH: UPI 0716

MATEMATIKA DASAR PENDIDIKAN BIOLOGI UPI 0LEH: UPI 0716 MATEMATIKA DASAR PENDIDIKAN BIOLOGI UPI 0LEH: UPI 0716 N0 TOPIK FUNGSI 2.1 DEFINISI FUNGSI 2.2 DAERAH DEFINISI DAN DAERAH HASIL 2.3 JENIS-JENIS FUNGSI 2.4 OPERASI ALJABAR FUNGSI 2.5 FUNGSI GENAP, GANJIL,

Lebih terperinci

FUNGSI DAN GRAFIK FUNGSI.

FUNGSI DAN GRAFIK FUNGSI. FUNGSI DAN GRAFIK FUNGSI Materi ke-4 eko@uns.ac.id ekop2003@yahoo.com Materi Fungsi ( deinisi, daerah asal dan daerah hasil ) Fungsi Surjekti, Injekti, Bijekti dan Invers Operasi Pada Fungsi dan Fungsi

Lebih terperinci

Hendra Gunawan. 4 September 2013

Hendra Gunawan. 4 September 2013 MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 4 September 2013 Latihan (Kuliah yang Lalu) 1. Tentukan daerah asal dan daerah nilai fungsi 2 f(x) = 1 x. sudah dijawab 2. Gambar grafik fungsi

Lebih terperinci

2.1 Fungsi dan Grafiknya

2.1 Fungsi dan Grafiknya FUNGSI DAN LIMIT 2.1 Fungsi dan Grafiknya Definisi Fungsi Sebuah fungsi f adalah suatu aturan padanan yang menghubungkan tiap obyek x dalam satu himpunan, yang disebut daerah asal, dengan sebuah nilai

Lebih terperinci

BAB VI. FUNGSI TRANSENDEN

BAB VI. FUNGSI TRANSENDEN BAB VI. FUNGSI TRANSENDEN Fungsi Logaritma Natural Fungsi Balikan (Invers) Fungsi Eksponen Natural Fungsi Eksponen Umum an Fungsi Logaritma Umum Masalah Laju Perubahan Seerhana Fungsi Trigonometri Balikan

Lebih terperinci

Jika t = π, maka P setengah C P(x,y) jalan mengelilingi ligkaran, t y. P(-1,0). t = 3/2π, maka P(0,-1) t>2π, perlu lebih 1 putaran t<2π, maka = t

Jika t = π, maka P setengah C P(x,y) jalan mengelilingi ligkaran, t y. P(-1,0). t = 3/2π, maka P(0,-1) t>2π, perlu lebih 1 putaran t<2π, maka = t Fungsi Trigonometri Fungsi trigonometri berdasarkan lingkaran satuan (C), dengan jari-jari 1 dan pusat dititik asal. X 2 + y 2 = 1 Panjang busur AP = t Keliling C = 2π y Jika t = π, maka P setengah C P(,y)

Lebih terperinci

Aturan dasar pengintegralan Integral fungsi rasional Integral parsial Integral trigonometri Substitusi yang merasionalkan Strategi pengintegralan

Aturan dasar pengintegralan Integral fungsi rasional Integral parsial Integral trigonometri Substitusi yang merasionalkan Strategi pengintegralan Aturan dasar pengintegralan Integral fungsi rasional Integral parsial Integral trigonometri Substitusi yang merasionalkan Strategi pengintegralan Kemampuan yang diinginkan: kejelian melihat bentuk soal

Lebih terperinci

BAB 6 FUNGSI KOMPOSISI DAN FUNGSI INVERS Standar Kompetensi: Menentukan komposisi dua fungsi dan invers suatu fungsi

BAB 6 FUNGSI KOMPOSISI DAN FUNGSI INVERS Standar Kompetensi: Menentukan komposisi dua fungsi dan invers suatu fungsi BAB 6 FUNGSI KOMPOSISI DAN FUNGSI INVERS Standar Kompetensi: Menentukan komposisi dua fungsi dan invers suatu fungsi A. Fungsi dan Macam-macam Fungsi Pada saat di Sekolah Lanjutan Pertama (SMP) telah dipelajari

Lebih terperinci

Perbandingan trigonometri sin x merupakan relasi yang memetakan setiap x tepat satu nilai sin x yang dinyatakan dengan notasi f : x sinx

Perbandingan trigonometri sin x merupakan relasi yang memetakan setiap x tepat satu nilai sin x yang dinyatakan dengan notasi f : x sinx MENGGAMBAR GRAFIK FUNGSI TRIGONOMETRI Perbandingan trigonometri dari suatu sudut tertentu terdapat tepat satu nilai dari sinus, kosinus dan tangens dari sudut tersebut. Sehingga perbandingan trigonometri

Lebih terperinci

BAB 3 FUNGSI. f : x y

BAB 3 FUNGSI. f : x y . Hubungan Relasi dengan Fungsi FUNGSI Relasi dari himpunan P ke himpunan Q disebut fungsi atau pemetaan, jika dan hanya jika tiap unsur pada himpunan P berpasangan tepat hanya dengan sebuah unsur pada

Lebih terperinci

Komposisi fungsi dan invers fungsi. Syarat agar suatu fungsi mempunyai invers. Grafik fungsi invers

Komposisi fungsi dan invers fungsi. Syarat agar suatu fungsi mempunyai invers. Grafik fungsi invers Komposisi fungsi dan invers fungsi mempelajari Fungsi komposisi menentukan Fungsi invers terdiri dari Syarat dan aturan fungsi yang dapat dikomposisikan Nilai fungsi komposisi dan pembentuknya Syarat agar

Lebih terperinci

Fungsi dan Grafik Diferensial dan Integral

Fungsi dan Grafik Diferensial dan Integral Sudaratno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral Darpublic Hak cipta pada penulis, SUDIRHAM, SUDARYATNO Fungsi dan Grafik, Diferensial dan Integral Oleh: Sudaratmo Sudirham Darpublic,

Lebih terperinci

Fungsi, Persamaaan, Pertidaksamaan

Fungsi, Persamaaan, Pertidaksamaan Fungsi, Persamaaan, Pertidaksamaan Disampaikan pada Diklat Instruktur/Pengembang Matematika SMA Jenjang Dasar Tanggal 6 s.d. 9 Agustus 004 di PPPG Matematika Oleh: Drs. Markaban, M.Si. Widyaiswara PPPG

Lebih terperinci

Bab 0 Pendahuluan. MA1101 Matematika 1A Semester I Tahun 2018/2019 FMIPA (K-03) Dosen: Dr. Rinovia Simanjuntak

Bab 0 Pendahuluan. MA1101 Matematika 1A Semester I Tahun 2018/2019 FMIPA (K-03) Dosen: Dr. Rinovia Simanjuntak Bab 0 Pendahuluan MA1101 Matematika 1A Semester I Tahun 2018/2019 FMIPA (K-03) Dosen: Dr. Rinovia Simanjuntak 0.1 Bilangan Real Bilangan Real Desimal Berulang dan Tak Berulang Setiap bilangan rasional

Lebih terperinci

matematika TURUNAN TRIGONOMETRI K e l a s A. Rumus Turunan Sinus dan Kosinus Kurikulum 2006/2013 Tujuan Pembelajaran

matematika TURUNAN TRIGONOMETRI K e l a s A. Rumus Turunan Sinus dan Kosinus Kurikulum 2006/2013 Tujuan Pembelajaran Kurikulum 006/03 matematika K e l a s XI TURUNAN TRIGONOMETRI Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Dapat menentukan rumus turunan trigonometri

Lebih terperinci

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran.

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran. 4 INTEGRAL Definisi 4.0. Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika untuk setiap D. F () f() Fungsi integral tak tentu f dinotasikan dengan f ( ) d dan f () dinamakan

Lebih terperinci

FUNGSI DAN GRAFIK FUNGSI.

FUNGSI DAN GRAFIK FUNGSI. FUNGSI DAN GRAFIK FUNGSI Materi ke-4 eko@uns.ac.id Materi Fungsi Fungsi Surjekti, Fungsi Injekti, dan Fungsi Bijekti Operasi Pada Fungsi Fungsi Invers Fungsi Komposisi Graik Fungsi Dalam Sistem Koordinat

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH MATEMATIKA DASAR 1* (TEKNIK KOMPUTER/D3) KODE / SKS : IT / 2 SKS

SATUAN ACARA PERKULIAHAN MATA KULIAH MATEMATIKA DASAR 1* (TEKNIK KOMPUTER/D3) KODE / SKS : IT / 2 SKS Pertemuan ke 1 & 2 Pokok Bahasan dan TIU HIMPUNAN BILANGAN Mahasiswa memahami konsep himpunan bilangan; mampu mencari himpunan yang memenuhi sebuah pertidaksamaan; mampu menggunakan induksi lengkap untuk

Lebih terperinci

PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT

PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT LA - WB (Lembar Aktivitas Warga Belajar) PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X Created By Ita Yuliana

Lebih terperinci

BAB II FUNGSI DAN GRAFIK FUNGSI

BAB II FUNGSI DAN GRAFIK FUNGSI BAB II FUNGSI DAN GRAFIK FUNGSI. Funsi. Graik Funsi. Barisan dan Deret.4 Irisan Kerucut. Funsi Dalam berbaai aplikasi, korespondensi/hubunan antara dua himpunan serin terjadi. Sebaai contoh, volume bola

Lebih terperinci

KALKULUS UNTUK STATISTIKA

KALKULUS UNTUK STATISTIKA Mulyana f( ) g( ).8.9.9 KALKULUS UNTUK STATISTIKA.8 8. BUKU AJAR g ( ) h ( ).. 8. UNIVERSITAS PADJADJARAN FAKULTAS MIPA JURUSAN STATISTIKA BANDUNG Kata Pengantar Diktat ini disusun dalam upaya pengadaan

Lebih terperinci

KRITERIA KETUNTASAN MINIMAL ( KKM ) MATA PELAJARAN MATEMATIKA KELAS X ( 1 ) SEMESTER I

KRITERIA KETUNTASAN MINIMAL ( KKM ) MATA PELAJARAN MATEMATIKA KELAS X ( 1 ) SEMESTER I KRITERIA KETUNTASAN MINIMAL ( KKM ) MATA PELAJARAN MATEMATIKA KELAS X ( 1 ) SEMESTER I KRITERIA KETUNTASAN MINIMAL ( KKM ) MATA PELAJARAN: MATEMATIKA Sekolah : SMA/MA... Kelas : X Semester : I (SATU) KKM

Lebih terperinci

KALKULUS INTEGRAL 2013

KALKULUS INTEGRAL 2013 KALKULUS INTEGRAL 0 PENDAHULUAN A. DESKRIPSI MATA KULIAH Isi pokok mata kuliah ini memuat pemahaman tentang: () Anti turunan: pengertian anti turunan, teorema-teorema, dan teknik anti turunan, () Integral

Lebih terperinci

Silabus. Nama Sekolah : SMA Mata Pelajaran : MATEMATIKA Kelas / Program : X / UMUM Semester : GANJIL

Silabus. Nama Sekolah : SMA Mata Pelajaran : MATEMATIKA Kelas / Program : X / UMUM Semester : GANJIL Silabus Nama Sekolah : SMA Mata Pelajaran : MATEMATIKA Kelas / Program : X / UMUM Semester : GANJIL Sandar Kompetensi:. Memecahkan masalah yang berkaitan dengan bentuk pangkat, akar, dan logaritma Kompetensi

Lebih terperinci

FUNGSI EKSPONENDAN PERSAMAAN DAN EKSPONEN

FUNGSI EKSPONENDAN PERSAMAAN DAN EKSPONEN FUNGSI EKSPONENDAN PERSAMAAN DAN EKSPONEN Indikator : * Menggambar grafik fungsi eksponen dengan bilangan dasar a>0 dan 0

Lebih terperinci

fungsi Dan Grafik fungsi

fungsi Dan Grafik fungsi fungsi Dan Grafik fungsi Suatu fungsi adalah pemadanan dua himpunan tidak kosong dengan pasangan terurut (x, y) dimana tidak terdapat elemen kedua yang berbeda. Fungsi (pemetaan) himpunan A ke himpunan

Lebih terperinci

19, 2. didefinisikan sebagai bilangan yang dapat ditulis dengan b

19, 2. didefinisikan sebagai bilangan yang dapat ditulis dengan b PENDAHULUAN. Sistem Bilangan Real Untuk mempelajari kalkulus perlu memaami baasan tentang system bilangan real karena kalkulus didasarkan pada system bilangan real dan sifatsifatnya. Sistem bilangan yang

Lebih terperinci

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA Mata Kuliah : Matematika Dasar 1 Kode / SKS : IT012314 / 3 SKS Program Studi : Sistem Komputer Fakultas : Ilmu Komputer & Teknologi Informasi 1 & 2 HIMPUNAN BILANGAN Mahasiswa memahami konsep himpunan

Lebih terperinci

KONSEP DASAR FUNGSI DAN GRAFIK. Oleh : Agus Arwani, SE, M.Ag

KONSEP DASAR FUNGSI DAN GRAFIK. Oleh : Agus Arwani, SE, M.Ag KONSEP DASAR FUNGSI DAN GRAFIK Oleh : Agus Arwani, SE, M.Ag KONSEP DASAR FUNGSI DAN GRAFIK Definisi : Fungsi f : A B adalah suatu aturan yang mengaitkan (memadankan) setiap dengan tepat satu A y B Notasi

Lebih terperinci

VI. FUNGSI EKSPONEN DAN FUNGSI LOGARITMA

VI. FUNGSI EKSPONEN DAN FUNGSI LOGARITMA VI. FUNGSI EKSPONEN DAN FUNGSI LOGARITMA 6. Pendahuluan A. Tujuan Setelah mempelajari bagian ini diharapkan mahasiswa dapat:. menuliskan bentuk umum fungsi eksponen; 2. menggambar grafik fungsi eksponen;

Lebih terperinci

Aljabar 1. Modul 1 PENDAHULUAN

Aljabar 1. Modul 1 PENDAHULUAN Modul 1 Aljabar 1 Drs. H. Karso, M.Pd. PENDAHULUAN M odul yang sekarang Anda pelajari adalah modul yang pertama dari mata kuliah Materi Kurikuler Matematika SMA. Materi-materi yang disajikan dalam modul

Lebih terperinci

matematika PEMINATAN Kelas X PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN K13 A. PERSAMAAN EKSPONEN BERBASIS KONSTANTA

matematika PEMINATAN Kelas X PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN K13 A. PERSAMAAN EKSPONEN BERBASIS KONSTANTA K1 Kelas X matematika PEMINATAN PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami bentuk-bentuk persamaan

Lebih terperinci

FUNGSI DAN GRAFIK FUNGSI

FUNGSI DAN GRAFIK FUNGSI FUNGSI DAN GRAFIK FUNGSI Apabila suatu besaran y memiliki nilai yang tergantung dari nilai besaran lain x, maka dikatakan bahwa besaran y tersebut merupakan fungsi besaran x. secara umum ditulis: y= f(x)

Lebih terperinci

INTEGRASI Matematika Industri I

INTEGRASI Matematika Industri I INTEGRASI TIP FTP UB Pokok Bahasan Pendahuluan Fungsi dari suatu fungsi linear Integral berbentuk Integrasi hasilkali Integrasi per bagian Integrasi dengan pecahan parsial Integrasi fungsi-fungsi trigonometris

Lebih terperinci

Asimtot.wordpress.com FUNGSI TRANSENDEN

Asimtot.wordpress.com FUNGSI TRANSENDEN FUNGSI TRANSENDEN 7.1 Fungsi Logaritma Asli 7.2 Fungsi-fungsi Balikan dan Turunannya 7.3 Fungsi-fungsi Eksponen Asli 7.4 Fungsi Eksponen dan Logaritma Umum 7.5 Pertumbuhan dan Peluruhan Eksponen 7.6 Persamaan

Lebih terperinci

KED INTEGRAL JUMLAH PERTEMUAN : 2 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS: Materi : 7.1 Anti Turunan. 7.2 Sifat-sifat Integral Tak Tentu KALKULUS I

KED INTEGRAL JUMLAH PERTEMUAN : 2 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS: Materi : 7.1 Anti Turunan. 7.2 Sifat-sifat Integral Tak Tentu KALKULUS I 7 INTEGRAL JUMLAH PERTEMUAN : 2 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS: Memahami konsep dasar integral, teorema-teorema, sifat-sifat, notasi jumlah, fungsi transenden dan teknik-teknik pengintegralan. Materi

Lebih terperinci

MATEMATIKA TEKNIK DASAR-I FUNGSI-2 SEBRIAN MIRDEKLIS BESELLY PUTRA TEKNIK PENGAIRAN

MATEMATIKA TEKNIK DASAR-I FUNGSI-2 SEBRIAN MIRDEKLIS BESELLY PUTRA TEKNIK PENGAIRAN MATEMATIKA TEKNIK DASAR-I FUNGSI-2 SEBRIAN MIRDEKLIS BESELLY PUTRA TEKNIK PENGAIRAN FUNGSI Perhatikan relasi {(x,y) x, y R; y=x 2 } Untuk tiap-tiap nilai x dalam wilayahnya, relasi itu hanya menyatakan

Lebih terperinci

SILABUS MATEMATIKA II (FIS 6219, Wajib, 3 SKS)

SILABUS MATEMATIKA II (FIS 6219, Wajib, 3 SKS) SILABUS MATEMATIKA II (FIS 6219, Wajib, 3 SKS) Kompetensi Umum Teknik integral, penggunaan integral, barisan dan deret tak hingga, fungsi dua peubah, turunan parsial dan integral ganda, persamaan differensial

Lebih terperinci

MATEMATIKA 1. Achmad Basuki Departemen Teknologi Multimedia Kreatif Politeknik Elektronika Negeri 1

MATEMATIKA 1. Achmad Basuki Departemen Teknologi Multimedia Kreatif Politeknik Elektronika Negeri 1 MATEMATIKA 1 Achmad Basuki Departemen Teknologi Multimedia Kreatif Politeknik Elektronika Negeri 1 Materi Fungsi Grafik Fungsi Sifat Simetri Fungsi Genap dan Fungsi Ganjil Operasi Pada Beberapa Fungsi

Lebih terperinci

MATEMATIKA I (FIS 6111, Wajib, 3 SKS)

MATEMATIKA I (FIS 6111, Wajib, 3 SKS) MATEMATIKA I (FIS 6111, Wajib, 3 SKS) Kompetensi Umum Sistem bilangan real, fungsi, barisan dan deret bilangan real, Limit dan keontinuan, turunan dan penggunaannya, interpretasi derivatif. Teorema Rolle,

Lebih terperinci

Trigonometri. G-Ed. - Dua sisi sama panjang atau dua sudut yang besarnya sama. - Dua sisi di seberang sudut-sudut yang sama besar panjangnya sama.

Trigonometri. G-Ed. - Dua sisi sama panjang atau dua sudut yang besarnya sama. - Dua sisi di seberang sudut-sudut yang sama besar panjangnya sama. Gracia Education Page 1 of 6 Trigonometri Pengertian Dasar Jumlah sudut-sudut dalam suatu segitiga selalu 180. Segitiga-segitiga istimewa: 1. Segitiga Siku-siku (Right-angled Triangle) - Salah satu sudutnya

Lebih terperinci

PTE 4109, Agribisnis UB

PTE 4109, Agribisnis UB MATEMATIKA EKONOMI PTE 4109, Agribisnis UB 1 Materi ang dipelajari Pengertian dan Unsur- unsur Fungsi Jenis- jenis fungsi Penggambaran fungsi Linear Penggambaran fungsi non linear -Penggal -Simetri - Perpanjangan

Lebih terperinci

LIMIT FUNGSI. A. Menentukan Limit Fungsi Aljabar A.1. Limit x a Contoh A.1: Contoh A.2 : 2 4)

LIMIT FUNGSI. A. Menentukan Limit Fungsi Aljabar A.1. Limit x a Contoh A.1: Contoh A.2 : 2 4) LIMIT FUNGSI A. Menentukan Limit Fungsi Aljabar A.. Limit a Contoh A.:. ( ) 3 Contoh A. : 4 ( )( ) ( ) 4 Latihan. Hitunglah nilai it fungsi-fungsi berikut ini. a. (3 ) b. ( 4) c. ( 4) d. 0 . Hitunglah

Lebih terperinci

Bab 3 Fungsi Elementer

Bab 3 Fungsi Elementer Bab 3 Fungsi Elementer Bab 3 ini direncanakan akan disampaikan dalam 3 kali pertemuan, dengan perincian sebagai berikut: (1) Pertemuan I: Fungsi Eksponensial dan sifat-sifatnya, Fungsi Trigonometri. ()

Lebih terperinci

TURUNAN FUNGSI (DIFERENSIAL)

TURUNAN FUNGSI (DIFERENSIAL) TURUNAN FUNGSI (DIFERENSIAL) A. Pengertian Derivatif (turunan) suatu fungsi. Perhatikan grafik fungsi f( (pengertian secara geometri) ang melalui garis singgung. f( f( f(+ Q [( +, f ( + ] f( P (, f ( )

Lebih terperinci

MBS - DTA. Sucipto UNTUK KALANGAN SENDIRI. SMK Muhammadiyah 3 Singosari

MBS - DTA. Sucipto UNTUK KALANGAN SENDIRI. SMK Muhammadiyah 3 Singosari MBS - DTA Sucipto UNTUK KALANGAN SENDIRI SMK Muhammadiyah Singosari SERI : MBS-DTA FUNGSI STANDAR KOMPETENSI Siswa mampu memecahkan masalah yang berkaitan dengan fungsi, persamaan fungsi linear dan fungsi

Lebih terperinci

1 Sistem Bilangan Real

1 Sistem Bilangan Real Learning Outcome Rencana Pembelajaran Setelah mengikuti proses pembelajaran ini, diharapkan mahasiswa dapat ) Menentukan solusi pertidaksamaan aljabar ) Menyelesaikan pertidaksamaan dengan nilai mutlak

Lebih terperinci

Silabus. Kegiatan Pembelajaran Instrume n. - Menentukan nilai. Tugas individu. (sinus, cosinus, tangen, cosecan, secan, dan

Silabus. Kegiatan Pembelajaran Instrume n. - Menentukan nilai. Tugas individu. (sinus, cosinus, tangen, cosecan, secan, dan Silabus Nama Sekolah Mata Pelajaran Kelas / Program Semester : SMK : MATEMATIKA : XI / TEKNOLOGI, KESEHATAN, DAN PERTANIAN : GANJIL Standar Kompetensi:7. Menerapkan perbandingan, fungsi,, dan identitas

Lebih terperinci

digunakan untuk menyelesaikan integral seperti 3

digunakan untuk menyelesaikan integral seperti 3 Bab Teknik Pengintegralan BAB TEKNIK PENGINTEGRALAN Rumus-rumus dasar integral tak tertentu yang diberikan pada bab hanya dapat digunakan untuk mengevaluasi integral dari fungsi sederhana dan tidak dapat

Lebih terperinci

Kalkulus 2. Teknik Pengintegralan ke - 1. Tim Pengajar Kalkulus ITK. Institut Teknologi Kalimantan. Januari 2018

Kalkulus 2. Teknik Pengintegralan ke - 1. Tim Pengajar Kalkulus ITK. Institut Teknologi Kalimantan. Januari 2018 Kalkulus 2 Teknik Pengintegralan ke - 1 Tim Pengajar Kalkulus ITK Institut Teknologi Kalimantan Januari 2018 Tim Pengajar Kalkulus ITK (Institut Teknologi Kalimantan) Kalkulus 2 Januari 2018 1 / 36 Daftar

Lebih terperinci

matematika LIMIT TRIGONOMETRI K e l a s Kurikulum 2006/2013 Tujuan Pembelajaran

matematika LIMIT TRIGONOMETRI K e l a s Kurikulum 2006/2013 Tujuan Pembelajaran Kurikulum 6/ matematika K e l a s XI LIMIT TRIGONOMETRI Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Dapat menghitung it fungsi trigonometri di suatu

Lebih terperinci

GAMBARAN UMUM SMA/MA. Hak Cipta pada Pusat Penilaian Pendidikan BALITBANG DEPDIKNAS 1

GAMBARAN UMUM SMA/MA. Hak Cipta pada Pusat Penilaian Pendidikan BALITBANG DEPDIKNAS 1 GAMBARAN UMUM Pada ujian nasional tahun pelajaran 006/007, bentuk tes Matematika tingkat berupa tes tertulis dengan bentuk soal pilihan ganda, sebanyak 0 soal dengan alokasi waktu 0 menit. Acuan yang digunakan

Lebih terperinci

*Tambahan Grafik Fungsi Kuadrat

*Tambahan Grafik Fungsi Kuadrat *Tambahan Grafik Fungsi Kuadrat GRAFIK FUNGSI KUADRAT Langkah-langkah menggambar grafik: 1. Tentukan pembuat nol fungsi y=0 atau f(x)=0 2. Tentukan sumbu simetri x = -b/2a 3. Tentukan titik puncak P (x,y)

Lebih terperinci

BAB I SISTEM BILANGAN REAL

BAB I SISTEM BILANGAN REAL BAB I SISTEM BILANGAN REAL A. Sistem Bilangan Real Sistem bilangan real sangat erat kaitannya dengan kalkulus. Sebagian dari kalkulus berdasar pada sifat-sifat sistem bilangan real, sehingga sistem bilangan

Lebih terperinci

Logaritma adalah operasi matematika yang merupakan kebalikan dari eksponen atau pemangkatan.

Logaritma adalah operasi matematika yang merupakan kebalikan dari eksponen atau pemangkatan. Logaritma adalah operasi matematika ang merupakan kebalikan dari eksponen atau pemangkatan. Rumus dasar logaritma: b c = a ditulis sebagai b log a = c (b disebut basis) Beberapa orang menuliskan b log

Lebih terperinci

Fungsi dan Grafik Diferensial dan Integral

Fungsi dan Grafik Diferensial dan Integral Sudaryatno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral ii Darpublic BAB 3 Integral () (Integral Tak Tentu) Dalam bab sebelumnya kita telah mengenal macam-macam perhitungan integral.

Lebih terperinci

Bil Riil. Bil Irasional. Bil Bulat - Bil Bulat 0 Bil Bulat + maka bentuk umum bilangan kompleks adalah

Bil Riil. Bil Irasional. Bil Bulat - Bil Bulat 0 Bil Bulat + maka bentuk umum bilangan kompleks adalah ANALISIS KOMPLEKS Pendahuluan Bil Kompleks Bil Riil Bil Imaginer (khayal) Bil Rasional Bil Irasional Bil Pecahan Bil Bulat Sistem Bilangan Kompleks Bil Bulat - Bil Bulat 0 Bil Bulat + Untuk maka bentuk

Lebih terperinci

BAB. VI. FUNGSI. Contoh 2. Dari diagram panah diatas tentukan: a. Domain b.kodomain. d.himpunan pasangan berurutan jawab:

BAB. VI. FUNGSI. Contoh 2. Dari diagram panah diatas tentukan: a. Domain b.kodomain. d.himpunan pasangan berurutan jawab: A. FUNGSI I. Pengertian Fungsi Fungsi (pemetaan) yaitu relasi khusus, dimana setiap anggota daerah asal mempunyai pasangan tepat satu dengan anggota daerah kawan A B BAB. VI. FUNGSI Keterangan: A=Daerah

Lebih terperinci

DERIVATIVE (continued)

DERIVATIVE (continued) DERIVATIVE (continued) (TURUNAN) Kus Prihantoso Krisnawan December 9 th, 2011 Yogyakarta Turunan Latihan Turunan Latihan sin (cos 1 x) = cos (sin 1 x) = sec (tan 1 x) = tan (sec 1 x) = 1 x 2 1 x 2 1 +

Lebih terperinci