Modul Matematika SMA i

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Modul Matematika SMA i"

Transkripsi

1 Modul Matematika SMA i

2 Tim Penyusun : Liya Nur Qori ah ( ) Lusiana Dian Silviani ( ) Masdain Rifa I ( ) Muchamad Misbakhudin ( ) Muhammad Eko Budi Rismanto ( ) Naela Nur Azizah ( ) Niken Nur Fadilla ( ) Nurma Ekyta Sari ( ) Neti Wahyu H ( ) Nurul Qomaria ( ) Retno Fadilah ( ) Roisatun Nisak ( ) Sinta Kumalasari ( ) Titis Nurul Hanifah ( ) Ulfa Lailatu Khusnia ( ) Ummiy Mitsla Khusnika ( ) Ulil Hikmah ( ) Yulya Elfrida Achmad ( ) Yuyun Ridhowati ( ) Tim Editor : Muhammad Eko Budi Rismanto ( ) Mochamad Misbakhudin ( ) Modul Matematika SMA i

3 KATA PENGANTAR Matematika itu sebagai ilmu dasar yang dipakai di segala bidang ilmu pengetahuan pada saat ini, yang telah berkembang sangat amat pesat baik dari materi maupun kegunaannya. Oleh karena itu, kami akan mencoba membuat sebuah modul, yang mana modul ini kami kaji dari bebrbagai buku-buku Matematika SMA/MA kurikulum Yang mana tujuan dari pembuatan modul ini adalah: 1. Mempersiapkan siswa agar mampu/berkompeten dalam menghadapi perubahan kehidupan dan mempertahankan budaya bangsa dan era globalisasi di masa yang akan datang 2. Menanamkan sifat dasar pola berfikir logis, sistematis, rasional, kritis, cermat, tekun, jujur, efisien, dan efektif. pada kesempatan ini penulis menyampaikam terima kasih yang sebesarbesarnya kepada : 1. Ibu Dian Septi Nur Afifah, selaku dosen mata kuliah Kajian & Pengembangan Bahan Ajar Matematika yang telah membimbing dalam pelaksanaan dan penyusunan modul ini. 2. Kedua orang tua serta semua pihak yang telah membantu dalam penyelesaian pembuatan modul ini. Kami menyadari bahwa penyusunan modul ini masih jauh dari kesempurnaan. Oleh karena itu, kami sebagai penyusun sangat menghargai kritik dan saran kepada pembaca modul ini. Semoga apa yang kami samapaikan dari modul ini bisa bermanfaat bagi para siswa sekalian. Selamat belajar, para siswa! Pahami dan kuasailah semua konsep dasar hingga dapat menjawab semua soal yang ada dalam modul ini. Jadi, kalian dapat merasakan bahwa matematika itu indah, mudah, dan menyenangkan. Tulungagung, Desember 2015 Penyusun Modul Matematika SMA ii

4 DAFTAR ISI KATA PENGANTAR... ii DAFTAR ISI... iii BAB I BENTUK PANGKAT, AKAR, DAN LOGARITMA Pendahuluan Pembahasan Rencana Belajar Siswa Kegiatan Belajar Kegiatan Belajar Kegiatan Belajar Kegiatan Belajar Kegiatan Belajar Evaluasi BAB II FUNGSI KUADRAT Pendahuluan Pembahasan Rencana Belajar Siswa Kegiatan Belajar Kegiatan Belajar Evaluasi BAB III SISTEM PERSAMAAN DAN PERTIDAKSAMAAN LINIER Pendahuluan Pembelajaran Rencana Belajar Siswa Kegiatan Belajar Kegiatan Belajar Kegiatan Belajar Kegiatan Belajar Evaluasi BAB IV TRIGONOMETRI Pendahuluan Pembahasan Modul Matematika SMA iii

5 4.2.1 Rencana Belajr Siswa Kegiatan Belajar Kegiatan Belajar Kegiatan Belajar Kegiatan Belajar Evaluasi BAB V LOGIKA Pendahuluan Pembahasan Rencana Belajar Siswa Kegiatan Belajar Kegiatan Belajar Kegiatan Belajar Evaluasi BAB VI DIMENSI TIGA Pendahuluan Pembahasan Rencana Belajar Siswa Kegiatan Belajar Kegiatan Belajar Kegiatan Belajar Kegiatan Belajar Evaluasi BAB VII STATISTIKA Pendahuluan Pembahasan Rencana Belajar Siswa Kegiatan Belajar Kegiatan Belajar Kegiatan Belajar Kegiatan Belajar Kegiatan Belajar Modul Matematika SMA iv

6 7.3 Evaluasi BAB VIII LINGKARAN Pendahuluan Pembahasan Kegiatan Belajar Kegiatan Belajar Kegiatan Belajar Kegiatan Belajar Kegiatan Belajar Evaluasi BAB IX SUKUBANYAK Pendahuluan Pembahasan Rencana Belajar Siswa Kegiatan Belajar Kegiatan Belajar Evaluasi DAFTAR PUSTAKA LAMPIRAN Modul Matematika SMA v

7 BAB 1 Modul Matematika SMA 1

8 1.1 PENDAHULUAN Deskripsi Dalam modul ini akan dipelajari tentang bilangan bulat pangkat positif, negatif, pecahan, bentuk akar, merasionalkan penyebut bentuk akar, dan logaritma, dimana di dalam modul ini akan dijelaskan mengenai materi tersebut serta membantu siswa-siswi lebih memahami akan materi itu Prasyarat Dalam mempelajari modul ini, para siswa diharapkan telah menguasai kompetensi sebelumnya yaitu dasar-dasar penjumlahan, pengurangan, perkalian, dan pembagian bilangan real Petunjuk Penggunaan Modul Untuk mempelajari modul ini, hal-hal yang perlu diperhatikan antara lain adalah: a. Pelajari daftar isi serta kedudukan modul dengan cermat dan teliti. Karena dalam skema modul akan tampak kedudukan modul yang sedang anda pelajari dengan modul-modul yang lain. b. Kerjakan soal-soal dalam cek kemampuan untuk mengukur sampai sejauh mana pengetahuan dan kemampuan yang telah anda miliki. c. Apabila dari soal cek kemampuan telah anda kerjakan mendapat score (nilai) 70, maka anda dapat langsung menuju Evaluasi untuk mengerjakan soal-soal tersebut. Tetapi bila hasil jawaban tidak mencapai nilai 70, maka anda harus mengikuti kegiatan pembelajaran dalam modul ini. d. Pahami setiap materi teori dasar yang akan menunjang dalam penugasan suatu pekerjaan dengan membaca secara teliti. e. Pahamilah contoh-contoh soal yang ada, dan kerjakan semua soal latihan yang ada. Jika dalam mengerjakan soal menemui kesulitan, kembalilah mempelajari materi terkait. Modul Matematika SMA 2

9 f. Kerjakanlah soal evaluasi dengan cermat. Jika anda menemui kesulitan dalam mengerjakan soal evaluasi maka kembalilah mempelajari materi terkait. g. Jika anda menemui kesulitan yang sulit dipecahkan, maka catatlah dan kemudian tanyakan kepada guru saat kegiatan belajar mengajar atau bacalah referensi lain yang berhubungan dengan materi yang terkait Tujuan Akhir Setelah melaksanakan seluruh kegiatan belajar dalam modul ini diharapkan anda dapat : a. Memahami bilangan bulat pangkat positif, negatif dan nol b. Memahami sifat-sifat bilangan berpangkat bulat c. Memahami bentuk akar d. Memahami sifat-sifat bentuk akar e. Menyederhanakan bentuk akar f. Menghitung operasi aljabar bentuk akar g. Merasionalkan penyebut bentuk akar h. Memahami bilangan berpangkat pecahan i. Mengenal pengertian logaritma j. Mengenal penulisan dan cara membaca logaritma k. Mengenal sifat-sifat logaritma l. Menentukan nilai logaritma m. Menyederhanakan bentuk logaritma dengan sifat logaritma n. Menentukan logaritma suatu bilangan dengan menggunakan kalkulator Modul Matematika SMA 3

10 1.1.5 Kompetensi Kode Unit : Judul Unit : Pangkat dan Akar Uraian Unit : Uraian ini berlaku untuk materi tentang pangkat dan akar Sub Kompetensi 1. Bilangan bulat pangkat positif, negatif, nol, dan pecahan Indikator 1.1 Pengertian pangkat bulat positif 1.2 Sifat-sifat operasi pangkat bulat positif 1.3 Pangkat bulat negatif dan nol 1.4 Pengertian bilangan pangkat pecahan 1.5 Penyelesaian operasi aljabar bilangan pangkat pecahan 2. Bentuk akar 2.1 Mengenal dan memahami bentuk akar 2.2 Operasi penjumlahan dan pengurangan bentuk akar 2.3 Operasi perkalian dan pembagian bentuk akar 2.4 Merasionalkan penyebut bentuk akar 2.5 Menyederhanakan bentuk akar 3. Logaritma 3.1 Mengenal pengertian logaritma 3.2 Mengenal penulisan dan cara membaca logaritma 3.3 Mengenal dan memahami sifat-sifat logaritma 3.4 Menentukan nilai logaritma 3.5 Penyederhanaan bentuk loaritma dengan menggunakan sifat logaritma 3.6 Menentukan logaritma suatu bilngan dengan menggunakan kalkulator Acuan Penilaian 1. Unit kompetensi ini dapat diujikan secara langsung kepada peserta didik di kelas 2. Aspek-aspek kritikal yang dinilai Mengenal bilangan pangkat positif, negatif, dan nol Mengenal bentuk akar Mampu menyelesaikan operasi aljabarnya Mengenal dan memahami pengertian logaritma Dapat menyederhanakan bentuk logaritma dengan sifat logaritma 3. Kompetensi yang harus dikuasai sebelumnya yaitu operasi aljabar 4. Sikap yang dituntut: Mengerjakan dengan rapi dan bersih Mengerjakan dengan ketelitian Efisien dan optimal dalam mengerjakan Bersikap positif dan terbuka terhadap penilaian hasil pekerjaan oleh atasan Modul Matematika SMA 4

11 1.1.6 Cek Kemampuan Petunjuk: Berilah tanda ( ), pada kolom Jawaban : Ya atau Tidak jawaban yang anda pilih. No 1. Pertanyaan Apakah anda mengetahui apa itu bilangan berpangkat bulat positif, negatif, dan nol? 2. Apakah anda mengetahui sifat-sifat bilangan berpangkat bulat? Jawaban Ya Tidak 3. Apakah anda mengetahui bentuk akar? 4. Apakah anda mengetahui sifat-sifat bentuk akar? 5. Apakah anda mengetahui cara penyederhanaan bentuk akar? 6. Apakah anda dapat menyelesaikan operasi aljabar bentuk akar? 7. Apakah anda dapat merasionalkan penyebut bentuk akar? 8. Apakah anda memahami bilangan berpangkat pecahan? 9. Apakah anda mengetahui pengertian logaritma? 10. Apakah anda mengenal dan memahami sifat-sifat logaritma? Skor (nilai)..., Modul Matematika SMA 5

12 PETA KONSEP Eksponen dan Logaritma Pangkat Bulat Positif, Negatif, Nol, dan Pecahan Bentuk Akar Logaritma Sifat-Sifat Bentuk Akar Operasi Aljabar Sifat-sifat Pangkat Bulat Operasi Aljabar Sifat Logaritma Nilai Logaritma Modul Matematika SMA 6

13 1.2 PEMBAHASAN Rencana Belajar Siswa a. Pada setiap kegiatan belajar, pahamilah uraian tujuan kegiatan belajar, agar mengetahui kemampuan apa yang akan dicapai pada setiap kegiatan. b. Peralatan dan bahan yang harus dibawa pada pertemuan atau tatap muka berikutnya harus dibaca sebelum kegiatan dilaksanakan. c. Sebelum melaksanakan kegiatan harus memahami terlebih dahulu setiap langkah kerja yang dilaksanakan, apabila kurang jelas dapat menanyakan kepada guru/instruktur. d. Kerjakanlah setiap latihan dengan bersungguh-sungguh agar kemampuan anda yang sebenarnya diketahui Kegiatan Belajar I Bilangan Berpangkat Bulat A. Definisi Pangkat Bulat Positif Perhatikan bentuk perkalian berikut. 32 = 2 x 2 x 2 x 2 x 2 = = 3 x 3 x 3 x 3 = 3 4 Bentuk perkalian tersebut menurut perkalian faktor-faktor yang berulang. Perkalian faktor-faktor yang berulang dapat dituliskan dalam bentuk bilangan berpangkat bulat positif. Definisi bilangan berpangkat bulat positif Untuk ɑ bilangan real dan n bilangan bulat positif berlaku ɑ n = ɑ x ɑ x ɑ x... x ɑ, dimana ɑ > 0, n > 0, dan ɑ R. ɑ n dibaca ɑ pangkat Modul Matematika SMA 7

14 n disebut bilangan berpangkat (bilangan eksponen), ɑ disebut bilangan pokok (basis), dan n disebut pangkat (eksponen). B. Sifat-Sifat Bilangan Berpangkat Bulat Positif Sifat pertama bilangan berpangkat adalah tentang pekalian bilangan-bilangan berpangkat dengan bilangan pokok yang sama. Untuk ɑ bilangan real, m dan n bilangan bulat positif berlaku sifat: ɑ m x ɑ n = ɑ m+n Untuk mengalikan bilangan-bilangan berpangkat dengan bilangan pokok yang sama, tambahkan pangkatnya dan gunakan bilangan pokok bersama. Contoh: 6 5 x 6 3 = x 6 3 = ( ) x (6.6.6) 6 5 x 6 3 = 6 8 = ( ) Sifat kedua bilangan berpangkat adalah tentang pembagian bilangan-bilangan berpangkat dengan bilangan pokok yang sama. Untuk ɑ bilangan real, m dan n bilangan bulat positif berlaku sifat: ( ɑm ɑ n ) = ɑm-n dengan ɑ 0 Untuk membagi bilangan-bilangan berpangkat, dengan bilangan pokok yang sama, kurangkan pangkatnya dan gunakan bilangan pokok bersama. Contoh: x 7 x 3 x 7 x 3 = x.x.x.x.x.x.x x.x.x = x. x. x. x = x4 Sifat ketiga adalah tentang suatu pernyataan yang mengandung bilangan berpangkat diberi pangkat lain. Untuk ɑ bilangan real, m dan n bilangan bulat positif berlaku sifat: (ɑ m ) n = ɑ mxn Modul Matematika SMA 8

15 Contoh: (5 3 ) 2 = (5 3 ) (5 3 ) = = 5 6 pangkat. Sifat keempat adalah tentang suatu perkalian yang diberi (ɑ x b) m = ɑ m b m Misalnya: (2 x 3) 5 = (2 x 3). (2 x 3). (2 x 3). (2 x 3). (2 x 3) pangkat. = (2 x 2 x 2 x 2 x 2). (3 x 3 x 3 x 3 x 3) = 2 5 x 3 5 Sifat kelima adalah tentang suatu pembagian yang diberi Untuk ɑ dan b bilangan real, b 0, dan m adalah bilangan bulat positif berlaku sifat: ( a b )m = am dengan b 0 bm Suatu pembagian yang dipangkatkan adalah sama dengan pembagian bilangan-bilangan itu setelah masing-masing dipangkatkan. Definisi bilangan berpangkat nol Untuk ɑ 0, berlaku a 0 = 1 Contoh: 8 0 = 1, (ab) 0 = 1 untuk ɑ 0 dan b 0 Definisi bilangan berpangkat bulat negatif Jika ɑ adalah bilangan real, ɑ 0, dan n bilangan bulat positif maka ɑ -n = 1 1 an atau a Contoh: 2 1 = 1 2 n = ɑn 3 2 = = 1 9 Modul Matematika SMA 9

16 Rangkuman 1. Jika a bilangan real dan n bilangan bulat positif maka ɑ n ditentukan oleh: ɑ n = a a a, dengan a disebut bilangan pokok dan n disebut pangkat. 2. Sifat-sifat bilangan berpangkat bulat Untuk sebarang bilangan real a dan b serta sebarang bilangan bulat m dan n berlaku : ɑ m a n = a m+n (ab) m = a m b m a m n = a m n ɑm ɑ n = am n, dengan m > n dan a 0 0 a b m = a m bm, dengan b 0 a 0 = 1, dengan a 0 a n = 1, dengan a 0 an Tes Formatif 1. Sederhanakan hasil operasi bilangan berpangkat berikut : a b c Dengan menggunakan sifat bilangan berpangkat, sederhanakan bentuk berikut: a b. 3 4 c. x 3 x 3 Modul Matematika SMA 10

17 Lembar Penilaian Nama : No. Absen : Judul Tugas : No. Kriteria Penilaian Rentang Nilai Nilai Prestasi 1. Benar cara maupun hasilnya Benar cara, hasil salah Benar hasil, cara salah 0-20 Jumlah Jumlah x 100% Jumlah Nilai Akhir Kesimpulan : Lulus / Tidak Lulus.,..20 Modul Matematika SMA 11

18 1.2.3 Kegiatan Belajar Bentuk Akar dan Pangkat Pecahan a. Pemahaman Bentuk Akar Pernyataan bentuk akar n x, dengan n bilangan bulat yang lebih besar daripada 1. Adapun n disebut indeks dan notasi disebut tanda akar. Notasi untuk akar pangkat tiga ditulis notasi untuk akar kuadrat ditulis 2 3 x, sedangkan x atau lebih sering disingkat dengan x. selanjutnya akan dipelajari tentang bentuk akar kuadrat. Suatu bilangan dikatakan sebagai bentuk akar kuadrat jika bilangan yang terdapat di dalam tanda bukan bilangan kuadrat. Beberapa bilangan kuadrat ditunjukkan pada tabel berikut. Bilangan kuadrat Akar positif dari N N N 0,16 0,4 0,36 0, Modul Matematika SMA 12

19 b. Sifat-Sifat Bentuk Akar Sifat-sifat bentuk akar memudahkan Anda untuk menyelesaikan operasi aljabar yang melibatkan bentuk akar. Perhatikan sifat-sifat bentuk akar berikut : 1. a 2 = ɑ; ɑ 0 2. a x b = a x b; ɑ 0 dan b 0 3. a b = a b ; ɑ 0 dan b > 0 m n 4. a mn = a c. Menyederhanakan Bentuk Akar Untuk memudahkan penggunaan bentuk akar dalam operasi aljabar, sebaiknya bentuk aljabar dituliskan dalam bentuk yang paling sederhana. Penulisan bentuk akar dikatakan sederhana jika memenuhi syarat-syarat sebagai berikut : 1. Tidak memuat faktor yang pangkatnya lebih dari satu. Contoh: x, x > 0 x 5 dan x 3 bukan bentuk sederhana, bentuk sederhananya adalah x 2 x dan x x 2. Tidak ada bentuk akar pada penyebut Contoh: 1 x bukan bentuk sederhana 1 x = 1 x x x x = x x bentuk sederhana 3. Tidak mengandung pecahan Contoh: 5 2 bukan bentuk sederhana Modul Matematika SMA 13

20 10 2 bentuk sederhana d. Operasi Aljabar Bentuk Akar Penjumlahan dan pengurangan Bentuk aljabar hanya bisa dijumlahkan atau dikurangkan pada variabel-variabel yang sejenis. Begitupula dengan penjumlahan dan pengurangan bentuk akar, variabel-variabelnya juga sejenis. Jika p, q R dan ɑ 0 maka: p a + q a = (p + q) a p a - q a = (p - q) a contoh : 7c = (7-2+1) 5 Perkalian bentuk akar Sebelumnya telah diketahui bahwa axb = a x b. sifat tersebut tentu dapat dibalik menjadi Contoh: a x b = a x b Untuk p, q R dan ɑ 0 dan b 0, berlaku: p a x q a = (pq) axb 2 2 x 5 3 = (2 x 5) 2 x 3 = 10 6 Pembagian bentuk akar Misal: Untuk ɑ, b R dan ɑ 0 dan b > 0, berlaku : 18 6 = 18 6 = 3 a = a b b Modul Matematika SMA 14

21 Rangkuman n 1. Bentuk akar x, dengan n bilangan bulat yang lebih besar daripada 1. Adapun n disebut indeks dan notasi disebut tanda akar. 2. Sifat-sifat bentuk akar sebagai berikut : a. a 2 = ɑ ; ɑ 0 b. a x b = a x b ; ɑ 0 dan b 0 c. a b = a b ; ɑ 0 dan b > 0 d. m n a mn = a 3. Syarat-syarat penyederhanaan bentuk akar, sebagai berikut : 1. Tidak memuat faktor yang pangkatnya lebih dari satu. 2. Tidak ada bentuk akar pada penyebut 3. Tidak mengandung pecahan 4. Operasi Aljabar Bentuk Akar Penjumlahan dan pengurangan Jika p, q R dan ɑ 0 maka : p a + q a = (p + q) a p a - q a = (p - q) a Perkalian bentuk akar Untuk p, q R dan ɑ 0 dan b 0, berlaku : p a x q a = (pq) axb Pembagian bentuk akar Untuk ɑ, b R dan ɑ 0 dan b > 0, berlaku : a = a b b Modul Matematika SMA 15

22 Tes Formatif Untuk menguji pemahaman Anda kerjakan soal latian berikut. 1. Tentukan bentuk akar atau bukan. a. 8 b Sederhanakan bentuk akar berikut : a. 12 b. 48 x 4 y Selesaikan operasi aljabar pada bentuk akar berikut a b Lembar Penilaian Nama : No. Absen : Judul Tugas : No. Kriteria Penilaian Rentang Nilai Nilai Prestasi 1. Benar cara maupun hasilnya Benar cara, hasil salah Benar hasil, cara salah 0-20 Jumlah Jumlah x 100% Jumlah Nilai Akhir Kesimpulan : Lulus / Tidak Lulus.,..20 Modul Matematika SMA 16

23 1.2.4 Kegiatan Belajar Merasionalkan Penyebut Merasionalkan penyebut a b ; b > 0 Untuk merasionalkan penyebut dalam bentuk pecahan a b, pecahan tersebut harus dikalikan dengan b b. dengan demikian proses merasionalkan penyebut dalam pecahan a b adalah a b = a b x b b Merasionalkan penyebut c a± b atau c a± b b = a b Anda telah menggunakan sifat perkalian istimewa a + b a b=a2 b2 atau a ba+b=a2 b2. Bentuk (a b) disebut kawan dari (a + b) dan (a + b) adalah kawan dari (a b). Anda telah melihat bahwa hasil kali dari pasangan sekawan seperti ini selalu menghasilkan bilangan rasional. Sebagai contoh : (ɑ + b) (ɑ - b) = (ɑ) 2 - ( b ) 2 = ɑ 2 b ( a + b) ( a - b) = ( a) 2 - ( b ) 2 = ɑ b Sekarang akan dijelaskan tentang merasionalkan penyebut yang bentuk akarnya berupa jumlah atau selisih dari dua bilangan. Caranya dengan mengalikan baik pembilang maupun penyebut dari pecahan tersebut dengan pasangan bentuk sekawan. Contoh: c a+ b = a+ c b x a b a b = c (a b) a 2 ( b )2 c (a = b) a 2 b c a b = a Pangkat Pecahan c b x a+ b a+ b = c (a+ b) a 2 ( b )2 Definisi bilangan berpangkat pecahan c (a+ = b) a 2 b Untuk mengetahui definisi bilangan berpangkat pecahan, pelajarilah uraian berikut. Misalnya : 3 = 3 a Modul Matematika SMA 17

24 ( 3) 2 = (3 a ) 2 3 = 3 2a 3 1 = 3 2a 1 = 2 a a = 1 2 Jadi, 3 = (3) 1 2 Hasil akhir tersebut menggambarkan definisi bilangan berpangkat pecahan sebagai berikut: Jika a 0, m dan n bilangan bulat positif (bilangan asli) maka, a m n = n a m atau n a m =a m n Catatan : a boleh negatif jika n bilangan ganjil, sebagai contoh: = ( 1) 3 = = ( 2) 5 = -2 Akan tetapi, untuk bilangan genap diperoleh 1 = 1 Sebelum mempelajari beberapa contoh soal, perlu Anda ketahui bahwa sifat-sifat pada bilangan berpangkat bulat juga berlaku bagi bilangan berpangkat pecahan. Contoh: Sifat a n = 1 an berlaku untuk pangkat pecahan, a 1 3 = 1 1 a 3 a 2 5 = 1 2 a 5 Contoh: 1 1 a 2 Demikian juga dengan sifat 1 a n = an = a 1 2, 1 3 a 5 = a 3 5 Merasionalkan penyebut n a m, n bulat > 2 Pada bagian sebelumnya, Anda telah mempelajari cara merasionalkan penyebut suatu pecahan yang memiliki bentuk a, Modul Matematika SMA 18

25 (a ± b ), dan ( a ± b ). Bagaimanakah merasionalkan pecahan yang penyebutnya memiliki bentuk n a m (n bulat > 2), seperti 1 3, x, 7 3, atau x 7 3? 1+x Pada prinsipnya, langkah-langkah merasionalkan pecahan yang penyebutnya berbentuk n a m ; n > 2 adalah sebagai berikut: n 1. Ubah penyebut a m Contoh: = 3 = ke pangkat a m n 2. Kalikan pecahan tersebut dengan p an p an sehingga penyebutnya memiliki pangkat bulat positif terdekat ke a m n Contoh: Pangkat bulat positif terdekat ke adalah 2 1. Supaya penyebut menjadi = 2 1 maka harus dikalikan dengan Jadi, 1 = Contoh soal: x = = 3 2 = = Sederhanakan pecahan berikut dengan merasionalkan penyebutnya. 7 5 = 7 1 = 7 1 x x 5 x 5 4 x x 5 4 x 5 4 = x = 7 5 x4 x 1 x = Modul Matematika SMA 19

26 Rangkuman 1. Merasionalkan Penyebut a. Merasionalkan penyebut a b ; b > 0 a b = a b x b b = a b b. Merasionalkan penyebut b c a± b atau c a± b c a+ b = a+ c b x a b a b = c (a b) a 2 ( b )2 c (a = b) a 2 b c a b = a 2. Pangkat Pecahan c b x a+ b a+ b = c (a+ b) a 2 ( b )2 c (a+ = b) a 2 b Jika a 0, m dan n bilangan bulat positif (bilangan asli) maka, a m n = n a m atau n a m =a m n Catatan : a boleh negatif jika n bilangan ganjil n 3. Merasionalkan penyebut a m, n bulat > 2 Langkah-langkah merasionalkan pecahan yang penyebutnya berbentuk n a m ; n > 2 adalah sebagai berikut : n a. Ubah penyebut a m ke pangkat a m n b. Kalikan pecahan tersebut dengan p an p an sehingga penyebutnya memiliki pangkat bulat positif terdekat ke a m n Modul Matematika SMA 20

27 Tes Formatif 1) Sederhanakan pecahan-pecahan berikut dengan merasionalkan penyebutnya a b x ; x>0 2) Jika p = dan q =, hitunglah operasi berikut : p + q 3) Ubahlah bentuk pangkat pecahan berikut ke bentuk akar paling sederhana b. ɑ 3 2 4) Sederhanakan pecahan berikut dengan merasionalkan penyebutnya. 7 5 x Lembar Penilaian Nama : No. Absen : Judul Tugas : No. Kriteria Penilaian Rentang Nilai Nilai Prestasi 1. Benar cara maupun hasilnya Benar cara, hasil salah Benar hasil, cara salah 0-20 Jumlah Jumlah x 100% Jumlah Nilai Akhir Kesimpulan : Lulus / Tidak Lulus,. 20 Modul Matematika SMA 21

28 1.2.5 Kegiatan Belajar Pengertian dan konsep logaritma Logaritma adalah kebalikan dari perpangkatan. Jadi apabila diketahui a x = b maka x dapat ditentukan dengan logaritma yang berbentuk X = a log b b = a x dimana: a disebut basis (0 < a < 1 atau a > 1) b disebut numerus (b > 0) x disebut hasil logaritma Diskusi Contoh: Jika a log x = 3 dan 3a log y = 3, tentukan nilai y x Penyelesaian: Pada definisi logaritma diperoleh a log x = 3 maka x = a 3 3a log y = 3 maka y = (3a) 3 = 27a 3 Jadi, x = 27a 3 = 27 y a Sifat-sifat logaritma Sifat dasar logaritma: Logaritma merupakan invers dari perpangkatan. Oleh karena itu terdapat 3 sifat dasar logaritma, yaitu: Misalkan a dan n bilangan real, a > 0 dan a 1, maka : 1. a log a = 1 2. a log 1 = 0 3. a log a n = n Contoh: 1. a log a = x a x = a sehingga x = 1 atau a log a = 1 2. a log 1 = y a y = 1. Karena a 0 = 1, maka y = 0 3. a log a n = z a x = a n sehingga z = n serta a log a n = n Modul Matematika SMA 22

29 Sifat 1 Untuk a, b, dan c bilangan real positif, a 1, dan b > 0, berlaku a log (b c) = a log b + a log c (Logaritma perkalian dua bilangan sama dengan jumlah logaritma masing-masing bilangan) Bukti: Berdasarkan definisi, maka diperoleh : a log b = x b = a x a log c = y c = a y Dengan mengalikan nilai b dan c maka : b c = a x a y b c = a x+y a log (b c) = x + y substitusi x dan y a log (b c) = a log b + a log c terbukti Contoh: Jika 4 log 3 = p, 4 log 5 = q, 4 log 8 = r, hitunglah: 4 log log 64 Penyelesaian: 4 log log 64 = 4 log (3 5) + 4 log (8 8) = 4 log log log log8 = p + q + r + r = p + q + 2r Sifat 2 Untuk a, b, dan c bilangan real dengan a > 0, a 1, dan b > 0, berlaku: a log b = a log b a log c c (Logaritma dari pembagian dua bilangan sama dengan logaritma bilangan yang dibagi dikurangi logaritma bilangan pembagi) Bukti: Berdasarkan definisi, maka diperoleh : Modul Matematika SMA 23

30 a log b = x b = a x a log c = y c = a y Dengan membagi b dan c, maka diperoleh : b c = ax a y b c a log b c a log b c = a x-y = alog a x-y = x y substitusi x dan y a log b c = a log b a log c terbukti Contoh: Jika log 2 = 0,3010 hitunglah log 5! Penyelesaian: log 5 = 10 2 = log 10 log 2 = 1 0,3010 = 0,6990 Sifat 3 Untuk a, b, dan n bilangan asli, a > 0, b > 0, a 1, berlaku a log b n = n a log b (Logaritma suatu bilangan berpangkat sama dengan hasil kali pangkat bilangan tersebut dengan logaritma bilangan itu sendiri) Bukti: a log b n = a log b b b b n faktor a log b n = a log b + alog b + a log b + + a log b sifat 2 a log b n = n a log b Contoh: 5 log log 2 2 Penyelesaian: n faktor terbukti 5 log log 2 = 5 log = 5 log 25 = 5 log 5 2 = 2 Modul Matematika SMA 24

31 Tes Formatif 1. Nyatakan dalam bentuk logaritma yang ekuivalen : a. a n = b b. 3 x = y 2. Nyatakan bentuk berikut menjadi bentuk pangkat : 2 3 a. log x = n b. log a = y 10 2 c. log 100 = 2 d. log a = 5 3. Hitunglah nilai logaritma berikut : a. 5 log 625 b. 5 log 0,2 4. Sederhanakan! 6 6 a. log 4 + log 54 b. log 25 + log c. log 7 log d. log 16 log 4 e. 2 log log 3 f. 2 log 5 log Lembar Penilaian Nama : No. Absen : Judul Tugas : No. Kriteria Penilaian Rentang Nilai Nilai Prestasi 1. Benar cara maupun hasilnya Benar cara, hasil salah Benar hasil, cara salah 0-20 Jumlah Jumlah x 100% Jumlah Nilai Akhir Kesimpulan : Lulus / Tidak Lulus.,.20 Modul Matematika SMA 25

32 1.2.6 Kegiatan Belajar Lanjutan Kegiatan Belajar 1, Mengenai Sifat-Sifat Logaritma: Sifat 1 Untuk a, b, dan c bilangan real positif, a 1, b 1, dan c 1, berlaku 1. a log b = c log b c log a atau 2. a log b = 1 b log a Bukti: Berdasarkan definisi: a log b = x b = a x Ambil sebarang c bilangan real dan c 1 sedemikian sehingga: c log b = c log a x c log b = x c log a x = c log b c log a ingat sifat 3 a log b = c log b c log a terbukti Karena c bilangan real dan c 1, maka dengan ketentuan diatas dapat dipenuhi c = b sehingga diperoleh: a log b = b log b b log a = 1 b log a terbukti Contoh: Jika 3 log 5 = p, tunjukkan bahwa : 5 log 3 = 1 p Penyelesaian: 5 log 3 = 3 log 3 3 log 5 = 1 p ambil 3 sebagai bilangan pokok baru. Sifat 2 Untuk a, b, dan c bilangan real positif dengan a 1 dan b 1, a log b b log c = a log c Modul Matematika SMA 26

33 Bukti: Berdasarkan definisi, maka diperoleh : a log b = x b = a x b log c = y c = b y a log b b log c = a log a x b log b y a log b b log c = a log b b log b y ingat c = b y a log b b log c = y a log b b log b sifat dasar log a log b b log c = y a log b ingat sifat 3 a log b b log c = a log b y ingat c = b y a log b b log c = a log c terbukti Contoh: Hitunglah 2 log 5 5 log 16 Penyelesaian: 2 log 5 5 log 16 = 2 log 16 = 2 log 2 4 = 4 Sifat 3 Untuk a dan b bilangan real positif dengan a 1, berlaku a a. m log b n = n a log b m a b. m log b n = a log b Dimana m, n bilangan real dan m 1 Contoh: Hitunglah 8 log 16! Penyelesaian: 8 log 16 = 2 3 log 2 4 = 4 2 log 2 3 = 4 1 = Menentukan logaritma suatu bilangan dengan menggunakan logaritma Untuk menentukan nilai logaritma, pastikan kalkulator yang anda gunakan adalah kalkulator Scientific. Berikut akan dicontohkan cara menentukan nilai 2 log 35 dengan menggunakan Modul Matematika SMA 27

34 kalkulator Scientific Casio fx-82es. Anda cukup menekan tombol berikut secara berurutan. Tombol yang ditemukan Hasil Layar log log ( ) 2 Log Replay 3 5 log 2 (35) = log 2 2, Contoh: Tentukan nilai dari log 7,8 Penyelesaian: Untuk menentukan hasil logaritma dari log 7,8 maka tomboltombol yang ditekan adalah sebagai berikut: Tombol yang ditekan Hasil layar log log ( 7. 8 ) = log 2 (7.8) log (7.8) 0, Modul Matematika SMA 28

35 Tes Formatif 1. Jika 2 log 3 = a, nyatakan logaritma-logaritma berikut dalam bentuk a a. 8 log 3 b. 4 log 81 c. 8 log Sederhanakan! a. p log 5 5 log y y log p b. 2 log 25 5 log 16 c. 3 log 16 ( 4 log log 3) d. 9 log 3 3 log Diketahui 2 log 3 = a, nyatakan dalam bentuk a dari logaritma berikut: a. 2 log 27 b. 8 log 9 c. 4 log 9 4. Dengan menggunakan kalkulator tentukanlah! a. log 4,186 b. log 4,2 c. log 0,096 d. log Lembar Penilaian Nama : No. Absen : Judul Tugas : No. Kriteria Penilaian Rentang Nilai Nilai Prestasi 1. Benar cara maupun hasilnya Benar cara, hasil salah Benar hasil, cara salah 0-20 Jumlah Jumlah x 100% Jumlah Nilai Akhir Kesimpulan : Lulus / Tidak Lulus Tulungagung, Desember 2015 Modul Matematika SMA 29

36 1.3 EVALUASI Soal Evaluasi 1. Tentukan operasi dari bilangan-bilangan berikut: 2. Nilai dari ɑ2 b 3 c 1 a. 3x 4 x x 2 b. (3ɑ 3 b 2 ) 4 c. ( x 6 ɑ 2 b c 2 untuk a = 2, b = 3, dan c = 5 adalah Bentuk sedehana dari bentu akar (3x + 5) 9, dengan 3x adalah Bentuk sederhana dari ( )2 adalah Ubahlah bentuk akar berikut ke bentuk pangkat 4 a. 2x x 3 6. Sederhanakan bentuk akar berikut: b. 3x 2 3, x > 0 a b Hitunglah: x 2 x 2)3 a. log 21 log 210 b. log 25 log 5 2 c. 3 log 4,5 + 3 log 6 d. 6 log log 8 6 log 2 e. log 2 + log 10 log 1 5 f. 3 log 45 9 log 25 g. log log 3 log Sederhanakan! a. 2 log log 3 b. 1 2 log log c. 5 log log 4 d. 2l og 24 8 log 27 e. 5 log 9 9 log 625 f. 5 log log 2 log 25 g. 8 log 8 2 log 2 9. Jika 5 log log 125 = x, maka nilai x adalah Diketahui 3 log 7 = a, 5 log 2 = b, dan 2 log 3 = c. Nyatakan logaritma berikut dalam bentuk a, b, dan c a. 7 log 3 b. 4 log 5 c. 3 log Jika 3 log 5 = p, tunjukkan bahwa 9 log 5 = 1 4 p 12. Diketahui 2 log 7 = a dan 2 log 3 = b, maka nilai dari 6 log 14 adalah Diketahui 3 log 4 = p dan 3 log 5 = q, maka nilai dari 3 log 80 adalah Dengan menggunakan kalkulator, tentukan nilai logaritma berikut: a. log 4,6 b. log 5,2 c. log 69,4 d. log 0,17 Modul Matematika SMA 30

37 1.3.2 Lembar Penilaian Nama : Kelas : No. Absen : Judul Tugas : No. Kriteria Penilaian Rentang Nilai Tes Formatif Nilai Prestasi Evaluasi 1. Benar cara maupun hasilnya Benar cara, hasil salah Benar hasil, cara salah 0 20 Jumlah Jumlah Jumlah x 60 % Jumlah x 40% Jumlah Nilai Akhir Kesimpulan: Lulus/Tidak Lulus...,...Th... Modul Matematika SMA 31

38 BAB 2 Modul Matematika SMA 32

39 2.1 PENDAHULUAN Deskripsi Modul ini berisi tentang Fungsi Kuadrat yang meliputi menggambar sketsa grafik fungsi kuadrat, membentuk fungsi kuadrat Prasyarat Dalam melaksanakan modul ini diperlukan prasyarat telah menguasai kompetensi yang ada pada modul-modul sebelumnya yaitu koordinat kartesius, sistem linier dua variabel Petunjuk Penggunaan Modul a. Pelajari daftar isi serta kedudukan modul dengan cermat dan teliti. Karena dalam skema modul akan tampak kedudukan modul yang sedang anda pelajari dengan modul-modul yang lain. b. Kerjakan soal-soal dalam cek kemampuan untuk mengukur sampai sejauh mana pengetahuan dan kemampuan yang telah anda miliki. c. Apabila dari soal cek kemampuan telah anda kerjakan mendapat nilai 70, maka anda dapat langsung menuju Evaluasi untuk mengerjakan soal-soal tersebut. Tetapi bila hasil jawaban tidak mencapai nilai 70, maka anda harus mengikuti kegiatan pembelajaran dalam modul ini. d. Perhatikan langkah-langkah dalam melakukan pekerjaan dengan benar untuk mempermudah dalam memahami suatu proses pekerjaan. e. Pahami setiap materi teori dasar yang akan menunjang dalam penugasan suatu pekerjaan dengan membaca secara teliti. Kemudian kerjakan soal-soal evaluasi sebagai sarana latihan. f. Untuk menjawab test formatif usahakan memberi jawaban singkat, jelas dan kerjakan sesuai dengan kemampuan anda setelah mempelajari modul ini. g. Bila terdapat penugasan, kerjakan dengan baik dan bilamana perlu konsultasikan hasil tersebut pada guru / instruktur. h. Catatlah kesulitan yang anda dapatkan dalam modul ini untuk ditanyakan pada guru/instruktur pada saat kegiatan tatap muka. Modul Matematika SMA 33

40 Bacalah referensi lainya yang berhubungan dengan materi modul agar anda mendapatkan tambahan pengetahuan Tujuan akhir Setelah melaksanakan seluruh kegiatan belajar dalam modul ini diharapkan anda dapat memiliki kemampuan: 1. Menggambar sketsa grafik fungsi kuadrat, 2. Membentuk suatu fungsi kuadrat Kompetensi Kode Unit: MAT.FGS.SMA.1 Judul Unit: Menggambar dan membuat sketsa grafik fungsi kuadrat Uraian Unit: Unit ini berlaku untuk pekerjaan menggambar sketsa grafik fungsi kuadrat menggunakan peralatan dan perlengkapan gambar manual Sub Kompetensi 1. Melakukan persiapan pekerjaan menggambar grafik fungsi kuadrat. 2. Menggambar titik potong grafik dengan sumbu koordinat Kriteria Unjuk Kerja 1.1. Macam-macam bentuk grafik fungsi kuadrat dan istilah dikenali dan dipahami Peralatan dan perlengkapan gambar yang dibutuhkan dipilih dan disiapkan Media gambar yang dibutuhkan dipilih dan disiapkan Peralatan dan perlengkapan gambar diperiksa kondisinya, apabila ada kerusakan diperbaiki Sumber gambar dipahami, apabila tidak jelas tanyakan kepada atasan Sebuah garis lurus (vertikal) Y dan sebuah garis tegak lurus pada Y (horisontal) disebut X yang membagi dua Y di sebuah titik (titik O) digambar Garis X dibagi dengan ukuran yang sama besar pada bagian kiri dan bagian kanan Garis Y dibagi dengan ukuran yang sama besar pada bagian atas dan bagian bawah Garis X diberi tanda dengan beberapa titik tambahan (misalnya titik P, Q, R, Modul Matematika SMA 34

41 dan seterusnya) pada bagian kanan Garis Y diberi tanda dengan beberapa titik tambahan (misalnya titik 1, 2, 3, dan seterusnya) pada bagian atas Buat pola (titik-titik) pada (P,4), (Q,1), (,RO), (S,1), dan (T,4) Pola (titik-titik) dihubungkan sehingga membentuk sebuah kurva. 3. Membereskan pekerjaan 3.1. Hasil gambar diperiksa kesesuaian dengan perintah Perakalatan dan perlengkapan gambar dibersihkan dan disimpan pada tempatnya Hasil gambar disimpan pada tempatnya. 4. Melakukan persiapan memahami fungsi kuadrat. 5. Menyelesaikan latihan soal bentuk-bentuk fungsi kuadrat. 4.1 Mengenali istilah fungsi kuadrat dan dipahami. 4.2 Memahami bentuk-bentuk dan cara penyelesaian fungsi kuadrat. 4.3 Memahami gambar yang telah dipaparkan. 4.4 Sumber materi dipahami, apabila tidak jelas ditanyakan kepada atasan Menyusun fungsi kuadrat jika grafiknya memotong sumbu X di x 1, 0 dan x 2, 0 serta melalui sebuah titik tertentu 5.2. Menyusun fungsi kuadrat jika grafiknya memiliki titik puncak x p, y p dan melalui sebuah titik tertentu 5.3. Menyusun fungsi kuadrat jika grafiknya melalui tiga buah titik x 1, y 1, x 2, y 2, dan x 3, y Menyusun fungsi kuadrat jika sketsa grafiknya diketahui 6. Membereskan pekerjaan Hasil pekerjaan diperiksa kesesuaiannya dengan perintah 6.2. Hasil pekerjaan disimpan pada tempatnya Prasyarat Untuk Kerja 1. Unit ini berlaku untuk menggambar sebuah sketsa grafik fungsi kuadrat menggunakan peralatan dan perlengkapan gambar manual Modul Matematika SMA 35

42 yang dilakukan di studio gambar atau tempat lain. 2. Tersedia acuan untuk menggambar sketsa grafik fungsi kuadrat 3. Tersedia peralatan gambar yang meliputi: Pensil atau rapido Penggaris Meja atau papan gambar Media gambar berbagai jenis ukuran 4. Tersedia sumber informasi yang berupa: Gambar dan sketsa grafik berbagai jenis fungsi 5. Unit ini berlaku untuk pekerjaan memahami fungsi kudrat dengan penjelasan materi yang dilakukan didalam kelas atau di tempat lain. 6. Tersedia contoh dari fungsi kuadrat. 7. Tersedia rumus-rumus fungsi kuadrat. Acuan Penilaian 1. Unit kompetensi ini dapat diujikan secara langsung kepada peserta uji di studio gambar maupun di tempat lain dengan standar peralatan gambar yang sesuai. 2. Aspek kritikal yang dinilai: Mengenali jenis-jenis fungsi dan grafiknya Memahami cara menggambar sketsa grafik fungsi kuadrat Mampu menggambar menggunakan peralatan dan perlengkapan gambar manual 3. Kompetensi yang sebelumnya harus dikuasai 4. Pengetahuan pendukung yang dibutuhkan: Menghitung titik potong grafik dengan sumbu koordinat Menghitung sumbu simetri Menghitung nilai maksimum dan minimum fungsi Menghitung koordinat titik puncak Berbagai dan jenis ukuran media gambar Memahami fungsi kuadrat Memahami bentuk-bentuk dan penyelesaian fungsi kuadrat Memahami contoh fungsi kuadrat Memahami gambar fungsi kuadrat Berbagai dan jenis soal fungsi kuadrat 5. Sikap yang dituntut: Bekerja dengan rapi dan bersih Bekerja dengan ketelitian dan ketepatan ukuran Menghargai produktifitas dalam bekerja Efisien dan optimal dalam bekerja Menghargai mutu hasil pada setiap langkah kerjanya Bersikap positif dan terbuka terhadap penilaian hasil pekerjaan oleh atasan Modul Matematika SMA 36

43 2.1.6 Cek Kemampuan Petunjuk: Berilah tanda ( ), pada kolom jawaban: Ya atau Tidak pada jawaban yang anda pilih Jawaban No. Pertanyaan Ya Tidak 1. Apakah anda mengenal bidang datar? 2. Apakah anda dapat menggambar bidang datar? 3. Apakah anda mengetahui tentang koordinat kartesius? 4. Apakah anda mengetahui tentang absis? 5. Apakah anda mengetahui tentang ordinat? 6. Apakah anda mengenal fungsi? 7. Apakah anda dapat memahami fungsi? 8. Apakah anda mengenal fungsi kuadrat? 9. Apakah anda dapat memahami fungsi kuadrat? 10. Apakah anda mengetahui tentang bentuk-bentuk fungsi kuadrat? 11. Apakah anda dapat memahami gambar bentuk-bentuk fungsi kuadrat? Nilai..., Modul Matematika SMA 37

44 2.2 PEMBAHASAN Rencana Belajar Siswa 1. Pada setiap kegiatan belajar, pahamilah uraian tujuan kegiatan belajar, agar kamu mengetahui kemampuan apa yang akan dicapai pada setiap kegiatan. 2. Peralatan dan bahan yang harus dibawa pada pertemuan atau tatap muka berikutnya harus dibaca sebelum kegiatan dilaksanakan. 3. Sebelum melaksanakan kegiatan harus memahami terlebih dahulu setiap langkah kerja yang dilaksanakan, apabila kurang jelas dapat menanyakan kepada guru/instruktur. 4. Kerjakanlah setiap latihan dengan bersungguh-sungguh agar kemampuan anda yang sebenarnya diketahui Kegiatan Belajar Domain, Kodomain, dan Range a. Pengertian Domain, Kodomain, Range Misalkan fungsi f memetakan setiap anggota himpunan A ke himpunan B. 1) Himpunan A disebut dengan daerah asal atau domain atau prapeta fungsi f. 2) Himpunan B disebut dengan daerah kawan atau kodomain fungsi f. 3) Himpunan yang beranggotakan himpunan B yang dipasangkan dengan anggota himpunan A disebut dengan daerah hasil atau range atau peta fungsi f. Modul Matematika SMA 38

45 Perhatikan kembali pemetaan pada gambar ini A B C D Rumus dan Bentuk Umum Fungsi Kuadrat a. Pengertian Fungsi Kuadrat Fungsi f pada himpunan bilangan real R yang ditentukan oleh rumus f x = ax 2 + bx + c, dengan a, b, c R dan a 0 dinamakan fungsi kuadrat dengan peubah x. Grafiknya dinamakan parabola dan persamaannya adalah y = f x = ax 2 + bx + c. b. Bentuk Umum Fungsi Kuadrat Bentuk umum fungsi kuadrat: f x = ax 2 + bx + c, dengan a, b, c R dan a Sketsa Grafik Fungsi Kuadrat a. Menggambar Sketsa Grafik Fungsi Kuadrat Untuk membuat sketsa grafik fungsi kuadrat f x = ax 2 + bx + c secara umum dapat ditempuh dengan langkah-langkah berikut: 1) Titik potong grafik dengan sumbu koordinat a) Titik potong dengan sumbu X Titik potong dengan sumbu X diperoleh jika y = f x = 0. Dengan demikian, dapat didapatkan ax 2 + bx + c = 0. Absis titik potong dengan sumbu X diperoleh dari akar-akar persamaan kuadrat tersebut. Banyaknya titik potong dengan sumbu X tergantung pada nilai diskriminannya, yaitu D = b 2 4ac. i. Jika D > 0, maka grafik memotong sumbu X di dua titik yang berbeda. ii. Jika D = 0, maka grafik menyinggung sumbu X. iii. Jika D < 0, maka grafik tidak memotong atau menyinggung sumbu X. Modul Matematika SMA 39

46 b) Titik potong dengan sumbu Y Titik potong dengan sumbu Y diperoleh jika x = 0. Dengan demikian, didapatkan y = a(0) 2 + b 0 + c = c. Jadi, tititk potong grafik f x = ax 2 + bx + c dengan sumbu Y adalah (0,c) dan posisi titik potongnya dengan sumbu Y secara otomatis bergantung pada nilai c. (1) Jika c > 0, maka grafik memotong sumbu Y positif. (2) Jika c = 0, maka grafik melalui titik pusat (0,0). (3) Jika c < 0, maka grafik memotong sumbu Y negatif. 2) Sumbu simetri Sumbu simetri dari parabola f x = ax 2 + bx + c adalah x = b 2a. 3) Nilai maksimum atau minimum fungsi Fungsi f x = ax 2 + bx + c mempunyai nilai minimum jika a > 0 dan mempunyai nilai maksimum jika a < 0. Nilai maksimum atau minimum f(x) ditentukan oleh rumus y = D 4a. 4) Koordinat titik puncak Koordinat titik puncak parabola yang ditentukan oleh fungsi f x = ax 2 + bx + c adalah P b, D 2a 4a Contoh: Gambarlah grafik fungsi kuadrat f x = x 2 6x + 5 Jawab: f x = x 2 6x + 5 nilai koefisien a = 1, b = 6, dan c = 5 1) Titik potong dengan sumbu koordinat 1. Titik potong dengan sumbu X y = 0, maka x 2 6x + 5 = 0 x 1 x 5 = 0 x = 1 atau x = 5 Jadi titik potong grafik dengan sumbu X adalah (1,0) dan (0,5). 2. Titik potong dengan sumbu Y x = 0, maka y = f 0 = = 5 Modul Matematika SMA 40

47 Jadi titik potong grafik dengan sumbu Y adalah (0,5). 2) Persamaan sumbu simetri x = b = ( 6) = 3. 2a 2(1) 3) Nilai maksimum atau minimum fungsi y = D = (b 2 4ac ) = 4a 4a ( 6 2 4(1)(5) 4(1) 16 4 = 4 4) Koordinat titik puncak = (36 20) 4 = x p, y p = b 2a, (b2 4ac) 4a = 6, = 6 2, 16 4 = (3, 4) b. Menggambar Sketsa Grafik Fungsi Kuadrat secara Sederhana Sketsa sederhana dari grafik fungsi kuadrat dapat dibentuk dengan langkah-langkah sebagai berikut. Langkah 1: Tentukan beberapa anggota fungsi f, yaitu koordinat titik-titik yang terletak pada grafik fungsi f. Titik-titik ini dapat kita tentukan dengan memilih beberapa nilai x bilangan bulat yang terletak dalam daerah asalnya. Kemudian kita hitung nilai fungsi f, sehingga terdapat beberapa pasangan koordinat titik (x, f x ). Titik-titik pada fungsi f itu biasanya akan lebih mudah jika kita sajikan dengan menggunakan tabel atau daftar. Langkah 2: Gambarkan koordinat titik-titik yang telah kita peroleh pada Langkah 1 pada sebuah bidang Cartecius. Modul Matematika SMA 41

48 Langkah 3: Hubungkan titik-titik yang telah digambarkan pada bidang Cartecius pada Langkah 2 dengan menggunakan kurva. Untuk lebih jelas lagi mengenai sketsa grafik fungsi kuadrat secara sederhana, berikut contoh-contohnya: Contoh: Gambarkan grafik fungsi kuadrat yang ditentukan dengan persamaan f x = x 2 4x + 3, jika daerah asalnya adalah D = x 1 x 5, x R. Jawab: Grafik fungsi kuadrat f x = x 2 4x + 3 adalah sebuah parabola dengan persamaan y = x 2 4x + 3. Langkah 1: Kita buat tabel atau daftaruntuk menentukan titik-titik yang terletak pada fungsi f, yaitu beberapa pasangan koordinat titik x, f(x). x f(x) Langkah 2: Gambarkan titik-titik (-1,8), (0,3), (1,0), (2,-1), (3,0), (4,3), dan (5,8) pada bidang Cartesius. Langkah 3: Hubungkan titik-titik pada langkah 2 tersebut dengan kurva, sehingga diperoleh sketsagrafik fungsi kuadrat f x = x 2 4x + 3, seperti ditunjukkan pada gambar berikut. Grafik fungsi kuadrat ini berbentuk parabola. 1) Daerah asal fungsi tersebut D f = x 1 x 5, x R. 2) Daerah hasil fungsi tersebut adalah D f = y 1 x 8, y R. Modul Matematika SMA 42

49 3) Pembuat nol fungsi itu adalah x = 1 dan x = 3. 4) Persamaan sumbu simetrinya x = 2. 5) Nilai maksimum fungsi tersebut adalah -1, yaitu untuk x = 2, titik puncak minimum fungsi itu adalah (2,-1). c. Sketsa Grafik Fungsi Kuadrat secara Umum Dengan memerhatikan tanda nilai a dan nilai diskriminan D = b 2 4ac, maka sketsa grafik fungsi kuadrat dapat dibagi dalam dua kelompok seperti di bawah ini. 1) Untuk a > 0, parabola terbuka ke atas (memiliki titik puncak minimum). (a) Jika D < 0, parabola tidak memotong atau menyinggung sumbu X. Secara aljabar dapat dikatakan nilai ax 2 + bx + c dengan nilai a > 0 dan D < 0, selalu positif untuk setiap x R atau definit positif. (b) Jika D = 0, parabola memotong sumbu X di satu titik. Dengan kata lain, parabola menyinggung sumbu X. Secara aljabar dapat dikatakan bahwa nilai ax 2 + bx + c dengan nilai a > 0 dan D = 0, tidak pernah negatif untuk setiap x R. Modul Matematika SMA 43

50 (c) Jika D > 0, parabola memotong sumbu X di dua titik yang berlainan. 2) Untuk a < 0, parabola terbuka ke bawah dan memiliki titik puncak maksimum (a) Jika D > 0, parabola memotong sumbu X di dua titik yang berlainan. (b) Jika D = 0, parabola memotong sumbu X di satu titik.dengan kata lain, parabola menyinggung sumbu X. Secara aljabardapat dikatakan bahwa nilai ax 2 + bx + c, dengan nilai a < 0 dan D = 0, tidak pernah positifuntuk setiap x R. (c) Jika D < 0parabola tidak memotong atau menyinggung sumbu X. Secara aljabar dapat dikatakan nilai ax 2 + bx + c, dengan nilai a < 0 dan D < 0, selalu negatif untuk setiap x R atau definit negatif. Modul Matematika SMA 44

51 Naskah Tes Formatif 1) Lukislah sketsa grafik dari fungsi y = x 2 + 2x 8 dengan terlebih dahulu menentukan titik potong terhadap sumbu koordinat, sumbu simetri, nilai maksimum atau minimum fungsi, dan titik puncak fungsi! 2) Lukislah sketsa grafik dari fungsi y = x 2 2x + 3 dengan menggunakan sketsa sederhana! Lembar Penilaian Nama : No. Absen : Judul Tugas : No. Kriteria Penilaian Rentang Nilai Nilai Prestasi 1. Benar cara maupun hasilnya Benar cara, hasil salah Benar hasil, cara salah 0-20 Jumlah Jumlah x 100% Jumlah Nilai Akhir Kesimpulan : Lulus / Tidak Lulus, 20 Modul Matematika SMA 45

52 2.2.3 Kegiatan Belajar Membentuk Fungsi Kuadrat a. Menyusun fungsi kuadrat jika grafiknya memotong sumbu X di x 1, 0 dan x 2, 0 serta melalui sebuah titik tertentu Jika suatu grafik fungsi kuadrat y = ax 2 + bx + c memotong sumbu X di titk x 1, 0 dan x 2, 0, maka x 1 dan x 2 disebut pembuat nol fungsi. Dengan demikian, fungsi kuadrat tersebut dapat dinyatakan sebagai berikut. y = a x x 1 x x 2 Nilai a dapat dinyatakan dengan mensubstitusikan nilai x dan y dari satu titik ke titik lain yang diketahui ke dalam persamaan di atas. Contoh: Tentukan rumus fungsi kuadrat yang grafiknya memotong sumbu X di (2,0) dan (4,0), serta melalui titik (3,6)! Jawab: Grafik memotong sumbu X di titik (2,0) dan (4,0), maka rumus fungsi uadratnya adalah y = a x x 1 x x 2 = a x 2 x 4 Karena grafik melalui titik (3,6), maka 6 = a = a 1 1 a = 6 Jadi, rumus fungsi kuadratnya y = 6 x 2 x 4 y = 6x x 48 b. Menyusun fungsi kuadrat jika grafiknya memiliki titik puncak x p, y p dan melalui sebuah titik tertentu Jika grafik fungsi kuadrat melalui titik puncak x p, y p, maka rumus fungsi kuadratnya dapat dinyatakan sebagai berikut. y = a x x 2 p + y p Modul Matematika SMA 46

53 Nilai a dapat ditentukan dengan mensubstitusikan nilai x dan y dari titik lain yang dilalui grafik ke dalam rumus tersebut. Contoh: Tentukan rumus fungsi kuadrat yang grafiknya memiliki titik puncak (-2,3) dan melalui titik (1,-6). Jawab: Dengan menggunakan rumus y = a x x 2 p + y p untuk x p = 2 dan y p = 3, maka diperoleh y = a x x 2 p + y p = a x = a x 2 + 4x Karena grafik melalui titik (1,-6) maka 6 = a = a a = 1 c. Menyusun fungsi kuadrat jika grafiknya melalui tiga buah titik x 1, y 1, x 2, y 2, dan x 3, y 3 Rumus fungsi kuadratnya dapat dinyatakan sebagai berikut. y = ax 2 + bx + c Nilai a, b, dan c dapat diperoleh dengan mensubstitusikan nilai x dan y dari ketiga titik tersebut ke rumus di atas sedemikian sehingga diperoleh tiga buah persamaan dengan tiga variabel dan melakukan operasi substitusi dan eliminasi pada persamaan-persamaan tersebut. Contoh: Tentukan rumus fungsi kuadrat yang grafiknya melalui titik-titik (1,3), (4,0), dan (2,-2)! Jawab: Misalnya rumus fungsi kuadrat tersebut adalah y = ax 2 + bx + c Melalui titik (1,3), maka 3 = a + b + c Melalui titik (4,0), maka 0 = 16a + 4b + c Modul Matematika SMA 47

54 Melalui titik (2,-2), maka 2 = 4a + 2b + c Dengan metode eliminasi atau substitusi diperoleh a = 2, b = 11, dan c = 12. Sehingga rumus kuadrat yang dicari adalah y = 2x 2 11x d. Menyusun fungsi kuadrat jika sketsa grafiknya diketahui Untuk menyusun fungsi kuadrat dari sebuah grafik yang diketahui, caranya adalah dengan menerjemahkan data yang dapat dibaca dari tampilan grafik. Contoh: Tentukan rumus fungsi kuadrat yang grafiknya ditunjukkan pada gambar di samping! Jawab: Dari gambar di samping terlihat bahwa grafik mempunyai titik puncak (4,0) dan melalui titik (0,- 2). Dengan demikian, kita dapat menggunakan rumus fungsi kuadrat berikut. y = a x x 2 p + y p = a x = a x 4 2 Karena grafik melalui titik (0,-2), maka 2 = a = 16a a = 1 8 Jadi, rumus fungsi kuadratnya adalah y = 1 x y = 1 8 x2 + x Penggunaan Fungsi Kuadrat Banyak masalah nyata yang mempunyai model bebentuk nilai maksimum atau minimum dari suatu fungsi kuadrat. Sebagian Modul Matematika SMA 48

55 dari masalah nyata dalam kehidupan sehari-hari yang brbentuk demikian telah dibahas pada awal unit ini. Berikut ini adalah contoh penggunaan fungsi kuadrat dalam pemecahan masalah. Contoh: Dua buah titik materi terletak dititik P dan Q pada sumbu x dengan titik asal O diantara P dan Q. Jika titik P dan Q bergerak sepanjang sumbu x sehingga untu setiap saat t, PO = t 2 6t + 10 dan PQ = 3r 2 14r +19, tentukqn jarak terdekat dari O ke Q. jawab P O Q x t 2 6t t 2 14t + 19 Perhatikan bahwa PO dan PQ definit positif karena menyatakan jarak dua titik. Jarak dari O ke Q adalah: OQ = PQ PO = 3t 2 14t + 19 t 2 6t + 10 = 2t 2 8t + 9, yang merupakan fungsi kuadrat. Kita akan menentukan nilai minimum fungsi OQ = f t = 2t 2 8t + 9 = 2 t Fungsi kuadrat ini mencapai minimum sebesar 1 satuan, yang tercaai jika t = 2. Jadi, jarak trdekat dari O ke Q adalah 1 satuan jarak. Modul Matematika SMA 49

56 Naskah Test Formatif (1) Tentukan rumus fungsi kuadrat yang grafiknya memiliki titik puncak (1,5) dan melalui titik (-1,1)! (2) Tentukan rumus fungsi kuadrat yang memotong sumbu X di titik (- 3,0) dan (1,0) serta melalui titik (0,6)! (3) Tentukan rumus fungsi kuadrat yang grafiknya melalui titik-titik (1,2), (2,9), dan (3,22)! (4) Nyatakan rumus fungsi kuadrat dari grafik berikut dalam bentuk baku f x = ax 2 + bx + c (5) Untuk menarik minat, biro perjalanan Diamond menawarkan paket wisata ke Bali dengan biaya Rp per orang jika pesertanya tidak lebih dari 100 orang. Jika pesertanya lebih dari 100 orang, maka setiap peserta akan mendapat potongan harga sebesar banyaknya kelebihan peserta dikalikan Rp 5.000,00. Tentukan pemasukan terbesar biro perjalanan itu. Modul Matematika SMA 50

57 Lembar Penilaian Nama : No. Absen : Judul Tugas : No. Kriteria Penilaian Rentang Nilai Nilai Prestasi 1. Benar cara maupun hasilnya Benar cara, hasil salah Benar hasil, cara salah 0-20 Jumlah Jumlah x 100% Jumlah Nilai Akhir Kesimpulan : Lulus / Tidak Lulus, 20 Modul Matematika SMA 51

58 2.3 EVALUASI Soal evaluasi 1. Gambarlah sketsa grafik L = 9 + 6x + x 2 pada kertas berpetak, dengan daerah asal x 5 x 1, x R a. Tentukan terlebih dahulu titik potong terhadap sumbu koordinat, sumbu simetri, nilai maksimum dan minimum fungsi, dan titik puncak fungsi! b. Gambar menggunakan sketsa sederhana! 2. Tentukan rumus fungsi kuadrat yang memenuhi ketentuan-ketentuan berikut! a. Memiliki titik puncak (-1,1) dan melalui (1,6) b. Melalui titik (1,3), (2,3), dan (4,2) 3. Sebuah kebun berbentuk persegipanjang ingin dipagari dengan 100 meter pagar kawat yang siap dipasang. Jika salah satu sisi kebun adalah tembok yang tidak perlu dipagari, tentukan luas kebun terbesar yang dapat dipagari kawat tersebut. Modul Matematika SMA 52

59 2.3.2 Lembar penilaian Nama :... Kelas :... No. Absen :... No. Tugas :... Judul Tugas :... No. Kriteria Rentang Nilai Tes Formatif Nilai Prestasi Evaluasi 1. Kebenaran Cara Kebenaran Hasil Kebenaran gambar Kerapian Gambar 0-10 JUMLAH JUMLAH (jumlah X 60%) (jumlah X 40%) Jumlah Nilai Akhir Kesimpulan: Lulus/Tidak Lulus...,...Th... Modul Matematika SMA 53

60 BAB 3 Modul Matematika SMA 54

61 3.1 PENDAHULUAN Deskripsi Modul ini berisi tentang Sistem Persamaan dan Pertidaksamaan Linear, akan diuraikan mengenai sistem persamaan linear dua variabel, tiga variabel, sistem pertidaksamaan linier, dan merancang model matematika yang berkaitan dengan sistem persamaan dan pertidaksamaan linear Prasyarat Dalam melaksanakan modul ini, siswa diharapkan telah menguasai operasi penjumlahan, pengurangan, perkalian, dan pembagian bilangan real Petunjuk Penggunaan Modul Untuk mempelajari modul ini, hal-hal yang perlu anda lakukan adalah sebagai berikut: 1. Pelajari daftar isi dengan cermat, karena daftar isi akan menuntun anda dalam mempelajari materi ini. 2. Untuk mempelajari modul ini haruslah berurutan, karena materi yang mendahului merupakan prasyarat untuk mempelajari materi berikutnya. 3. Pahamilah contoh-contoh soal yang ada, dan kerjakanlah semua soal latihan yang ada. Jika dalam mengerjakan soal anda menemui kesulitan, kembalilah mempelajari materi yang terkait. 4. Kerjakanlah soal evaluasi dengan cermat. Jika anda menemui kesulitan dalam mengerjakan soal evaluasi, kembalilah mempelajari materi yang terkait. 5. Jika anda mempunyai kesulitan yang tidak dapat anda pecahkan, catatlah, kemudian tanyakan kepada guru pada saat kegiatan tatap muka atau bacalah referensi lain yang berhubungan dengan materi modul ini. Dengan membaca referensi lain, anda juga akan mendapatkan pengetahuan tambahan. Modul Matematika SMA 55

62 3.1.4 Tujuan Akhir Setelah mempelajari modul ini diharapkan anda dapat: 1. Siswa dapat mengerti definisi dan macam-macam persamaan linear. 2. Siswa dapat memahami sistem persamaan linear dua variabel dan aplikasinya 3. Siswa dapat memahami sistem persamaan linear tiga variabel dan aplikasinya 4. Siswa dapat memahami sistem pertidaksamaan linier dua variabel dan aplikasinya 5. Mengetahui metode untuk menyelesaikan SPLDV, SPLTV, dan SPtLDV 6. Mengetahui ciri- ciri SPLDV, SPLTV, dan SPtLDV 7. Mengetahui perbedaan antara SPLDV, SPLTV, dan SPtLDV 8. Mengetahui definisi variabel 9. Siswa dapat menggambar grafik Kompetensi Kode Unit : Judul Unit : Sistem Persamaan Linear Uraian Unit : Unit ini berlaku untuk memecahkan masalah yang berkaitan dengan sistem persamaan linear. Sub Kompetensi 1. Memahami konsep sistem persamaan linear dua dan tiga variabel dan sistem pertidaksamaan linier dua variabel dan mampu menerapkan strategi yang efektif dalam menentukan himpunan penyelesaiannya serta memeriksa kebenaran jawabnya dalam penyelesaian soal matematika. 2. Menggunakan SPLDV, SPLTV, dan SPtLDV untuk menyajikan masalah kontekstual dan menjelaskan makna tiap besaran secara lisan maupun tulisan. Indikator 1.1. Menjelaskan karakteristik masalah otentik yang penyelesaiannya terkait dengan model matematika sebagai SPLDV, SPLTV, atau SPtLDV 1.2. Menemukan ciri-ciri SPLDV, SPLTV dan SPtLDV dari model matematika. 2.1 Merancang model matematika dari permasalahan otentik yang merupakan SPLDV, SPLTV, atau SPtLDV 2.2 Menyelesaikan model matematika untuk memperoleh solusi permasalahan yang Modul Matematika SMA 56

63 3. Membuat model matematika berupa persamaan dua variabel atau tiga variabel dan sistem pertidaksamaan linier dua variabel yang melibatkan nilai mutlak dari situasi nyata dan matematika, serta menentukan jawab dan menganalisis model sekaligus jawabnya Cek Kemampuan No Petunjuk : diberikan. 2.3 Menentukan jawaban serta menganalisis model matematika 3.1. Menuliskan konsep SPLDV, SPLTV, dan SPtLDV berdasarkan ciri yang ditemukan dengan bahasanya sendiri. Berilah tanda ( ), pada kolom Jawaban : Ya atau Tidak jawaban yang anda pilih Pertanyaan 1. Apakah anda mengenal sistem persamaan linear? 2. Apakah anda mengenal macam-macam persamaan linear? 3. Apakah anda mengenal sistem persamaan linear dua variabel? 4. Apakah anda mengenal sistem persamaan linear tiga variabel? 5. Apakah anda mengenal sistem pertidaksamaan linier dua variabel? Jawaban Ya Tidak 6. Apakah anda mengetahui metode untuk menyelesaikan SPLDV, SPLTV, atau SPtLDV? 7. Apakah anda mengetahui ciri- ciri SPLDV, SPLTV, dan SPtLDV? 8. Apakah anda memahami operasi bilangan? 9. Apakah anda mengetahui perbedaan antara SPLDV, SPLTV, dan SPtLDV? 10. Apakah anda mengetahui definisi variabel? Skore ( Nilai ) Tulungagung, November 2015 Modul Matematika SMA 57

64 PETA KONSEP Masalah Otentik Persamaan Persamaan Linear Pertidaksamaan Linear Sistem Persaamaan Linear Sistem Pertidaksamaan Linear Sistem Persamaan Linear Dua Variabel (SPLDV) Eliminasi Subsitusi Eliminasi & Subsitusi Metode Grafik Determinan Sistem Persamaan Linear Tiga Variabel (SPLTV) Sistem Pertidaksamaan Linear Dua Variabel (SPtLDV) Grafik SPtLDV Himpunan Penyelesaian Grafik SPLDV Eliminasi Subsitusi Eliminasi & Subsitusi Determinan Himpunan Penyelesaian SPLTV Modul Matematika SMA 58

65 3.2 PEMBAHASAN RENCANA BELAJAR SISWA 1. Pada setiap kegiatan belajar, pahamilah tujuan kegiatan belajar, untuk mengetahui kemampuan siswa sejauh mana materi yang harus dicapai. 2. Pada setiap kegiatan belajar buku panduan dan modul selalu dibawa sebagai panduan siswa. 3. Sebelum dimulai mengerjakan latihan soal siswa harus memahami secara baik konsep sistem persamaan linear. 4. Kerjakanlah latihan soal dengan baik dan sungguh-sungguh, jika mengalami kesulitan mintalah bantuan guru maupun mentor anda Kegiatan Belajar Menemukan Konsep Sistem Persamaan Linear Dua Variabel Banyak permasalahan dalam kehidupan nyata yang menyatu dengan fakta dan lingkungan budaya terkait dengan sistem persamaan linear. Permasalahan-permasalahan tersebut kita jadikan bahan inspirasi dan menyusun model-model matematika yang ditemukan dari proses penyelesaian. Model matematika tersebut kita jadikan bahan abstraksi untuk membangun konsep sistem persamaan linear dan konsep sistem persamaan linear dua variabel. Cermatilah masalah berikut! Kartu bergambar dapat dijadikan bahan inspirasi menemukan konsep dan aturang yang terkait dengan sistem persamaan linear melalui masalah yang dirancang. Anto bermain kartu bergambar bersama temannya. Ketika mereka selesai bermain, Budi, adiknya Anto mengumpulkaan Modul Matematika SMA 59

66 kartu-kartu tersebut. Kemudian ia asyik membangun rumah bertingkat yang diberi nama rumah kartu. Susunan kartu untuk setiap tingkatnya berbeda seperti gambar berikut: Gambar 1.1 Rumah Kartu Bertingkat Setelah Budi menyusun rumah kartu bertingkat, ia bertanya dalam pikirannnya, bagaimnana hubungan antara banyak kartu dan banyak tingkat rumah. Berapa banyak kartu yang dibutuhkan untuk membangun rumah 30 tingkat? Dapatkah kamu membantu Budi menyelesaikan masalah tersebut? Sebelum kamu menyelesaikan masalah tersebut, kira-kira apakah tujuan masalah tersebut dipecahkan terkait dengan materi? Pikirkan strategi apa yang kamu gunakan. Agar pekerjaan kamu lebih efektif, renungkan dan pikirkan pertanyaan berikut: 1) Informasi apa saja yang kamu temukan dalam masalah tersebut 2) Konsep apa saja yang terkait untuk menemukan hubungan antara banyak tingkaat rumah dan banyak kartu yang digunakan untuk setiap tingkatannya. 3) Bagaimana strategi kamu untuk menemukan banyak tingkat rumah dan banyak kartu yang digunakan. 4) Misalkan t menyatakan banyak tingkat rumah dan k banyak kartu yang dipakai untuk setiap tingkat. Dapatkah kamu rumuskan aturan yang memasangkan banyak tingkat rumah dengan banyak kartu yang digunakan? 5) Adakah kesulitan yang harus didiskusikan dengan teman atau bertanya kepada guru untuk menentukan hubungan antara t dan k? 6) Apakah aturan pemasangan yang kamu rumuskan untuk memenuhi situasi penyusunan kartu pada gambar diatas. Modul Matematika SMA 60

67 7) Adakah sistem persamaan linear kamu temukan dari rumusan hubungan antara banyak kartu dan banyak tingkat? 8) Dapatkah kamu menjawab permasalahan Budi? Berapa banyak kartu yang digunakan untuk membangun rumaah kartu 30 tingkat? Alternatif Penyelesaian Berdasar gambar diatas, diperoleh informasi sebagai berikut: Rumah kartu bertingkat 1 menggunakan kartu sebanyak 2 buah Rumah kartu bertingkat 2 menggunakan kartu sebanyak 7 buah Rumah kartu bertingkat 3 menggunakan kartu sebanyak 15 buah Rumah kartu bertingkat 4 menggunakan kartu sebanyak 26 buah Sehingga banyak tingkat dan banyak kartu dapat dikorespondensikan satu-satu membentuk suatu relasi sama dengan atau banyak kartu dapat dinyaatakan dalam banyak tingkat rumah. Temukan aturan yang memasangkan banyak tingkat (t) dengan banyak kartu (k) Banyak tingkat rumah (t) Banyak kartu (k) Pola banyak kartu Cermati pola bahwa bilangan 1,4,9,16 adalah kuadrat dari bilangan 1,2,3,4 dan bilangan 1,2,3,4 adalah banyaknya tingkat rumah. Apakah bilangan 0,1,3, dan 6 dapat dinyatakan dalam t 2 dan t? Missal x dan y adalah bilangan yang akan ditentukan dikaitkan dengan banyak kartu dan banyak tingkat rumah yang dinyatakan dalam persamaan berikut: k = x t 2 + y t (persamaan-a) Modul Matematika SMA 61

68 Cermati kembali gambar 1.1! untuk mendapatkan model matematika berupa dua persamaan linear dengan variabel x dan y yang saling terkait. Untuk t = 1 dan k = 2 diperoleh persamaan x + y = 2 Untuk t = 2 dan k = 7 diperoleh persamaan 4x + 2y = 7 Dengan demikian kita peroleh dua buah persamaan linear dua variabel, yaitu: x + y =. (persamaan-1) 4x + 2y = (persamaan-2) Cara menentukan himpunan penyelesaian dari dua persamaan linear tersebut dengan berbagai metode yaitu : eliminasi, subsitusi, eliminasi dan subsitusi, serta metode grafik) Nilai x dan y dapat ditentukan sebagai berikut x + y = 2 x 4 4x + 4y = 8 4x + 2y = 7 x 1 4x + 2y = 7 2y = 1 y = 1 2 x + y = 2 x 2 2x + 2y = 4 4x + 2y = 7 x 1 4x + 2y = 7-2x = -2 x = 3 2 Diperoleh himpunan penyelesaiannya adalah {( 1, 3 )} 2 2 Evaluasi hasil yang diperoleh, apakah hasil yang diperoleh adalah solusi terbaik. k = x t 2 + y t dengan nilai x = 1 dan y = = 3 2 (1)2 + 1 (1) (pernyataan benar) 2 7 = 3 2 (2)2 + 1 (2) (pernyataan benar) 2 15 = 3 2 (3)2 + 1 (3) (pernyataan benar) 2 26 = 3 2 (4)2 + 1 (4) (pernyataan benar) 2 Modul Matematika SMA 62

69 Dapat disimpulkan, aturan pengaitan banyak tingkat dengan banyak kartu yang digunakan untuk membangun rumah kartu adalah k = x t 2 + y t dengan nilai konstanta x = 1 2 dan y = 3 2 Tentukan banyak kartu yang digunakan membuat rumah kartu dengan 30 tingkat! Untuk t = 30 diperoleh k = 3 2 t t = 3 2 (30) (30) k = 3 2 (900) + 15 = 1365 cara jadi, banyak kartu yang dibutuhkan membangun rumah kartu bertingkat dengan 30 tingkat adalah 1365 kartu Bentuk umum Sistem persamaan linear dengan Dua variabel / SPL 2 variabel a x b y c a x b y c 2 x dan y adalah variabel a 1, a 2, b 1, b 2, c 1, c R Cara menyelesaikannya dengan: a. Metode Eliminasi b. Metode Substitusi c. Metode Campuran Eliminasi dan Substitusi d. Metode Grafik Contoh: Tentukan himpunan penyelesaian dari SPL berikut x y 2 3x 7y 2 1. Eliminasi x y 2 3x 7y 2 x3 x1 3x 3y 6 3x 7y 2 4y = 8 y = 2 Modul Matematika SMA 63

70 x y 2 3x 7y 2 2. Substitusi x7 x1 7x 7y 14 3x 7y 2 4x = 16 x = 4 Dari persamaan (1) y = x 2 disubstitusikan ke persamaan (2) diperoleh 3x 7(x 2) = -2 3x 7x + 14 = -2-4x = -16 x = 4 Untuk x = 4 disubstitusikan ke persamaan (1) 4 y = 2 y = 4 2 = 2 3. Campuran Eliminasi dan Substitusi x y 2 3x 7y 2 x3 x1 3x 3y 6 3x 7y 2 4y = 8 y = 2 y = 2 disubstitusikan ke persamaan (1) x 2 = 2 x = 4 4. Grafik 3x 7y = -2 (4,2) 2-2 x y = 2 Modul Matematika SMA 64

71 Dengan grafik dapat dilihat : a. Jika kedua garis berpotongan pada satu titik (himpunan penyelesainnya tepat satu anggota) b. Jika kedua garis sejajar, tidak mempunyai himpunan penyelesaian c. Jika kedua garis berhimpit (himpunan penyelesaiannya mampunyai anggota tak terhingga) Tes Formatif 1. Nilai x dan ya berturut-turut yang memenuhi persaman x + 3y = 1 dan 2x - y = 9 adalah 2. Tentukan himpunan penyelesaian dari sistem persamaan 3x + 7y = -1 dan x - 3y = 5 dengan metode gabungan eliminasi dan subsitusi Lembar Penilaian Nama : No. Absen : Judul Tugas : No. Kriteria Penilaian Rentang Nilai 1. Benar cara maupun hasilnya 0 60 Nilai Prestasi 2. Benar cara, hasil salah Benar hasil, cara salah 0 20 Jumlah Jumlah x 100% Jumlah Nilai Akhir Kesimpulan : Lulus / Tidak Lulus, 20 Modul Matematika SMA 65

72 3.2.3 Kegiatan Belajar Menemukan konsep sistem persamaan linear tiga variabel Dengan cara analog kita akan menemukan konsep sistem persamaan linear tiga variabel melalui penyelesaian masalahmasalah nyata. Perbedaan sistem persamaan linear dua variabel dengan sistem persamaan linear tiga variabel terletak pada banyak variabel yang akan ditentukan nilainya. Cermati masalah berikut! Suatu ketika Pak Wayan mendapat pesanan membuat 3 ukiran patung dan 1 ornamen rumah dari seorang turis asal Belanda dengan batas waktu pembuatan diberikan selama 5 bulan. Pak Wayan dan Putu dapat menyelesaikan keempat jenis ukiran di atas dalam waktu 7 bulan. Jika Pak Wayan bekerja bersama Gede, mereka dapat menyelesaikan pesanan dalam waktu 6 bulan. Karena Putu dan Gede bekerja setelah pulang sekolah, mereka berdua membutuhkan waktu 8 bulan untuk menyelesaikan pesanan ukiran tersebut. Dapatkah pesanan ukiran diselesaikan, sesuai batas waktu yang diberikan? Sebelum kamu menyelesaikan masalah, manfaatkan pengetahuan dan ketrampilan yang sudah kamu miliki untuk menemukan aturan, hubungan, dan struktur-struktur yang belum diketahui. Dalam menyelesaikan diatas langkah penyelesaiannya tersirat dalam beberapa pertanyaan berikut: 1. Bagaimana kamu menentukan kecepatan Pak Wayan, Putu, dan Gede bekerja menyelesaikan satu unit pesanan ukiran tersebut? 2. Dapatkah kamu menentukan hubungan tiap-tiap kecepatan untuk menyelesaikan pekerjaan dalam bentuk persamaan? 3. Apa yang kamu temukan dari hubungan-hubungan tersebut? Adakah kaitannya dengan pengetahuan yang kamu miliki dengan melakukan manipulasi dengan aljabar? Modul Matematika SMA 66

73 4. Adakah variabel yang harus kamu tentukan nilainya? Bagaimana caranya, apakah prinsip analogi (cara yang mirip) dapat digunakan ketika kamu menentukan nilai variabel pada sistem persamaan dua variabel? 5. Bagaimana hubungan antara konsep jarak dan kecepatan dalam menentukan lamanya waktu yang digunakan untuk menyelesaikan suatu pekerjaan. 6. Adakah jawaban permasalahan yang kamu temukan? Alternatif Penyelesaian Diketahui Pesanan pembuatan ukiran patung dan ornamen rumah dengan batas waktu 5 bulan. Waktu yang dibutuhkan membuat patung dan ornamen : Pak Wayan dan putu : 7 bulan Pak Wayan dan Gede : 6 bulan Putu dan Gede : 8 bulan Ditanya : waktu yang diperlukan bila ketiganya bekerja bersama-sama Misalkan: Waktu yang dibutuhkan (bulan) Pak Wayan adalah x Waktu yang dibutuhkan (bulan) Putu adalah y Waktu yang dibutuhkan (bulan) Gede adalah z Berarti pekerjaan yang dapat diselesaikan pak Wayan, Putu dan Gede dengan waktu x,y,z masing-masing 1, 1 x y dan 1 bagian pekerjaan. z Bila Pak Wayan dan Putu bekerja bersama dalam satu bulan dapat menyelesaikan x y bagian pekerjaan. Karena Wayan dan Putu membutuhkan 7 bulan menyelesaikan pekerjaan, maka hal ini dapat di maknai = = 1... (persamaan-1) x y x y 7 Modul Matematika SMA 67

74 Bila Pak Wayan dan Gede bekerja bersama dalam satu bulan dapat menyelesaikan 1 x + 1 z bagian pekerjaan. Karena Wayan dan Gede membutuhkan 6 bulan menyelesaikan pekerjaan. Maka hal ini dapat dimaknai = = 1.. (persamaan-2) x z x z 6 Bila Putu dan Gede bekerja bersama dalam satu bulan dapat menyelesaikan 1 y + 1 z bagian pekerjaan. Karena putu dan Gede membutuhkan 8 bulan menyelesaikan pekerjaan, maka hal ini dapat dimaknai = = 1. (persamaan-3) y z y z 8 a) Temukan tiga persamaan linear yang saling terkait dari persamaan 1,2 dan 3 di atas! b) Misalkan p = 1 x, q = 1 y, dan r = 1 z c) Tentukan nilai p, q, dan r dengan memilih salah 1 metode yang telah dipelajari sebelumnya. Sebegai alternatif pilihan adalah metode campuran eliminasi dan subsitusi. Dengan menerapkan metode eliminasi pada persamaan-1 dan 2 diperoleh 7p + 7q = 1 x 6 42p + 42q = 6 6p + 6r = 1 x 7 42p + 42r = 7-42q 42r = -1 (persamaan-4) Dengan menerapkan metode eliminasi pada persamaan-3 dan 4 diperoleh 8p + 8r = 1 x q + 336r =42 42q - 42r = -1 x 8 336q 336r = r = 50 r = r = disubsitusikan ke persamaan 8q + 8r = 1 diperoleh q = q = disubsitusikan ke persamaan 7p + 7q =1 diperoleh p = Modul Matematika SMA 68

75 sebelumnya telah kita misalkan : p = 1 x q = 1 y r = 1 z dan p = x = = 10,8 34 dan q = y = 672 = 19, dan r = z = = 13,44 Karena x,y, dan z berturut-turut menyatakan waktu yang dibutuhkan Pak Wayan, Putu, Gede menyelesaikan 1 set pesanan ukiran. Jika bekerja secara individual, maka Pak Wayan dapat menyelesaikan sendiri pesanan dalam waktu 10,84 bulan, Putu dapat menyelesaikan sendiri pesanan dalam waktu 19,76 bulan, dan 1 Gede dapat menyelesaikan sendiri pesanan dalam waktu 13,44 bulan. Jadi waktu yang diperlukan Pak Wayan dan kedua anaknya untuk menyelesaikan 1 set pesanan ukiran patung dan ornamen, jika mereka bekerja secara bersama-sama adalah t = 1 t = t = 4, karena waktu yang diberikan turis adalah 5 bulan, maka ternyata pekerjaan dipenuhi. (pesanan) tersebut dapat diterima atau Bentuk Umum Sistem persamaan linear dengan Tiga variabel / SPL 3 variabel a x b y c z d a x b y c y d 2 a x b y c z d 3 x, y, z adalah variabel a 1, a 2, a 3, b 1, b 2, b 3, c 1, c 2, c 3, d 1, d 2, d R Modul Matematika SMA 69

76 Contoh: Tentukan himpunan penyelesaian dari SPL berikut : x y z 3 2x y z 5 x 2y z 7 Dengan Metode campuran Eliminasi dan Substitusi : Misal dimulai dengan mengeliminasi z (1) dan (2) x y z 3 2x y z 5 + 3x + 2y = 8...(4) (2) dan (3) 2x y z 5 x 2y z 7 x - y = -2...(5) (4) dan (5) 3x + 2y = 8 x 1 3x + 2y = 8 x - y = -2 x 3 3x - 3y = -6 3x + 2y = 8 x 1 3x + 2y = 8 5y = 14, y = 14 5 x - y = -2 x 2 2x - 2y = x = 4, x = 4 5 x = 4 5 dan y = 14 5 disubstitusi ke persamaan (1) : x + y z = z = z = 3 z = z = 3 5,Jadi HP : { 4 5, 14 5, 3 5 } Modul Matematika SMA 70

77 Tes Formatif 1. Tentukan hubungan penyelesaian dari sistem persamaan berikut. 2x y + z = -1 3x + 2y z = 10-4x y 3z = Lembar Penilaian Nama : No. Absen : Judul Tugas : No. Kriteria Penilaian Rentang Nilai Nilai Prestasi 1. Benar cara maupun hasilnya Benar cara, hasil salah Benar hasil, cara salah 0-20 Jumlah Jumlah x 100% Jumlah Nilai Akhir Kesimpulan : Lulus / Tidak Lulus, 20 Modul Matematika SMA 71

78 3.2.4 Kegiatan Belajar Aplikasi Sistem Persamaan Linear Dua Variabel dan Tiga Variabel Banyak permasalahan dalam keseharian yang dapat diselesaikan dengan sistem persamaan linear. Untuk menyelesaikannya terjemahkan soal-soal berupa cerita atau informasi ilmiah ke dalam model matematika yang berbentuk sistem persamaan linear, baik dua variabel maupun tiga variable. Untuk memahaminya perhatikan contoh berikut. Contoh 1 Pak Yudi membeli tiket masuk tempat rekreasi sebanyak 2 lembar untuk dewasa dan tiga lembar untuk anak-anak dengan arga Rp ,00. Joko membeli 3 lembar tiket untuk dewasadan 1 lembar untuk anak-anak dengan harga Rp ,00. Jika Andhika membeli 1 lembar tiket untuk dewasa dan 2 lembar untuk anak-anak dengan menggunakan selembar uang Rp ,00. Berapakah uang kembalian yang diterima Andhika? Penyelesaian Misalnya, harga 1 lembar tiket untuk dewasa = x rupiah harga 1 lembar tiket untuk anak-anak = y rupiah Maka diperoleh sistem persamaan 2x + 3y = Rp ,00.. (1) 3x + y = Rp ,00.. (2) Eliminasikan persamaan (1) dan (2): 2x + 3y = Rp ,00 x 3 6x + 9y = x + y = Rp ,00 x 2 6x + 2y = Subsitusikan persamaan (3) ke 7y persamaan = (1),, y = sehingga (3) diperoleh 2x + 3y = x + 2(55.000) = Jadi, harga 1 lembar tiket untuk dewasa adalah Rp ,00. Harga 1 lembar tiket untuk 2x anak-anak = adalah Rp ,00. Modul Matematika SMA 72

79 Uang kembalian yang diterima andhika adalah = 2( ) = ( ) = = rupiah Contoh 2 Sepuluh tahun yang lalu, umur Ita adalah dua kali umur Tika. Lima tahun kemudian, umur Ita adalah satu setengah kali umur Tika. Berapakah umur Ita sekarang? Penyelesaian: Misalnya: umur ita sekarang = x tahun Umur Tika sekarang = y tahun Sistem persamaan dari permasalahan di atas adalah: x 10 = 2(y-10) x 2y = -10 (1) x 5 = 3 (y 5) 2x 3y = -5 (2) 2 dengan metode eliminasi diperoleh : x 2y = -10 x 3 3x 6y = -30 2x 3y = -5 x 2 4x - 6y = x = -20 x = 20 jadi umur Ita sekarang adalah 20 tahun Tes Formatif Sebuah toko kelontong menjual dua jenis beras sebanyak 50 kg. Harga 1 kg beras jenis I adalah Rp 6.000,00 dan jenis II adalah Rp 6.200,00/kg. Jika harga beras seluruhnya Rp ,00 maka tentukan jumlah beras jenis I dan beras jenis II yang dijual. Modul Matematika SMA 73

80 Lembar Penilaian Nama : No. Absen : Judul Tugas : No. Kriteria Penilaian Rentang Nilai 1. Benar cara maupun hasilnya 0 60 Nilai Prestasi 2. Benar cara, hasil salah Benar hasil, cara salah 0-20 Jumlah Jumlah x 100% Jumlah Nilai Akhir Kesimpulan : Lulus / Tidak Lulus, 20 Modul Matematika SMA 74

81 3.2.5 Kegiatan Belajar Sistem Pertidaksamaan Linier Dua Variabel. a. Pengertian Sistem Pertidaksamaan Linier Dua Variabel. Gabungan dau atau lebih dari pertidaksamaan linier akan membentuk suatu sistem yang dikenal dengan istilah Sistem Pertidaksamaan Linier. Dalam hal ini tidak adannya ketentuan bahwa banyaknya variabel yang harus sama dengan banyaknya pertidaksamaan. Pertidaksamaan linier dua variabel adalah sebagai kalimat terbuka matematika yang memuat dua variabel, dengan masingmasing variabel berderajat satu dan dihubungkan dengan tanda ketidaksamaan. Lambing pertidaksamaan yang sering digunakan seperti berikut: 1) >, berarti: lebih besar atau tidak kurang dari atau (+) 2) <, berarti: lebih kecil atau tidak lebih dari atau (-) 3), berarti: lebih besar sama dengan atau tidak kurang dari (+) 4), berarti, lebih kecil sama dengan atau tidak lebih dari (-) Contoh Selidiki, apakah gabungan pertidaksamaan linier berikut merupakan sistem pertidaksamaan linier dua variabel? 1. 8x + 4y 18 dan -2x + 4y -8 Penyelesaian: 1. 8x + 4y 18 dan -2x + 4y -8 merupakan pertidaksamaan linier dalam variabel x dan y, sehingga keduannya dapat membentuk sistem pertidaksamaan linier dua variabel. b. Garis Batas Daerah Penyelesaian Sistem Pertidaksamaan Linier Ada langkah-langkah yang harus diperhatikan dalam menggambar garis batas penyelesaian dari petridaksamaan linier dua variabel, dengan masing-masing variabel berderajat satu dan dihubungkan dengan tanda ketidaksamaan. Modul Matematika SMA 75

82 sering berupa: Garis batas daerah penyelesaikan pertidaksamaan linier a. Sumbu x (y = 0) b. Sumbu y (x = 0) y Y (x = X (y = 0 0 x c. Sumbu x (y = k) d. Sumbu y (x = k) y y = k (k > 0) y 0 x 0 X y = k (k < 0) X = h (h < 0) X = h (h > 0 ) e. y = mx ; m > 0 f. y = mx ; m < 0 y y = mx; Y=mx; y 0 x 0 x g. ax + by = ab dengan a, b > 0 dan a, b < 0 y a 0 b x h. ax + by = ab dengan a dan b berbeda tanda a>0, b<0 -b y a 0 -a b x a>0, b<0 Modul Matematika SMA 76

83 Untuk menentukan garis batas daerah penyelesaian pada diagram kartesius dilakukan langkah-langkah sebagai berikut. Langkah 1 Menggambar garis dengan persamaan 4x + 3y = 400 dan garis x + y = 125. Agar kita lebih muda menggambar garis ini, lebih baik kita cari dahulu titik potong dengan sumbu x yang terjadi jika y = 0 dan titik potong dengan sumbu y yang terjadi jika x = 0. Untuk garis 4x + 3y = 400, jika y = 0, maka x = 100 jika x = 0, maka y = 133,3 maka garis 4x + 3y = 400 memotong sumbu y di titik (0, 133,3) dan memotong sumbu x di titik (100, 0). Untuk garis x + y = 125, jika y = 0 maka x = 125 jika x = 0 maka y = 125 maka garis x + y = 125 memotong sumbu y di titik (0, 125) dan memotong sumbu x di titik (125, 0) Langkah 2 Menentukan daerah penyelesaian pertidaksamaan 4x + 3y 400 dan x + y 125. Daerah penyelesaikan pertidaksamaan 4x + 3y 400. Jika garis 4x + 3y = 400 digambar pada diagram kartesius maka garis tersebut akan membagi dua daerah, yaitu 4x + 3y < 400 dan 4x + 3y > 400. Selanjutnya kita selidiki daerah mana yang menjadi daerah penyelesaian dari pertidaksamaan 4x + 3y 400, dengan cara mengambil sembarang titik misalnya P(x,y) pada salah satu daerah, kemudian mensubtitusikan titik tersebut ke pertidaksamaan 4x + 3y 400. Jika pertidaksamaan terseut bernilai benar maka daerah yang memuat titik P(x,y) merupakan daerah penyelesaian. Jika bernilai salah maka daerah tersebut bukan daerah penyelesaian pertidaksamaan 4x = 3y 400. Dengan cara yang sama maka daerah penyelesaian pertidaksamaan x + y 125 juga dapat diketahui. Modul Matematika SMA 77

84 Langkah 3 Mengarsir daerah yang merupakan daerah penyelesaian masingmasing pertidaksamaan. Daerah yang diarsir dua kali merupakan daerah penyelesaian dari sistem pertidaksamaan linier. Setelah melakukan langkah 1, 2 dan 3 diatas, maka daerah penyelesaian sistem pertidaksamaan dapat digambarkan sebagai berikut. y 133, x Contoh Gambar 1.1 daerah penyelesaian untuk sistem pertidaksamaan linier Gambarlah garis bidang cartesius, himpunan penyelesaian dari sistem peryidaksamaan dibawah berikut, x 0, y 0, 2x+3y 12, untuk x,y R. Penyelesaian: Gambarlah garis dengan persamaan x = y 0, y = 0, dan 2x + 3y = 12. Kemudian ambit titik (1,2) sebagai titik uji. Untuk 4 x 0 maka 1 0 adalah benar. Jadi, 2x + 3y = 12 belahan bidang yang memuat titik (1,2) merupakan himpunan penyelesaian x 0. Untuk y 0 maka 2 0 adalah benar. x 0 6 Jadi, belahan bidang yang memuat titik (1,2) merupakan himpunan penyelesaian y 0. Untuk 2x + 3y 12, maka 2(1) + 3(2) adalah benar. Jadi, belahan bidang Modul Matematika SMA 78

85 yag memuat titik (1,2) merupakan himpunan penyelesaian 2x + 3y 12. Himpunan penyelesaian dari sistem pertidaksamaan x 0, y 0 dan 2x+3y 12 adalah irisan dari himpunan penyelesaian x 0, dan himpunan penyelesaian y 0, dan himpunan penyelesaian 2x+3y 12 sehingga himpunan penyelesaian diperlihatkan pada daerah yang direster pada gambar di samping. Modul Matematika SMA 79

86 Rangkuman a. Sistem pertidaksamaan linier adalah himpunan petidaksamaan linier yang saling terkait dengan koefisien variabelnya bilanganbilangan real. b. Sistem pertidaksamaan linier dua variabel adalah satu sistem pertidaksamaan linier yang memuat dua variabel denga koefisien bilangan real. c. Penyelesaian sistem pertidaksamaan linier dua peubah adalah himpunan semua pasangan titik (x,y) yang memenuhi sistem pertidaksamaan linier tersebut. d. Daerah penyelesaian sistem pertidaksamaan linier adalah daerah tempat kedudukan titik-titik yang memenuhi sistem pertidaksamaan linier tersebut. e. Menentukan garis pembatas suatu pertidaksamaan linier dua variabel. 1). Persamaan garis lurus yang memotong sumbu koordinat di titik (0,a) dan (b,0) adalah: ax + by = ab. y a 0 b X Ax + by = 2). Persamaan garis lurus yang melalui dua titik, yaitu A(x 1,y 1 ) dab B(x 2, y 2 ) ditentukan oleh: y y 1 y 2 y 1 = x x 1 x 2 x 1 atau y = y 2 y 1 x 2 x 1 x x 1 + y 1 Modul Matematika SMA 80

87 Tugas Latihan Jawablah pertanyaan-pertanyaan berikut ini dengan benar! 1. Tentukan himpunan penyelesaian dari pertidaksamaan linier a. 2x + 5y 20! b. 4x 3y < 12! c. 5x + 3y 15! 2. Selidiki, apakah himpunan pertidaksamaan linier berikut merupakan sistem pertidaksamaan linier dua variabel? a. a 5b 9 dan 5a b 5! b. x + y 12, y 4, dan x 0! c. x + 2y 10 dan m p 8! 3. Jika diberikan sistem pertidaksamaan linier seperti berikut ini, a 1 x + b 1 y c 1 dan x 0, a 2 x + b 2 y c 2 dan y 0 a. Syarat apakah yang harus dipenuhi agar sistem memiliki solusi tunggal? b. Syarat apakah yang harus dipenuhi agar sistem tidak memiliki solusi? Modul Matematika SMA 81

88 Tes Formatif Jawablah pertanyaan dibawah ini dengan benar dan tepat! 1. Selidiki, apakah pertidaksamaan berikut termasuk persamaan linier dua variabel. 2x + y 6 dan x 2y -4! 2. Gambarah diagram cartesius dari himpunan penyelesaian sistem pertidaksamaan x 2, y 3, 2x + y 8, untuk x, y R! 3. Arsirlah daerah himpunan penyelesaian pertidaksamaan 3x + y 3, x, y R pada sistem koordinat cartesius Lembar Penilaian Nama : No. Absen : Judul Tugas : No. Kriteria Penilaian Rentang Nilai Nilai Prestasi 1. Benar cara maupun hasilnya Benar cara, hasil salah Benar hasil, cara salah 0-20 Jumlah Jumlah x 100% Jumlah Nilai Akhir Kesimpulan : Lulus / Tidak Lulus, 20 Modul Matematika SMA 82

89 3.3 EVALUASI Soal Evaluasi 1) Penyelesaian sistem persamaan 3x 2y= 12 dan 5x + y = 7 adalah x = p dan y = q. Nilai 4p + 3q adalah... a. 17 c. -1 b. 1 d ) Himpunan penyelesaian dari sistem persamaan x 2y = 10 dan 3x + 2y = -2 adalah.... a. {(-2, -4 )} c. {(2, -4)} b. {(-2,4)} d. {(2, 4)} 3) Himpunan penyelesaian dari sistem persamaan linier 2y x = 10 dan 3x + 2y = 29 adalah.. a. {(7, 4)} c. {(-4, 7)} b. {(7,-4)} d. {(4, 7)} 4) Jika 2x + 5y = 11 dan 4x 3y = -17, Maka nilai dari 2x y =.... a. -7 c. 5 b. -5 d. 7 5) Asep membeli 2 kg mangga dan 1 kg apel dan ia harus membayar Rp15.000,00, sedangkan Intan membeli 1 kg mangga dan 2 kg apel dengan harga Rp18.000,00. Berapakah harga 5 kg mangga dan 3 kg apel? a. Rp c. Rp b. Rp d. Rp ) Selisih umur seorang ayah dan anak perempuannya adalah 26 tahun, sedangkan lima tahun yang lalu jumlah umur keduanya 34 tahun. Hitunglah umur ayah dan anak perempuannya dua tahun yang akan datang. a. 37 tahun dan 11 tahun c. 36 tahun dan 10 tahun b. 35 tahun dan 11 tahun d. 39 tahun dan 11 tahun 7) Asti dan Anton bekerja pada sebuah perusahaan sepatu. Asti dapat membuat tiga pasang sepatu setiap jam dan Anton dapat membuat Modul Matematika SMA 83

90 empat pasang sepatu setiap jam. Jumlah jam bekerja Asti dan Anton 16 jam sehari, dengan banyak sepatu yang dapat dibuat 55 pasang. Jika banyaknya jam bekerja keduanya tidak sama, tentukan lama bekerja Asti dan Anton. a. 9 jam dan 8 jam c. 8 jam dan 9 jam b. 9 jam dan 7 jam d. 7 jam dan 9 jam 8) Tentukan himpunan penyelesaian dari: 3x + 4y 3z = 3 2x y + 4z = 21 5x + 2y + 6z = 46 a. {(2, 3, 5)} c. {(4, 3, 5)} b. {(1, 3, 5)} d. {(3, 3, 5)} 9) Himpunnan penyelesaian sistem persamaan 2x + 5y + 4z = 28 3x 2y + 5z = 19 6x + 3y 2z = 4 adalah a. {(1, 3, 4)} c. {(1, 2, 4)} b. {(2, 3, 4)} d. {(1, 4, 5)} 10) Tentukan himpunan penyelesaian dari: 2x + 3y z = 20 3x + 2y + z = 20 x + 4y + 2z = 15 a. {(5, 3, -2)} c. {(5, 2, -1)} b. {(5, 3, -1)} d. {(5, 1, -1)} 11) Gambarlah daerah himpunan penyelesaian sistem pertidaksamaan dari x y 0, x + y 4 adalah. a. c. y y x 0 4 x Modul Matematika SMA 84

91 b. y d. 4 y x 0 4 x 12) Daerah himpunan penyelesaian sistem pertidaksamaan dari x y 0, x + y 4, y 0 adalah. a. c. y y x 0 4 x b. d. y 4 y x 0 4 x 13) Daerah yang diarsir adalah gambar himpunan penyelesaian sistem pertidaksamaan dari x 0, y 0. A. x + y 6, y 2 y 6 B. x + y 6, y 2 C. x + y 6, y 2 0 D. x + y 6, y x Modul Matematika SMA 85

92 14) Daerah yang diarsir adalah himpunan penyelesaian pertidaksamaan dari x 0, y 0. y A. y 4, y x 5, y 2x 8 8 B. y 4, y + x 5, y + 2x 8 C. y 4, y + x 5, y + 2x 8 5 D. y 4, 5y + 5 x 0, y 2x x 15) Koordinat titik-titik di dalam dan sepanjang segitiga ABC pada gambar berikut ini memenuhi sistem pertidaksamaan. A. 4x + y 8, 3x + 4y 24, x + 6y 12 y B. 4x + y 8, 3x + 4y 24, x + 6y 12 8 C. 4x + y 8, 3x + 4y 24, x + 6y 12 6 C D. 4x + y 8, 3x + 4y 24, x + 6y A 2 B 8 12 x 16) Himpunan penyelesaian dari sistem pertidaksamaan 5x + 3y 15, x + 2y 6, x 0, y 0 mempunyai. Buah titik sudut. A. I B. II C. III D. IV 17) Himpunan penyelesaian dari sistem pertidaksamaan 2x + y 4, x + 3y 3, x, y C dinyatakan oleh daerah. A. I B. II C. III D. IV Modul Matematika SMA 86 y 4 I 1 II I IV x

93 18) Himpunan penyelesaian dari sistem pertidaksamaan 2x + y 40, x + 2y 40, x 0, dan y 0 brbentuk. A. Persegi panjang B. Segi empat C. Trapezium D. segitiga 19) Makanan x mengandung 4 unit vitamin A dan 2 unit vitamin B per kilogram. Makanan y mengandung 4 unit vitamin A dan 6 unit Vitamin B per kilogram. Makanan-makanan tersebut akan digunakan untuk membuat makanan campuran yang mengandung sekurang-kurangnya 28 unit vitamin A dan 24 unit vitamin B. model matematika yang dapat disusun dari masalah di atas adalah A. x + y 7, x + 3y 12, x 0, y 0, x, y C B. x + y 7, x + 3y 12, x 0, y 0, x, y C C. x + y 7, x + 3y 12, x 0, y 0, x, y C D. x + y 7, x + 3y 12, x 0, y 0, x, y C 20) Seorang pedagang cat akan membeli barang dengan paling banyak 20 kaleng cat ukuran besar dan kecil. Harga sebuah cat kaleng besar Rp20.000,00 dan sebuah cat kaleng kecil Rp10.000,00, sedangkan uang yang tersedia adalah Rp ,00. Jika banyaknya cat kaleng besar yang dibeli dimisalkan x buah dan cat kaleng kecil dimisalkan y buah, maka model matematikanya adalah. A. X + y 20, 2x + y 25, x 0, y 0, x, y C B. X + y 20, 2x + y 25, x 0, y 0, x, y C C. X + y 20, 2x + y 25, x 0, y 0, x, y C D. X + y 20, 2x + y 25, x 0, y 0, x, y C 21) Kotak tempat barang dengan seorang penjual minuman kaleng paling banyak membuat minuman sebanyak 60 kaleng. Ia membeli minuman jenis A seharga Rp1.500,00/kaleng dan minuman jenis B seharga Rp1.750,00/kaleng. Ia hanya mempunyai modal Rp ,00. Jika banyaknya minuman kaleng jenis A dinyatakan dengan x buah dan Modul Matematika SMA 87

94 minuman jenis B y buah, maka model minuman matematikanya adalah A. X + y 60, 6x + 7y 800, x 0, y 0, x, y C B. X + y 60, 6x + 7y 800, x 0, y 0, x, y C C. X + y 60, 6x + 7y 800, x 0, y 0, x, y C D. X + y 60, 6x + 7y 800, x 0, y 0, x, y C 22) Jika x 0, y 0 dan daerah himpunan penyelesaian adalah daerah III, maka sistem pertidaksaman yang memenuhi adalah. A. Y 2x, 2y x, 2x + y 4, x + y 4 B. Y 2x, 2y x, 2x + y 4, x + y 4 y 4 C. Y 2x, 2y x, 2x + y 4, x + y 4 III D. Y 2x, 2y x, 2x + y 4, x + y 4 II I I x 23) Jika daerah himpunan penyelesaian adalah daerah I, maka daerah itu memenuhi sistem pertidaksamaan. A. X 2y -2, 4x + 3y 12, x 0, y 0 y 4 B. X 2y -2, 4x + 3y 12, x 0, y 0 III C. X 2y -2, 4x + 3y 12, x 0, y 0 I I 1 D. X 2y -2, 4x + 3y 12, x 0, y 0 I x 24) Jika himpunan penyelesaian sistem pertidaksamaan merupakan daerah 1 dan III, maka sistempertidaksamaan itu adalah. y 4 3 I V II 1 III I x A. X 0, y 1, (x + y 4)(x + 2y 6) 0 B. y 0, x 1, (x + y 4)(x + 2y 6) 0 Modul Matematika SMA 88

95 C. X 0, y 1, (x + y 4)(x + 2y 6) 0 D. y 0, x 1, (x + y 4)(x + 2y 6) 0 25) Himpunan penyelesaian sistem pertidaksamaan dari x + y 4, x + 2y 6, dan y 1 ditunjukkn oleh A. I B. II C. III y 4 3 I V D. IV II 1 III I x Lembar Penilaian Nama :... Kelas :... No. Absen :... No. Tugas :... Judul Tugas :... No. Kriteria Rentang Nilai 1. Kegiatan belajar Kegiatan belajar Kegiatan belajar Evaluasi JUMLAH Nilai Prestasi Tes Formatif Evaluasi JUMLAH (jumlah X 60%) (jumlah X 40%) Jumlah Nilai Akhir Kesimpulan: Lulus/Tidak Lulus..., Modul Matematika SMA 89

96 BAB 4 Modul Matematika SMA 90

97 4.1 PENDAHULUAN Deskripsi Dalam modul ini anda akan mempelajari perbandingan trigonometri (sinus, cosinus, tangen), penggunaan perbandingan trigonometri, penentuan nilai perbandingan trigonometri di berbagai kuadran, pengkonversian koordinat cartesius dan kutub, aturan sinus dan cosinus, penentuan luas segitiga, rumus trigonometri jumlah dan selisih dua sudut Prasyarat Prasyarat untuk mempelajari modul ini adalah anda harus sudah mempelajari bentuk akar dan pangkat, persamaan dan kesebangunan dua segitiga, dan sudut-sudut istimewa Petunjuk Penggunaan Modul 1. Pelajari daftar isi serta skema modul dengan cermat, karena daftar isi dan skema akan menuntun anda dalam mempelajari modul ini dan kaitannya dengan modul-modul yang lain. 2. Untuk mempelajari modul ini haruslah berurutan, karena materi yang mendahului merupakan prasyarat untuk mempelajari materi berikutnya. 3. Perhatikan langkah-langkah dalam melakukan pekerjaan dengan benar untuk memudahkan pemahaman dalam suatu proses pekerjaan. 4. Kerjakann soal-soal pada cek kemampuan intuk mengukur kemampuan anda sebelum mempelajari modul ini. 5. Apabila dari soal cek kemampuan yang telah anda kerjakan mendapat score 70, maka anda dapat langsung menuju Evaluasi untuk mengerjakan soal-soal tersebut. Tetapi bila hasil jawaban mendapat nilai < 70, maka anda harus mengikuti kegiatan pembelajaran dalam modul ini. 6. Pahamilah contoh-contoh soal yang ada, dan kerjakanlah semua soal latihan yang ada. Jika dalam mengerjakan soal anda menemui kesulitan, kembalilah mempelajari materi yang terkait. Modul Matematika SMA 91

98 7. Kerjakan soal-soal yang terdapat dalam modul sesuai dengan kemampuan anda dalam memahami modul ini. 8. Kerjakanlah soal evaluasi dengan cermat. Jika anda menemui kesulitan dalam mengerjakan soal evaluasi, kembalilah mempelajari materi yang terkait. 9. Jika anda mempunyai kesulitan yang tidak dapat anda pecahkan, catatlah, kemudian tanyakan kepada guru pada saat kegiatan tatap muka atau bacalah referensi lain yang berhubungan dengan materi modul ini. Dengan membaca referensi lain, anda juga akan mendapatkan pengetahuan tambahan Tujuan Akhir Setelah mempelajari modul ini diharapkan Anda dapat: 1. Menemukan nilai perbandingan trigonometri untuk suatu sudut, 2. Menggunakan perbandingan trigonometri, 3. Menentukan nilai perbandingan trigonometri di berbagai kuadran, 4. Mengkonversikan koordinat cartesius dan kutub, 5. Menggunakan aturan sinus dan aturan cosinus, 6. Menentukan luas segitiga 7. Menggunakan rumus trigonometri jumlah dan selisih sudut, 8. Menyelesaikan persamaan trigonometri 9. Memahami pengertian koordinat kutub dan koordinat cartesius 10. Mengkonversikan koordinat cartesius ke koordinat kutub 11. Mengkonversikan koordinat kutub ke koordinat cartesius 12. Menentukan luas segitiga 13. Menyelesaikan masalah Menggunakan aturan sinus dan kosinus 14. Menyelesaikan masalah menggunakan rumus trigonometri jumlah dan selisih dua sudut Modul Matematika SMA 92

99 Kode Unit Kompetensi Judul Unit : Trigonometri (jam) Uraian Unit : Sub Kompetensi 1. Menentukan dan menggunakan nilai perbandingan trigonometri suatu sudut. 2. Mengkonversi koordinat cartesius dan kutub 3. Menggunakan aturan sinus dan cosines 4. Menentukan luas suatu segitiga 5. Menggunakan rumus trigonometri jumlah dan selisih dua sudut 6. Menyelesaikan persamaan trigonometri 7. Mengkonversi koordinat cartesius dan kutub 8. Menentukan luas suatu segitiga Indikator 1.1 Perbandingan trigonometri suatu sudut ditentukan dari sisisisi segitiga siku-siku. 1.2 Perbandingan trigonometri dipergunakan dalam menentukan panjang sisi dan besar sudut segitiga siku-siku. 1.3 Sudut-sudut diberbagai kuadran ditentukan nilai perbandingan trigonometrinya. 2.1 Koordinat cartesius dan koordinat kutub dibedakan sesuai pengertiannya. 2.2 Koordinat cartesius dikonversi ke koordinat kutub atau koordinat kutub ke koordinat cartesius sesuai prosedur dan rumus yang berlaku. 3.1 Aturan sinus digunakan untuk menentukan panjang sisi atau besar sudut pada suatu segitiga. 3.2 Aturan cosinus digunakan untuk menentukan panjang sisi atau besar sudut pada suatu segitiga 4.1 Luas segitiga dihitung dengan menggunakan rumus luas segitiga 5.1 Rumus trigonometri jumlah dan selisih dua sudut digunakan untuk menyelesaikan soal-soal yang terkait 6.1 Persamaan trigonometri dihitung penyelesaiannya 7.1 Koordinat cartesius dan koordinat kutub dibedakan sesuai pengertiannya 7.2 Koordinat cartesius dikonversi ke koordinat kutub atau koordinat kutub ke koordinat cartesius sesuai prosedur dan rumus yang berlaku 8.1 Luas segitiga dihitung dengan menggunakan rumus luas segitiga Acuan Penilaian 1. Unit kompetensi ini dapat diujikan secara langsung kepada peserta uji. 2. Aspek-aspek kritikal yang dinilai: Mampu mengkonversikoordinat cartesius dan kutub Memahami rumus trigonometri jumlah dan selisih sudut 3. Kompetensi yang harus dikuasai sebelumnya: Bentuk akar dan pangkat, persamaan dan kesebangunan dua segitiga, dan sudut-sudut istimewa 4. Pengetahuan yang harus dibutuhkan: Mengetahui rumus perbandingan Mampu menemukan kuadran Mengenal istilah unsur dalam trigonometri Modul Matematika SMA 93

100 Memahami sisi-sisi dalam segitiga 5. Sikap yang dituntut: Bekerja dengan ketelitian dan kecermatan Efisien dan optimal dalam bekerja Memperhatikan langkah-langkah dalam suatu proses Bersikap positif dan terbuka terhadap penilaian pekerjaan oleh atasan No Cek Kemampuan Berilah tanda ( ), pada kolom Jawaban : Ya atau Tidak jawaban yang anda pilih Pertanyaan 1. Apakah anda dapat menggunakan rumus perbandingan? 2. Apakah anda dapat mengukur sudut suatu segitiga? 3. Apakah anda mengenal atusan sinus dan cosinus? 4. Apakah anda dapat menentukan kuadran? 5. Apakah anda mengetahui luas segitiga? 6. Apakah anda dapat membedakan antara koordinat kutub dan cartesius? 7. Apakah anda dapat menghitung besar sudut? 8. Apakah anda dapat menghitung panjang sisi pada sebuah segitiga? 9. Apakah anda mengenal istilah unsur dalam trigonometri? 10. Apakah anda mengetahui yang dimaksud koordinat kutub? 11. Apakah anda mengetahui yang dimaksud koordinat cartesius? Skore (Nilai) Jawaban Ya Tulungagung, 2 November 2015 Tidak Modul Matematika SMA 94

101 PETA KONSEP Trigonometri Perbandingan Trigonometri suatu sudut Mengkonversi Aturan sinus dan cosinus Koorinat Cartesius Koordinat Kutub Luas Segitiga Jumlah dan Selisih Dua Sudut Modul Matematika SMA 95

102 4.2 PEMBAHASAN Rencana Belajar Siswa 1) Pada setiap kegiatan belajar, pahamilah uraian tujuan kegiatan belajar, agar mengetahui kemampuan apa yang akan dicapai pada setiap kegiatan. 2) Peralatan dan bahan yang harus dibawa pada pertemuan atau tatap muka berikutnya harus dibaca sebelum kegiatan dilaksanakan. 3) Sebelum melaksanakan kegiatan harus memahami terlebih dahulu setiap langkah kerja yang dilaksanakan, apabila kurang jelas dapat menanyakan kepada guru/instruktur. 4) Kerjakanlah setiap latihan dengan bersungguh-sungguh agar kemampuan anda yang sebenarnya diketahui Kegiatan Belajar Perbandingan Trigonometri dalam Segitiga Siku-siku Gambar 1.1 merupakan gambar segitiga siku-siku di C, dengan panjang AB=c, panjang AC= b, panjang BC= a, BCA = a, ABC = β, dan ACB = 90. Sisi AC dan BC merupakan sisi siku-siku, sedangkan sisi AB disebut sisi miring (hipotenusa). Gambar 1.1: Bardasarkan ganbar diatas diperoleh perbandingan panjang sisi-sisi segitiga berikut. 1) BC = a AC = sin α (sinus sudut α) dan = b = sin β (sinus sudut AB c AB c β) Modul Matematika SMA 96

103 BC dan AC masing-masing merupakan sisi-sisi didepan sudut α dan sudut β, sedangkan AB merupakan sisi miring segitiga ABC. 2) AC = b BC = cos α (cosinus sudut α) dan = a = cos β (cosinus AB c AB c sudut β) AC dan BC masing-masing merupakan sisi siku-siku yang mengapit sudut a dan sudut β, sedangkan AB merupakan sisi miring segitiga ABC. 3) BC = a AC = tan a (tangen sudut a) dan = a = tan β (tangen AC c BC b sudut β) BC dan AC masing-masig merupakan sisi-sisi didepan sudut a dan sudut β, sedangkan AC dan BC masing-masing merupakan sisi siku-siku yang mengapit sudut a dan sudut β. 4) BC = a AB = cosec a (cosecan sudut a) dan = c = cosec β AC c AC b (cosecan sudut β). Jadi, cosec a = 1 1 dan cosec β = sin a sin β 5) AB = c AB = sec a (secan sudut a) dan = sec β (secan sudut β). AC b BC Jadi, sec a = 1 1 dan sec β = cos α cosβ 6) AC = b = cot a (cotangen sudut a) dan BC = a = cot β BC a AC b (cotangen sudut β) Jadi, cot a = 1 1 dan cot β = tan a tan β Contoh: Tentukan nilai-nilai perbandingan trigonometri berikut. a. sin a b. tan a c. cos a d. cosec a e. cot a f. cos β g. sec β h. sin β Modul Matematika SMA 97

104 Penyelesaian: a) Sin a = BC AB = 3 5 b) Tan a = BC AC AC= = 16= 4. Tan a = 3 4 c) Cos a = AC AB = 4 5 d) Cosec a = 1 sin a = AB BC = 5 3 e) Cot a = 1 tan a = AC BC = 4 3 f) Cos β = BC AB = 3 5 g) Sec β = 1 cos B = AB BC = 5 3 h) Sin β = AC AB = Perbandingan Trigonometri Sudut-sudut Istimewa Sudut-sudut istimewa yang akan dijelaskan pada materi ini adalah sudut yang besarnya 0, 30, 45, 60, dan 90. Perbandingan trigonometri sudut-sudut istimewa adalah sebagai berikut: B. sudut Trigono sin a cos a tan a Tak terdefinisi Perbandingan Trigonometri Sudut-sudut Berelasi Sumbu koordinat membagi bidang koordinat Cartesius menjadi empat bagian (kuadran). Suatu sudut a pada bidang Cartesius dikelompokan menjadi empat kuadran yaitu: Kuadaran I : 0 < a 1 < 90 atau 0 < a 1 < π 2 Modul Matematika SMA 98

105 Kuadran II : 90 < a 2 < 180 atau π 2 < a 2 < π Kuadran III : 180 < a 3 < 270 atau π < a 3 < 3π 2 Kuadran IV : 270 < a 4 < 360 atau 3π 2 < a 4 < 2π a) Perbandingan trigonometri sudut di kuadran I O Sebuah titik P(x,y) terletak pada kuadran I. Jika APO = θ, maka sin α = y r sin θ = x r cos a = x r cos θ = y r tan a = y x tan θ = x y Karena θ = 90 a, diperoleh sebagai berikut ini, sin 90 a = cos a cos 90 a = sin a tan 90 a = cot a Modul Matematika SMA 99

106 b) Perbandingan trigonometri sudut di kuadarn II Pada kuadran II, relasi sudut a dapat dinyatakan dengan (90 + a) atau (180 a). Perhatikan gambar, titik P(x,y) dicerminkan terhadap sumbu Y sehingga diperoleh titik P (-x,y) yang terletak di kuadran II. Jika POB = a dan AOP = 90 + a, maka ΔPOB diperoleh: sin a = x y Dan dari ΔAOP diperoleh : cos a = y r tan a = x y sin 90 + a = y r cos 90 + a = x r tan 90 + a = y r = y r Sehingga, diperoleh hubungan sebagai berikut. sin 90 + a = y r cos 90 + a = x r = cos a = sin a tan 90 + a = y = cot a x Modul Matematika SMA 100

107 Perhatikan gambar, titik P(x,y) dicerminkan terhadap sumbu Y sehingga diperoleh titik P(-x,y) yang terletak pada kuadran II. Jika AOP = a dan AOP = (180 a), maka dari ΔAOP diperoleh: sin a = y r Dan dari ΔAOP diperoleh: cos a = x r tan a = y x sin 180 a = y r cos 180 a = x r = sin a = cos a tan 180 a = y = tan a r Perhatikan bahwa jika a ada di kuadran II, 90 < a < 180, maka Trigonometri sin a cos a tan a Tanda + c) Perbandingan trigonometri sudut di kuadran III Perhatikan gambar, titik P(x,y) dicerminkan terhadap titik asal O(0,0) sehingga diperoleh titik P (-x,-y) yang terletak pada kuadran III. Jika AOP = a dan AOP = a, maka dari ΔAOP diperoleh: sin a = y r cos a = x r tan a = y x Dan dari ΔAOP diperoleh: sin a = y r = y r cos a = x r = x r Modul Matematika SMA 101

108 tan a = y x = y x Sehingga diperoleh hubungan sebagai berikut. sin a = y r cos a = x r = sin a = cos a tan a = y = tan a r Selain menyatakan perbandingan trigonometri pada kuadran III sebagai (180 + a), juga dapat dinyatakan sebagai (270 + a). Perhatikan gambar, titik P (-x,-y) terletak pada kuadran III. Jika POB = a dan AOP = 270 a, maka dari ΔPOB diperoleh: sin a = x r cos a = y r tan a = x y Dan dari ΔAOP diperoleh: sin 270 a = y r = y r cos 270 a = x r = x r tan 270 a = y x = y x Sehingga, didapat hubungan sebagai berikut: sin 270 a = y r cos 270 a = x r = cos a = sin a tan 270 a = y = cot a x Modul Matematika SMA 102

109 Perhatikan bahwa jika a ada di kuadran III, 180 < a < 270, maka Trigonometri sin a cos a tan a Tanda + d) Perbandingan trigonometri sudut di kuadran IV Perhatikan gambar. Titik P(x,y) dicerminkan terhadap sumbu X sehingga diperoleh titik P (x,-y) terletak pada kuadran IV. Jika POB = a dan AOP = a, maka dari ΔPOB diperoleh: sin a = x r cos a = y r tan a = x y Dan dari ΔAOP diperoleh: sin a = y r = y r cos a = x r tan a = y x = y r Sehingga, di dapat hubungan sebagai berikut: sin a = y r = cos a cos a = x = sin a r tan a = y x = y x Sehingga, didapat hubungan sebagai berikut. sin a = y = cos a r cos a = sin a tan a = cot a Modul Matematika SMA 103

110 Selain dengan (270 + a), juga dapat menyatakan perbandingan trigonometri pada kuadran IV dengan 360 a dan( a). Perhatikan gambar: Titik P(x,y) dicerminkan terhadap sumbu X sehingga diperoleh P (x,y) pada kuadran IV. Jika AOP = a dan AOP = 360 a, maka dari AOP diperoleh: sin a = y r cos a = x r tan a = y x Dan dari AOP diperoleh: sin 360 a = y r = y r cos 360 a = x r tan 360 a = y x = y x Sehingga didapat hbungan sebagai berikut. sin 360 a = y r cos 360 a = x r = sin a = cos a tan 360 a = y = tan a x Perhatikan bahwa jika a ada di kuadran IV, 270 < a < 360, maka Trigonometri sin a cos a tan a Tanda + Modul Matematika SMA 104

111 Rangkuman Identitas trigonometri merupakan suatu persamaan yang didalamnya terdapat perbandingan trigonometri. Adapun cara membuktikan persamaan tersebut adalah dengan menguraikan ruas kiri persamaan sehingga hasil uarainnya sama dengan ruas kanan atau sebaliknya. Ada perbandingan segitiga siku-siku, sudut-sudut istimewa dengan rumus yang sudah dijelaskan diatas Tes Formatif 1. sec 300 Jawab: sec 300 = sec kuadran IV = sec 60 = 1 cos 60 = = 2 Modul Matematika SMA 105

112 Lembar Penilaian Nama : No. Absen : Judul Tugas : No. Kriteria Penilaian Rentang Nilai 1. Benar cara maupun hasilnya 0 60 Nilai Prestasi 2. Benar cara, hasil salah Benar hasil, cara salah 0 20 Jumlah Jumlah x 100% Jumlah Nilai Akhir Kesimpulan : Lulus / Tidak Lulus.,..20 Modul Matematika SMA 106

113 4.2.3 Kegiatan Belajar Koordinat Cartesius dan Koordinat Kutub Secara singkat koordinat Cartesius adalah suatu titik yang digambar pada sumbu x dansumbu y, terdiri dari absis (nilai x) dan ordinat (nilai y), ditulis P(x,y). Atau Koordinat Cartesius adalah letak suatu titik yang mempunyai absis x, ordinat y. Y P(x,y O X Koordinat kutub adalah koordinat yang digambar pada sumbu x dan y, terdiri dari nilai r r = x 2 + y 2 dan sudut θ., yaitu sudut yang dibentuk oleh garis OP dan OX, ditulis P(r, θ). Atau dapat diringkas lagi Koordinat Kutub adalah letak suatu titik yang disajikan dalam bentuk r dan α. Y r P(x,y) O θ X Koordinat cartesius ke koordinat kutub atau koordinat kutub ke koordinat cartesius sesuai prosedur dan rumus yang berlaku. Modul Matematika SMA 107

114 Hubungan koordinat kartesius dengan koordinat kutub diperlihatkan oleh gambar berikut ini. r P(r,θ) O θ x X Dari gambar di atas diperoleh hubungan jika pada koordinat kartesius titik P (x,y) diketahui maka koordinat kutub P (r,θ) dapat ditentukan dengan menggunakan rumus sebagai berikut. r = x 2 + y 2 tan θ = x y θ = arctan y x Dengan demikian, apabila koordinat kartesius P (x,y) dinyatakan menjadi koodinat kutub dapat dinyatakan dengan: P = x 2 + y 2, arctan y x Jika koordinat kutub titik P (r, θ) diketahui maka koordinat kartesius titik P (x, y) dapat ditentukan dengan menggunakan rumus sebagai berikut. sin θ = y r y = r sin θ cos θ = x r x = r cos θ Dengan demikian, apabila koordinat kutub P (r, θ) dinyatakan menjadi koodinat kartesius dapat dinyatakan dengan rumus: P(r cos θ, r sin θ) Modul Matematika SMA 108

115 Rangkuman 1. Koordinat Cartesius adalah letak suatu titik yang mempunyai absis x, ordinat y. 2. Koordinat Kutub adalah letak suatu titik yang disajikan dalam bentuk r dan α. 3. Koorinat Cartesius ditulis dengan P(x,y) 4. Koordinat kutub ditulis dengan P(r, θ) 5. apabila koordinat kartesius P (x,y) dinyatakan menjadi koodinat kutub dapat dinyatakan dengan: P = x 2 + y 2, arctan y x 6. Jika koordinat kutub titik P (r, θ) diketahui maka koordinat kartesius titik P (x, y) dapat ditentukan dengan menggunakan rumus sebagai berikut : sin θ = y y = r sin θ dan cos θ = x x = r cos θ r r 7. apabila koordinat kutub P (r, θ) dinyatakan menjadi koodinat kartesius dapat dinyatakan dengan rumus:p(r cos θ, r sin θ) Tes Formatif 1) Apa yang di maksud dengan Koordinat Kutub 2) Apa yang dimaksud dengan koordinat cartesius 3) Jika diketahui koordinat kutub (6 3, 60 ), Tentukan koordinat cartesiusnya. 4) Jika diketahui koordinat kutub titik (-4,4) Tentukan koordinat kutub nya. 5) Tentukan koordinat Kutub jika diketahui koordinat Cartesiusnya adalah P ( -2 3, -2 ) Modul Matematika SMA 109

116 Lembar Penilaian Nama : No. Absen : Judul Tugas : No. Kriteria Penilaian Rentang Nilai Nilai Prestasi 1. Benar cara maupun hasilnya Benar cara, hasil salah Benar hasil, cara salah 0-20 Jumlah Jumlah x 100% Jumlah Nilai Akhir Kesimpulan : Lulus / Tidak Lulus, 20 Modul Matematika SMA 110

117 4.2.4 Kegiatan Belajar Luas Suatu Segitiga Sebelum menghitung Luas segitiga, tentunya kita harus mengetahui rumus luas segitiga terlebih dahulu. Luas Δ ABC = 1 2 alas tinggi = 1 2 AB CD Untuk menghitung luas segitiga dapat dilakukan dengan berbagai cara. 1. Menentukam luas segitiga, jika diketahui besar sudut dan panjang dua sisi yang mengapit sudut itu. Misalkan pada ΔABC yang diketahui adalah besar sudut A dan kedua sisi yang mengapit sudut itu, yakni sisi AB dan AC, maka rumus luasnya ditentukan sebagai berikut: Luas Δ ABC = 1 2 alas tinggi = 1 2 = 1 2 AB CD c b sin a (karena CD = b. sin a) Modul Matematika SMA 111

118 Luas Δ ABC = 1 b. c. sin a 2 Dengan cara analogi yang sama diperoleh juga : Luas Δ ABC Luas Δ ABC = 1 a. b. sin β 2 = 1 a. b. sin γ 2 Ketiga Rumus Segitiga di atas dapat ditulis juga : Luas Δ ABC = 1 b. c. sin A 2 Luas Δ ABC = 1 a. c. sin B 2 Luas Δ ABC = 1 a. b. sin C 2 2. Menentukan luas segitiga, jika diketahui panjang ketiga sisinya. Perhatikan Δ ABC di bawah ini : Jika sebuah segitiga diketahui panjang ketiga sisinya, sedangkan sudut-sudutnya tidak diketahui, maka luas segitiga itu dapat dihitung dengan Formula Hero. Misalkan pada Δ ABC di atas diketahui AB = c, AC = b, dan BC = a, maka rumus luasnya diperoleh dari rumus luas Δ ABC = 1 2 b. c. sin A, dengan mengganti nilai sin A dengan bentuk cosinus yang diambil dari rumus cos A = b 2 +c 2 +a 2 Modul Matematika SMA b.c Berdasarkan rumus sin 2 A = 1 cos 2 A diperoleh: sin 2 A = (1 + cos A) (1 - cos A) sin 2 A = 1 + b 2 +c 2 +a 2 2bc sin 2 A = 2bc + b 2 +c 2 a 2 2bc 2bc sin 2 A = (b+c)2 a 2 2bc 1 b 2 +c 2 +a 2 2bc a 2 (b c) 2 2bc 2bc b 2 +c 2 a 2 2bc 2bc

119 sin 2 A = b+c+a (b+c a) 2bc a+b c (a b+c) Misalkan keliling ΔABC adalah 2s, berarti 2s = a + b + c, maka bentuk (b+c+a) = 2s 2a; (a + b + c) = 2s 2c; dan (a b + c) = 2bc 2s 2b. Sehingga persamaan di atas dapat ditulis: sin 2 A = 2s(2s 2a) 2bc sin 2 A = 2s ( s a)(s b)(s c) (bc ) 2 2s 2c (2s 2b) 2bc sin 2 A = 2 bc s s a s b (s c) Dari bentuk rumus luas Δ ABC = 1 b. c. sin A, diperoleh 2 rumus baru yang disebut Rumus Hero ( Hero s Formula ). Yaitu: Luas Δ ABC = s s a s b (s c) 3. Menentukan luas segitiga, jika diketahui besar dua sudut dan panjang sisi yang terletak diantara kedua sudut itu. Dari rumus luas Δ ABC = 1 2 b. c. sin C dan rumus sinus a sin A = b = c diperoleh hubungan sebagai berikut: sin B sin C a = b a sin B a sin B = b sin A b =, sehingga: sin A sin B sin A Luas Δ ABC = 1 2 a 2 sin B.sin C sin A 1 2 a sin B sin A. a. sin C atau Luas Δ ABC = Dengan cara yang sama, diperoleh juga rumus luas sebagai berikut: dimana s = a +b+c 2 Luas Δ ABC = 1 Luas Δ ABC = 1 Luas Δ ABC = a2 sin B.sin C sin A b2 sin A.sin C sin B c2 sin A.sin B sin C Modul Matematika SMA 113

120 Rangkuman 1. Menentukam luas segitiga, jika diketahui besar sudut dan panjang dua sisi yang mengapit sudut itu. Dapat dihitung menggunakan rumus 1 2 b. c. sin a 2. Menentukan luas segitiga, jika diketahui panjang ketiga sisinya. Dapat dihitung menggunakan rumus s s a s b s c 3. Menentukan luas segitiga, jika diketahui besar dua sudut dan panjang sisi yangterletak diantara kedua sudut itu. Dapat dihitung menggunakan rumus 1 2 a2 sin B.sin C sin A Tes Formatif 1. Diketahui sebuah segitiga ABC, jika a = 6 cm, b = 9 cm, dan sudut C = 30 0 Hitunglah luas segitiga ABC. 2. Diketahui segitiga KLM, jika diketahui panjang sisi KL = 9 cm, KM = 13 cm, dan LM = 10 cm. Hitunglah keliling segitiga KLM. 3. Diketahui sebuah segitiga ABC, jika < A = 25 0 dan < B = Sedangkan panjang sisi c = 5 cm. Hitunglah luas segitiga ABC. Modul Matematika SMA 114

121 Lembar Penilaian Nama : No. Absen : Judul Tugas : No. Kriteria Penilaian Rentang Nilai Nilai Prestasi 1. Benar cara maupun hasilnya Benar cara, hasil salah Benar hasil, cara salah 0-20 Jumlah Jumlah x 100% Jumlah Nilai Akhir Kesimpulan: Lulus / Tidak Lulus, 20 Modul Matematika SMA 115

122 4.2.5 Kegiatan Belajar Menggunakan Anturan Sinus dan Cosinus Kita tentu telah mengetahui bahwa suatu bangun segitiga memiliki tiga buah sudut dan tiga buah sisi serta jumlah besar ketiga sudut segitiga adalah 180. Dalam sub bab ini akan dipelajari hubungan ketiga titik sudut dan ruas sisi segitiga yang akan membentuk aturan sinus dan aturan kosinus. 1. Aturan Sinus Dalam Suatu Segitiga Perhatikan gambar dibawah ini. Dalam ABC ditarik garis tinggi BD dan AE B c β E a a A D C Pada ABD : Pada CBD Sin α = BD BD = c sin α (1) AB sin γ = BD BD = sin α sin γ 2 BC Dari persamaan (1) dan (2) diperoleh: Pada CAE: Pada ABE: c sin α = α sin γ, atau γ a sin α = c... (3) sin γ sin γ = AE AE = b sin γ (4) CA Sin β = AE AE = c sin β 5 BA Dari persamaan (4) dan (5) diperoleh : Modul Matematika SMA 116

123 b sin γ = c sin β b sin β = c sin γ 6 Dari persamaan (3) dan (6) diperoleh : a sin α = b sin β = c sin γ Persamaan tersebut disebut aturan sinus dalam suatu segitiga. 2. Aturan Kosinus Dalam Suatu Segitiga Jika dalam suatu segitiga diketahui dua sisi dan sudut apit dari kedua sisi itu maka sisi ketiga dapat juga dicari menggunakan aturan kosinus, selain aturan sinus. Sehingga pada setiap segitiga ABC berlaku aturan kosinus : a 2 = b 2 + c 2 2bc. cos a b 2 = a 2 + c 2 2ab. cos β c 2 = a 2 + b 2 2ab. cos γ Bukti: Pada ABC jika AD = x maka BD = c x. Pada ADC berlaku : CD 2 = b 2 - x 2... (1) Pada BDC berlaku : CD 2 = a 2 c 2 x 2 (2) Dari persamaan (1) dan (2) diperoleh hubungan = b 2 x 2 = a 2 (c x) 2 b 2 x 2 = a 2 c 2 + 2c x x 2 a 2 = b 2 + c 2 2cx (3) Pada ADC berlaku cos α = x b maka x = b cos α. Sehingga persamaan (3) menjadi: a 2 = b 2 + c 2 2c b cos α a 2 = b 2 + c 2 2bc cos α Jadi, a 2 = b 2 + c 2 2bc. cos α Dengan cara yang sama dapat dibuktikan: Modul Matematika SMA 117

124 b 2 = a 2 + c 2 2ac. cos β c 2 = a 2 + b 2 2ab. cos β Rumus Trigonometri Jumlah dan Selisih Sudut 1. Sin (α ± β) Perhatikan gambar berikut : C γ A b α r o E D a β B Pada gambar diatas, O adalah titik pusat lingkaran luar segitiga ABC, diket BAC = α, ACB = γ, dan panjang sisi AB = c, BC = a, dan AC = b serta jari-jari OA= 1.α + β < π. 2 Pada ADO siku-siku di D: OA = 1. AD = c, dan AOD = γ 2 2 Maka: Sin γ = AD OA = Sin γ = c c Sehingga dengan cara yang sama diperoleh, sin α = a, sin β = b Pada AEC, EA=b cos β, dan pada BEC, EB = α cos β EA + EB = c = b cos α + α cos β α + β + γ = π γ = π (α + β) Sehingga: Sin (α + β) = sin (π α + β = sin γ = c Sin (α + β) = b cos a + a cos β = sin β cos a + sin a cos β Modul Matematika SMA 118

125 Jadi Sedangkan untuk rumus sin (α β), dapat dilakukan dengan Sin (α + β) = sin a cos β+ cos a sin β mensubtitusikan bentuk (α β) = a + ( β). Sin (α β) = sin [a + ( β)] = sin a cos β + cos a sin ( β) = sin a cos β cos a sin β Jadi Sin (α β) = sin a cos β cos a sin β 2. Cos (a ± β) C C C b a = + b sin a a A D B a cos β D a sin β ACB = π 2 = π 2 A a + β (a β) b cos a D Luas ABC = luas ADC + luas BDC 1 2 ab sin( π 2 (a β)) = 1 2 ab cos a cos β + 1 ab sin a sin b 2 Jadi, Cos a β = cos a cos β + sin a sin β Modul Matematika SMA 119

126 C (x 2, y 2 ) D (x 3, y 3 ) Rumus cos a β dapat juga didapat dari gambar dibawah ini a β a Y Y O β A(1,0) B (x 1, y 1 ) D(x 3, y 3 ) (i) (ii) Pada gambar (i), misalkan titik A(1,0). Jika α dan β menentukan letak titik B (x 1, y 1 ), C (x 2, y 2 ) dan D (x 3, y 3 ) pada lingkaran, maka x 2 1, +y 2 1 = 1 untuk i = 1,2,3, misalnya, kita asumsikan bahwa 0<β a < 2π, maka: x 1, = cos β, y 1 = sin β x 2, = cos (a β), y 2 = sin( a + β) x 3, = cos a, y 3 = sin a Pada gambar (ii), panjang busur AC = panjang busur BD, sehingga panjang tali busur AC dan BD sama panjang. AC = BD (x 2 1) 2 + (y 2 0) 2 = x 3 x (y 3 y 1 ) 2 x 2 2 2x y 2 2 = x x 1 x 3 + x y y 1 y 3 + y 1 (x y 2 2 )+ 1-2 x 2 = (x y 2 3 )+( x y 2 1 ) 2x 1 x 3 2y 1 y 3 cos 2 a β x 2 =(cos 2 a + sin 2 a) + cos 2 β + sin2 2 x1x3 2y1y x 2 = x 1 x 3 2y 1 y 3 x 2 = x 3 x 1 + y 3 y 1 Dengan mensubtitusikan nilai-nilai x 1, y 1, x 2, x 3 dan y 3 diperoleh: cos (a β) = cos a cos β+sin a sin β C(x 2, y 2 ) A(1,0) Modul Matematika SMA 120 O B(x 1, y 1 )

127 Untuk mendapatkan rumus cos (a β), dapat dilakukan dengan mensubtitusikan (α + β) = a ( β). cos (a β)= cos a ( β) = cos a cos β + sin a sin( β) = cos a cos β + sin a ( sin β) cos (a + β)= cos a cos β- sin a sin β Contoh: Tunjukkanlah bahwa cos 90 + A = sin A cos 90 + A = cos 90 cos A sin 90 sin A = 0. cos A 1. sin A = sin A Jadi, cos 90 + A = sin A 3. Tan (a ± β) Rumus-rumus penjumlahan sinus dan kosinus yang telah kita peroleh sebelumnya, dapat kita gunakan untuk menemukan rumus penjumlahan tangen, seperti berikut ini: tan(α + β) = = = = sin (α+β ) cos (α+β ) sin a cosβ +cos a sin β cos a cos β sin a sin β sin a cosβ +cos a sin β cos a cosβ cos a cos β sin a sin β cos a cosβ sin a cos β a sinβ +cos cos a cos β cos a cos β cos a cos β sin a sin β + cos a cos β cos a cos β sin a β +sin cos a cos β sin a β.sin cos a cos β = 1 Jadi, = tan a+tan β 1 tan a tanβ tan a + tan β Modul Matematika SMA tan α + β = tan a tan β

128 Sedangkan untuk tan(α β), dengan mensubtitusikan bentuk α β = a + ( β) ke persamaan di atas diperoleh: tan α β = tan[a + β ] = = tan a+tan β 1 tan a tan ( β) tan a tan β 1+tan a tan β, ingat tan (-β) = tan β Jadi, tan α β = tan a tan β 1 + tan a tan β Persamaan Trigonometri Untuk k B dengan B merupakan himpunan bilangan bulat, diperoleh persamaan berikut: a. Jika sin x = sin a, maka: x 1 = a + k. 360 x 2 = 180 a + k. 360 b. Jika cos x = cos a, maka: x 1 = a + k. 360 x 2 = a + k. 360 c. Jika tan x = tan a, maka: x = a + k. 180 d. Jika cotan x = cotan a, maka: x = a + k. 180 Modul Matematika SMA 122

129 Rangkuman a. Aturan sinus dan kosinus Aturan sinus Aturan kosinus a = b = c sin a sin β sin γ a 2 = b 2 + c 2 2bc cos a b 2 = a 2 + c 2 2ac cos β c 2 = a 2 + b 2 2ab cos γ b. Rumus jumlah dan selisih sudut Sin (α ± β) Sin (α + β) = sin a cos β+ cos a sin β Sin (α β) = sin a cos β cos a sin β Cos (a ± β) cos (a β) = cos a cos β+sin a sin β cos (a + β)= cos a cos β- sin a sin β Tan (a ± β) tan α + β = tan a+tan β 1 tan a tan β tan α β = tan a tan β 1+tan a tan β c. Persamaan trigonometri Jika sin x = sin a, maka: x 1 = a + k. 360 x 2 = 180 a + k. 360 Jika cos x = cos a, maka: x 1 = a + k. 360 x 2 = a + k. 360 Jika tan x = tan a, maka: x = a + k. 180 Jika cotan x = cotan a, maka: x = a + k. 180 Modul Matematika SMA 123

130 Tes Formatif 1. Diketahui segitiga ABC, dengan panjang AC= 25 cm, sudut A= 60, dan sudut C= 75, jika sin 75 = 0,9659. Tentukan panjang BC dan AB 2. Bentuk sederhana dari cos 20. Cos 40 + sin 20. Sin Hitunglah nilai dari sin 42 cos 12 - cos 42 sin Tunjukkanlah bahwa cos 90 + A = sin A 5. Hitunglah tanpa menggunakan kalkulator atau tabel trigonometri tan 80 +tan 55 1 tan 80 tan Tentukanlah besarnya x dalam interval 0 x 360, yang memenuhi persamaan 2, sin x = Lembar Penilaian Nama : No. Absen : Judul Tugas : No. Kriteria Penilaian Rentang Nilai Nilai Prestasi 1. Benar cara maupun hasilnya Benar cara, hasil salah Benar hasil, cara salah 0-20 Jumlah Jumlah x 100% Jumlah Nilai Akhir Kesimpulan : Lulus / Tidak Lulus, 20 Modul Matematika SMA 124

131 4.3 EVALUASI Soal evaluasi 1. sin cos tan sec cos( 60 ) 6. Dalam ΔPQR diketahui panjang PQ = 10 cm dan PR =8 cm. Jika luas ΔPQR itu sama dengan 30 cm 2, hitungah besar sudut P. Penyelesaian 7. Nyatakan (4,135 ) ke dalam koordinat cartesius 8. Nyatakan koordinat cartesius ( 3,1 ) ke daam koordinat kutub. 9. Sebuah rumah akan direnovasi atapnya. Direncanakan kontruksi atapnya memiliki kuda-kuda berbentuk segitiga seperti gambar dibawah ini. Tentukan panjang kedua bagian luar kuda-kuda lainnya yang belum diketahui 8 m Pada segitiga ABC diketahui A = 60, b = 10 cm, dan c = 16 cm. Hitunglah panjang sisi a a...? b=10 cm 60 c= 16 cm 11. Diket sin (A+B) = 3 dan sin (A-B)= Hitunglah sin A cos B Modul Matematika SMA 125

132 12. Dengan menggunakan segitiga siku-siku dibawah ini, tunjukkan cos a + β = cos a + cos β + sin a + sin β, jika a= 90 dan β= Diket tan a = 1 dan tan β = 1, a dan β sudut lancip. Hitunglah: 2 3 a. tan( a + β) b. tan( a β) Lembar Penilaian Nama :... Kelas :... No. Absen :... No. Tugas :... Judul Tugas :... No. Kriteria Rentang Nilai Nilai Prestasi Tes Formatif Evaluasi 1. Kegiatan belajar Kegiatan belajar Kegiatan belajar Evaluasi JUMLAH JUMLAH (jumlah X 60%) (jumlah X 40%) Jumlah Nilai Akhir Kesimpulan: Lulus/Tidak Lulus..., Modul Matematika SMA 126

133 BAB 5 Modul Matematika SMA 127

134 5.1 PENDAHULUAN Deskripsi Modul ini berisi tentang Logika Matematika SMA dan di dalamnya membahas materi-materi meliputi pernyataan, kalimat terbuka, serta ingkarannya; pernyataan majemuk; pernyataan majemuk bersusun Prasyarat Dalam melaksanakan pembelajaran menggunakan modul ini diperlukan prasyarat telah menguasai materi sebelumnya yaitu aljabar Petunjuk Penggunaan Modul 1. Bacalah modul ini dengan teliti dan cermat, serta pamahi benarbenar seluruh informasi yang termuat di dalamnya. 2. Isilah cek kemampuan yang terdapat di akhir Bab I ini. Pastikan apakah anda termasuk kategori orang yang harus mempelajari modul ini atau kategori orang yang tidak lagi mempelajari modul ini karena telah menguasainya. 3. Laksanakan semua tugas-tugas yang terdapat dalam modul ini agar kompetensi anda berkembang dengan baik. 4. Setiap mempelajari suatu materi, anda harus memulainya dengan menguasai pengertian-pengertian dalam uraian materi tersebut. Setelah itu melaksanakan tugas-tugas serta mengerjakan lembar latihan. 5. Dalam mengerjakan lembar latihan, anda tidak diperbolehkan melihat kunci jawaban terlebih dahulu sebelum anda menyelesaikan lembar latihan tersebut. 6. Cocokkan jawaban anda dengan kunci jawaban setelah anda selesai mengerjakan lembar latihan tersebut. Hitung nilai yang anda peroleh, agar anda mengetahui tingkat kemampuan anda. 7. Catatlah kesulitan yang anda temukan pada modul ini, kemudian tanyakan pada guru pada saat Kegiatan Belajar Mengajar. Dan Modul Matematika SMA 128

135 bacalah referensi lain tentang materi dalam modul ini agar pengetahuan anda semakin bertambah Tujuan Akhir Setelah anda mempelajari seluruh kegiatan belajar di dalam modul ini diharapkan anda: 1. Dapat memberikan contoh tentang pernyataan. 2. Dapat memberikan contoh kalimat terbuka. 3. Dapat menentukan negasi pernyataan. 4. Dapat memberikan contoh pernyataan majemuk. 5. Dapat memberikan contoh pernyataaan majemuk bersusun. 6. Dapat menentukan invers dari suatu implikasi. 7. Dapat menentukan konvers dari suatu implikasi. 8. Dapat menentukan kontraposisi dari suatu implikasi. 9. Dapat memahami pernyataan berkuantor. 10. Dapat menggunakan modus ponens untuk menarik kesimpulan dalam kehidupan sehari-hari. 11. Dapat menggunakan modus tolens untuk menarik kesimpulan dalam kehidupan sehari-hari. 12. Dapat menggunakan silogisme untuk menarik kesimpulan dalam kehidupan sehari-hari. Modul Matematika SMA 129

136 5.1.5 Kompetensi Kode Unit : Judul Unit : Logika Matematika SMA Uraian Unit : Unit ini berlaku untuk pelajaran matematika bab Logika SMA materi Pernyataan, Kalimat terbuka, serta Ingkarannya; Pernyataan majemuk. Sub Kompetensi 1. Pernyataan, kalimat terbuka, serta ingkarannya. Indikator 1.1 Memahami pengertian pernyataan, kalimat terbuka, serta ingkarannya. 1.2 Mampu membedakan pernyataan, kalimat terbuka, serta inkarannya. 2. Pernyataan majemuk. 2.1 Memahami pengertian Pernyataan majemuk. 2.2 Menentukan nilai kebenaran dari konjungsi. 2.3 Menentukan nilai kebenaran dari disjungsi. 2.4 Menentukan nilai kebenaran dari implikasi. 2.5 Menentukan nilai kebenaran dari biimplikasi. 3. Melakukan persiapan 3.1 Istilah konvers, invers, dan kontraposisi menentukan konvers, dipahami invers, dan 3.2 Pernyataan yang disajikan dipahami, apabila kontraposisi dari kurang jelas dapat ditanyakan kepada sebuah pernyataan pembimbing atau tutor 4. Pernyataan Berkuantor 4.1 Menentukan nilai kebenaran dari pernyataan berkuantor. 5. Penarikan kesimpulan 5.1 Menggunakan prinsip logika matematika yang berkaitan dengan pernyataan majemuk dan pernyataan berkuantor dalam penarikan kesimpulan. Acuan Penelitian 1. Unit kompetensi ini dapat diujikan secara langsung kepada peserta uji di sekolah maupun di tempat lain yang sesuai denan standarnya 2. Aspek-aspek kognitif yang dinilai: Mengenali pernyataan, kalimat terbuka serta ingkarannya Dapat menentukan nilai konjungsi, disjungsi, dan biimplikasi Menentukan pernyataan yang setara dengan pernyataan majemuk Penggunaan prinsip-prinsip logika matematika yang berkaitan dengan pernyataan majemuk dan pernyataan berkuantor dalam penarikan kesimpulan dan pemecahan masalah 3. Aspek-aspek kritikal yang dinilai: Memahami pengertian konvers, invers, dan kontraposisi dari implikasi serta menentukannya. Mampu menarik kesimpulan dari sebuah pernyataan. 4. Kompetensi yang harus dikuasai sebelumnya: Paham dan mengerti akan pernyataan dan kalimat terbuka serta ingkarannya dan pernyataan majemuk. 5. Sikap yang dituntut: Bekerja dengan rapi dan bersih Bekerja dengan ketelitian dan ketepatan waktu Efisien dan optimal dalam bekerja Modul Matematika SMA 130

137 5.1.6 Cek Kemampuan Petunjuk: Isilah kolom di bawah ini dengan jawaban Ya atau Tidak No Pernyataan Ya Tidak 1. Apakah anda telah memahami pengertian pernyataan? 2. Apakah anda telah memahami kalimat terbuka? 3. Dapatkan anda menentukan negasi dari pernyataan? 4. Apakah anda telah memahami pernyataan majemuk? 5. Apakah anda telah memahami pernyataan majemuk bersusun? 6. Dapatkah anda menentukan konvers dalam logika matematika? 7. Dapatkah anda menentukan invers dalam logika matematika? 8. Dapatkah anda menentukan kontraposisi dalam logika matematika? 9. Apakah anda memahami pernyataan berkuantor? 10. Apakah anda dapat menarik kesimpulan menggunakan modus ponens? 11. Apakah anda dapat menarik kesimpulan menggunakan modus tolens? 12. Apakah anda dapat menarik kesimpulan menggunakan silogisme? Catatan! Jika anda menjawab Tidak pada salah satu pernyataan di atas, maka pelajarilah materi pada modul ini. Apabila anda menjawab Ya pada semua pernyataan di atas, maka lanjutkanlah dengan mengerjakan tugas, tes formatif dan evaluasi yang ada pada modul ini. Modul Matematika SMA 131

138 PETA KONSEP LOGIKA MATEMATIKA KALIMAT OPERATOR LOGIKA PENARIKAN KESIMPULAN KALIMAT TERBUKA KONJUNGSI MODUS PONENS KALIMAT TERTUTUP DISJUNGSI MODUS TOLLENS KALIMAT BERKUANTOR IMPLIKASI SILOGISME KUANTOR UNIVERSAL KUANTOR EKSISTENSIAL KONVERS INVERS KONTRAPOSISI INGKARAN/NEGASI BIIMPLIKASI Modul Matematika SMA 132

139 5.2 PEMBAHASAN Rencana Belajar Siswa a. Pada setiap kegiatan belajar, pahamilah uraian tujuan kegiatan belajar, agar mengetahui kemampuan apa yang akan dicapai pada setiap kegiatan. b. Sebelum melaksanakan kegiatan harus memahami terlebih dahulu setiap langkah kerja yang dilaksanakan, apabila kurang jelas dapat menanyakan kepada guru/instruktur. c. Kerjakanlah setiap latihan dengan bersungguh-sungguh agar kemampuan anda yang sebenarnya diketahui Kegiatan Belajar 1 Kegiatan Belajar 1: Pernyataan, Kalimat Terbuka dan Pernyataan Majemuk Pernyataan dan Kalimat Terbuka a) Pernyataan Pernyataan adalah kalimat yang dapat ditentukan benar atau salah saja oleh semua orang. Contoh: Bilangan 2 kurang dari 10. Ikan dapat terbang. Kedua kalimat diatas merupakan pernyataan karena kalimat pertama bernilai benar dan kalimat kedua bernilai salah. Suatu kalimat merupakan bukan pernyataan jika kalimat tersebut tidak dapat ditentukan benar atau salah nya atau mengandung nilai relatif. Contoh: Rumah itu bagus. X + 3 = 5 Modul Matematika SMA 133

140 Kedua kalimat diatas merupakan bukan pernyataan karena pada kalimat pertama bagus itu relatif. Bagus menurut orang yang rumahnya sederhana, tetapi bagi orang yang rumahnya megah merupakan hal yang biasa. X + 3 = 5 merupakan bukan pernyataan karena bila x di ganti dengan 2 maka pernyataan ini merupakan pernyataan yang benar, sedangkan bila x di ganti dengan 5 maka = 5 menjadi pernyataan yang salah. Pernyataan dilambangkan dengan sebuah huruf kecil, misal p, q, r, dan sebagainya. Pernyataan yang benar memiliki nilai kebenaran benar (B) sedangkan pernyataan salah memiliki nilai kebenaran salah (S). b) Kalimat Terbuka Kalimat terbuka adalah kalimat yang belum dapat ditentukan nilai kebenarannya karena masih mengandug peubah (variabel). Jika peubah tersebut diganti dengan suatu konstanta dalam semestanya, akan dihasilkan suatu pernyataan. Contoh: 5p 10 = 15, p A X adalah bilangan prima Jika p diganti dengan 5, maka kalimat tersebut menjadi pernyataan = 15, dan pernyataan ini bernilai benar. Sedangkan jika p diganti dengan 3, maka akan terbentuk pernyataan = 25 yang bernilai salah. Jika x diganti dengan bilangan 2, maka pernyataan 2 adalah bilangan prima merupakan pernyataan bernilai benar. Sedangkan jika x diganti 1, maka pernyataan 1 adalah bilangan prima merupakan pernyataan yang salah. c) Ingkaran (negasi) Ingkaran (negasi) suatu pernyataan adalah suatu pernyataan baru yang dibentuk dari suatu pernyataan awal sehingga nilai kebenarannya berubah. Ingkaran pernyataan p Modul Matematika SMA 134

141 atau negasi p dinyatakan dengan p. dari definisi dapat dibuat tabel kebenaran sebagai berikut : p p B S S B Sering kali dalam menentukan negasi dengan menambahkan kata bukan atau tidak benar pada kalimat pernyataan. Sesungguhnya penambahan pada pernyataan semula tidaklah cukup. Untuk menentukan ingkaran atau negasi yang efektif dari pernyataan yang bervariasi, dapat menggunakan tabel berikut: Pernyataan Ingkaran atau Negasi Semua... Ada / beberapa... Sama dengan (=) Lebih dari (>) Lebih dari atau sama dengan ( ) Kurang dari (<) Kurang dari atau sama dengan ( ) Ada / beberapa... tidak... Semua... tidak... Tidak sama dengan ( ) Kurang dari atau sama dengan ( ) Kurang dari (<) Lebih dari atau sama dengan ( ) Lebih dari (>) Contoh: p : Hari Senin tidak ada tes kompetensi logika matematika p : Hari Senin ada tes kompetensi logika matematika p : Semua hewan berkaki empat p : Ada hewan yang tidak berkaki empat Pernyataan Majemuk dan Negasinya Pernyataan majemuk adalah suatu pernyataan baru yang diperoleh dari penggabungan beberapa pernyataan tunggal dengan kata hubumg kalimat tertentu. Kata hubung yang dimaksud yaitu dan, atau, tetapi, jika..., maka...,... jika dan hanya jika..., dan lain-lain. a) Konjungsi Konjungsi adalah penggabungan dua pernyataan dengan menggunakan kata hubung dan membentuk sebuah kalimat Modul Matematika SMA 135

142 majemuk. Konjungsi dilambangkan dengan notasi. Jika p dan q dua pernyataan, maka p q (dibaca: p dan q). Berikut contoh kalimat konjungsi. p : Saham adalah surat berharga. q : Saham diperjualbelikan di bursa efek. p q : Saham adalah surat berharga dan dijualbelikan di bursa efek. Kata hubung dan dalam konjungsi dapat diganti dengan kata tetapi, sehingga, walaupun, maupun, dan kemudian selama artinya tetap sama. Suatu konjungsi tidak diharuskan adanya hubungan antara komponennya. Suatu konjungsi bernilai benar jika kedua pernyataan tunggalnya bernilai benar. Konjungsi dapat disusun dalam sebuah tabel kebenaran seperti berikut: P q p q B B S S B S B S B S S S Contoh : p : persegi memiliki empat sisi. ( B ) q : = 6 ( S ) p q : persegi memiliki empat sisi dan = 6 ( S ) b) Disjungsi Disjungsi adalah gabungan dua pernyataan yang menggunakan kata penghubung logika atau sehingga membentuk dua pernyataan majemuk. Kata penghubung atau dalam logika matematika dilambangkan dengan. Disjungsi dua pernyataan p dan q dapat dituliskan p q dan dibaca p atau q. Dalam kehidupan sehari-hari, kata atau dapat berarti salah satu atau kedua-duanya, dapat pula berarti salah satu tetapi Modul Matematika SMA 136

143 tidak kedua-duanya. Misalnya, 2 adalah bilangan prima atau genap. Pernyataan ini dapat diartikan dua, yaitu: (1) hanya bilangan prima saja atau genap saja, (2) juga bilangan genap dan prima. Disjungsi bernilai benar apabila paling sedikit satu dari keduanya bernilai benar. Disjungsi dapat disusun dengan tabel kebenaran sebagai berikut: P q p q B B S S B S B S B B B S Contoh: p : ada 7 hari dalam satu minggu. ( B ) q : Jakarta adalah ibukota Jawa Timur. ( S ) p q : ada 7 hari dalam seminggu atau Jakarta adalah ibukota Jawa Timur.( B ) c) Implikasi Implikasi adalah gabungan dua pernyataan p dan q sehingga membentuk pernyataan majemuk dengan menggunakan kata penghubung jika..., maka.... Implikasi dua pernyataan p dan q dapat ditulis p q dan dibaca jika p maka q. Pernyataan p dinamakan anteseden atau hipotesis, sedangkan pernyataan q dinamakan konsekuen atau kesimpulan. Perhatikan contoh berikut : p : 2 3 = 8 q : 11 adalah bilangan prima. p q : jika 2 3 = 8, maka 11 adalah bilangan prima. Implikasi bernilai salah jika p bernilai benar dan q bernilai salah, dalam hal lain implikasi bernilai benar. Modul Matematika SMA 137

144 Implikasi dapat disusun dengan tabel kebenaran sebagai berikut: P q p q B B S S B S B S B S B B Contoh: p : ada hewan berkaki empat. ( B ) q : ayam berkaki empat. ( S ) p q : jika ada hewan berkaki empat, maka ayam berkaki empat. ( S ) d) Biimplikasi Biimplikasi adalah gabungan dua pernyataan majemuk dengan kata hubung...jika dan hanya jika.... Biimplikasi dua pernyataan p dan q dapat ditulis p q dibaca p jika dan hanya jika q, yang berarti jika p maka q dan jika q maka p. Biimplikasi bernilai benar, jika keduanya mempunyai nilai kebenaran yang sama (semua benar atau semua salah). Jika nilai kebenaran keduanya tidak sama maka pernyatan bernilai salah. Dapat disusun dengan tabel kebenaran sebagai berikut : P q p q B B S S B S B S B S S B Contoh: p : 5 < 1 ( S ) q : 3 2 > 9 ( S ) p q : 5 < 1 jika dan hanya jika 3 2 > 9 ( B ) e) Negasi Konjungsi Modul Matematika SMA 138

145 Negasi harus menyangkal keadaan sebenarnya. Perhatikan pernyataan saya suka buah dan tidak suka sayur. Sehingga negasinya saya tidak suka buah atau saya suka sayur. Pernyataan di atas dapat ditulis dalam logika matematika. p : saya suka sayur q : saya tidak suka sayur p q : saya suka buah dan tidak suka sayur Maka ~ (p q) : saya tidak suka buah atau saya suka sayur. ~ p q Pernyataan ~ (p q) ekuivalen dengan ~ p q. Jadi secara umum, negasi pernyataan p q adalah ~ p q. Dapat ditulis: ~ (p q) ~ p q f) Negasi Disjungsi Perhatikan pernyataan berikut! p : Rani pergi ke sekolah q : Rani bermain di rumah Ima p q Rani pergi ke sekolah atau bermain di rumah Ima Keadaan yang dinyatakan disjungsi diatas adalah Rani melakukan salah satu atau kedua kegiatan tersebut. Yaitu Rani pergi ke sekolah atau bermain di rumah Ima. Ingkaran pernyataan ini adalah Rani tidak pergi ke sekolah dan tidak bermain di rumah Ima yang menyatakan Rani tidak melakukan satu pun dari kegiatan di atas. Secara umum, negasi dari pernyataan p q adalah ~ p q atau ditulis: ~ (p q) ~ p q g) Negasi Implikasi Perhatikan implikasi berikut! p : matahari bersinar cerah q : hari ini tidak hujan p q : jika matahari cerah, maka hari ini tidak hujan. Modul Matematika SMA 139

146 Keadaan yang dinyatakan implikasi di atas adalah jika matahari bersinar cerah terjadi, maka hari ini tidak terjadi hujan. Ingkaran (negasi) pernyataan yang bertentangan dengan pernyataan ini adalah matahari bersinar cerah dan hari ini hujan. Secara umum, negasi pernyataan p q adalah p q atau di tulis: ~ (p q) p q h) Negasi Biimplikasi Pernyataan bersyarat ganda seperti sudut suatu segitiga sama besar jika dan hanya jika segitiga itu sama sisi merupakan pernyataan berimplikasi. Bagaimana negasi dari suatu pernyataan biimplikasi? Secara umum, negasi pernyataan p q adalah ~ p q atau p q, dapat ditulis : ~ p q ~ p q Atau ~ p q p q Bentuk ekuivalen lain dari negasi suatu implikasi adalah ~ p q p q (q ~ p) Modul Matematika SMA 140

147 Rangkuman Gabungan dua pernyataan tunggal yang menggunakan kata penghubung dan sehingga terbentuk pernyataan majemuk disebut konjungsi. Disjungsi adalah gabungan dua pernyataan yang menggunakan kata penghubung logika atau sehingga membentuk dua pernyataan majemuk. Implikasi adalah gabungan dua pernyataan p dan q sehingga membentuk pernyataan majemuk dengan menggunakan kata penghubung jika..., maka.... Biimplikasi adalah gabungan dua pernyataan majemuk dengan kata hubung...jika dan hanya jika.... Dua pernyataan dikatakan ekuivalen apabila kedua pernyataan tersebut mempunyai nilai kebenaran yang sama. Modul Matematika SMA 141

148 Tes formatif Kerjakan soal berikut, jangan melihat kunci jawaban ketika kalian mengerjakan! 1. Diantara kalimat berikut, tentukan mana yang merupakan kalimat pernyataan dan kalimat terbuka! a. 2x + 5 = 21 b. Setiap orang membutuhkan oksigen untuk bernafas. c > 0 d. Jumlah sudut-sudut dalam segitiga adalah 180. e. p adalah bilangan prima kurang dari Jika diketahui pernyataan p bernilai benar dan q bernilai salah, tentukan nilai kebenaran dari ~ (p ~ q)! 3. Jika Semarang ibu kota Jawa Tengah, maka x 2 3x 28 = 0. Tentukan nilai x agar implikasi bernilai benar! 4. Diketahui pernyataan berikut: p : saya lulus ujian q : semua keluarga berbahagia r : saya melanjutkan ke Perguruan Tinggi Negeri t : saya bekerja Tentukan pernyataan berikut ini a. ~ p ~ t b. ~ q ~ r Modul Matematika SMA 142

149 Lembar Penilaian Nama : No. Absen : Judul Tugas : No. Kriteria Penilaian Rentang Nilai 1. Benar cara maupun hasilnya 0 60 Nilai Prestasi 2. Benar cara, hasil salah Benar hasil, cara salah 0-20 Jumlah Jumlah x 100% Jumlah Nilai Akhir Kesimpulan : Lulus / Tidak Lulus, 20 Modul Matematika SMA 143

150 5.2.3 Kegiatan Belajar Konvers, Invers, dan Kontraposisi Seperti yang telah Anda pelajari pada modul sebelumnya, dua buah pernyataan atau lebih dapat dibentuk menjadi suatu kalimat majemuk. Pernyataan-pernyataan majemuk yang menggunakan kata hubung " " (jika... maka...) adalah implikasi, konvers, invers, dan kontraposisi, yang didefinisikan sebagai berikut. Jika p dan q adalah suatu pernyataan maka pernyataan majemuk a) q p disebut konvers dari p q b) ~p ~q disebut invers dari p q c) ~q ~p disebut kontraposisi dari p q Hubungan antara implikasi-implikasi tersebut dapat ditunjukkan dengan diagram dibawah ini. Invers p q Konvers Kontraposisi Invers q p ~p Konvers Dengan menggunakan tabel kebenaran, kita dapat melihat nilai kebenaran dari masing-masing pernyataan baru tersebut. Tabel kebenaran itu ialah sebagai berikut. p q ~p ~q p q q p ~p ~q ~q ~p B B S S B B B B B S S B S B B S S B B S B S S B S S B B B B B B ~q Modul Matematika SMA 144

151 Dengan memperhatikan nilai kebenaran pada tabel di atas, dapat disimpulkan sebagai berikut: a) Implikasi ekuivalen dengan kontraposisinya, yaitu: p q ~q ~p b) Konvers suatu implikasi ekuivalen dengan inversnya yaitu: q p ~p ~q Contoh soal: 1. Tentukan konvers, invers, dan kontraposisi dari implikasi Jika harga BBM naik, maka harga kebutuhan sehari-hari naik. Pemecahan: Konvers: Jika harga kebutuhan sehari-hari naik, maka harga BBM naik Invers: Jika harga BBM tidak naik, maka harga kebutuhan sehari- hari tidak naik Kontraposisi: Jika harga kebutuhan sehari-hari tidak naik, maka harga BBM tidak naik 2. Tentukan pernyataan yang senilai dari pernyataan berikut: a. Jika saya rajin belajar, maka semua pelajaran sekolah dapat saya ikuti dengan baik. b. ~p (q r) c. (p q) r Pemecahan: Diketahui bahwa nilai kebenaran implikasi sama dengan nilai kebenaran kontraposisinya. Sehingga pernyataan yang senilai dengan implikasi adalah kontraposisinya. a. Jika ada pelajaran sekolah yang tidak dapat saya ikuti dengan baik, maka saya tidak rajin. b. ~p r ~ ~p atau ~q ~r p c. ~(~r) ~ p q atau r (p ~q) Modul Matematika SMA 145

152 Pernyataaan Berkuantor Pernyataaan berkuantor ialah pernyataan yang melibatkan kata yang menyatakan jumlah anggota semesta pembicaraan untuk mewakili suatu sistem atau keadaan. Adapun kuantor yang kita kenal adalah kuantor universal dan kuantor eksistensial. Agar Anda dapat memahaminya, perhatikan uraian berikut ini. a) Kuantor Universal ( ) Dibaca: untuk semua, untuk seluruh, untuk setiap, tanpa kecuali. Dimisalkan p(x) adalah suatu kalimat terbuka, pernyataan x, p(x) dibaca untuk setiap x berlaku p(x) b) Kuantor Eksistensial ( ) Dibaca: ada, beberapa, terdapat. Jika dimisalkan p(x) adalah suatu kalimat terbuka maka x, p(x) dibaca untuk beberapa x berlaku p(x) Negasi kalimat berkuantor universal adalah kalimat berkuantor eksistensial, sedangkan negasi kalimat berkuantor eksistensial adalah kalimat berkuantor universal. Jika terdapat kalimat kuantor universal x p(x) dan kalimat berkuantor eksistensial x p(x) negasi dari keduanya ditulis sebagai berikut: ~ x, p x x, ~p(x) ~ x, p x x, ~p(x) Contoh soal: Tentukan ingkaran dari pernyataan ada pohon yang daunnya meranggas Pemecahan: Misalnya: x = pohon dan p x = daunnya meranggas. Kalimat tersebut dilambangkan dengan x, p(x). Ingkarannya: ~ x, p x x, ~p(x) dapat dibaca tidak ada pohon yang daunnya meranggas ekuivalen dengan Semua pohon daunnya tidak meranggas. Modul Matematika SMA 146

153 Rangkuman Jika p dan q adalah suatu pernyataan maka pernyataan majemuk q p disebut konvers dari p q ~p ~q disebut invers dari p q ~q ~p disebut kontraposisi dari p q Ada dua macam kuantor, yaitu kuantor universal dan kuantor eksistensial. Kuantor Universal, dibaca: untuk semua, untuk seluruh, untuk setiap, tanpa kecuali. Kuantor Eksistensial, dibaca: ada, beberapa, terdapat. Negasi kalimat berkuantor universal adalah kalimat berkuantor eksistensial, sedangkan negasi kalimat berkuantor eksistensial adalah kalimat berkuantor universal Tes Formatif 1. Tentukan konvers, invers, dan kontraposisi dari implikasi berikut: a) Jika > 5, maka 5 merupakan bilangan prima. b) Jika saya pergi ke dokter, maka saya sakit. c) Jika harga turun, maka permintaan naik. 2. Tentukan pernyataan yang senilai dari pernyataan berikut. a) Jika saya rajin belajar, maka semua pelajaran sekolah dapat saya ikuti dengan baik. b) ~p q r c) (p q ~r 3. Tentukan negasi dari kalimat Setiap siswa SMA terpelajar! Modul Matematika SMA 147

154 Lembar Penilaian Nama : No. Absen : Judul Tugas : No. Kriteria Penilaian Rentang Nilai Nilai Prestasi 1. Benar cara maupun hasilnya Benar cara, hasil salah Benar hasil, cara salah 0-20 Jumlah Jumlah x 100% Jumlah Nilai Akhir Kesimpulan : Lulus / Tidak Lulus, 20 Modul Matematika SMA 148

155 5.2.4 Kegiatan Belajar Penarikan Kesimpulan Pernyataan-pernyataan yang digunakan untuk menarik suatu kesimpulan diasumsi-kan benar terjadi dan disebut premis. Kesimpulan dapat bernilai valid (sah) dan ada juga yang tidak valid tergantumg dari premis-premis penyusunnya. Untuk menentukan sah atau tidaknya suatu kesimpulan, kita dapat menggunakan ketiga prinsip berikut, yaitu modus ponens, modus tollens, dan silogisme. a) Modus Ponens Modus ponens adalah argumentasi Premis 1 : p q atau penarikan kesimpulan yang disajikan Premis 2 : p dalam bentuk sebagai berikut. Modus ponens menyatakan apabila Konklusi : q diketahui jika p maka q" benar, dan p benar, disimpulkan q benar. b) Modus Tollens Premis 1 : p q Premis 2 : ~q Konklusi : ~p c) Silogisme Premis 1 : p q Premis 2 : q r Konklusi : p r Modus tollens adalah argumentasi yang disajikan dalam bentuk sebagai berikut. Modus tollens menyatakan apabila diketahui jika p maka q benar dan q tidak benar, disimpulkan p tidak benar. Silogisme adalah argumentasi yang disajikan dalam bentuk sebagai berikut. Silogisme menyatakan benar apabila jika p maka q benar dan jika q maka r benar, disimpulkan jika p maka r benar. Modul Matematika SMA 149

156 Contoh soal: Tentukan kesimpulan yang sah dari premis-premis berikut! a. Jika irigasi tidak lancar, maka tanaman padi kekurangan air. b. Jika tanaman padi kekurangan air, maka petani gagal panen. c. Petani tidak gagal panen. Pembahasan: p : irigasi tidak lancar q : tanaman padi kekurangan air r : petani gagal panen (a): p q (b): q r (d): p r (c): ~r ~p Jadi, kesimpulannya adalah irigasi lancar Rangkuman Penarikan kesimpulan Modus ponens Modus tollens silogisme P 1 : p q P 1 : p q P 1 : p q P 2 : p P 2 : ~q P 2 : q r q ~p p r Modul Matematika SMA 150

157 Tes Formatif 1) Tentukan kesimpulan yang sah dari premis berikut! a) P 1 : Jika terjadi kecelakaan, maka jalan macet P 2 : jika jalan macet, maka banyak yang terlambat b) P 1 : jika harga barang naik, maka permintaan barang turun P 2 : jika permintaan barang turun, maka produksi barang turun c) P 1 : jika n bilangan ganjil, maka n 2 bilangan ganjil P 2 : jika n 2 bilangan ganjil, maka n bilangan genap 2) Selidikilah argumen di bawah ini, sah atau tidak dengan menggunakan tabel kebenaran. a. P 1 : jika Santi rajin belajar, maka ia akan menjadi pintar P 2 b. P 1 P 2 : Santi pintar : Santi rajin belajar : jika di Indonesia tidak ada korupsi, maka semua penduduknya tidak miskin : ada penduduk Indonesia yang miskin : di Indonesia masih ada korupsi 3) Selidikilah argumen di bawah ini, sah atau tidak dengan menggunakan tabel kebenaran. a. P 1 : p q P 2 b. P 1 P 2 : ~q : p : pq : p : ~q Modul Matematika SMA 151

158 Lembar Penilaian Nama : No. Absen : Judul Tugas : No. Kriteria Penilaian Rentang Nilai Nilai Prestasi 1. Benar cara maupun hasilnya Benar cara, hasil salah Benar hasil, cara salah 0-20 Jumlah Jumlah x 100% Jumlah Nilai Akhir Kesimpulan : Lulus / Tidak Lulus, 20 Modul Matematika SMA 152

159 5.3 EVALUASI Soal Evaluasi Kerjakanlah soal-soal berikut ini dengan teliti dan benar! 1. Nyatakan kalimat-kalimat berikut merupakan kalimat terbuka atau pernyataan. Jika pernyataan nyatakan nilai kebenaranya : x + 2 = x 2 dan 2(x + 1)+ 3 = 2x +5! 2. Tuliskan negasi dari pernyataan 2 bilangan prima dan sama dengan 5! 3. Tentukan nilai kebenaran dari 3 bilangan prima atau 5 bilangan genap dengan disjungsi! 4. Tentukan nilai kebenaran dari 6 bilangan prima dan 3 bilangan ganjil dengan konjungsi! 5. Tentukan nilai kebenaran jika = 5, maka = 7 dengan implikasi! 6. Tentukan nilai kebenaran = = 8! 7. Buatlah tabel kebenaran dari ~ p ~ q! 8. Tentukan nilai kebenaran pernyataan-pernyataan x ganjil 2x genap! 9. Salin dan lengkapilah tabel kebenaran dari tabel berikut : P Q q p [p (q p)] [p (q p)] B B S S B S B S 10. Jika p bernilai benar, q bernilai benar, dan r bernilai salah. Tentukan nilai kebenaran pernyataan berikut! a. p q r b. ~ p [(p q) r] 11. Tentukan konvers, invers, dan kontraposisi dari setiap pernyataan implikasi berikut: Modul Matematika SMA 153

160 a) Jika biaya sekolah gratis, maka semua penduduk Indonesia pandai b) Jika Badu siswa SMA, maka ia lulusan SMP c) Jika Carli siswa yang pandai, maka ia lulus tes d) Jika Ali seorang anggota MPR, maka ia seorang anggota DPR 12. Diketahui premis-premis berikut: Premis 1 : Jika hari ini hujan maka saya tidak pergi Premis 2 : Jika saya tidak pergi maka saya nonton sepak bola Kesimpulan yang sah dari penarikan kedua premis tersebut adalah. 13. Tentukan negasi (ingkaran) dari pernyataan-pernyataan berikut: a) p : Semua dokter memakai baju putih saat bekerja. b) p : Semua jenis burung bisa terbang. c) p : Semua anak mengikuti ujian fisika hari ini. Modul Matematika SMA 154

161 5.3.2 Lembar Penilaian Nama :... Kelas :... No. Absen :... No. Tugas :... Judul Tugas :... No. Kriteria Rentang Nilai Nilai Prestasi Tes Formatif Evaluasi 1. Kegiatan belajar Kegiatan belajar Kegiatan belajar Evaluasi JUMLAH JUMLAH (jumlah X 60%) (jumlah X 40%) Jumlah Nilai Akhir Kesimpulan: Lulus/Tidak Lulus..., Modul Matematika SMA 155

162 BAB 6 Modul Matematika SMA 156

163 6.1 PENDAHULUAN Deskripsi Modul ini membahas Dimensi Tiga, yang mana berisi materi tentang konsep jarak, titik, garis, bidang, serta bangun-bangun ruang Prasyarat Dalam mempelajari modul ini diperlukan prasyarat telah menguasai bilangan pangkat dan bentuk akar, unsur-unsur bangun datar dan bangun ruang serta materi-materi sebelumnya yang masih berkaitan Petunjuk Penggunaan Modul Untuk mempelajari modul ini, hal-hal yang perlu Anda lakukan adalah sebagai berikut: 1. Pahami daftar isi serta kedudukan modul dengan cermat dan teliti. Karena dalam skema modul akan tampak kedudukan modul yang sedang anda pelajari dengan modul-modul yang lain. 2. Kerjakan soal-soal dalam cek kemampuan untuk mengukur sampai sejauh mana pengetahuan dan kemampuan yang telah anda miliki. 3. Apabila dari soal cek kemampuan yang telah anda kerjakan mendapat score 70, maka anda dapat langsung menuju Evaluasi untuk mengerjakan soal-soal tersebut. Tetapi bila hasil jawaban mendapat nilai < 70, maka anda harus mengikuti kegiatan pembelajaran dalam modul ini. 4. Dalam mempelajari materi yang ada pada modul ini harus berurutan, materi yang mendahului merupakan prasyarat untuk mempelajari materi berikutnya. 5. Pahamilah contoh-contoh soal yang ada, kemudian kerjakanlah semua soal latihan untuk menunjang pemahaman Anda tentang materi ini. Jika dalam mengerjakan soal latihan Anda menemui kesulitan, kembalilah mempelajari materi yang terkait. Modul Matematika SMA 157

164 6. Kerjakanlah soal evaluasi dengan cermat. Jika Anda menemui kesulitan dalam mengerjakan soal evaluasi, kembalilah mempelajari materi yang terkait. 7. Jika Anda mempunyai kesulitan yang tidak dapat Anda pecahkan, catatlah, kemudian tanyakan kepada guru pada saat kegiatan tatap muka atau bacalah referensi lain yang berhubungan dengan materi modul ini. Dengan membaca referensi lain, Anda juga akan mendapatkan pengetahuan tambahan Tujuan Akhir Setelah mempelajari modul ini diharapkan Anda dapat: 1. Menentukan kedudukan titik 2. Menentukan jarak antara titik dan titik 3. Menentukan jarak titik ke garis 4. Menentukan jarak titik ke bidang 5. Menentukan jarak antara dua garis dan dua bidang yang sejajar 6. Menentukan sudut antara dua garis dalam ruang dimensi 7. Menentukan sudut antara garis dan bidang dalam ruang dimensi tiga 8. Menentukan sudut antara dua bidang dalam dimensi ruang Modul Matematika SMA 158

165 6.1.5 Kompetensi Judul Unit: Dimensi Tiga (3 jam pelajaran) Uraian Unit: unit ini berlaku untuk menentukan kedudukan dan jarak, yang melibatkan titik, garis, dan bidang dalam ruang dimensi tiga. Sub Kompetensi 1. Menentukan kedudukan titik Indikator 1.1 Memahami pengertian titik. 1.2 Mampu menentukan kedudukan antara dua titik dalam ruang dimensi tiga. 1.3 Mampu menentukan kedudukan antara titik dan garis dalam ruang dimensi tiga. 1.4 Mampu menentukan kedudukan antara titik dan bidang dalamruang dimensi tiga. 2. Menentukan jarak 2.1 Mampu menentukan jarak antara titik dan titik. 2.2 Mampu menentukan jarak titik ke garis. 2.3 Mampu menentukan jarak titik ke bidang. 3. Menentukan jarak antara dua garis dan dua bidang yang sejajar 4. Menentukan besar sudut antara garis dengan bidang dan dua bidang dalam ruang dimensi tiga 3.1 Memahami pengertian dua garis yang sejajar. 3.2 Mampu menentukan jarak antara dua garis yang sejajar. 3.3 Memahami pengertian dua bidang yang sejajar. 3.4 Mampu menentukan jarak antara dua bidang yang sejajar. 4.1 Menentukan sudut antara dua garis dalam dimensi tiga 4.2 Menentukan sudut antara garis dengan ruang dalam dimensi tiga 4.3 Menentukan sudut antara bidang dengan bidang dalam dimensi ruang Acuan Penilaian 1. Unit kompetensi ini dapat diujikan secara langsung kepada peserta uji. 2. Aspek-aspek kritikal yang dinilai: Mampu menentukan kedudukan titik, garis dan bidang dalam ruang dimensi tiga. Mampu menentukan jarak dari titik ke garis dan dari titik ke bidang dalam ruang dimensi tiga. 3. Pengetahuan pendukung yang dibutuhkan: Memahami pengertian titik, garis dan bidang. Mengenal istilah-istilah yang ada pada macam-macam bangun ruang. Mampu menghitung menggunakan bilangan pangkat dan bentuk akar. Modul Matematika SMA 159

166 4. Sikap yang dituntut: Tepat dalam mengerjakan perintah yang diberikan Memaksimalkan pekerjaan dalam menggunakan waktu yang ditentukan Disiplin dan teliti dalam mengerjakan setiap perintah yang diberikan Bersikap positif dan terbuka terhadap penilaian hasil pekerjaan oleh guru Cek Kemampuan No. Petunjuk: Berilah tanda ( ), pada kolom Jawaban : Ya atau Tidak jawaban yang anda pilih Pertanyaan 1. Apakah anda dapat menentukan kedudukan titik? 2. Apakah anda dapat menentukan jarak antara titik dan titik? 3. Apakah anda dapat menentukan jarak antara titik ke garis? 4. Apakah anda dapat menentukan jarak titik ke bidang? 5. Apakah anda dapat menentukan jarak antara dua garis dan dua bidang yang sejajar Skore ( Nilai ) Jawaban Ya Tidak..., Modul Matematika SMA 160

167 PETA KONSEP KEDUDUKAN TITIK JARAK TITIK DAN TITIK DIMENSI TIGA JARAK TITIK, GARIS, DAN BIDANG SUDUT PADA BANGUN RUANG JARAK TITIK DAN GARIS JARAK TITIK DAN BIDANG JARAK DUA GARIS DAN DUA BIDANG YANG SEJAJAR SUDUT ANTARA DUA GARIS DALAM RUANG SUDUT ANTARA GARIS DAN BIDANG PADA BANGUN RUANG SUDUT ANTARA DUA BIDANG DALAM BANGUN RUANG Modul Matematika SMA 161

168 6.2 PEMBELAJARAN Rencana Belajar Siswa 1. Pada setiap kegiatan belajar, pahamilah uraian tujuan kegiatan belajar, agar mengetahui kemampuan apa yang akan dicapai pada setiap kegiatan. 2. Kerjakanlah setiap latihan dengan bersungguh-sungguh agar kemampuan anda yang sebenarnya diketahui Kegiatan Belajar Tujuan Kegiatan Belajar 1: Dapat menentukan kedudukan titik Uraian Materi Untuk mengetahui kedudukan titik, tentunya kalian harus mengetahui pengertian titik terlebih dahulu. Sebagai ilustrasi perhatikan gambar berikut. Pada gambar 1.1 di samping terdapat bintang. Salah satu bintang tersebut merupakan contoh dari titik. Titik tersebut tak terhingga kecilnya. Gambar 1.1 Jadi apa yang dimaksut dengan titik? Titik adalah sesuatu yang tidak memiliki ukuran (tak berdimensi) dan hanya ditentukan oleh letaknya. Titik digambarkan dengan simbol noktah ( ) dan biasanya diberi nama dengan huruf kapital, misalnya A,B, P,Q,R dan S. Modul Matematika SMA 162

169 Kedudukan titik dapat dibedakan menjadi dua, yaitu kedudukan titik terhadap garis dan kedudukan titik terhadap bidang. a) Kedudukan titik terhadap garis ada dua kmungkinan, yaitu sebuah titik bisa terletak di luar garis atau pada garis, jika: 1. Melalui sebuah garis dan sebuah titik diluarnya, dapat dibuat tepat satu bidang. A Gambar Melalui tiga buah titik yang tidak segaris, dapat dibuat tepat satu bidang. A C B Gambar 1.3 b) Titik terletak pada bidang dan di luar bidang B A Titik A adalah titik yang terletak pada bidang, dan titik B adalah titik yang terletak di luar bidang. Gambar 1.4 Modul Matematika SMA 163

170 Contoh : Diketahui sebuah kubus ABCD.EFGH seperti gambar berikut. H G Bidang DCGH sebagai wakil bidang U. Tentukan : E F titik-titik sudut kubus yang terletak D U pada bidang U dan di luar bidang U. C A Gambar 1.5 B Penyelesaian : titik-titik sudut kubus yang terletak pada bidang U adalah titik-titik C,D,G, dan H. titik-titik sudut kubus yang terletak di luar bidang U adalah titik-titik A,B,F, dan E Rangkuman 1. Titik adalah sesuatu yang tidak memiliki ukuran (tak berdimensi) dan hanya ditentukan oleh letaknya. 2. Titik terletak pada garis jika titik itu dilalui oleh sebuah garis, dan terletak di luar garis jika titik itu tidak dilalui oleh garis. 3. Titik terletak pada bidang jika titik itu dilalui oleh sebuah bidang, dan berada di luar bidang jika titik itu tidak dilalui oleh bidang. Modul Matematika SMA 164

171 Test Formatif 1. Perhatikan gambar kubus berikut! H G E F D C g A B Gambar 1.6 Sebuah kardus berbentuk kubus ABCD.EFGH. Segmen atau ruas garis AB sebagai wakil garis g. Tentukan: a. Titik sudut kubus yang terletak pada garis g! b. Titik sudut kubus yang berada di luar garis g! 2. Perhatikan kubus ABCD.EFGH pada Gambar 1.6. Terhadap bidang DCGH, tentukanlah: a. titik sudut kubus apa saja yang terletak pada bidang DCGH! b. titik sudut kubus apa saja yang berada di luar bidang DCGH! 3. Diketahui kubus ABCD.EFGH, BC mewakili garis k, DE mewakili garis l, dan AG mewakili garis m. Sebutkan titik-titik sudut kubus yang: a. Terletak pada garis k, b. Berada di luar garis k, c. Terletak pada garis l, d. Terletak pada garis m, e. Berada di luar garis m. 4. Diketahui kubus KLMN.PQRS, bidang KLMN mewakili bidang α, bidang KLQP mewakili bidang β, dan bidang KMRP mewakili bidang γ. Sebutkan titik-titik kubus yang : a. Terletak pada bidang α, b. Berada di luar bidang α, c. Terletak pada bidang β, d. Berada di luar bidang β, Modul Matematika SMA 165

172 e. Terletak pada bidang γ, f. Berada di luar bidang γ. 5. Pada limas segiempat T.ABCD. Sebutkan titik sudut yang : a. Terletak pada bidang alas ABCD b. Terletak di luar bidang alas ABCD c. Terletak pada garis BC d. Terletak diluar garis TB Lembar Penilaian Nama : No. Absen : Judul Tugas : No. Kriteria Penilaian Rentang Nilai Nilai Prestasi 1. Benar cara maupun hasilnya Benar cara, hasil salah Benar hasil, cara salah 0-20 Jumlah Jumlah x 100% Jumlah Nilai Akhir Kesimpulan : Lulus / Tidak Lulus, 20 Modul Matematika SMA 166

173 6.2.3 Kegiatan Belajar Tujuan Kegiatan Belajar 2: Dapat menentukan jarak antara titik dan titik. Dapat menentukan jarak titik ke garis. Dapat menentukan Jarak Titik ke Bidang Uraian Materi Untuk memahami jarak titik ke titik, titik ke garis dan titik ke bidang, coba perhatikan ilustrasi berikut. Ada tiga buah ukuran pintu yang dapat dilewati. Pintu tersebut dapat dilewati oleh orang yang berukuran tinggi, sedang dan kecil. Jarak kayu pada daun pintu yang diukurpun berbeda sesuai yang melewati. Gambar 2.1 Nah...bagaimana cara mengukurnya agar memperoleh ukuran yang tepat, pastinya keduanya harus saling tegak lurus. 1) Jarak antara titik dan titik Jarak antara titik dan titik biasa juga disebut jarak antara dua titik. Jarak antara dua titik adalah panjang garis yang menghubungkan kedua titik tersebut. Untuk menghitung jarak antara dua titik sering difunakan rumus phytagoras, dalil steward, kesebangunan, dan trigonometri. Perhatikan gambar Modul Matematika SMA 167

174 2.2. Jarak P dan Q dapat dihitung dengan membuat segitiga siku-siku dan menggunakan rumus Phytagoras. P PQ = OP 2 + OQ 2. O Q Gambar 2.2 2) Jarak titik ke garis Seperti diuraikan di awal bab ini, kalian pasti sudah mengetahui kedudukan titik terhadap garis. Terdapat dua kemungkinan titik pada garis, yaitu titik terletak pada garis atau titik berada di luar garis. Titik dikatakan terletak pada garis, jika titik tersebut dilalui oleh garis. Dalam hal ini, jarak titik ke garis adalah nol. Dari Gambar 2.3, kita dapat melihat bahwa titik A dan B terletak pada garis l. Titik A dan titik B dikatakan sebagai titik yang segaris atau kolinear. A B Gambar 2.3 l Jika sebuah titik berada di luar garis, maka ada jarak antara titik ke garis itu. Jarak antara titik P dan garis g adalah panjang ruas garis penghubung titik P dengan proyeksi titik P pada garis g. P g H P 2 P 3 P 1 P 4 Gambar 2.4 Modul Matematika SMA 168

175 Pada Gambar 2.4 P 1 pada g. Jika dari titik P ditarik ruas garis PP 1 dengan P 1 pada g dan PP 1 g, maka P 1 disebut proyeksi titik P pada g. Pada gambar tersebut titik P 1 adalah proyeksi titik P pada garis g karena PP 1 g dan P 1 pada g. Jadi jarak antara titik P dan garis g adalah PP 1. 3) Jarak titik ke bidang Jika sebuah titik berada di luar bidang, maka ada jarak antara titik ke bidang itu. Jarak titik ke bidang merupakan panjang ruas garis yang ditarik dari suatu titik sampai memotong tegak lurus suatu bidang. Jarak titik A ke bidang α (titik A berada di luar bidang α) dapat digambarkan dengan menggunakan langkah-langkah berikut: Buatlah garis g melalui titik A dan tegak lurus bidang α. Garis g menembus bidang α di titik Q. Ruas garis AQ merupakan jarak titik A ke bidang α yang diminta. Proses di atas dapat divisualisasikan dengan gambar ruang sebagaimana diperlihatkan pada gambar 2.5. A α Q g Gambar 2.5 Contoh: Diketahui kubus ABCD.EFGH dengan panjang rusuk 10 cm. Hitunglah jarak antara: a. Titik A ke H Modul Matematika SMA 169

176 b. Titik A ke P (P adalah perpotongan diagonal ruang) c. Titik A ke garis CE d. Titik A ke bidang BCGF e. Titik A ke bidang BDHF H Penyelesaian : G E F D P R C A 10 cm B Gambar 2.6 a. Jarak titik A ke H = AH AH = 2 AD DH 2 = = 200 = 10 2 cm b. Jarak titik A ke P = AP AP = ½ AG 10 = 3 cm 2 c. Jarak A ke CE = AK E K G A Gambar 2.7 C Modul Matematika SMA 170

177 Pada segitiga siku-siku CAE L CAE = ½.AC.AE = ½.CE.AK AK AK 3 10 AK AK d. Jarak titik A ke bidang BCGF = AB = 10 cm e. Jarak titik A ke bidang BDHF = AR (R titik tengah garis BD) AR = ½ AC = ½ 10 2 = 5 2 cm Rangkuman 1. Jarak antara titik dan titik biasa juga disebut jarak antara dua titik. Jarak antara dua titik adalah panjang garis yang menghubungkan kedua titik tersebut. 2. Jarak antara titik dengan garis merupakan panjang ruas garis yang ditarik dari titik tersebut tegak lurus terhadap garis itu. 3. Jarak titik ke bidang merupakan panjang ruas garis yang ditarik dari suatu titik sampai memotong tegak lurus suatu bidang. Modul Matematika SMA 171

178 Test Formatif 1. Diketahui kubus ABCD.EFGH dengan rusuk 4 cm. Titik P pada perpanjangan DC sehingga CP = ½ DC. Titik Q pada pertengahan EH. Hitunglah jarak dari P ke Q! 2. Diketahui kubus ABCD.EFGH dengan panjang rusuk 5 cm. Titik P pertengahan rusuk CG. Hitunglah jarak : a. Titik A ke garis BC d. Titik P ke garis CD b. Titik A ke garis FG e. Titil P ke garis BF c. Titik C ke garis FH f. Titik P ke garis BD 3. Diketahui kubus ABCD.EFGH dengan rusuk 4 cm. Hitunglah jarak B ke garis EG! 4. Diketahui balok ABCD.EFGH dengan AB = 10 cm, AD = 8 cm, dan AE = 6 cm. Titik O adalah titik potong diagonal-diagonal bidang alas AC dan BD. Hitunglah jarak: a. Titik A ke bidang BCGF b. Titik A ke bidang CDHG c. Titik A ke bidang EFGH d. Titik O ke bidang ABFE e. Titik O ke bidang BCGF f. Titik O ke bidang EFGH 5. Bidang alas limas tegak T.ABCD berbentuk persegi panjang. AB = 4 cm, BC = 3 cm, dan TA = TB = TC = TD = 6,5 cm. Hitunglah: a. Panjang AC b. Jarak titik puncak T ke bidang alas A Modul Matematika SMA 172

179 Lembar Penilaian Nama : No. Absen : Judul Tugas : No. Kriteria Penilaian Rentang Nilai Nilai Prestasi 1. Benar cara maupun hasilnya Benar cara, hasil salah Benar hasil, cara salah 0-20 Jumlah Jumlah x 100% Jumlah Nilai Akhir Kesimpulan : Lulus / Tidak Lulus, 20 Modul Matematika SMA 173

180 6.2.4 Kegiatan Belajar Tujuan Kegiatan Belajar 3: Dapat menentukan jarak antara dua garis dan dua bidang yang sejajar Uraian Materi Dua garis dikatakan sejajar jika kedua garis itu terletak pada sebuah bidang dan tidak mempunyai titik persekutuan. Misalkan diketahui garis g dan garis h sejajar. Jarak antara garis g dan garis h yang sejajar adalah jarak antara sebuah titik pada salah satu garis ke garis lainnya. Pada bidang O, garis g // h (Gambar 3.1). Titik P, A, dan B pada garis g. Titik P 1, A 1 dan B 1 berturut-turut adalah proyeksi titik P, A dan B di g pada h. Jarak antara g dan h adalah PP 1 = AA 1 = BB 1. Untuk setiap titik A n, n 1, dan A n pada h, maka AA n A 1 siku-siku di A 1. Akibatnya AA 1 AA n. Dengan kata lain, AA 1 adalah yang terpendek di antara penghubung A dengan setiap titik pada garis h. Jadi AA 1 adalah jarak antara garis g dan h. Dengan cara sama dapat dibuktikan, bahwa PP 1 dan BB 1 merupakan jarak antara garis g dan h yang sejajar. A P B g O A 1 P 1 B 1 h Gambar 3.1 Sedangkan jarak antara dua bidang yang sejajar adalah jarak salah satu titik pada suatu bidang terhadap bidang lain, atau sebaliknya. Misalnya, Balok PQRS.TUVW pada Gambar 3.2, semua rusuk pasangan rusuk yang sejajar pasti sama panjang. Misalnya, rusuk PQ sejajar dengan RS, yang terletak pada bidang PQRS. Modul Matematika SMA 174

181 W V T U S R P Gambar 3.2 Q Lebih lanjut, bidang PSTW sejajar dengan bidang QRVU, dan jarak antara kedua bidang tersebut adalah panjang rusuk yang menghubungkan kedua bidang. Rusuk PQ memotong rusuk QU dan QR secara tegak lurus, maka sudut segitiga PQR adalah 90. Contoh : Diketahui kubus ABCD.EFGH dengan panjang rusuk 6 cm. Gambar dan hitunglah jarak antara garis AE dan garis BF. Penyelesaian: Garis AE dan garis BF merupakan dua garis yang sejajar. Jarak antara garis AE dan BF dapat digambarkan sebagai berikut: Buat bidang α yang melalui garis AE dan garis BF. Bidang α diwakili oleh bidang ABFE. Garis k yang tegak lurus terhadap garis AE dan garis BF dapat dipilih garis AB atau garis EF. Panjang ruas garis AB merupakan jarak antara garis AE dan garis AF sebagaimana diperlihatkan pada gambar 3.3. H G E α F α D A k B Gambar 3.3 C Modul Matematika SMA 175

182 Jadi, jarak antara garis AE dan garis BF yang sejajar sama dengan panjang rusuk AB = 6 cm Rangkuman 1. Dua garis dikatakan sejajar jika kedua garis itu terletak pada sebuah bidang dan tidak mempunyai titik persekutuan. 2. Jarak antara garis g dan garis h yang sejajar adalah jarak antara sebuah titik pada salah satu garis ke garis lainnya. 3. Jarak antara dua bidang yang sejajar adalah jarak salah satu titik pada suatu bidang terhadap bidang lain, atau sebaliknya Test Formatif 1. Diketahui kubus PQRS.TUVW dengan panjang rusuk 5 cm. Titik A adalah titik tengah RT. Hitunglah jarak antara titik V dan titik A! 2. Diketahui kubus ABCD.EFGH dengan panjang rusuk 6 cm. Gambar dan hitunglah jarak antara garis AE dan garis CG! 3. Diketahui balok ABCD.EFGH dengan panjang rusuk-rusuk AB = 5 cm, BC = 4 cm, dan AE = 3 cm. Hitunglah jarak antara garis AE dan bidang BCGF. 4. Dengan menggunakan balok yang sama seperti soal nomor 3, hitunglah jarak antara bidang ABCD dan bidang EFGH. 5. Dengan menggunakan kubus yang sama seperti soal nomor 2, hitunglah jarak antara garis AE dan garis GH. Modul Matematika SMA 176

183 Lembar Penilaian Nama : No. Absen : Judul Tugas : No. Kriteria Penilaian Rentang Nilai Nilai Prestasi 1. Benar cara maupun hasilnya Benar cara, hasil salah Benar hasil, cara salah 0-20 Jumlah Jumlah x 100% Jumlah Nilai Akhir Kesimpulan : Lulus / Tidak Lulus, 20 Modul Matematika SMA 177

184 6.2.5 Kegiatan Belajar Sudut antara garis dengan garis Sebelum mempelajari sudut antara garis dengan garis, apakah kalian masih ingat materi sebelumnya tentang kedudukan dua garis? Kedudukan antara dua garis ada empat yaitu : Dua garis saling berimpit Dua garis saling berpotongan Dua garis saling bersilangan Setelah mengingat materi tersebut,kita bisa mempelajari tentang sudut antara dua garis,lakukan kegiatan berikut!!! Kegiatan 1 1. Siapkan dua lidi, kemudian sejajarkan atau himpitkan kedua lidi tersebut seperti gambar dibawah ini g h Perhatikan gambar diatas,berapakah besar sudut yang dibentuk pada garis tersebut? 2. Siapkan dua lidi, kemudian usahakan dengan kondisi silang berpotongan seperti gambar dibawah ini: g Perhatikan gambar diatas! Adakah sudut yang terbentuk? Berapakah besar sudut yang dibentuk pada garis tersebut? Modul Matematika SMA 178

185 3. Setiapkan dua lidi,kemudian usahakan kondisinya saling berpotongan seperti gambar di bawah ini: g g P h h Perhatikan gambar diatas!! Adakah sudut yang terbentuk? Berapakah besar sudut yang dibentuk pada garis tersebut? Solusi Cerdas Diketahui kubus ABCD.EFGH dengan rusuk 4 cm. titik P pertengahan rusuk DC. Carilah : a. Cosinus sudut antara garis AH dan garis HP! b. Sinus sudut antara garis AH dan BE! Jawab : a. Panjang garis AH = 4 2 HP = 2 5 AP = 2 5 Dalam segitiga AHP, sudut alfa adalah sudut antara garis AH dan HP. AP 2 + AH 2 = HP 2 AH.HP cos (2 5) 2 = ( 2) 2 + (2 5) 2 2 (4 2).2 5.cos 20 = cos cos = = Modul Matematika SMA 179

186 Jadi nilai dari cosinus sudut antara garis AH dan garis HP = b. Tarik garis dari BG yang sejajar AH, garis asal sejajar dapat dipindahkan. Sudut antara garis BE dan garis AH sama dengan sudut garis BE dan BG. Dalam EBG, sudut β adalah sudut antara garis BE dan BG, EBG adalah segitiga sama sisi, jadi β = 60 sin 60 = 1 3. Jadi 2 nilai dari cosinus sudut antara garis BE dan AH = Catatan 1. Dua buah garis di katakana berhimpit jika kedua garis itu mempunyai tak hingga banyaknya titik persekutuan (lebih dari satu titik persekutuan) 2. Dua buah garis dikatakan sejajar jika kdua garis itu terletak pada sebuah bidang dan tidak mempunyai titik persekutuan 3. Dua garis dikatakan bersilangan jika kedua garis tersebut tidak terletak pada satu bidang Tugas Mandiri 1. Diketahui sebuah kubus ABCD.EFGH yang mempunyai rusuk 4cm,hitunglah besar sudut antara berikut a. Rusuk DE dan rusuk HF b. Rusuk AH dan rusuk BF c. Rusuk DE dan rusuk BG D H E A G C F A B Modul Matematika SMA 180

187 Sudut Antara Garis dan Bidang Pada bagian sub bab ini akan dibahas besar sudut antara garis dengan bidang. Masih ingatkah kalian dengan kedudukan antara garis dengan bidang. Kedudukan antara garis dengan bidang ada tiga yaitu : Garis terletak pada bidang Garis sejajar bidang Garis menembus bidang Setelah mengingat materi tersebut,kita bisa mempelajari tentang kedudukan garis dengan bidang, lakukan kegiatan berikut untuk mengetahui besar sudut antara garis dengan bidang. Kegiatan 2 1. Letakkan sebuah lidi diatas buku tulis seperti gambar berikut g Perhatikan kondisi tersebut Adakah sudut diantara garis dan bidang? Berapakah sudutnya? 2. Letakkan lidi diatas buku, hingga tidak ada titik yang bertemu. Seperti di bawah ini g Perhatikan kondisi tersebut Adakah sudut diantara garis dan bidang? Berapakah sudutnya? Modul Matematika SMA 181

188 3. Letakkan sebuah lidi sampai menembus buku, seperti gambar di bawah ini g Perhatikan kondisi tersebut Adakah sudut diantara garis dan bidang? Berapakah sudutnya? Solusi Cerdas Diketahui bidang alas dari limas T.ABCD beerbentuk persegi panjang dengan AB = 12, AD = 5 cm dan TA=TB=TC=TD=7cm a. Hitunglah panjang AC dan tinggi limas TO b. Hitunglah sin (TA,alas ABCD) Jawab : Penyelesaian : a. AC = (AB) 2 + (BC) 2 AC = (12 )2 + (5) 2 AC = 169 = 13 Tinggi limas TO : TO = (TC) 2 + (OC) 2 TO = (7) 2 (6,5) 2 TO = 49 42,25 = 6,75 = 2 3 b. Sudut antara rusuk TA dengan bidang alas ABCD adalah TAO, sebab proyeksi TA pada bidang alas ABCD adalah 3 Modul Matematika SMA 182

189 AO. TAO adalah segitiga siku-siku di O,sehingga sin TAO = TO = 2 3/3 = 3 3 TA 7 14 Catatan A. Proyeksi suatu garis ke suatu bidang merupakan himpunan titik-titik yang proyeksi nya ke bidang tersebut dari titik titik pada garis ersebut. B. Proyeksi garis ke suatu bidang adalah garis, jika bukan maka garis dan bidang tersebut saling tegak lurus C. Sudut antara garis g dan bidang α dilambangkan dengan (g, α) Latihan Soal T.ABCD adalah limas tegak beraturan dengan alas berbentuk las 4m, dan rusuk tegak 8m, hitunglah cosinus sudut antara garis TQ dan bidang alas dengan Q titik tengah AD T 8 m Q D A P C 4 m B Modul Matematika SMA 183

190 Sudut antara dua bidang Masih ingatkah materi sebelumnya tentang kedudukan bidang dengan bidang Kedudukan antara bidang dengan bidang ada 3 yaitu: Dua bidang yang saling berhimpit Dua bidang yang saling berpotongan Dua bidang yang sejajar Setelah mengingat materi tersebut, perhatikan gambar dibawah ini B (β, ) β T 0 A (,β) Anda mengetahui bahwa dan β berpotongan,dengan garis potongnya adalah (,β). Dari titik A pada dibuat garis AT (,β) dan dari titik B pada β dibuat garis BT (,β). Sudut yang terbentuk oleh garis AT dan garis BT ( ATB ) adalah sudut antara dua bidang yang berpotongan (sudut antara bidang dan bidang β). ATB disebut sudut tumpuan, besarnya 0 derajat sampai 90 derajad. Adapun bidang ATB (bidang γ) disebut sebagai bidang tumpuan. Jika ATB = 0 maka α DAN β berimpit, jika ATB 90 maka dan β saling tegak lurus Solusi Cerdas Bidang empat beraturan T.ABCD dengan panjang rusuk 6cm. Hitunglah besar sudut antara sudut bidang TAB dengan bidang alas ABC Jawab : Diketahui : rusuk bidang segi empat 6cm Ditanyakan : besar sudut antara bidang TAB dengan bidang alas ABC Modul Matematika SMA 184

191 Penyelesaian : T A P C B ΔTPB siku-siku di P,BT = 6 cm dan PB = 3 cm,sehingga : TP = TB 2 PB 2 TP = TP = 27 = 3 3 ΔPBC siku-siku di P,BC = 6 cm dan PB = 3 cm,sehingga PC = BC 2 PB 2 TC = TC = 27 = 3 3 Menggunakan rumus kosinus pada ΔTPC diperoleh : TC 2 = TP 2 + PC 2-2.PC.TP. cos sudut TPC Cos TPC = = = 1 3 Dari cos TPC = 1 dioeroleh diperoleh TPC = 70,5 3 Catatan 1. Sudut yang dibentuk oleh bidang dan bidang jika bidang yang satu sejajar atau terletak pada bidang yang lain maka sudut yang terbentuk adalah 0 2. Sudut antara dua bidang yang berpotongan (sebuuah garis pada bidang pertama dan sebuah garis pada bidang yang lainnya) garis-garis itu tegak lurus terhadap garis potong antara kedua bidang tersebut. Modul Matematika SMA 185

192 Latihan Soal Pada limas segi emapat T.ABCD, bidang alas ABCD berbentuk persegi panjang dengan AB=8cm,BC=6cm, dan TA=TB=TC=TD=13 cm. sudut adalah sudut antara bidang TBC dengan alas bidang ABCD,hitunglah besar sudut T A D B C Tes Forrmatif 1. Suatu kubus ABCD.EFGH dengan rusuk 10cm. Tentukan jarak antara bidang BDE dengan bidang CFG? 2. Tentukan jarak titik C ke garis HF pada kubus ABCD.EFGH yang panjang rusuknya 5? 3. Pada kubus ABCD.EFGH apakah AC proyeksi DG pada bidang ABCD Modul Matematika SMA 186

193 Lembar Penilaian Nama : No. Absen : Judul Tugas : No. Kriteria Penilaian Rentang Nilai Nilai Prestasi 1. Benar cara maupun hasilnya Benar cara, hasil salah Benar hasil, cara salah 0-20 Jumlah Jumlah x 100% Jumlah Nilai Akhir Kesimpulan : Lulus / Tidak Lulus, 20 Modul Matematika SMA 187

194 6.3 EVALUASI Soal Evaluasi 1) Diketahui kubus ABCD.EFGH. Tentukan : a. Titik yang berada pada garis DF (skor 5) b. Titik yang berada di luar bidang BCHE (skor 5) c. Garis yang sejajar dengan CF (skor 5) 2) Diketahui kubus ABCD.EFGH dengan panjang rusuk 6 cm. Hitunglah jarak antara : (skor a. Titik H ke garis AC (skor 4) b. Titik B ke garis AG (skor 4) c. Garis AE dan CG (skor 4) d. Garis AB dan CDHG (skor 4) e. Bidang HFC dan DBE (skor 4) 3) Diketahui kubus ABCD.EFGH dengan panjang rusuk a = 6 cm. Tentukan jarak titik C ke bidang AFH! (skor 25) 4) Diketahui limas dengan alas berbetuk persegi panjang, dengan AB = 5 cm, AD = 7 cm, TA = TB = TD = 17 cm. Hitung jarak titik T ke bidang ABCD! (skor 25) 5) Diketahui kubus ABCD.EFGH dengan panjang rusuk 10 cm. Hitunglah jarak antara: a. AE ke CG (skor 10) b. ABCD dan EFGH (skor 5) 6) Perhatikan gambar kubus ABCD.EFGH. jarak titik A ke C adalah H A G E F D C A 6cm B Modul Matematika SMA 188

195 7) ABCD.EFGH adalah sebuah kubus, jika α adalah sudut antara diagonal AG dan rusuk AD,maka cos α.. H A G E F D C A B 8) Garis a tegak lurus dengan bidang A, garis b tegak lurus dengan bidang B. Jika c adalah garis potong A dan B maka. 9) Pada balok ABCD.EFGH jika dipotong menurut bidang ABGH dan bidang CDEF akan diperoleh. 10) Manakah yang disebut sebagai bidang frontal H A G E F D C A B Modul Matematika SMA 189

196 6.3.2 Lembar Penilaian Nama :... Kelas :... No. Absen :... No. Tugas :... Judul Tugas :... No. Kriteria Rentang Nilai Nilai Prestasi Tes Formatif Evaluasi 1. Kegiatan belajar Kegiatan belajar Kegiatan belajar Evaluasi JUMLAH JUMLAH (jumlah X 60%) (jumlah X 40%) Jumlah Nilai Akhir Kesimpulan: Lulus/Tidak Lulus..., Modul Matematika SMA 190

197 BAB 7 Modul Matematika SMA 191

198 7.1 PENDAHULUAN Deskripsi Modul ini berisi teori tentang Statistika biasanya dibagi dalam beberapa aspek diantaranya yaitu penyajian data, ukuran pemusatan, ukuran letak data, dan ukuran penyebaran data. Tetapi dalam modul hanya akan membahas tentang Penyajian data dan materi materi dasar tentang statistika Prasyarat Dalam melaksanakan modul ini diperlukan prasyarat telah menguasai kompetensi yang ada pada modul-modul tentang mencari dan menghitung data pada kompetensi sebelumnya, juga harus membaca mengenai data, populasi, dan sampel. jadi sebelum menghitung data kita harus tau mengenai data apa yang harus dihitung dan dihitung dengan menggunakan apa Petunjuk Penggunaan Modul 1. Pelajari daftar isi serta kedudukan modul dengan cermat dan teliti.karena dalam skema modul akan tampak kedudukan modul yang sedang anda pelajari dengan modul-modul yang lain. 2. Kerjakan soal-soal dalam cek kemampuan untuk mengukur sampai sejauh mana pengetahuan dan kemampuan yang telah anda miliki. 3. Apabila dalam cek kemampuan dapat mengerjakan dengan lancar maka dapat dilanjutkan evaluasi, lebih baik jika dapat menjawab setidaknya 7 soal atau lebih. 4. Dalam mencari dan menghitung data, anda harus memahami data apa yang akan anda hitung dan menggunakan penyajian data apa. 5. Pahami setiap materi teori dasar yang akan menunjang dalam penugasan suatu pekerjaan dengan membaca secara teliti. Kemudian kerjakan soal-soal evaluasi sebagai sarana latihan. 6. Untuk menjawab test formatif usahakan memberi jawaban singkat, jelas dan kerjakan sesuai dengan kemampuan anda setelah Modul Matematika SMA 192

199 mempelajari modul ini.lebih baik jika lengkap beserta rumus dan proses jawabanya. 7. Bila terdapat penugasan, kerjakan dengan baik dan bilamana perlu konsultasikan hasil tersebut pada guru / instruktur. 8. Catatlah kesulitan yang anda dapatkan dalam modul ini untuk ditanyakan pada guru/instruktur pada saat kegiatan tatap muka. Bacalah referensi lainya yang berhubungan dengan materi modul agar anda mendapatkan tambahan pengetahuan. 9. Modul ini bersangkutan antara materi saru dengan materi yang lainya, jadi disarankan untuk membaca dari awal Tujuan Akhir Setelah melaksanakan seluruh kegiatan belajar dalam modul ini diharapkan anda dapat memiliki kemampuan mencari dan menyajikan data dengan cermat dan tepat. Dan dapat menggambar grafik, tabel, dan diagram dengan bagus. karena data statistik sangat dibutuhkan dalam kehidupan sehari-hari. Disamping itu ada beberapa tujuan pembelajaran yang diantarannya yaitu: 1. Tujuan Aspek Sikap Dengan mengikuti kegiatan yang ada di modul ini anda diharapkan: a. Memiliki motivasi untuk terus belajar aktif secara mandiri b. Memiliki kemampuan bekerja sama melalui diskusi kelompok c. Memiliki tanggung jawab sosial dengan menghasilkan pemahaman diantara semua anggota kelompok 2. Aspek Pengetahuan Dengan memahami isi dan materi di dalam modul ini anda diharapkan a. Dapat menentukan rata-rata, modus, median dari suatu data b. Memiliki kemampuan dalam menentukan kuartil, desil, presentil suatu data c. Dapat menentukan jangkauan, jangkauan antar kuartil, simpangan kuartil, simpangan rata-rata, ragam, dan simpangan baku Modul Matematika SMA 193

200 d. Menyelesaikan masalah dalam kehidupan sehari-hari yang berkaitan dengan statistika 3. Aspek Keterampilan Dengan mempelajari modul ini anda diharapkan : a. Memiliki kemampuan dalam menyajikan data tunggal maupun kelompok b. Kemampuan menentukan hasil penghitungan data dari data tunggal dan data kelompok Mampu membuat kesimpulan serta fungsi dari pembelajaran data-data dalam statistika Kompetensi Kode Unit : Judul unit : STATISTIKA Menyajikan Data (12 jam) Uraian unit : Unit ini berlaku untuk pekerjaan menyajikan suatu data menggunakan alat tulis menulis dan penggaris. Sub Kompetensi 1. Melakukan persiapan memahami tentang pengertian dasar statistika. 2. Melakukan penghitungan data tunggal dengan berbagai bentuk penyajian data. 3. Melakukan penghitungan data kelompok dengan berbagai bentuk penyajian data Indikator a. mengenal apa itu statistika b. mengenal apa itu data c. mengenal data menurut cara memperolehnya d. mengenala data menurut sifatnya e. mengenal apa itu data tungggal f. mengenal apa itu data kelompok a. Menghitung data dengan penyajian data dalam bentuk tabel b. Menghitung data dengan penyajian data dalam bentuk diagram garis c. Menghitung data dengan penyajian data dalam diagram lingkaran d. Menghitung data dengan penyajian data dalam diagram batang a. Menghitung data dengan penyajian data dalam bentuk tabel b. Menghitung data dengan penyajian data dalam bentuk diagram(histogram) Modul Matematika SMA 194

201 4. Melakukan pengolahan data dengan konsep ukuran pemusatan 5. Melakukan pengolahan data dengan konsep ukuran letak data 6. Melakukan pengolahan data dengan konsep penyebaran data 7. Mencari data dan menyajikan dalam bentuk data statistika dan mengolah data dalam konsep ukuran pemusatan, ukuran letak data, dan penyebaran data a. Mengalisis data dan menentukan mean dari data tunggal dan kelompok b. Memahami dan menentukan nilai median dari suatu data tunggal dan kelompo c. Menghitung median dari suatu data tunggal dan kelompok a. Memahami, mengenali pengertian, konsep serta rumus kuartil suatu data tunggal dan kelompok b. Memahami, mengenali pengertian, konsep serta rumus desil suatu data tunggal dan kelompok c. Memahami, mengenali pengertian,konsep serta rumus presentil suatu data tunggal dan kelompok a. Memahami dan mengenali pengertian, konsep serta rumus jangkauan suatu data tunggal maupun kelompok b. Memahami dan mengenali pengertian, konsep serta rumus jangkauan antarkuartil suatu data tunggal maupun kelompok c. Memahami dan mengenali pengertian, konsep serta rumus simpangan kuartil suatu data tunggal maupun kelompok d. Memahami dan mengenali pengertian, konsep serta rumus simpangan rata-rata suatu data tunggal maupun kelompok e. Memahami dan mengenali pengertian, konsep serta rumus ragam suatu data tunggal maupun kelompok f. Memahami dan mengenali pengertian, konsep serta rumus simpangan baku suatu data tunggal maupun kelompok a. Mendiskusikan materi yang telah didapatkan b. Bekerja sama dalam menyajikan data c. Memahami dan meneliti data yang telah dibuat d. Mengambil kesimpulan dari data-data serta pengolahan yang telah dilakukan Modul Matematika SMA 195

202 Persyaratan Unjuk Kerja 1. Unit ini berlaku untuk pekerjaan mencari dan menyajikan suatu data dengan menggunakan data yang telah ada, atau data yang telah dicari sebelumnya, yang dapat dilakukan di sekolah atau tepat lain. 2. Tersedia acuan untuk mencari dan menyajikan suatu data dalam berbagai bentuk. 3. Disini tidak membutuhkan peralatan apapun, tetapi jika kita mencari data dengan menggunakan grafik atau diagram maka dibutuhkan penggaris ataupun jangka agar pekerjaan menjadi lebih rapi. 4. Tersedia sumber informasi yang berupa buku yang menyangkut mengenai statistika dalam mencari dan menyajikan data, disarankan untuk buku yang terpercaya. Acuan Penilaian 1. Unit kompetensi ini dapat diujikan secara langsung kepada peserta uji di sekolah maupun di tempat lain dengan standar buku pegangan yang sesuai. 2. Aspek-aspek kritikal yang dinilai: Mengenali istilah statistika dan sejenisnya Memahami cara mencari dan menghitung data Mampu menggambar sesuai dengan penyajian data 3. Pengetahuan pendukung yang dibutuhkan: Mengenali langkah-langkah dalam menentukan data Menunjukkan pemahaman tentang data yang akan dihitung Menghitung menggunakan pecahan, desimal, persen Mempelajari tentang diagram, grafik, dan tabel. Dapat mencari data di lapangan. 4. Sikap yang dituntut: Bekerja dengan rapi dan bersih Bekerja dengan ketelitian dan penghitungan dengan benar Menghargai produktifitas dalam bekerja Efisien dan optimal dalam bekerja Menghargai mutu hasil pada setiap langkah kerjanya Mengutamakan proses daripada hasil. Bersikap positif dan terbuka terhadap penilaian hasil pekerjaan oleh atasan Teliti dalam menghitung dan menggambar Modul Matematika SMA 196

203 7.1.6 Cek Kemampuan Petunjuk : Berilah tanda ( ), pada kolom Jawaban : Ya atau Tidak jawaban yang anda pilih No. Pertanyaan Jawaban Ya Tidak 1. Apakah anda mengenal tantang statistika? 2. Apakah anda mengenal tentang data? 3. Apakah anda dapat menggambar lingkaran? 4. Apakah anda dapat menggambar tabel? 5. Apakah anda mengetahui tentang diagram? 6. Apakah anda dapat menggambar diagram garis? 7. Apakah anda mengetahui tentang data tunggal? 8. Apakah anda mengetahui cara mengurutkan data? 9. Apakah anda mengetahui perbedaan data tunggal dan data kelompok? 10. Apakah anda dapat menghitung tentang data kelompok? 11. Apakah anda dapat menggambar grafik? 12. Apakah anda mengetahui tentang frekuensi? 13. Apakah anda mengetahui tentang penulisan interval? 14. Apakah anda mengenal statistika deskriptif? Skore ( Nilai )..., Modul Matematika SMA 197

204 PETA KONSEP STATISTIKA Penyajian data Pengenalan Data tunggal Apa itu statistika Bentuk tabel Apa itu data mengenal data menurut cara memperolehnya Bentuk diagram (histogram) mengenala data menurut sifatnya mengenal apa itu data tungggal Mengenal apa itu data kelompok Data tunggal Bentuk tabel Bentuk diagram Modul Matematika SMA 198

205 7.2 PEMBELAJARAN Rencana Belajar Siswa 1) Pada setiap kegiatan belajar, pahamilah uraian tujuan kegiatan belajar, agar mengetahui kemampuan apa yang akan dicapai pada setiap kegiatan. 2) Peralatan dan bahan yang harus dibawa pada pertemuan atau tatap muka berikutnya harus dibaca sebelum kegiatan dilaksanakan. 3) Sebelum melaksanakan kegiatan harus memahami terlebih dahulu setiap langkah kerja yang dilaksanakan, apabila kurang jelas dapat menanyakan kepada guru/instruktur. 4) Kerjakanlah setiap latihan dengan bersungguh-sungguh agar kemampuan anda yang sebenarnya diketahui Kegiatan belajar Mengenal dasar-dasar Statistika Dasar-dasar Statistika, sebelum kita mempelajari tentang penyajian datakita harus mengetahui dulu tentang dasar-dasar mengenai statistika. Antarilain adalah: a. Pengertian statistika Statistika dalam pengertian sebagai ilmu dibedakan menjadi 2 yaitu: 1). Statistika deskriptif (perian) mempunyai tujuan untuk mendeskripsikan atau memberi gambaran objek yang diteliti sebaimana adanya tanpa menari kesimpulan atau generalisasi. Dalam deskriptif ini dikemukakan cara-cara penyajian data dalam bentuk tabel, diagram, mean, modus, median, serta simpangan baku. 2). Statistika inferensial(induktif) mempunyai tujuan untuk penarikan kesimpulan, sebelum menarik kesimpulan Modul Matematika SMA 199

206 dilakukan suatu dugaan yang dapat diperoleh dari statistika deskriptif. Dari pengertian diatas dapat disimpulkan bahwa statistika adalah ilmu pengetahuan dengan cara-cara pengumpulan, penyajian, pengolahan, analisis data serta penarikan kesimpulan. b. Pengertian data Setiap kegiatan yang berkaitan dengan statistik, selalu berhubungan dengan data. Menurut kamus besar bahasa indonesia pengertian data adalah keterangan yang benar dan nyata. Data adalah bentuk jamak dari datum, datum adalah keterangan atau informasi yang diperoleh dari satu pengamatan sedangkan data adalah segala keterangan atau informasi yang dapat memberikan gambaran tentang suatu keadaan. c. Data menurut cara memperolehnya 1). Data primer, data yang dikumpulkan lansung oleh peneliti (suatu organisasi atau perusahaan). Contoh: pemerintah melalui biro pusat statistik melakukan sensus penduduk tahun 1980 untuk memperoleh data penduduk di negara Indonesia. 2). Data sekunder, data yang dikutip dari sumber lain. Contoh: suatu perusahaan memperoleh data dari laporan yang ada dari biro pusat statistik. d. Data menurut sifatnya 1) Data kualitatif, data yang tidak dalam bentuk angka. Contoh: mutu barang di supermarket X bagus atau jelek. 2). Data kuantitatif, data dalam bentuk angka. Contoh: data hasil ulangan mata pelajaran matematika siswa kelas 6 di SD Turban adalah 6,7,6,7,8,9,8,.. e. Data tunggal Data tunggal merupakan data yang berkuantitas kecil dan suatu statistik, disebut sebagai data tunggal jika data tersebut Modul Matematika SMA 200

207 hanya memuat sartu variabel data yang ingin kita ketahui dari objek populasi. Beberapa Cntohnya adalah :data nilai ulangan siswa, dat tinggi siswa, dan data tingkat keuntungan suatu usaha. Penyajian data yang akan dibahs dalam modul ini tabel, diagaram, grafik. f. Data kelompok Jika data tunggal yang kita hitung menjadi semakin banyak maka dalam penyajianya akan kurang efektif dan efisien. Oleh karena itu untuk dapat lebih menyederhanakan penyajian data dilakukan dengan mengelompokan data dalam interval kelas tertentu Menghitung data tunggal dengan berbagai bentuk penyajian data a. Penyajan data dalam bentuk tabel setidaknya ada dua cara menyajikan data dalam bentuk tabel yaitu : 1. Daftar baris-kolom 2. Daftar distribusi frekuensi Daftar baris kolom Seorang pengawas dari departemen nasional ditugaskan untuk mendata banyak anak-anak yang bersekolah di desa suka hati tahun 2006 atau Dia mencatat ada anak bersekolah di tingkat SD yang terdiri dari 687 laki-laki dan 875 perempuan, di tingkat SMP yang terdiri atas 592 Laki-laki dan 859 perempuan, di tingkat SMA yang terdiri dari 576 laki-laki dan 542 perempuan, dan ada 443 anak di tingkat SMK yang terdiri ats 216 laki-laki dan 227 perempan. Dia akan membuat laporan mengenai data ini, bentuk data mentah seperti di atas akan menyulitkan untuk dibaca. Dia menyajikan data dalam bentuk yang lebih mudah dibaca, yaitu tabel. Modul Matematika SMA 201

208 Banyak siswa desa suka hati menurut tingkat sekolah dan jenis kelamin tahun 2006/2007 Banyaknya siswa Tingkat Laki-laki perempuan Jumlah siswa sekolah SD SMP SMA SMK Total Daftar distribusi frekuensi Berkut ini adalah daftar nilai ulangan matematika dari 48 siswa kelas XI E yang tertera pada rapor Misalkan X 1 = 4, X 2 = 5, X 3 = 6, X 4 = 7, X 5 = 8 f 1 bernilai 4, => f 1 = 1 f 2 adalah frekuensi dari X 1, atau banyaknya yang adalah frekuensi dari X 2, atau banyaknya yang bernilai 5, => f 2 = 3 f 3 adalah frekuensi dari X 3, atau banyaknya yang bernilai 6, => f 3 = 21 f 4 adalah frekuensi dari X 4, atau banyaknya yang bernilai 7, => f 4 = 19 f 5 adalah frekuensi dari X 5, atau banyaknya yang bernilai 5, => f 5 = 4 Modul Matematika SMA 202

209 data di atas bisa dirangkum dalam tabel Nilai (X i ) Frekuensi (f i ) X X X X X Total 7 i fi = 40 Tabel ini disebut daftar distribusi data tunggal atau daftar distribusi frekuensi tunggal. Jumlah total frekuensi selalu sama dengan ukuran data Dari penyajian data diatas diperoleh banyak kegunaan penyajian data dalam bentuk tabel, antara lain data terlihat rapi sehingga memudahkan dalam pengolahan data. b. Penyajian data dalam bentuk diagram 1. Diagram Garis Pada penyajian data kali ini kita akan belajar menyajikan data dengan diagram garis. Sebenarnya diagram garis dapat dikatakan sebagai diagram yang digambarkan berdasarkan satu waktu, biasanya waktu yang digunakan dalam bulan atau tahun. Untuk membuat diagaram garis kita membutuhkan dua sumbu. Berikut adalah contoh diagram garis untuk kurs rupiah terhadap dollar AS dari tanggal 8 januari sampai 12 januari tahun Cara membuat diagram garis cukup mudah, ikuti tiga langkah berikut : a) Letakkan data pada sumbu horizontal dengan jarak yang sama, dan nilai jumlah pada sumbu vertikal. b) Tentukan nilai data yang bersesuaian c) Hungkan dua data yang bertetangga dengan garis lurus Modul Matematika SMA 203

210 Kurs uang kertas asing 10,000 9,500 9,000 8,500 8,000 7,500 kurs uang kertas asing 9,530 9,515 9,560 9,558 9,635 8,530 8,515 8,560 8,558 8, Jan 09-Jan 10-Jan 11-Jan 12-Jan Kurs jual Kurs beli Melalui grafik diatas kita dapat dengan mudah membaca hasil data nilai tukar rupiah dibandingkan dengan menggunakan tabel. Misalnya, kita dapat dengan mudah menentukan nilai tukar kurs rupiah tertinggi ataupun terendah dan pada saat kapan hal itu terjadi. Dari masalah dan kegiatan diatas dapat kita nyatakan bahwa diagram garis adalah suatu penyajian data statistik dengan menggunakan garis-garis lurus yang terhubung dengan komponen-komponen pengamatan. Diagram garis biasanya digunakan untuk data tentang keadaan dan perkembangan. Biasanya data bersifat kontinu pada ukuran satuan. Misalnya, kecepatan mobil dalam suatu perjalanan, nilai tukar rupiah, dan pertumbuhan jumlah penduduk pada suatu daerah. 2. Diagram Lingkaran Penyajian data dalam bentuk diagram lingkaran didasarkan pada sebuah lingkaran yang dibagi-bagi dalam beberapa bagian sesuai dengan macam data dan perbandingan frekuensi macam-macam data yang disajikan. Modul Matematika SMA 204

211 Contoh membuat diagaram lingakaran: Data bahan pangan di KUD Usaha Jaya beras terigu kacang tanah kedelai Langkah-langkah dalam membuat diagram lingkaran adalah sebagai berikut: a) Ubah nilai data absolut ke dalam bentuk persentase untuk masing-masing data. b) Tentukan juring sudut dari masing-masing data yang ada dengan rumus juring sudut data x = frekuensi data x 360 frekuensi seluru data c) Buat sebuah lingkaran dengan menggunakan jangka, ukuran lingkaran jagan terlalu besar dan jangan terlalu keci. d) Masukan data yang pertama dengan menggunakan busur derajat dimulai dari titik tertinggi. e) Masukan data-data lainya kedalam lingaran sesuai juring susut data yang telah dihitung sesuai dengan arah jarum jam. f) Setiap data yang terdapat dalam lingkaran, hendaknya diberi arsir atau warna yang berbeda. g) Masing-masing data yang ada dalam lingkaran masingmasing diberi identitas. (a) Nama data disertai prsentasenya, atau (b) Nilai persentasenya saja, sedangakan nama data dicantumkan ada catatan tersendiri yang terletak dilar lingkaran disertai dengan arsir atauwarna yang sesuai seperti yang terdapat di dalam lingkaran. Modul Matematika SMA 205

212 jumlah siswa 3. Diagram batang Diagram batang adalah diagram berdasarkan data berbentuk kategori. Diagram ini banyak digunakan untuk membandingkan data maupun menunjukan hubungan suatu data dengan data keselruhan. Diagram ini menyajikan datanyan dalam bentuk batang. Sebuah batang menunjukan jumlah tertentu dari data Langkah-langkah dasar dalam pembuatan digram batang 1) Buat sumbu mendatar dan sumbu tegak yang saling tegak lurus 2) Sumbu mendatar dibagi menjadi beberapa bagian skala yang sama, demikian pula sumbu tagaknya: skala pada sumbu mendatar dengan skala pada sumbu tegak tidak perlu sama. 3) Jika diagram batang dibuat tegak, maka sumbu mendatar menyatakan keterangan atau fakta mengenai kejadian, sumbu tegak menyatakan frekuensi keterangan 4) Jika digram batang dibuat horizontal, maka sumbu tegak menyatakan keterangan atau fakta mengenai peristiwa. Sumbu mendtar menyatakan frekuensi keterangan. 5) Tunjukan satu batang untuk mewakili frekuensi data tertentu 6) Arsir atau warnai batang yang memenuhi frekuensi data 7) Variasi diagram batang, dapat dibuat sesuai keahlian guru. Contoh diagram batang : Modul Matematika SMA jumlah siswa di SD sari mulyo

213 kelas Atau jumlah siswa Rangkuman a. Penyajan data dalam bentuk tabel setidaknya ada dua cara menyajikan data dalam bentuk tabel yaitu : Daftar baris-kolom Daftar distribusi frekuensi b. diagram garis adalah suatu penyajian data statistik dengan menggunakan garis-garis lurus yang terhubung dengan komponenkomponen pengamatan. Diagram garis biasanya digunakan untuk data tentang keadaan dan perkembangan. Biasanya data bersifat kontinu pada ukuran satuan. c. Penyajian data dalam bentuk diagram lingkaran didasarkan pada sebuah lingkaran yang dibagi-bagi dalam beberapa bagian sesuai dengan macam data dan perbandingan frekuensi macam-macam data yang disajikan d. Diagram batang adalah diagram berdasarkan data berbentuk kategori. Diagram ini banyak digunakan untuk membandingkan data maupun menunjukan hubungan suatu data dengan data keselruhan. Diagram ini menyajikan datanyan dalam bentuk batang Modul Matematika SMA 207

214 Tes Formatif 1. Rara ditugaskan guru untuk melakukan suvey data terhadap keuntungan penjualan barang atau jasa selama stu tahun melalui buku koperasi sekolah. Data yang diperoleh sebagai berikut (dalam satuan ribu rupiah): Keuntungan penjualan buku tulis, pensil, ballpoint, keping cd, tinta printer, makanan ringan, kertas hvs, kertas folio, minuman ringan dan air mineral, seragam sekolah, buku olahraga, seragam olahraga, buku bacaan, majalah, komik, dan fotocopy secara berturut turut adalah 400, 300, 550, 200, 325, 540, 350, 450, 750, 900, 500, 600, 300, dan 525. Sajikan dalam bentuk tabel. Dan carilah 5 keuntungan tertinggi. 2. Ayah beni bekerja di Amerika dan telah pulang ke Indonesia. Ia ingin menukarkan uang hasil tabungan selama bekerja agar dapat dipakai di tanah air untuk memenuhi kebutuhan mereka. Iapun mengamati harga beli dan harga jual mata uang dollar Amerika selama beberapa hari. Berikut hasil pencatatan nilai tukarrupiah terhadap dollar yang diamati. Tabel nilai tukar rupiah Tanggal 5 juli 6 juli 7 juli 8 juli 9 juli 10 juli Kurs jual Kurs beli Ubahlah tabel dalam bentuk diagram garis garis dan tentukan di tanggal berapakah nilai tukar rupiah tertinggi dan terendah! 3. Sebuah toko handphone mencatat penjualan produk smartphone yang dijual dalam kurun waktu sebulan. Jenis HP Tipe I Tipe II Tipe III Tipe IV Tipe V Tipe VI Banyak Penjualan Gambarkan data penjualan smartphone dari tabel berikut ke dalam : a) diagram lingkaran b) diagram batang Modul Matematika SMA 208

215 Lembar Penilaian Nama : No. Absen : Judul Tugas : No. Kriteria Penilaian Rentang Nilai Benar cara, Hasil, Maupun gambar 2 Cara Benar, hasil benar, gambar 0 15 salah 3 Cara benar, hasil salah, gambar 0-15 benar 4 Cara salah, hasil benar, gambar 0-15 benar Jumlah Jumlah x 100% Jumlah akhir Nilai Prestasi Kesimpulan : Lulus / Tidak Lulus,..20 Modul Matematika SMA 209

216 7.2.3 Kegiatan Belajar Menghitung data kelompok dengan berbagai bentuk penyajian data 1) Penyajian data dalam bentuk tabel Disini akan disinggung mengenai peyajian dat dalam bentuk tabel pada data berkelompok. Perhatikan data ulangan matematika berikut : Jika kita buatkan daftar distribusi frekuensi untuk data ini, maka akan diperoleh data yang sangat panjang, terdiri dari 40 baris. Untuk menyiasati hal ini kita kita perkenalkan peringkasan data alternatifyang disebut daftar distribusi frekuensi berkelompok. Pada daftar distribusi frekuensi berkelompok kiat menghitung frekuensi yang berkait dengan pengamatan berkelompok, bukan pengamatan tunggal. Nilai Frekuensi Modul Matematika SMA 210

217 Data ulangan harian matematika biasa kita tampilkan dalam daftar distribusi frekuensi kelompok. Kelompokkelompok di kolom panling kiri misalnya 30-39, disebut kelas. Nilai turus Frekuensi II IIII IIII III IIII IIII I IIII II IIII III 3 Total 40 Berikut adalah beberapa istilah pada daftar distribusi frekuensi berkelompok 1) Kelas Data di ats dikelompokan ke dalm kelas-kelas Kelas pertama adalah 30-39, memuat niali-nilai 32 dan 35 Kelas kedua adalah 40-49, memuat nilai-nilai 40, 42, 44, 45 dst. 2) Banyaknya kelas Adalah banyaknya kelompok dalam tabel, data diatas dikelompokan menjadi 7 kelompok. Dikatakan bahwa banyak kelas = 7. Atau dengan rumus k = 1 + (3,3) log n 3) Batas kelas Adalah nilai ujung yang terdapat pada kelas. Niali ujung bawah (nilai yang terkecil dari kelas) disebut batas bawah, dan nilai ujung atas (niali terbesar dari kelas) disebut batas atas. Pada data di atas, kelas bawah pertama adalah 30, batas atasnya adalah 49 dan seterusnya. 4) Tepi kelas Untuk data yang diperoleh dari hasil pengukuran dengan ketelitian sampai satuan terdekat, tepi kelasnya adalah Tepi bawah = batas bawah 0,5 Modul Matematika SMA 211

218 Tepi atas = batas atas + 0,5 Pada data di atas kelas pertama adalah Batas bawah adalah 30 = tepi bawahnya 30-0,5 = 29,5 Batas atasnya adalah 39 = tepi atasnya ,5 = 39,5 Tepi bawah kelas pertama = 29,5 dan tepi atasnya = 39,5 Dengan cara yang sama diperoleh, tepi bawah kelas = tepi bawah kelas kedua adalah 39,5 dan tepi atasnya adalah 49,5. 5) Lebar kelas Lebar kelas di sebut juga panjang kelas atau interval kelas, yaitu selisih tepi atas dan tepi bawah kelas Pada data di atas lebar kelas pertama = 39,5 29, 5 = 10 dan lebar kelas kedua 49,5 39, 5 = 10. saat membuat daftar distribusi,frekuensi data berkelompok, sebaiknya lebar setiap kelasnya sama. Atau dengan rumus, Panjang kelas = jangakauan banyak kelas Perlu di cermati Bahwa pembentukan kelas interval tersebut harus memuat semua data. Jika ada 1 data yang tidak tercakup pada interval kelas maka terdapat kesalahan dalam mendistribusikan data. 6) Titik tengah kelas Titik tengah suatu kelas merupakan niali yang dianggap mewakili kelas itu. Titik tengah kelas disebut juga nilai tengah kelas atau rataan kelas. Titik tengah kelas = 1 (batas bawah kelas + batas atas kelas) 2 dari tabel diatas dapat kita ketahui titik tengah kelas pertama = 1 ( ) = 34,5 2 titik tengah kelas kedua = 1 ( ) = 44, 5 2 titik tengah kelas ketiga = 54, 5 Modul Matematika SMA 212

219 dengan titik tengah X i, maka daftar distribusi frekuensi dapat dinyatakan sebagai berikut Kelas X i Frekuensi (f i ) , , , , , , ,5 3 Total 40 2) Penyajian Penyajian data dalam bentuk diagram (histogram) Data pada tabel distribusi frekuensi dapat disajikan dengan menggunakan histogram. Prinsip penyajiannya hampir sama dengan menyajikan diagram batang yaitu meggambarkan grafik batang yang sama lebar namun tidak terputus-putus. Variabel pengamatan berupa interval-interval kelas yang sama panjang dihubungkan dengan nilai pengamatan berupa frekuensi. Maka dengan tabel distribusi frekuensi di atas dapat disajikan histogram berikut ini. Misalkan kita memiliki daftar distribusi frekuensi nilai ulangan umum bahasa indonesia seperti berikut : Nilai ulangan Frekuensi jumlah 100 Modul Matematika SMA 213

220 frekuensi data nilai siswa kelas interval Dari pembahasan di atas dapat dinyatakan bahwa histogram adalah jenis grafik batang yang digunakan untuk menampilkan data numerik yang telah disusun dalam interval yang sama Rangkuman 1. Pada daftar distribusi frekuensi berkelompok kiat menghitung frekuensi yang berkait dengan pengamatan berkelompok, bukan pengamatan tunggal 2. Data pada tabel distribusi frekuensi dapat disajikan dengan menggunakan histogram. Prinsip penyajiannya hampir sama dengan menyajikan diagram batang yaitu meggambarkan grafik batang yang sama lebar namun tidak terputus-putus. Modul Matematika SMA 214

221 Tes formatif 1. Hasil Ujian semester mata pelajaran matematika terhadap 80 siswa dinyatakan sebagai berikut Dari data di atas sajikan data dengan : a. Dengan tabel distribusi frekuensi b. Histogram Lembar Penilaian Nama : No. Absen : Judul Tugas : No. Kriteria Penilaian Rentang Nilai Benar cara, Hasil, Maupun gambar 2 Cara Benar, hasil benar, gambar 0 15 salah 3 Cara benar, hasil salah, gambar 0 15 benar 4 Cara salah, hasil benar, gambar 0 15 benar Jumlah Jumlah x 100% Jumlah akhir Nilai Prestasi Kesimpulan : Lulus / Tidak Lulus., 20. Modul Matematika SMA 215

222 7.2.4 Kegiatan Belajar Materi pembelajaran Dalam materi pembelajaran kelas X, Anda telah mempelajari cara mengumpulkan data satistik dan menyajikannya dalam berbagai bentuk dan diagram. Penyajian data seperti ini hanya memberikan gambaran menyeluruh, tetapi belum cukup digunakan untuk pengambilan keputusan tertentu. Ada beberapa cara atau hal yang ditonjolkan dalam menceritan data. Mean atau yang sering disebut sebagai rata-rata, median yang merupakan nilai tengah dari data yang telah diurutkan, dan modus yaitu data yang sering muncul merupakan nilai yang menggambarkan tentang pemusatan nilai-nilai dari data yang diperoleh dari suatu peristiwa yang telah diamati. Itulah sebabnya mean, median, dan modus disebut sebagai ukuran pemusatan Rata-rata/ rataan hitung/ mean Rataan adalah rata-rata nilai data. Rataan paling sering sering dijadikan ukuran pusat data kuantitatif. Kita bagi pembahasan menjadi dua : 1) Rata rata data tunggal Rataan data tunggal merupakan jumlah nilai semua data dibagi ukuran data tersebut : x = x 1 + x 2 + +x n n = n i=1 x i n Keterangan : x i : data ke-i n : banyaknya data Contoh Tentukan Mean dari data berikut : Penyelesaian : Modul Matematika SMA 216 Mean (x) = = 5,4 9

223 2) Rataan data kelompok Seperti telah anda ketahui, mean / rataan adalah jumlah seluruh data dibagi dengan banyak data dibagi dengan banyak data, Rumus rataan / mean : x = f 1x 1 + f 2 x 2 + +f n x n f 1 + f f n = n i=1 n i=1 f i f i x i Keterangan: x i : data ke-i f i : frekuensi data ke-i Tentukan rataan hitung dari data berkelompok berikut : Nilai Penyelesaian : nilai Frekuensi Titik tengah (x i ) Frekuensi (f i ) x i f i , , , , , , , ,5 Total f i = 80 x i f i = Dari table diperoleh f i = 80 dan x i f i = , maka x = = 188 Modul Matematika SMA

224 Menentukan Mean dengan menggunakan Rataan Sementara : Untuk menghitung rataan/ mean pada data kelompok juga dapat dihitung dengan menggunakan rataan sementara ( x s ) dengan rumus berikut : x = x s + n i=1 n i=1 f i f i d i Keterangan : d i = x i x s x s: rataan sementara Contoh : Tentukan rataan hitung/mean data kelompok berikut dengan menggunakan rataan sementara : Nilai Frekuensi Penyelesaian : Misalkan kita pilih rataan sementara (x s ) = 225,5 yang merupakantitik tengah kelas dengan frekuensi terbesar, sehingga diperoleh table : nilai Titik tengah (x i ) Frekuensi (f i ) x i - x s f i (x i - x s) , , , , , , Total f i = 80 f i (x i - x s) = 3000 Rataan hitung adalah : n i=1 f i d i x = x s + n i=1 f i = 225, Modul Matematika SMA 218 = 188 Hasil ini sama persis dengan cara sebelumnya.

225 a. Median Median adalah nilai tengah data setelah diurutkan. Median merupakan salah satu statistic yang digunakan untuk ukuran pemusatan data. Salah satu unggulan median daripada rataan adalah kemudahan menentukannya (tidak banyak perhitungan) dan tidak tergantung pada nilai-nilai yang ekstrim. 1) Median data tunggal Jika banyaknya data ganjil, maka Me = Xn +1 2 Jika banyaknya data genap, maka Me = Keterangan: Me : Median n x n : Banyaknya data : data ke-n Xn +Xn Contoh Tentukan median dari data berikut: a) 3,5, 7, 4, 9, 8, 7, 9, 6 b) 4, 8, 8, 6, 9, 8, 7, 3 Penyelesaian : a) Data diurutkan menjadi: 3, 4, 5, 6, 7, 7, 8, 9, 9. Karena datanya sebanyak ganjil, maka mediannya adalah X9+1 2 = X 5 = 7. b) Data diurutkan menjadi: 3, 4, 6, 7, 8, 8, 8, 9. Karena X 8 +X datanya sebanyak genap, maka median = +1 = 2 X 4 +X 5 2 = = 7,5 2) Median data kelompok : Me = TB Me n F k f Me l Modul Matematika SMA 219

226 Keterangan: Me : median TB Me : tepi bawah kelas median l : panjang kelas median n : banyaknya data F k kelas median f Me : frekuensi kumulatif sebelum : frekuensi kelas median Contoh Tentukan median dari data yang dinyatakan dalam daftar distribusi frekuensi berikut : Data Frekuensi Penyelesaian : Data Frekuensi Frekuensi kumulatif kurangdari Kelas Median Ukuran data (n) = 50 (genap) Berarti median terletah anta data ke-25 dan data ke-26. Kedua data tersebut terletak di kelas Berdasarkan data diatas, dapat diketahui: TB Me = 59,5, F k = 19, l= 10, f Me = 35 Me = TB Me n F k f Me 1 Modul Matematika SMA 220 Me = 59, Me = 61,21 l

227 b. Modus Pada sebuah kelompok data, modus adalah nilai yang paling sering muncul, yaitu nilai yang memiliki frekuensi paling tinggi. 1) Modus data tunggal Contoh: Tentukan modus dari data berikut: 50, 45, 64, 70, 50, 69, 75, 70, 70, , 50, 65, 68, 66, 65, 73, , 42, 48, 50, 52, 55, , 46, 51, 51, 44, 46. Jawab: Untuk mempermudah, data diurutkan terlebih dahulu menjadi: 45, 50, 50, 64, 69, 70, 70, 70, 75, 80 sehingga modusnya adalah 70 50, 65, 65, 66, 68, 73, 73, 90 sehingga modusnya adalah 65 dan 73 35, 42, 48, 50, 52, 55, 60 data tersebut tidak memiliki modus 44, 44, 46, 46, 51, 51 data tersebut tidak memiliki modus 2) Modus data kelompok Mo = TB Mo + Keterangan: Mo : modus d 1 d 1 + d 2 TB Mo : tepi bawah kelas modus l : panjang kelas modus d 1 : selisih frekuensi kelas modus dengan frekuensi kelas sebelumnya l Modul Matematika SMA 221

228 d 2 : selisih frekuensi kelas modus dengan frekuensi kelas sesudahnya Contoh: Tentukan modus data berikut. Data F Mo = TB Mo + d 1 d 1 +d 2 = 73, = 73, = 73,5 + 0,27 = 73,77 l Kelas modus Modul Matematika SMA 222

229 Rangkuman Statistik deskriptif ditujukan untuk menceritakan data. Ada tiga ukuran pemusatan data yang biasa digunkan yaitu Mean, modus, median Rataan (Mean) data tunggal x = x 1 + x 2 + +x n n Rataan data kelompok n x i x = f 1x 1 + f 2 x 2 + +f n x n f 1 + f f n = n i=1 n i=1 f i f i x i Modus nilai yang paling sering muncul Modus data kelompok Mo = TB Mo + d 1 d 1 + d 2 l Median nilai tengah data setelah data diurutkan Median data tunggal Me = Xn+1 2 Median data kelompok Me = TB Me n F k f Me l Modul Matematika SMA 223

230 Tes Formatif Kerjakan dan diskusikan soal-soal berikut dengan anggota kelompok. 1. Nilai matematika Ani adalah sebagai berikut: 6, 8, 9, 7, 10. Nilai ratarata dari nilai matematika Ani tersebut adalah 2. Tentukan rata-rata data berikut! Nilai F Rata-rata nilai ulangan 30 siswa adalah 7. Jika ditambahkan nilai ulangan susulan 5 siswa diperoleh rata-rata 6,8. Maka rata-rata nilai 5 siswa tersebut adalah 4. Tentukan median dari data berikut: a) 3,5, 7, 4, 9, 8, 7, 9, 6 b) 4, 8, 8, 6, 9, 8, 7, Lembar Penilaian Nama :... Kelas :... No. Absen :... No. Tugas :... Judul Tugas :... No. Kriteria Rentang Nilai Nilai Prestasi Tes Formatif 1. Kebenaran jawaban Kelengkapan pengerjaan JUMLAH JUMLAH (jumlah X 100%) Jumlah Nilai Akhir Kesimpulan: Lulus/Tidak Lulus...,...Th... Modul Matematika SMA 224

231 7.2.5 Kegiatan Belajar Materi Pembelajaran a. Kuartil Konsep membagi dua menjadi dua bagian yang sama banyak (median) dapat diperluas menjadi berapa pun bagian yang sama banyak. Misalkan menjadi kuartil. Kuartil membagi data menjadi empat bagian sama banyak. Kuartil ada tiga yaitu kuartil bawah (Q 1 ), kuartil tengah (Q 2 ) atau median, dan kuartil atas (Q 3 ). Ingat bahwa kuartil bisa ditentukan jika data telah terurut. 1) Kuartil data tunggal Keterangan: Q i = X i n+1 4 Q i : kuartil ke-i x i : data ke-i n: banyaknya data Contoh Soal 6 : Dari data berikut: 3,5, 7, 4, 6, 8, 9, 8, 7, 9, 6, 5. Tentukan kuartil bawah dan kuartil atasnya. Penyelesaian : Data diurutkan terlebih dahulu: 3, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9 Kuartil bawah (Q 1 ) = X = X13 4 = X X 4 X 3 = = 5 Kuartil atas (Q 3 ) = X = X39 4 = X X 10 X 9 Modul Matematika SMA = = 8

232 2) Kuartil data kelompok Q i = TB Qi + i 4 n F k f Qi l Keterangan: Q i : kuartil ke-i Contoh Soal : TB Qi : tepi bawah kelas kuartil ke-i l : panjang kelas kuartil ke-i n : banyaknya data F k : frekuensi kumulatif sebelum kelas kuartil ke-i f Me : frekuensi kelas kuartil ke-i Tentukan kuartil bawah data berikut: Data F Letak kuartil atas (Q 3 ) adalah pada data ke = 30 yaitu pada kelas ke-4. Kelas kuartil atas Q 3 = TB Q3 + = 73, n F k f Q l. 3 b. Desil dan Presentil =73, = 73,5 + 2,1 = 75,6 Desil data kelompok ditentukan dengan rumus berikut. D m = b m + m 10 n F kksd Modul Matematika SMA 226 f Dm l

233 Keterangan : m = 1, 2, 3,, 9 b n f kksd f Dm l berikut : = tepi bawah kelas desil ke-m = ukuran data = frekuensi kumulatif kurang dari sebelum kelas desil ke m = frekuensi dari kelas desil ke-m = panjang kelas Sedangkan untuk rumus Presentil data kelompok adalah sebagai Keterangan : m = 1, 2, 3,, 99 b n f kksp f Pm l P m = p m + = tepi bawah kelas desil ke-m = ukuran data = frekuensi kumulatif kurang dari sebelum kelas presentil ke m = frekuensi dari kelas presentil ke-m = panjang kelas m 100 n F kksp f Pm l Modul Matematika SMA 227

234 Berat badan (kg) Total 50 Tentukan D 9 dan P 30 Penyelesaian : Berat badan (kg) Contoh Frekuensi Total 50 Ukuran data (n) = 50 Untuk D 1 1 Frekuensi Frekuensi kumulatif = 5, kelas D 1 adalah 40 49, maka b 1 = 39,5 ; f kksd = 0 ; f D1 = 5, l = 10 maka D m = b m + m 10 n F kksd f Dm l D m = 39, D m = 49,5 Untuk P = 15, kelas P 30 adalah 50 59, maka b 30 = 49,5 ; F kksp = 5 ; f D30 =14 ; l =10 maka : P m = p m + m 100 n F kksp f Pm Modul Matematika SMA 228 P m = 49, P m = 56,64 l

235 Rangkuman a. Kuartil Kuartil untuk data tunggal Q i = X i n+1 4 Kuartil untuk data kelompok Q i = TB Qi + i 4 n F k f Qi l b. Desil dan Presentil Rumus desil untuk data kelompok D m m = b m + 10 n F kksd l f Dm Rumus presentil untuk data kelompok P m = p m + m 100 n F kksp f Pm l Tes Formatif 1. Tentukan kuartil bawah dan atas dari data : 2,2,3,4,5,6,8,8 2. Dari data berikut: 3,5, 7, 4, 6, 8, 9, 8, 7, 9, 6, 5. Tentukan kuartil bawah dan kuartil atasnya. Modul Matematika SMA 229

236 Lembar Penilaian Nama :... Kelas :... No. Absen :... No. Kriteria Rentang Nilai Nilai Prestasi Tes Formatif 1. Kebenaran jawaban 2. Kelengkapan pengerjaan JUMLAH JUMLAH (jumlah X 100%) Jumlah Nilai Akhir Kesimpulan: Lulus/Tidak Lulus...,...Th... Modul Matematika SMA 230

237 7.2.6 Kegiatan Belajar Ukuran Penyebaran Data a. Jangkauan Jangkauan (J) = x maks x min ( untuk data tunggal) J = nilai tengah kls tertinggi nilai tengah kls terendah (untuk data kelompok) Jangkauan interkuartil (H) = Q 3 Q 1 Jangkauan semi interkuartil/ simpangan kuartil (Q d ) = 1 2 Q 3 Q1 Langkah (L) = 3 2 Q 3 Q 1 b. Simpangan rata-rata (SR) 1) Simpangan rata-rata data tunggal Keterangan: SR = 1 n SR : simpangan rata-rata n : banyaknya data x i : data ke-i x : rata-rata Contoh: n i=1 x i x Tentukan simpangan rata-rata data berikut: 9, 7, 5, 6, 8 Jawab: Data diurutkan terlebih dahulu menjadi 5, 6, 7, 8, 9. Kemudian ditentukan rata-ratanya: SR = 1 5 x = = = =6 5 Modul Matematika SMA 231

238 2) Simpangan rata-rata data kelompok Keterangan: SR : simpangan rata-rata x i : data ke-i f i : frekuensi data ke-i x : rata-rata Contoh: SR = n i=1 f i x i x n i=1 f i Tentukan simpangan rata-rata dari data pada table berikut: Nilai Jawab: Frekuensi Ditentukan terlebih dahulu rata-ratanya: Nilai (x i ) Frekuensi (f i ) f i. x i x x i x f i x i x ,4 3,4 2,4 1,4 0,4 0,6 1,6 2,6 6,8 9,6 7 3,2 6,6 9,6 10,4 Total ,2 Rataan hitung: x = n i=1 f i x i n i=1 f i Simpangan rata-rata: SR = = 53,2 40 = = 5,4 = 1,33 n i=1 f i x i x n i=1 f i Modul Matematika SMA 232

239 c. Varians (s 2 ) 1) varians data tunggal Keterangan: s 2 : varians s 2 = n : banyaknya data x i : data ke-i x : rata-rata 2) varians data kelompok Keterangan: s 2 : varians x i : data ke-i s 2 = f i : frekuensi data ke-i x : rata-rata d. Simpangan baku (s) n i=1 n i=1 1) Simpangan baku data tunggal x i x 2 n f i x i x 2 n i=1 f i s = n i=1 x i x 2 n Keterangan: s : simpangan baku n : banyaknya data x i : data ke-i x : rata-rata Contoh: Tentukan ragam dan simpangan baku dari data: 2,3,6,8,11 Jawab: s 2 = n x i x 2 i=1 n x = Modul Matematika SMA 233 = 6

240 = 1 5 (2 6)2 + (3 6) 2 + (6 6) 2 + (8 6) = = 54 5 s = 54 5 = Jadi, ragam 54 5 dan simpangan baku ) Simpangan baku data kelompok s 2 = n i=1 f i x i x 2 n i=1 f i Keterangan: s: simpangan baku x i : data ke-i f i : frekuensi data ke-i x : rata-rata Contoh: Tentukan ragam dan simpangan baku dari data berikut: Nilai Frekuensi Modul Matematika SMA 234

241 Nilai Jawab: Dengan menentukan rata-rata terlebih dahulu, Frekuen si (f i ) Titik tengah (x i ) f i. x i x i x (x i x) 2 f i (x i x) jumlah Diperoleh rata-rata x = Ragam s 2 = n f i x i x 2 i=1 n i=1 f i Simpangan baku n i=1 f i x i n i=1 f i = 5978 = = = 165 s = = Modul Matematika SMA 235

242 Rangkuman a. Jangkauan Jangkauan (J) = x maks x min ( untuk data tunggal) J = nilai tengah kls tertinggi nilai tengah kls terendah (untuk data kelompok) Jangkauan interkuartil (H) = Q 3 Q 1 b. Simpangan rata-rata SR = n i=1 f i x i x n i=1 f i e. Varians (s 2 ) varians data tunggal s 2 = n i=1 x i x 2 n varians data kelompok s 2 = n i=1 f i x i x 2 n i=1 f i f. Simpangan baku (s) Simpangan baku data tunggal s = n i=1 x i x 2 n Simpangan baku data kelompok s 2 = n i=1 f i x i x 2 n i=1 f i Modul Matematika SMA 236

243 Tes Formatif 1. Simpangan rataan hitung data 10, 10, 9, 8, 8, 7, 7, 6, 6, 5 adalah Simpangan rataan hitung data x 1, x 2,..., x 10 adalah 2,29. Jika setiap data ditambah satu maka simpangan rataan hitungnya adalah Jika jangkauan data 1, 2, 3, 3, 3, 4, 4,x sama dengan rataan hitungnya maka nilai x adalah Simpangan baku dari data 3, 6, 6, 2, 6, 2,1, 1, 5, 3 adalah Lembar Penilaian Nama :... Kelas :... No. Absen :... Judul Tugas :... No. Kriteria Rentang Nilai Nilai Prestasi Tes Formatif 1. Kebenaran jawaban Kelengkapan pengerjaan JUMLAH JUMLAH (jumlah X 100%) Jumlah Nilai Akhir Kesimpulan: Lulus/Tidak Lulus...,...Th... Modul Matematika SMA 237

244 7.3 EVALUASI Soal evaluasi 1. Data nilai tukar rupiah terhadap dolar AS dari tanggal 18 Februari 2008 sampai dengan 22 Februari 2008 ditunjukkan oleh table berikut: Tanggal 18/2 19/2 20/2 21/2 22/2 Kurs beli Rp Rp Rp Rp Rp Kurs jual Rp Rp Rp Rp Rp nyatakan dalam diagram garis! 2. Pelajar di desa karang anyar yang ikut kerja bakti desa pada hari libur sebagai berikut: Pendidikan SD SMP SMA/SMK Perguruan tinggi Jumlah penduduk Jumlah 10 orang 30 orang 21 orang 20 orang 81 orang nyatakan dalam diagram lingkaran! 3. Banyaknya lulusan SMA X dari tahun dinyatakan dalam table berikut: Tahun Jumlah lulusan nyatakan dalam diagram batang! 4. Diketahui data sebagai berikut Kelas Frekuensi Jumlah 85 Nyatakan dalam bentuk histogram! Modul Matematika SMA 238

245 Data berikut untuk soal nomor 5 8 Nilai ulangan harian matematika dari 14 orang siswa yang diambil secara acak adalah 7, 5, 8, 6, 7, 8, 7, 7, 7, 9, 5, 8, 6, 8 5. Nilai rata-rata ulangan harian matematika adalah. 6. Median dari data tersebut adalah. 7. Modus data diatas adalah. 8. Jangkauan data tersebut adalah. 9. Dari data : 5, 6, 9, 6, 5, 8, 6, 9, 6, 10 Dapat disimpulkan 10. Nilai rata-rata, median dan modus dari data 6, 4, 5, 8, 8, 4, 7, 6, 6 berturut-turut adalah. 11. Perhatikan gambar berikut! Berat badan siswa pada suatu kelas disajikan dengan histogram seperti pada gambar. Rataan berat badan tersebut adalah. 12. Modus dari data pada histogram diatas adalah. 13. Kuartil atas dari histogram tersebut adalah. 14. Desil ke-4 (D 4 ) dari data pada histogram diatas adalah. 15. Diketahui data : 3, 7, 5, a, 6, 4, 6, 9, 6, 4 Jika rata-rata data tersebut adalah 6 maka nilai a =. Modul Matematika SMA 239

246 16. rata-rata hitung untuk data pada histogram berikut adalah 48. dengan demikian nilai x =. Data berikut untuk soal nomor 17 18! Hasil suatu penelitian adalah sebagai berikut:5, 5, 14, 7, 10, 7, 12, 9, Kuartil bawah dari data diatas adalah. 18. Kuartil atas dari data diatas adalah. 19. Desil ke-8 (D 8 ) dari data berikut adalah. Nilai Frekuensi Data berikut untuk soal nomor 20 25! Tabel distribusi frekuensi Data Frekuensi Modul Matematika SMA 240

247 20. Nilai rata-rata dari tabel diatas adalah. 21. Modus dari tabel diatas adalah. 22. Median dari tabel diatas adalah. 23. Kuartil atas dari tabel diatas adalah. 24. Kuartil bawah dari tabel diatas adalah. 25. Simpangan kuartil dari tabel diatas adalah. 26. Tentukan simpangan baku dari data : 4, 8, 5, 9, 10, Nilai Frekuensi M 2 Jika nilai rata-rata dari data tersebut adalah 7, maka nilai M = 28. Suatu keluarga mempunyai 3 orang anak. anak termuda berumur x tahu. dua anak yang lain berumur x + 2 dan x + 7. bila rata-rata hitung umur mereka adalah 24 tahun, maka anak termuda berumur 29. Lima kelompok siswa masing-masing terdiri dari 10, 8, 12, 11, 9 orang menyumbang korban bencana alam. raa-rata sumbangan masing-masing kelompok adalah Rp 7.000,-, Rp 6.000,-, Rp ,00,-, Rp 8.000,-, dan Rp 5.000,-. rata-rata sumbangan tiap siswa seluruh kelompok adalah. 30. Nilai rata-rata ujian Sejarah dari 20 siswa adalah 7,8, jika digabung dengan 12 siswa maka nilai rata-rata menjadi 7,5. nilai rata-rata dari 12 siswa tersebut adalah. 31. Nilai rata-rata kimia dalam suatu kelas adalah 6,5. jika ditambah nilai siswa baru yang besarnya 9 maka rata-rata menjadi 6,6. banyak siswa semula dalam kelas tersebut adalah. 32. Perhatikan tabel berikut Nilai Ujian Frekuensi Siswa dinyatakan lulus ujian matematika jika nilai ujiannya lebih tinggi dari nilai rata-rata kelas. Dari tabel diaas jumlah siswa yang lulus adalah. Modul Matematika SMA 241

248 33. Nilai rata-rata sekelompok siswa yang berjumlah 50 siswa adalah 64. Jika seorang siswa yang mendapat nilai 88,5 tidak dimasukkan dalam perhitungan rata-rata nilai sekelompok siswa, maka nilai ratarata menjadi. 34. Pada ulangan matematika diketahui nilai rata-rata kelas adalah 58. jika rata-rata nilai matematika untuk siswa putra adalah 65, sedangkan untuk siswa putri rata-ratanya 54, maka perbandingan jumlah siswa putri dan putra pada kelas tersebut adalah Lembar Penilaian Nama :... Kelas :... No. Absen :... Judul Tugas :... No. Kriteria Penilaian Rentang Nilai Nilai Prestasi Tes Formatif Evaluasi 1. Benar cara maupun hasilnya Benar cara, hasil salah Benar hasil, cara salah 0 20 Jumlah Jumlah Jumlah x 60 % Jumlah x 40% Jumlah Nilai Akhir Kesimpulan: Lulus/Tidak Lulus...,...Th... Modul Matematika SMA 242

249 BAB 8 Modul Matematika SMA 243

250 8.1 PENDAHULUAN Deskripsi Modul ini berisi teori tentang lingkaran meliputi persamaan lingkaran serta garis singgung lingkaran Prasyarat Dalam melaksanakan modul ini diperlukan prasyarat telah menguasai kompetensi yang ada pada modul sebelumnya meliputi koordinat kartesius, aljabar, persamaan kuadrat, dan phitagoras Petunjuk Penggunaan Modul 1) Pelajari daftar isi serta kedudukan modul dengan cermat dan teliti.karena dalam skema modul akan tampak kedudukan modul yang sedang anda pelajari dengan modul-modul yang lain. 2) Kerjakan soal-soal dalam cek kemampuan untuk mengukur sampai sejauh mana pengetahuan dan kemampuan yang telah anda miliki. 3) Apabila dari soal cek kemampuan telah anda kerjakan mendapat score (nilai) 70, maka anda dapat langsung menuju Evaluasi untuk mengerjakan soal-soal tersebut. Tetapi bila hasil jawaban tidak mencapai nilai 70, maka anda harus mengikuti kegiatan pembelajaran dalam modul ini. 4) Perhatikan langkah-langkah dalam melakukan pekerjaan dengan benar untuk mempermudah dalam memahami proses pembelajaran. 5) Pahami setiap materi teori dasar yang akan menunjang dalam penugasan suatu pekerjaan dengan membaca secara teliti. Kemudian kerjakan soal-soal evaluasi sebagai sarana latihan. 6) Untuk menjawab test formatif usahakan memberi jawaban singkat, jelas dan kerjakan sesuai dengan kemampuan anda setelah mempelajari modul ini Tujuan Akhir Setelah melaksanakan seluruh kegiatan belajar dalam modul ini diharapkan anda dapat memiliki kemampuan : Modul Matematika SMA 244

251 1) Mampu menemukan konsep persamaan lingkaran yang berpusat di titik tertentu. 2) Mampu menemukan persamaan garis singgung lingkaran dalam berbagai bentuk. 3) Mampu menyelesaikan masalah aktual dalam menentukan persamaan garis singgung lingkaran menggunakan diskriminan. 4) Mampu mengaplikasikan konsep lingkaran dalam menyelesaikan masalah Kompetensi Kode Unit: Judul Unit : LINGKARAN (12 jam) Uraian Unit : Unit ini berlaku untuk pekerjaan menyusun serta menentukan persamaan lingkaran dan garis singgung lingkaran. Sub Kompetensi 1. Menyusun persamaan lingkaran yang memenuhi persyaratan yang ditentukan 2. Menentukan persamaan garis singgung pada lingkaran dalam berbagai situasi Indikator 1.1. Menemukan konsep lingkaran yang berpusat di titik (0,0) dan (a,b) melalui pemecahan masalah otentik Menentukan pusat dan jari-jari lingkaran yang persamaannya diketahui Menentukan persamaan lingkaran yang memenuhi kriteria tertentu Menentukan posisi dan jarak suatu titik terhadap lingkaran 2.1 Melukis garis yang menyinggung lingkaran dan menentukan sifat-sifatnya. 2.2 Merumuskan persamaan garis singgung yang melalui suatu titik pada lingkaran. 2.3 Menentukan persamaan garis singgung yang melalui titik di luar lingkaran. 2.4 Merumuskan persamaan garis singgung yang gradiennya diketahui. Modul Matematika SMA 245

252 Acuan Penilaian 1. Unit kompetensi ini dapat diujikan secara langsung kepada peserta uji. 2. Aspek-aspek kritikal yang dinilai: Memahami berbagai konsep tentang persamaan lingkaran dan garis singgung nya. Mampu mencari persamaan dan garis singgung lingkaran dari berbagai pusat lingkaran yang diketahui. 3. Kompetensi yang harus dikuasai sebelumnya meliputi koordinat kartesius, aljabar, persamaan kuadrat, dan phitagoras. 4. Pengetahuan pendukung yang dibutuhkan: Mengenali elemen-elemen sebuah lingkaran (segmen, busur, garis singgung, dsb) 5. Menunjukkan pemahaman tentang koordinat kartesius, aljabar, persamaan kuadrat, dan phitagoras. 6. Sikap yang dituntut: Bekerja dengan mandiri dan kreatif Bekerja dengan ketelitian dan ketepatan Memunculkan rasa ingin tahu dan bekerja keras Efisien dan optimal dalam kegiatan pembelajaran Menghargai mutu hasil pada setiap langkah kerjanya Bersikap positif dan terbuka terhadap penilaian hasil pekerjaan oleh atasan Modul Matematika SMA 246

253 8.1.6 Cek Kemampuan Berilah tanda ( ), pada kolom Jawaban : Ya atau Tidak pada jawaban yang anda pilih No. Pertanyaan Jawaban Ya Tidak 1. Apakah anda mengetahui rumus persamaan lingkaran yang berpusat di o (0,0)? 2. Apakah anda dapat menyebutkan persamaan lingkaran yang berpusat (a,b)? 3. Apakah anda mengetahui hubungan garis dengan lingkaran? 4. Apakah anda dapat menentukan persamaan garis singgung lingkaran melalui suatu titik pada lingkaran? 5. Apakah anda dapat menentukan persamaan garis singgung dengan gradien m? 6. Apakah anda dapat menetukan persamaan garis singgung yang melalui titik P (x 1,y 1 ) diluar lingkaran? 7 Apakah anda mampu menyelesaikan masalah nyata dan mengidentifikasinya dalam model matematika berupa persamaan lingkaran? Skore ( Nilai )..., Modul Matematika SMA 247

254 PETA KONSEP Lingkaran Persamaan lingkaran Tempat kedudukan titik pada lingkaran Persamaan garis singgung lingkaran Pusat di (0,0) jari-jari r Pusat di Pusat di Melalui (0,0) jari-jari (a,b) jari- sebuah titik r jari r di luar lingkaran Pusat di (a,b) jari-jari Gradien m Gradien m r Bentuk Modul Matematika SMA 248 umum Melalui (x,y) Melalui (x,y) pada pada lingkaran lingkaran

255 8.2 PEMBAHASAN Kegiatan Belajar Menemukan Konsep Persamaan Lingkaran Lingkaran adalah sebuah bangun datar yang sering digunakan sebagai alat bantu dalam menjelaskan ilmu pengetahuan lain maupun dalam berbagai penyelesaian masalah kehidupan seharihari. Pada bab ini akan dibahas tentang lingkaran dan beberapa hal dasar yang pada akhirnya membantu kita untuk menemukan konsep tentang lingkaran itu sendiri. Masalah 1 Gunung Sinabung di Kabupaten Karo, Sumatera Utara kembali meletus sekitar pukul WIB hari Selasa tanggal 17 September Material yang dikeluarkan lebih banyak dibanding letusan pertama dua hari lalu. Akibat letusan ini banyak warga yang mengungsi. Pemerintah setempat pun memberikan peringatan agar masyarakat yang berada pada radius 3 km dari puncak gunung Sinabung harus segera mengungsi dan daerah tersebut harus bebas dari aktivitas dan dikosongkan untuk sementara. Bantulah pemerintah kabupaten Karo untuk menentukan daerah mana saja masyarakatnya harus mengungsi. (Petunjuk: Gunakan Peta Kabupaten Karo) Modul Matematika SMA 249

256 Alternatif Penyelesaian Gb 1: peta kabupaten kairo Pertama kali yang dilakukan adalah membuat radius (jari-jari) sepanjang 3 km dari titik pusatnya yaitu puncak Gunung Sinabung. Setelah itu tariklah secara melingkar dan terbentuklah sebuah lingkaran. Berdasarkan daerah lingkaran yang dibuat tersebut ternyata terdapat beberapa desa yang penduduknya harus mengungsi karena berada pada daerah radius 3 km yaitu Desa Simacem, Bekerah, Sigaranggarang, dan Kutatonggal di Kecamatan Naman Teran, serta Desa Sukameriah di Kecamatan Payung. Definisi 1 Lingkaran adalah tempat kedudukan titik-titik pada suatu bidang yang berjarak sama terhadap sebuah titik tertentu. Masalah 2 Misalkan Gambar 9.1 pada Masalah 9.1 dipindahkan ke bidang koordinat cartesius dan gunung Sinabung berpusat di P(0, 0) dan jari-jarinya r = 3. Misalkan salah satu desa yaitu Sigaranggarang berada pada titik S(x, y) pada lingkaran tersebut, tentukanlah persamaan lingkaran tersebut! Modul Matematika SMA 250

257 Alternatif Penyelesaian: jarak titik S(x, y) ke titik P(0, 0) dapat ditentukan dengan rumus: PS = (x a) 2 + (y b) 2 Gb.2: lingkaran pusat P(0,0) dan jarijari=3 Diketahui bahwa jari-jarinya adalah r dan PS = r, maka r = (x 0) 2 + (y 0) 2 (x 0) 2 + (y 0) 2 = r Kuadratkan kedua ruas sehingga diperoleh (x 0)2 + (y 0)2 = r2 x2 + y2 = r2 (x 0) 2 + (y 0) 2 = r 2 x 2 + y 2 = r 2 Diketahui bahwa r = 3, maka diperoleh Sifat 1 Persamaan lingkaran yang berpusat di P(0, 0) dan memiliki jari-jari r adalah x2 + y2 = r2 Atau dengan kata lain Jika L adalah himpunan titik-titik yang berjarak r terhadap titik P(0, 0) maka L {(x, y) x2 + y2 = r2} Contoh. 1 Tentukan persamaan lingkaran yang berpusat di titik P(0, 0) dengan jari-jari sebagai berikut: a. 3 b. 4 c. 5 d. 6 Alternatif Penyelesaian a. Persamaan lingkaran yang berpusat di titik P(0, 0) dengan panjang jari-jari 3 adalah x 2 + y 2 = 3 2 x 2 + y 2 = 9 Modul Matematika SMA 251

258 b. Persamaan lingkaran yang berpusat di titik P(0, 0) dengan panjang jari-jari 4 adalah x 2 + y 2 = 4 2 x 2 + y 2 = 16 c. Persamaan lingkaran yang berpusat di titik P(0, 0) dengan panjang jari-jari 5 adalah x 2 + y 2 = 5 2 x 2 + y 2 = 25 d. Persamaan lingkaran yang berpusat di titik P(0, 0) dengan panjang jari-jari 6 adalah x 2 + y 2 = 6 2 x 2 + y 2 = 36 Masalah 3 Misalkan gambar pada masalah 1 dipindahkan ke bidang koordinat Kartesius dan gunung Sinabung berpusat di P(a, b) dan jari-jarinya r = 3 Misalkan salah satu desa yaitu Sukameriah berada pada titik S(x, y), tentukanlah persamaan lingkaran tersebut! Alternatif Penyelesaian: Jarak titik S(x, y) ke titik P(a, b) adalah PS = (x a) 2 + (y b) 2 Diketahui bahwa jari-jarinya adalah r dan PS = r, maka r = (x 0) 2 + (y 0) 2 (x 0) 2 + (y 0) 2 = r Dikuadratkan kedua ruas maka diperoleh (x a) 2 + (y b) 2 = r 2 Gb.3: lingkaran pusat P(a,b) dilalui titik S(x,y) Berdasarkan informasi diketahui bahwa r = 3, maka diperoleh (x a) 2 + (y b) 2 = 32 (x a) 2 + (y b) 2 = 9 Sifat 2 Persamaan lingkaran yang berpusat di P(a, b) dan memiliki jari-jari r adalah (x a)2 + (y b)2 = r2 Atau dengan kata lain Jika L adalah himpunan titik-titik yang berjarak r terhadap titik P(a, b) maka L {(x, y) (x a)2 + (y b)2 = r2} Modul Matematika SMA 252

259 Contoh 2 Tentukan persamaan lingkaran yang berpusat di (2, 2) dan berjari-jari r = 2. Alternatif penyelesaian (x a) 2 + (y b) 2 = r 2 a = 2; b = 2; c = 2 (x 2) 2 + (y 2) 2 = 2 2 (x 2) 2 + (y 2) 2 = 4 Jadi persamaan lingkaran yang berpusat di (2, 2) dan berjari-jari r = 2 adalah (x 2)2 + (y 2)2 = 4 Gb.4: lingkaran pusat (2,2) dan r=2 Contoh 3 Tentukan titik pusat dan jari-jari lingkaran berikut! a. (x 2) 2 + (y + 2) 2 = 4 b. (x + 2) 2 + (y + 2) 2 = 9 c. (x + 2) 2 + (y 2) 2 = 16 d. (x + 2) 2 + y 2 = 16 Alternatif Penyelesaian: a. (x 2) 2 + (y + 2) 2 = 4 (x 2) 2 + (y + 2) 2 = 2 2 a = 2; b = 2; r = 2 lingkaran tersebut berpusat di titik (2, 2) dan berjari-jari 2 b. (x + 2) 2 + (y + 2) 2 = 9 (x + 2) 2 + (y + 2) 2 = 3 2 a = 2; b = 2; r = 3 Lingkaran tersebut berpusat di titik ( 2, 2) dan berjari-jari 3 Modul Matematika SMA 253

260 c. (x + 2)2 + (y 2)2 = 16 (x + 2)2 + (y 2)2 = 42 a = 2; b = 2; r = 4 Lingkaran tersebut berpusat di titik ( 2, 2) dan berjari-jari 4 d. (x + 2)2 + (y 2)2 = 16 (x + 2)2 + (y 2)2 = 42 a = 2; b = 2; r = 4 Lingkaran tersebut berpusat di titik ( 2, 2) dan berjari-jari Kesimpulan 1. Lingkaran adalah tempat kedudukan titik-titik pada bidang yang berjarak sama terhadap titik tertentu. 2. Persamaan lingkaran adalah sebagai berikut a. Persamaan lingkaran yang berpusat di P(0, 0) dan memiliki jari-jari r adalah x2 + y2 + r2 b. Persamaan lingkaran yang berpusat di P(a, b) dan memiliki jari-jari r adalah (x a)2 + (y b)2 = r Tes Formatif Dari persamaan berikut, manakah yang merupakan persamaan lingkaran? a. x + y 9 = 0 b. x 2 + y 2 2x + 5y + 4xy - 4 = 0 c. x 2 + 9y 2 + 6x - 8y = 25 d. x 2 + y 2-6x + 5y 9 = 0 Modul Matematika SMA 254

261 Lembar Penilaian Nama : No. Absen : Judul Tugas : No. Kriteria Penilaian Rentang Nilai Nilai Prestasi 1. Benar cara maupun hasilnya Benar cara, hasil salah Benar hasil, cara salah 0-20 Jumlah Jumlah x 100% Jumlah Nilai Akhir Kesimpulan : Lulus / Tidak Lulus.,..20 Modul Matematika SMA 255

262 8.2.2 Kegiatan Belajar Bentuk Umum Persamaan Lingkaran Pada pembahasan sebelumnya telah dibahas tentang konsep persamaan lingkaran yaitu : a. Lingkaran yang berpusat di P(0, 0) dan berjari-jari r persamaannya adalah x 2 + y 2 = r 2 b. Lingkaran yang berpusat di P(a, b) dan berjari-jari r persamaannya adalah (x a) 2 + (y b) 2 = r 2 Jika diperhatikan kedua bentuk persamaan lingkaran tersebut, maka dapat langsung diketahui titik pusat lingkaran dan panjang jari-jarinya. Persamaan tersebut dinamakan bentuk baku persamaan lingkaran. Kegiatan 1 Jabarkanlah persamaan (x a) 2 + (y b) 2 = r 2. Alternatif Penyelesaian Untuk menyelesaikan persoalan di atas, maka kamu harus mengingat kembali tentang operasi bentuk aljabar yang telah kamu pelajari sebelumnya. Contoh 1 Berdasarkan kegiatan 2.1, diperoleh persamaan a 2 + b 2 r 2 = C dengan a = A; b = B, tentukanlah nilai r. Alternatif peyelesaian Karena a 2 + b 2 r 2 = C dan a = A; b = B, maka r 2 = A 2 + B 2 C 2 r = ± A 2 + B 2 C Modul Matematika SMA 256

263 Contoh 2 Berdasarkan kegiatan 2.1 diperoleh persamaan x 2 + y 2 + 2Ax + 2By + C = 0, ubahlah persamaan tersebut ke dalam persamaan bentuk baku persamaan lingkaran! Alternatif Penyelesaian x 2 + y 2 + 2Ax + 2By + C = 0 x 2 + y 2 + 2Ax + 2By = C (x 2 + 2Ax + A 2 ) A 2 + (y 2 + 2By + B 2 ) B 2 = C (x + A) 2 + (y + B) 2 = A 2 + B 2 = C (x + A) 2 + (y + B) 2 = A 2 + B 2 C 2 Berdasarkan penyelesaian Latihan 2 diperoleh bahwa persamaan (x + A) 2 + (y + B) 2 = A 2 + B 2 C 2 adalah persamaan lingkaran yang berpusat di titik P( A, B) dan berjari-jari r = A 2 + B 2 C Sifat 3 Bentuk umum persamaan lingkaran adalah x 2 + y 2 + 2Ax + 2By + C = 0 dengan titik pusat P( A, B) dan berjari-jari dengan r = A 2 + B 2 C dengan A, B, C bilangan real dan A 2 + B 2 C Pertanyaan Kritis 1. Berdasarkan Fakta 1 diperoleh bahwa r = A 2 + B 2 C. Bagaimana jika A 2 + B 2 = 0? Apa yang kamu peroleh? 2. Mengapa C 2 A 2 + B 2 Modul Matematika SMA 257

264 Contoh 3 Tentukan titik pusat dan jari-jari lingkaran yang memiliki persamaan x 2 + y x 8y + 25 = 0, lalu gambarkan lingkaran tersebut dalam bidang Kartesius! Alternatif Penyelesaian: x 2 + y x 8y + 25 = 0 A = 5; B = 4, dan C = 25 Titik Pusat ( 5, 4) Jari-jari lingkaran r = A 2 + B 2 C r = ( 5) Gb.5: Lingkaran x 2 + y x 8y + 25 = Rangkuman Bentuk umum persamaan lingkaran adalah x 2 + y 2 + 2Ax + 2By + C = 0 dengan titik pusat P( A, B) dan berjari-jari dengan r = A 2 + B 2 C dengan A, B, C bilangan real dan A 2 + B 2 C Modul Matematika SMA 258

265 Tes Formatif 1. Misalkan pada bidang koordinat Kartesius desa Sigaranggarang terletak pada titik (3, -1), desa sukameriah terletak pada titik (5, 3), dan desa Kutatonggal terletak pada titik (6, 2) yang terkena dalam radius daerah yang penduduknya harus mengungsi. Tentukanlah letak gunung Sinabung (titik pusat) dan radiusnya! Lembar Penilaian Nama : No. Absen : Judul Tugas : No. Kriteria Penilaian Rentang Nilai Nilai Prestasi 1. Benar cara maupun hasilnya Benar cara, hasil salah Benar hasil, cara salah 0-20 Jumlah Jumlah x 100% Jumlah Nilai Akhir Kesimpulan : Lulus / Tidak Lulus.,..20 Modul Matematika SMA 259

266 8.2.3 Kegiatan Belajar Materi 1. Pengertian Lingkaran Dari gambar diatas, titik O adalah pusat lingkaran. Titik A, B, C, D terletak pada lingkaran, maka OA = OB = OC = OD adalah jari-jari lingkaran = r. 2. Persamaan Lingkaran yang Berpusat di P (0,0) dan A (a,b) a. Persamaan Lingkaran Berpusat di Titik P(0,0) Jika titik S berada pada lingkaran yang berpusat di P (0,0) maka berlaku PS adalah jari-jari lingkaran, dengan Modul Matematika SMA 260

267 menggunakan rumus jarak dari titik P(0,0) ke titik S(x,y) diperoleh : PS = r = x 0 ² + (y 0)² r² = x 0 ² + (y 0)² r² = x² + y² Jadi persamaan lingkaran yang berpusat di P(0,0) dan berjari-jari r adalah : x 2 + y 2 = r 2 Untuk lebih memahami tentang cara menentukan persamaan lingkaran berpusat di P(0, 0), pelajarilah contoh soal berikut. Contoh soal : Tentukan persamaan lingkaran, jika diketahui : 1. pusatnya O(0, 0) dan berjari-jari12 2. pusatnya O(0, 0) dan melalui (7, 24) Penyelesaian : 1. Lingkaran yang berpusat di O(0,0) dan r = 12 maka persamaanya : x² + y² = r² x 2 + y 2 = 12 2 x 2 + y 2 = 144 Jadi persamaan lingkaran yang berpusat di O(0,0) dan r = 12 adalah x 2 + y 2 = Lingkaran yang berpusat di O(0,0) dan melalui (7, 24) maka jari-jari r = x 2 + y 2 = = = 625 = 25 jadi persamaan lingkaran Modul Matematika SMA 261

268 yang berpusat di titik O(0,0) melalui (7, 24) adalah x 2 + y 2 = 25 b. Persamaan Lingkaran Berpusat di Titik A(a,b) Jika titik A(a, b) adalah pusat lingkaran dan titik B(x, y) terletak pada lingkaran, maka jari-jari lingkaran r sama dengan jarak dari A ke B. r = jarak A ke B r² = (AB)² = x B x A ² + (y B ya)² = x a ² + (y b)² Jadi, persamaan lingkaran yang berpusat di (a, b) dan berjarijari r adalah: x a ² + y b ² = r² Untuk memahami tentang persamaan lingkaran berpusat di titik A(a, b), perhatikan contoh soal berikut. Modul Matematika SMA 262

269 Contoh soal : Tentukan persamaan lingkaran, jika diketahui pusatnya (- 2,3) dan berjari-jari 5 Penyelesaian : Pusat (-2, 3), r =5 Persamaan lingkaran : x 2 ² + y 3 ² = 5² x + 2 ² + y 3 ² = 25 x² + 4x y² 6y + 9 = 25 x² + y² + 4x 6y + 13 = 25 x² + y² + 4x 6y 12 = Menentukan Pusat dan Jari-jari Lingkaran yang Persamaanya diketahui Berdasarkan persamaan lingkaran dengan pusat (a, b) dan berjari-jari r adalah: x a 2 + y b 2 = r 2 x² 2ax + a² + y² 2by + b² = r² x² + y² 2ax 2by + a² + b² = r² x² + y² 2ax 2by + a² + b² r² = 0 Jika 2a = 2A, 2b = 2B dan a² + b² = C, maka diperoleh bentuk umum persamaan lingkaran : x² y² + 2Ax + 2By + C = 0, dimana pusatnya ( A, B) dan jari-jari lingkaran r = a² + b² C² atau r = A² + B² C Modul Matematika SMA 263

270 Untuk lebih memahaminya, pelajarilah contoh berikut : Contoh soal 1 Tentukan koordinat pusat dan panjang jari-jari lingkaran apabila diketahui persamaan lingkaran sebagai berikut. x 2 + y 2 2x 6y 15 = 0 Penyelesaian : x² + y² 2x 6y 15 = 0 x² + y² + 2Ax + 2By + C = 0 Maka diperoleh : 2A = 2 2B = 6 C = 15 A = 1 B = 3 r = A² + B² C = 1 ² + 3 ² ( 15) = = 25 = 5 Jadi,pusat lingkaran (1, 3) dan jari-jari lingkaran = 5 Contoh soal 2 Tentukan persamaan lingkaran yang melalui titik (3, -1), (5, 3), dan (6, 2) kemudian tentukan pula pusat lingkaran dan jari-jari lingkaran. Penyelesaian : Persamaan lingkaran adalah x² + y² + ax + by + c = 0 Modul Matematika SMA 264

271 Melalui (3,-1) maka : x² + y² + ax + by + c = 0 3² + 1 ² + a. 3 + b. 1 + c = a b + c = 0 3a b + c + 10 = 0 (1) Melalui (5, 3), maka : x 2 + y 2 + ax + by + c = 0 5² + 3² + a. 5 + b. 3 + c = a + 3b + c = 0 5a + 3b + c + 34 = 0 (2) Melalui (6, 2), maka : x 2 + y 2 + ax + by + c = 0 6² + 2² + a. 6 + b. 2 + c = a + 2b + c = 0 6a + 2b + c + 40 = 0 (3) Dari persamaan (1) dan (2) : 3a b + c + 10 = 0 5a + 3b + c + 34 = 0 2a + 4b = 0 a + 2b + 12 = 0 (4) Dari persamaan (2) dan (3) : Modul Matematika SMA 265

272 5a + 3b + c + 34 = 0 6a + 2b + c + 40 = 0 a + b 6 = 0 a b + 6 = 0 (5) Dari persamaan (4) dan (5) : a + 2b + 12 = 0 a b + 6 = 0 3b + 6 = 0 b = 2 b = - 2 disubtitusikan ke persamaan (5) : a b + 6 = 0 a = 0 a + 8 = 0 a = 8 a = - 8,b = - 2 disubtitusikan ke persamaan (1) : 3a b + c + 10 = 0 3( 8) ( 2) + c + 10 = c + 10 = 0 c = 12 Jadi persamaan lingkaran adalah : x² + y² + ax + by + c = 0 Modul Matematika SMA 266

273 x² + y² 8x 2y + 12 = 0 Maka diperoleh : 2A = 8 2B = 2 C = 12 A = 4 B = 1 r = A² + B² C = 4 ² + 1 ² 12 = = 5 Jadi, pusat A, B = (4,1) dan jari-jari r = Rangkuman 1. Lingkaran adalah tempat kedudukan atau himpunan titik - titik yang berjarak sama terhadap suatu titik tertentu. 2. Persamaan lingkaran yang berpusat di P(0,0) dan berjari-jari r adalah x 2 + y 2 = r 2 3. Persamaan lingkaran yang berpusat di (a, b) dan berjari-jari r adalah x a 2 + y b 2 = r 2 4. Bentuk umum persamaan lingkaran x² y² + 2Ax + 2By + C = 0 dimana pusatnya ( A, B) dan jari-jari lingkaran r = a 2 + b 2 C 2 atau r = A 2 + B 2 C Modul Matematika SMA 267

274 Test Formatif Kerjakan soal-soal dibawah ini secara tepat! 1. Tentukan persamaan lingkaran yang berpusat di titik P(0, 0) dengan jari-jari sebagai berikut: a. 3 b Tentukan persamaan lingkaran, jika diketahui pusatnya (4, 5) dan menyinggung sumbu X. 3. Tentukan persamaan lingkaran, jika diketahui pusat (5, 2) dan melalui (-4, 1). 4. Tentukan koordinat pusat dan panjang jari-jari lingkaran apabila diketahui persamaan lingkaran sebagai berikut. 2x 2 + 2y 2 4x + 3y = Lembar Penilaian Nama : No. Absen : Judul Tugas : No. Kriteria Penilaian Rentang Nilai Nilai Prestasi 1. Benar cara maupun hasilnya Benar cara, hasil salah Benar hasil, cara salah 0-20 Jumlah Jumlah x 100% Jumlah Nilai Akhir Kesimpulan : Lulus / Tidak Lulus.,..20 Modul Matematika SMA 268

275 8.2.4 Kegiatan Belajar Kedudukan Titik dan Garis Terhadap Lingkaran a. Kedudukan Titik A x, y Terhadap Lingkaran x 2 + y 2 = r 2 Berdasarkan gambar diatas persamaan lingkaran adalah x 2 + y 2 = 25 Untuk titik A (2,-1) jika disubtitusikan dalam persamaan lingkaran x 2 + y 2 = 25, maka diperoleh 2² + 1 ² = = 5 5 < 25 Artinya titik (2,-1) terletak didalam lingkaran x 2 + y 2 = 25 Untuk titik B (5,0) jika disubtitusikan dalam persamaan lingkaran x 2 + y 2 = 25, maka diperoleh 5² + 0² = = = 25 Artinya titik (5,0) terletak pada lingkaran x 2 + y 2 = 25 Untuk titik C (5,4) jika disubtitusikan dalam persamaan lingkaran x 2 + y 2 = 25, maka diperoleh 5² + 4² = = > 25 Artinya titik (2,-1) terletak diluar lingkaran x 2 + y 2 = 25 sehingga dapat disimpulkan bahwa : 1. Titik P x, y terletak di dalam lingkaran, jika berlaku x 2 + y 2 < r 2 2. Titik P x, y terletak pada lingkaran, jika berlaku x² + y² = r² Modul Matematika SMA Titik P x, y terletak diluar lingkaran, jika berlaku x 2 + y 2 > r 2

276 Untuk lebih jelasnya perhatikan contoh soal berikut : Contoh soal Tentukan posisi titik-titik berikut terhadap lingkaran x² + y² = r² 1. A 3,1 2. B 3,4 Penyelesaian : 1. A 3,1 x² + y² = 3² + 1² = = 10 < 25 Jadi A(3, 1) terletak didalam lingkaran x² + y² = r² 2. B 3,4 x 2 + y 2 = = = 25 = 25 Jadi titik B(-3, 4) terletak pada lingkaran x² + y² = r² b. Kedudukan Titik A(x, y) Terhadap Lingkaran x a ² + y b ² = r² 1. Titik A(x, y) terletak didalam lingkaran, jika berlaku x a ² + y b ² < r² 2. Titik A x, y terletak pada lingkaran, jika berlaku x a 2 + y b 2 = r 3. Titik A(x, y) terletak di luar lingkaran, jika berlaku x a ² + y b ² > r Untuk lebih jelasnya, perhatikan contoh soal berikut : Contoh soal : Tentukan posisi titik-titk berikut terhadap lingkaran x 2 + y 2 6x + 8y = 0 1. A(0,0) 2. B(2,1) Penyelesaian : 1. A 0,0 x 2 + y 2 6x + 8y = = = 0 Jadi titik A 0,0 terletak pada lingkaran x 2 + y 2 6x + 8y = 0 Modul Matematika SMA 270

277 2. B 2,1 x 2 + y 2 6x + 8y = 2² + 1² = = 1 > 0 Jadi titik B 2,1 terletak pada lingkaran x 2 + y 2 6x + 8y = 0 c. Posisi Garis Terhadap Lingkaran Y B(x 2, y 2 ) Y A(x a, y b ) Y A(x 1, y 1 ) g 0 X X 0 0 (i) (ii) (iii) X Misalkan g garis dengan persamaan y = ax + b dan L lingkaran dengan persamaan x 2 + y 2 = r 2 Kedudukan garis g terhadap sebuah lingkaran ditentukan oleh nilai diskriminan D = 1 + a² r² b², yaitu: Untuk lebih jelasnya perhatikan contoh soal berikut : Contoh soal : Diberikan sebuah garis 2x + y = 2 dan lingkaran x 2 + y 2 = 9, selesaikanlah sistem persamaan linear-kuadrat tersebut! Kemudian tentukan nilai diskriminannya. Modul Matematika SMA 271

278 Penyelesaian : 2x + y = 2 y = 2 2x (1) x² + y² = 5 (2) Subtitusikan persamaan 1 ke 2 x x 2 = 5 x x + 4x 2 = 5 5x 2 8x 1 = 0 Sehingga selesaian dari sistem persamaan linear-kuadrat tersebut adalah 5x 2 8x 1 = 0, dengan nilai diskriminan D = b² 4ac = 8 ² = = 84 Modul Matematika SMA 272

279 Rangkuman 1. Kedudukan titik A x, y Terhadap Lingkaran x 2 + y 2 = r 2 a. Titik P x, y terletak di dalam lingkaran, jika x 2 + y 2 < r 2 b. Titik P x, y terletak pada lingkaran, jika berlaku x² + y² = r² c. Titik P x, y terletak diluar lingkaran, jika berlaku x 2 + y 2 > r 2 2. Kedudukan titik A x, y Terhadap lingkaran x a 2 + y b 2 = r 2 a. Titik A(x, y) terletak didalam lingkaran, jika berlaku x a ² + y b ² < r² b. Titik A x, y terletak pada lingkaran, jika berlaku x a 2 + y b 2 = r c. Titik A(x, y) terletak di luar lingkaran, jika berlaku x a ² + y b ² > r 3. Kedudukan garis g terhadap sebuah lingkaran ditentukan oleh nilai diskriminan D = 1 + a² r² b², yaitu: a. D > 0 garis g memotong lingkaran di dua titik yang berlainan b. D = 0 garis g menyinggung lingkaran c. D < 0 garis g tidak memotong maupun menyinggung lingkaran Modul Matematika SMA 273

280 Test Formatif Kerjakan soal-soal dibawah ini secara tepat! 1. Tentukan posisi titik C 5, 6 terhadap lingkaran x 2 + y 2 = r 2 2. Tentukan posisi titik C(3, 2) terhadap lingkaran x 2 + y 2 6x + 8y = 0 3. Diberikan sebuah garis x + y = 3 dan lingkaran x 2 + y 2 = 5, selesaikan-lah sistem persamaan linear-kuadrat tersebut! Kemudian tentukan nilai diskriminannya Lembar Penilaian Nama : No. Absen : Judul Tugas : No. Kriteria Penilaian Rentang Nilai Nilai Prestasi 1. Benar cara maupun hasilnya Benar cara, hasil salah Benar hasil, cara salah 0-20 Jumlah Jumlah x 100% Jumlah Nilai Akhir Kesimpulan : Lulus / Tidak Lulus.,..20 Modul Matematika SMA 274

281 8.2.5 Kegiatan Belajar Persamaan Garis Singgung 1. Persamaan Garis Singgung melalui Suatu Titik pada Lingkaran berpusat P(0, 0) dan berjari-jari r Y P(0,0 X r A(x 1, y 1 ) Misalnya titik A(x 1, y 1 ) terletak pada sebuah lingkaran yang berpusat di O(0, 0) dan berjari-jari r yaitu, x 2 + y 2 = r 2. Asumsikan x 1 0 dan y 1 0 Gradien garis PA adalah m op = y1 x1, garis singgung g tegak lurus dengan garis PA. Gradien garis g adalah m g = 1 m op = 1 y 1 x1 singgung g adalah : y y 1 = m g x x 1 y y 1 = x 1 y 1 x x 1 y y 1 y 1 = x 1 x x 1 yy 1 y 1 2 = x 1 x + x 1 2 yy 1 + x 1 x = x y 1 2 g = x 1 y 1. Akibatnya, persamaan garis Karena A(x 1, y 1 ) terletak pada lingkaran x 2 + y 2 = r 2, maka diperoleh x 1 2 y 1 2 r. Jadi, persamaan garis singgung lingkaran yang berpusat di titik P(0, 0) dan berjari-jari r yang melalui titik A(x 1, y 1 ) pada lingkaran x 2 + y 2 = r adalah x 1 x + y 1 y = r 2 Modul Matematika SMA 275

282 Untuk lebih jelasnya perhatikan contoh soal berikut : Contoh soal Tentukan persamaan garis singgung lingkaran yang melalui titik (2, 0) dengan pusat P(0,0) dan berjari-jari 3 Penyelesaian : Persamaan lingkaran dengan pusat (0, 0) dan berjari-jari 3 adalah x 2 + y 2 = 9 Persamaan garis singgung lingkaran x 2 + y 2 = 9 yang melalui titik (2, 0) adalah x 1 x + y 1 y = r 2 x 1 x + y 1 y = 9 x 2 + y 0 = 9 2x 9 = 0 Jadi persamaan garis singgung lingkaran dengan pusat (0, 0) dan berjari-jari 3 adalah 2x 9 = 0 2. Persamaan Garis Singgung melalui Suatu Titik pada Lingkaran berpusat P (a, b) dan berjari-jari r Misalkan titik A(x 1, y 1 ) terletak pada lingkaran x a ² + y b ² = r². Gradient garis PA adalah m PA = y 1 b x 1 a Garis singgung g tegak lurus garis PA, sehingga gradien garis singgung g adalah m g = 1 = x 1 a m PA y 1 b Persamaan garis singgung g adalah Modul Matematika SMA 276

283 y y 1 m g x x 1 y y 1 = x 1 a y 1 b x x 1 y y 1 y 1 b = x 1 a x x 1 yy 1 yb y 1 y 1 + y 1 b = x 1 x x 1 x 1 ax + ax 1 yy 1 yb y 1 y 1 + y 1 b = x 1 x + x 1 x 1 + xa x 1 a x 1 x xa + x 1 a + yy 1 yb + y 1 b = x y 1 2 Karena A(x 1, y 1 ) terletak pada lingkaran x a ² + y b ² = r², maka diperoleh : (x 1 a)² + (y 1 b) 2 = r 2 x 1 2 2x 1 a + a 2 + y 1 2 2y 1 b + b 2 = r 2 x y 1 2 = r 2 + 2x 1 a a 2 + 2y 1 b b 2 Subtitusikan x y 1 2 = r 2 + 2x 1 a a 2 + 2y 1 b b 2 ke persamaan garis singgung di atas diperoleh, x 1 x xa + x 1 a + yy 1 yb + y 1 b = r 2 + 2x 1 a a 2 + 2y 1 b b 2 x 1 x xa + x 1 a + a 2 + yy 1 yb + y 1 b + b2 = r2 x a x 1 a + y b y 1 b = r 2 Jadi persamaan garis singgung lingkaran yang berpusat di titik P(a, b) dan berjari-jari r yang melalui titik A x 1, y 1 pada lingkaran x a ² + y b ² = r² adalah x a x 1 a + y b y 1 b = r² Persamaan garis singgung yang melalui titik (x 1 y 1 ) pada lingkaran x a ² + y b ² = r² adalah x a x 1 q + y 1 b = r² Contoh soal Modul Matematika SMA 277

284 Tentukan persamaan garis singgung lingkaran yang melalui titik (2, 4) dengan persamaan lingkarannya adalah (x 1) 2 + (y 2) 2 = 5. Penyelesaian : Persamaan garis singgung lingkaran (x 1)² + (y 2)² = 5 yang melalui titik (2, 4) x a x 1 a + y b y 1 b = r 2 x a x 1 a + y b y 1 b = 5 x y = 5 x y 2 2 = 5 x 1 + 2y 4 = 5 x + 2y = 0 Jadi persamaan garis singgung lingkaran (x 1) 2 + (y 2) 2 = 5 adalah x + 2y = 0 3. Persamaan Garis Singgung Lingkaran melalui Suatu Titik di Luar Lingkaran Misalkan titik A(x 1, y 1 ) terletak di luar lingkaran. Terdapat dua garis singgung lingkaran yang melalui titik A(x 1, y 1 ), Langkah-langkah untuk menentukan persamaan garis singgungnya adalah sebagai berikut: 1. Misalkan gradien garis singgung yang melalui titik A(x 1, y 1 ) adalah m sehingga diperoleh persamaan. Modul Matematika SMA 278

285 2. Dari langkah 1 substitusikan nilai y = mx mx 1 + y 1 ke dalam persamaan lingkaran, sehingga diperoleh persamaan kuadrat dalam variabel x, kemudian tentukan nilai diskriminannya, dari persamaan kuadrat tersebut. 3. Karena garis singgung itu merupakan garis lurus dan menyinggung lingkaran akibatnya nilai diskriminan nol, Setelah itu carilah nilai m. Selanjutnya nilai m tersebut substitusikan ke persamaan y = mx mx 1 + y 1 sehingga diperoleh persamaan-persamaan garis singgung tersebut. Contoh soal Tentukanlah persamaan garis singgung lingkaran dengan pusat P(0, 0) dan berjari-jari 5 yang melalui titik (7, 1). Penyelesaian : Titik (7, 1) berada di luar lingkaran x 2 + y 2 = 25 sebab jika titik (7, 1) disubstitusikan ke persamaan lingkaran tersebut diperoleh = 50 > 25 Persamaan lingkaran dengan pusat P(0, 0) dan berjari-jari 5 adalah x 2 + y 2 = 25 Garis yang melalui titik (7, 1) dengan gradient m, memiliki persamaan y = mx mx 1 + y 1 y = mx 7m + 1 Subtitusikan nilai y = mx 7m + 1 ke persamaan lingkaran x² + y² = 25, diperoleh x 2 mx 7m = 25 x 2 + m 2 x 2 49m m 2 x + 2m 14m = 25 Modul Matematika SMA 279

286 1 + m 2 x 2 + 2m 14m 2 x + 49m 2 14m 24=0 Selanjutnya di tentukan nilai diskriminan D = b 2 4ac D = 2m 14m m 2 49m 2 14m 24 = 4m 2 56m m 4 4(49m 2 14m m 4 14m 3 24m 2 = 4m 2 56mm m 4 196m m m 4 56m m² = 4m² + 96m² 196m m + 96 Syarat D = 0 96m m + 96 = 0 96m m + 96 = 0 12m 2 7m 12 = 0 4m + 3 3m 4 = 0 m = 3 4 atau m = 4 3 Sehingga diperoleh persamaan garis singgung 3x 4y 25 = 0 atau 4x 3y 25 = 0 Modul Matematika SMA 280

287 Rangkuman 1. Persamaan garis singgung yang melalui titik (x 1, y 1 ) pada lingkaran x 2 + y 2 = r 2 adalah x 1 x + y 1 y = r 2 2. Persamaan garis singgung yang melalui titik (x 1 y 1 ) pada lingkaran x a 2 + y b 2 = r 2 adalah x a x 1 q + y 1 b = r 2 3. Langkah-langkah untuk menentukan persamaan garis singgung di luar lingkaran adalah sebagai berikut: a. Misalkan gradien garis singgung yang melalui titik A(x 1, y 1 ) adalah m sehingga diperoleh persamaan. b. Dari langkah 1 substitusikan nilai y = mx mx 1 + y 1 ke dalam persamaan lingkaran, sehingga diperoleh persamaan kuadrat dalam variabel x, kemudian tentukan nilai diskriminannya, dari persamaan kuadrat tersebut. c. Karena garis singgung itu merupakan garis lurus dan menyinggung lingkaran akibatnya nilai diskriminan nol, Setelah itu carilah nilai m. Selanjutnya nilai m tersebut substitusikan ke persamaan y = mx mx 1 + y 1 sehingga diperoleh persamaan-persamaan garis singgung tersebut Test Formatif 1. Tentukan persamaan garis singgung lingkaran yang melalui titik (0,4) dengan pusat P(0,0) dan berjari-jari 3 2. Tentukan persamaan garis singgung lingkaran yang melalui titik (2,3) dengan persamaan lingkarannya adalah (x 1) 2 + (y 2) 2 = 4. Modul Matematika SMA 281

288 Lembar Penilaian Nama : No. Absen : Judul Tugas : No. Kriteria Penilaian Rentang Nilai Nilai Prestasi 1. Benar cara maupun hasilnya Benar cara, hasil salah Benar hasil, cara salah 0-20 Jumlah Jumlah x 100% Jumlah Nilai Akhir Kesimpulan : Lulus / Tidak Lulus.,..20 Modul Matematika SMA 282

289 8.3 EVALUASI Soal Evaluasi 1. Pusat dan jari-jari lingkaran dengan persamaan x 2 + y 2 + 4x 6y 12 = 0 adalah 2. Lingkaran x 2 + y 2 + 4x + by 12 = 0 melalui titik (1,7). Pusat ligkaran itu adalah 3. Diketahui ligkaran 2x 2 + 2y 2 4x + 3py 30 = 0 melelui titik (-2,1). Persamaan lingkaran yang sepusat tetapi panjang jari-jarinya duakali panjang jari-jari lingkaran tadi adalah.. 4. Tentukan persamaan lingkaran, jika diketahui : a. pusatnyao(0, 0) danberjari-jari12 b. pusatnyao(0, 0) danmelalui (7, 24) 5. Tentukan persamaan lingkaran, jika diketahui: a. pusatnya (-2,3) danberjari-jari5 b. pusatnya (5, 2) danmelalui (-4,1) c. pusatnya (4, 5) danmenyinggungsumbu X. 6. Tentukan persamaan lingkaran yang berpusat di O(0, 0) dan melalui titik A(3,4) 7. Tentukan persamaan lingkaran yang berpusat di P(4, 3) dan r = 6 8. Lingkaran x 2 + y 2 + 4x + by 12 = 0 melalui titik (1, 7), tentukan pusat lingkaran tersebut! 9. Tentukan pusat dan jari-jari lingkaran x 2 + y 2 6x + 8y 24 = Tanpa menggambar pada bidang kartesius tentukan posisi titik A(1,2) terhadap lingkaran x 2 + y 2 + 6x 2y + 3 = Diberikan titik A(6, 8) dan L x 2 + y 2 = 49. Hitunglah jarak terdekat titik A ke lingkaran L! 12. Tentukan posisi garis y= 3x + 2 terhadap L x 2 + y 2 + 4x y + 1= Tentukan persamaan garis singgung lingkaran : L (x + 3) 2 + (y 2) 2 = 58 di titik B(0, 9) 14. Tentukan persamaan garis singgung lingkaran (x + 2) 2 + (y 1) 2 =4 yang sejajar dengan garis 3x + 4y 1 = 0 Modul Matematika SMA 283

290 15. Tentukan persamaangaris singgung lingkaran L x 2 + y 2 2x + 6y + 5 = 0 yang tegak lurus garis x + 2y = Lembar Penilaian Nama :... Kelas :... No. Absen :... Judul Tugas :... No. Kriteria Penilaian Rentang Nilai Tes Formatif Nilai Prestasi Evaluasi 1. Benar cara maupun hasilnya Benar cara, hasil salah Benar hasil, cara salah 0 20 Jumlah Jumlah Jumlah x 60 % Jumlah x 40% Jumlah Nilai Akhir Kesimpulan: Lulus/Tidak Lulus...,...Th... Modul Matematika SMA 284

291 BAB 9 Modul Matematika SMA 285

292 9.1 PENDAHULUAN Deskripsi Modul ini berisi tentang suku banyak yang meliputi pengertian, rumus umum, nilai suku banyak,danoperasi antar suku banyak Prasyarat Dalam mempelajari modul ini diperlukan prasyarat yakni memahami konsep aljabar, pemfaktoran Petunjuk Penggunaan Modul a. Mempelajari daftar isi serta kedudukan modul dengan cermat dan teliti. b. Kerjakan soal-soal dalam latihan untuk mengukur seberapa jauh anda menguasai materinya. c. Apabila dari soal tes formatif anda mendapat score (nilai) 75 maka anda dapat menuju evaluasi. Apabila anda mendapat score (nilai) skurang dari 75 maka anda harus mengikuti kegiatan belajar. d. Perhatikan langkah-langkah dalam mengerjakan soal latihan dengan benar untuk mempermudah pemahaman anda tentang materi yang disampaikan. e. Pahami konsep dan rumus-rumus yang terdapat dalam modul dengan teliti untuk mempermudah anda dalam mengerjakan soal latihan. f. Untuk menjawab soal latihan usahakan jawaban singkat, jelas sesuai kemampuan anda. g. Bila anda mengalami kesulitan dalam mempelajari dan memahami modul ini, catatlah kemudian mintalah bantuan kepada guru maupun mentor anda Tujuan Akhir 1. Setelah siswa mempelajari modul ini siswa diharapkan dapat memahami pengertian suku banyak. 2. Setelah siswa mempelajari modul ini siswa diharapkan dapat memahami pembagian teorema sisa suku banyak. Modul Matematika SMA 286

293 3. Siswa mampu memahami rumus-rumus yang berkaitan dengan suku banyak dan teorema fektor suku banyak. 4. Siswa mampu memahami akar-akar pada suku banyak. 5. Siswa mampu menyelesaikan soal-soal yang berkaitan dengan suku banyak. 6. Dalam kegiatan belajar mengajar siswa terlibat aktif dan dapat Kompetensi bertanggung jawab memberi saran, kritik, dan dapat bekerjasama dengan siswa lainnya. Kode Unit: Judul Unit: Suku Banyak (6 x 45 menit) Uraian Unit: Unit ini berlaku untuk menentukan Nilai Suku Banyak dengan berbagai cara. Sub Kompetensi 1. Pengertian dan rumus umum Suku Banyak. Indikator 1.1. Memahami pengertian Suku Banyak Memahami rumus umum Suku Banyak Mengerjakan soal-soal dengan baik yang berkaitan dengan rumus umum Suku Banyak. 2. Nilai Suku Banyak. 2.1.Memahami Nilai Suku Banyak dengan cara substitusi. 2.2.Memahami Nilai Suku Banyak dengan cara skema. 2.3.Menentukan Nilai Suku Banyak dengan carasubstitusi dan skema. 3. Operasi Antar Suku Banyak 4. Pembagian teorema pada Suku Banyak. 3.1.Memahami penjumlahan Suku Banyak. 3.2.Menyelesaikan soal yang berkaitan dengan penjumlahan SukuBanyak. 3.3.Memahami pengurangan Suku Banyak 3.4.Menyelesaikan soal yang berkaitan dengan pengurangan Suku Banyak. 3.5.Memahami perkalian Suku Banyak. 3.6.Menyelesaikan soal yang berkaitan dengan perkalian Suku Banyak. 3.7.Memahami pembagian Suku Banyak 3.8.Menyelesaikan soal yang berkaitan dengan pembagian Suku Banyak Memahami Teorema Sisa Suku Banyak Memahami pembagian Teorema Modul Matematika SMA 287

294 Sisa pada Suku Banyak Mengerjakan soal-soal dengan baik yang berkaitan dengan pembagian Teorema Sisa Suku Banyak. 5. Teorema Faktor 5.1.Memahami pengertian Teorema Faktor Suku Banyak. 5.2.Menentukan faktor-faktor Suku Banyak 5.3.Mengerjakan soal-soal yang berkaitan dengan Teorema Faktor. 6. Akar-akar Suku Banyak 6.1.Memahami Fungsi Derajat Tiga akarakar pada suku banyak. 6.2.Memahami Fungsi Derajat Empat pada Suku Banyak Mengerjakan soal-soal yang berkaitan dengan Fungsi Derajat Akar-akar pada Suku Banyak. Acuan Penilaian 1. Uji kompetensi ini dapat diujikan secara langsung kepada pesertauji. 2. Aspek-aspek kritikal yang dinilai Mampu memahami rumus-rumus Suku Banyak. Mampu mengerjakan soal dengan baik yang berkaitan dengan Suku Banyak. 3. Sikap yang dituntut Siswa mampu mengerjakan soal dengan tepat dan teliti. Modul Matematika SMA 288

295 9.1.6 Cek Kemampuan Petunjuk: Berilah tanda ( ) pada kolom jawaban Ya atau Tidak. No. Pertanyaan Ya Tidak 1. Apakan anda mengenal Suku Banyak? 2. Apakah memahami pembagian Teorema suku banyak? 3. Apakah anda memahami rumus-rumus Suku Banyak dan Teorema faktor suku banyak? 4. Apakah anda memahami Akar-akar pada Suku Banyak? 5. Apakah anda dapat menyelesaikan soal-soal yang berkaitan dengan Suku Banyak? 6. Apakah dalam kegiatan belajar mengajar anda termasuk siswa yang aktif? Score(Nilai)..,..20. Modul Matematika SMA 289

296 PETA KONSEP Modul Matematika SMA 290

297 9.2 PEMBAHASAN Rencana Belajar Siswa 1. Pada setiap kegiatan belajar, pahamilah tujuan kegiatan belajar, untuk mengetahui kemampuan siswa sejauh mana materi yang harus dicapai. 2. Pada setiap kegiatan belajar buku panduan dan modul selalu dibawa sebagai panduan siswa. 3. Sebelum dimulai mengerjakan latihan soal siswa harus memahami secara baik rumus-rumus Suku Banyak. 4. Kerjakanlah latihan soal dengan baik dan sungguh-sungguh, jika mengalami kesulitan mintalah bantuan gurumaupun mentor anda Kegiatan Belajar Pengertian Suku Banyak Suku Banyak /polinom adalah bentuk suku-suku dengan banyak terhingga yang disusun dari variable dan konstanta. Suatu Suku Banyak berderajat n secara umum dapat dinyatakan dalam bentuk berikut: a n x n + a n 1 x n 1 + a n 2 x n a 1 x + a 0 dengan a n, a n 1, a n 2, a 0 merupakan konstanta dan disebut koefisien suku, a n 0, n C a n x n disebut suku utama, a 0 disebut suku tetap atau konstanta, Modul Matematika SMA 291

298 a n disebut konstanta utama. Pangakat tertinggi variable x pada suku banyak yang bersangkutan disebut derajat suku banyak.penulisan suku banyak biasanya disusun menurut pangkat turun dari variabel tersebut. Pangkat yang tertinggi diletakkan pada urutan paling depan, sedangkan yang berpangkat lebih kecil berada disebelah kanannya. Perhatikan beberapa bentuk berikut untuk mengenali suku banyak. a. x 2 3x + 2, merupakan suku banyak berderajat 2 dengan koefisienx 2 adalah 1, koefisienx adalah -3, konstanta atau suku tetap adalah 2. b. 5x 3 + 3x 2,merupakan suku banyak berderajat 3, dengan koefisienx 3 adalah 5 koefisienx 2 adalah 0 koefisienx adalah 3 konstanta atau suku tetap adalah -2. c. 4, merupakan suku banyak berderajat 0, dengan konstanta atau suku tetap 4. d. x + 7x 2 2x + 5, bukan merupakan suku banyak karena pangkat pada suku pertama bukan bilangan bulat non negative. e. 2 + x x2 + 4, bukan merupakan suku banyak karena pangkat pada suku pertama bukan bilangan bulat non-negatif. Contoh: Susunlah bentuk berikut menurut pangkat turun dari variabel x, dan tentukan derajatnya: a. 1 7x + x 3 6x 2 = x 3 6x 2 7x + 1(berderajat 3) b. 4 3x + 2x 3 2 = 4 3x + 2x 3 2x 3 = 4 3x + 4x 2 12x + 9 = 4x 2 15x + 13 (berderajat 3) Modul Matematika SMA 292

299 2x 2 5x 7 2x 7 = 2x 7 (x+1) 2x 7 = x + 1 (berderajat 1) Nilai Suku Banyak Suatu Suku Banyak berderajat n secara umum dapat dinyatakan dalam bentuk berikut: a n x n + a n 1 x n 1 + a n 2 x n a 1 x + a 0 untuka n 0, n C. Nilai suku banyak f(x) untuk x=k adalah f(x). Nilai suku banyak langsung dapat ditentukan dengan metode substitusi langsung dan metode skema. a) Metode Substitusi Langsung Cara substitusi langsung adalah cara paling alamiah untuk menghitung nilai f(x) karena mudah untuk dilakukan. Substitusikan nilai k pada x (mengganti nilai x oleh k), lalu lakukan perhitungan (pangkat, tambah, kali, kurang) untuk mendapatkan f(x). Misalkan suku banyak: f x = a n x n + a n 1 x n 1 + a n 2 x n a 1 x + a 0 untukx=k, maka nilai suku banyak dinyatakan oleh: f k = a n k n + a n 1 k n 1 + a n 2 k n a 1 k + a 0 Contoh: 1. Tentukan nilai f(3) jika diketahui f(x)=2x 3-5x 2 +3x+4 Solusi: f(3)= 2x 3-5x 2 +3x+4 = = Diketahui suku banyak f(x)=x 3 x 2 2x. Tentukan nilai k yang memenuhi f(x)=0 Solusi: Jika f(x)=, makak 3 k 2 2k = 0 k(k 2 k 2) = 0 Modul Matematika SMA 293

300 k k + 1 k 2 = 0 k = 0, k = 1atau k = 2 Jadi, f(x)= 0 jika k=0, -1 atau 2 b) Metode Skema Metode skema adalah cara mengubah suku banyak melalui perhitungan langkah demi langkah dengan skema. Misalkan: f x = ax 3 + bx 2 + cx + d Akan ditentukan nilainya untuk x = k, maka: f k = ak 3 + bk 2 + ck + d = ak 2 + bk + c k + d = ak + b k + c k + d Jadi, f(k) = ak + b k + c k + d Langkah-langkah diperolehnya f(k) diatas: 1. Kalikan a dengan k lalu hasilnya ditambah dengan b, diperoleh ak+b. 2. Kalikan ak+b dengan k lalu hasilnya tambah dengan c, diperoleh (ak+b)k+c. 3. Kalikan (ak+b)k+c dengan k lalu hasilnya tambah dengan d diperoleh [(ak+b)k+c]k+d yang merupakan nilai dari x= k. Secara skema: k a b c d ak ak 2 +bk ak 3 +bk 2 +ck + a ak+b ak 2 +bk+c ak 3 +bk 2 +ck+d=f(k) keterangan: tanda berarti dikalikan dengan k. Modul Matematika SMA 294

301 Contoh: Tentukan nilai f(3) jika diketahui f(x)=2x 3-5x 2 +3x+4 dengan cara skema. Bandingkan hasilnya dengan cara substitusi. Tulislah koefisien-koefien variable x berurutan pangkat tertinggi sampai terendah: =f(3) Jadi, nilai f(3)=22 Keterangan: tanda berarti dikalikan 3 Dengan cara substitusi: f 3 = = = 22. Ternyata hasil cara skematik dan cara substitusi sama Operasi Antar Suku Banyak a. Penjumlahan dan pengurangan suku banyak Penjumlahan dan pengurangan suku bayak f(x) dengan g(x) dapat ditentukan dengan cara penjumlahan dan pengurangan suku-suku sejenis dari kedua suku banyak itu: Misalkan: f(x) suku banyak berderajat m Modul Matematika SMA 295

302 g(x) suku banyak berderajat n Maka f(x) ± g(x) adalah suku banyak berderajat maksimum m atau n. Contoh: Diketahui dua persamaan suku banyak f(x) dan g(x) yakni f x = x 4 + x 2 + 2dan g x = x 3 + 2x 2 + x + 1. Tentukanlah a. f(x) + g(x) serta derajatnya. b. f(x) - g(x) serta derajatnya. Solusi: a. f x + g x = (x 4 + x 2 + 2) + (x 3 + 2x 2 + x + 1) = x 4 + x 3 + 3x 2 + x + 3, dan berderajat 4 b. f x g x = (x 4 + x 2 + 2) (x 3 + 2x 2 + x + 1) = x 4 x 3 x 2 x 1,dan berderajat 4 b. Perkalian Suku Banyak Operasi perkalian suku banyak dilakukan menggunakan sifat distributive perkalian, yaitu dengan mengalikan setiap suku dari suku banyak dengan semua suku dari suku banyak lainnya. Misalnya: f(x) dan g(x) masing-masing suku banyak berderajat m dan n maka: f(x).g(x) adalah suku banyak berderajat maksimum (m+n). Contoh: Diketahui dua persamaan suku banyak f(x) dan g(x) yakni f x = (x 2 1)dan g x = x 3 2x Tentukan f(x).g(x) serata derajatnya. Solusi: f x. g x = x 2 1. (x 3 2x 2 + 1) = x 5 2x 4 x 3 + 3x 2 1, dan memiliki derajat 5 Modul Matematika SMA 296

303 c. Kesamaan Suku Banyak Perhatikanlah dua suku banyak f(x) dan g(x) dalam bentuk umum sebagai berikut: f x = a n x n + a n 1 x n 1 + a n 2 x n a 2 x 2 + a 1 x + a 0 g x = b n x n + b n 1 x n 1 + b n 2 x n b 2 x 2 + b 1 x + b 0 Misalkan f(x) sama dengan g(x) (ditulis f(x) g(x)) maka dapat kita nyatakan sebagai berikut. a n = b n, a n 1 = b n 1,, a 2 = b 2, a 1 = b 1 Pengertian kesamaan suku banyak di atas dipakai untuk mengetahui koefisien-koefisien tak tentu suatu bentuk al jabar, yaitu koefisien yang belum diketahui bentuk nilainnya. Contoh: Tentukan nilai p dari kesamaan suku banyak (x 1) 2 Solusi: x 2 x p (x 1) 2 x 2 x p x 2 2x + 1 x 2 + x 6 + 2p Berdasarkan sifat kesamaan suku banyak diperoleh: 2x + 1 = x 6 + 2p 2p = 3x+7 p = 3x+7 2 Modul Matematika SMA 297

304 d. Pembagian Suku Banyak Seperti pada bilangan, pada operasi pembagian suku banyak juga berlaku hubungan: yang dibagi,pembagi, hasil bagi, dan sisa pembagi. Hubungan tersebut secara matematis ditulis: f x = p x. x + S f(x) = suku banyak yang dibagi berderajat m. p(x) = pembagi berderajat n h(x) = hasil bagi berderajat (m n) S = sisa pembagian berderajat (n 1) 1) Pembagi berbentuk (x k) Pembagian suku banyak f(x) oleh pembagi (x k) memberikan hasil bagi h(x) dan sisa pembagian S atau f(k). hubungan tersebut dinyatakan: f x = p x. x + f(k) Pembagian suku banyak oleh (x k) dapat dilakukan dengan cara pembagian biasa dan pembagian horner. a. Cara pembagian Biasa. Misalkan suku banyak f x = x 3 + 3x 2 + 3x + 6 dibagi dengan (x 2). x 2 + 5x + 13 (x 2) x 3 + 3x 2 + 3x + 6 Pembagi x 3 + 2x 2-5x 2 + 3x + 6 5x 2 10x - 13x x sisa pembagian Modul Matematika SMA 298

305 Pembagian di atas dapat ditulis: x 3 + 3x 2 + 3x + 6 = (x 2)(x 2 + 5x + 13)+ 32. Hasil bagi, h(x) = x 2 + 5x + 13 Sisa pembagaian = f(2)= 32. b. Cara pembagian horner Pembagian suku banyak f x = x + 3 oleh (x 2) x= = f(2) Koefisien-koefisien hasil bagi Hasil bagi, (x)= 5x 3 10x + 6 (perhatikan koefisiennya) Sisa pembagian, f(x)= 15 Persamaan dasarnya: 5x 3 14x + 3 = (x 2) 5x ) Pembagi berbentuk (ax+b) Bentuk pembagian (ax + b) dapat diubah menjadi x + b a. Jika f(x) dibagi x + b a (x) dan sisa pembagian f b a maka hasil banginya. Hubungan tersebut dinyatakan: f x = x + b a. (x)f b a Karena x + b a = 1 a (ax + b), maka diperoleh: f x = 1 a ax + b. x + f b a Atau f x = ax + b. (x) a + f b a Modul Matematika SMA 299

306 Dengan: f x = suku banyak yang dibagi. ax + b = pembagi. (x) a = hasil bagi f b a atau S = sisa pembagian Hasil bagi dan sisa pembagian dapat ditentukan dengan cara horner. Jika bentuk pembagi ax + b maka k = b a Jika bentuk pembagi ax b maka k = b a Contoh: Tentukan hasil bagi dan sisa pada pembagian (3x 3 x 2 + 7x + 12)oleh (3x + 2). Nyatakan pula persamaan dasar pembagiannya. Solusi: Nyatakan ulang pembagi: 3〱 + 2 sebagai x ( 2 3 )) sehingga a = 3 dan k = Hasil bagi (x) a = 3x 2 3x+9 = x 2 x + 3, sisa = f(k)=6 3 Jadi, 3x 3 x 2 + 7x + 12= (x 2 x + 3) (3x + 2)+6 3) Pembagi berbentuk (ax 2 + bc + c) Suku banyak f(x) dengan pembagian berbentuk ax 2 + bx + c (a 0) dapat dilakukan dengan cara bersusun pendek dan cara horner. 1. Cara bersusun pendek Jika suku banyak f(x) berderajat m dan pembaginya berderajat n maka diperoleh: Hasil bagi berderajat (m n) Modul Matematika SMA 300

307 Sisa pembagian berderajat (n 1) 2. Cara sintetik (horner) Pembagian ax 2 + bx + c dapat difaktorkan menjadi ax k 1 (x k 2 ) Langkah-langkah jika f(x) dengan ax k 1 ax k 2 a. Bagilah f x dengan ax k 1 maka diperoleh hasil bagi 1 (x) dan sisa f k 1 a maka f x = ax k 1. 1 x + f k 1 a. b. Selanjutnya bagilah 1 x dengan x k 2, diperoleh hasil bagi 2 (x)dan sisa pembagian f(k 2 ) maka 1 x = x k 1. 2 x + f(k 2 ). c. Diperoleh persamaan suku banyak: f x = ax k 1 ax k 2. 2 x + ax k1.f(k2+fk1a] Hasil bagi = 2 x Sisa pembagian = ax k 1. f(k 2 + f k 1 a ] Contoh: Tentukan hasil bagi dan sisa pada pembagian f x = 3x 4 2x 3 10x 2 + 7x + 1oleh(x 2 x 2) Solusi: (x 2 x 2)difaktorkan menjadi x 2 (x + 1) Tahap 1: 3x 4 2x 3 10x 2 + 7x + 1dibagi dulu dengan x Modul Matematika SMA 301

308 1 x = 3x 3 + 4x 2 2x + 3 f k 1 a = f 2 = 7 Jadi, f x = x 2 (3x 3 + 4x 2 2x + 3) + 7..(1) Tahap 2: 3x 3 + 4x 2 2x + 3dibagi dengan (x + 1), maka: x = 3x 2 + x 3 2 k 1 = 1 1 = 6 Jadi, 3x 3 + 4〱 2 2x + 3 = (3x 2 + x 3) x Tahap 3: Substitusikan 2 ke 1 3x 4 2x 3 10x 2 + 7x + 1 = x 2 (3x 2 + x 3 x ) + 7 = x 2 x + 1 3x 2 + x x = x 2 x 2 3x 2 + x 3 + (6x 5) Jadi, hasil bagi adalah 3x 2 + x 3 dan sisa adalah +(6x 5) Modul Matematika SMA 302

309 RANGKUMAN 1. Rumus Umum Suku Banyak: a n x n + a n 1 x n 1 + a n 2 x n a 1 x + a 0 dengan a n, a n 1, a n 2, a 0 merupakan konstanta dan disebut koefisien suku, a n 0, n C. 2. Nilai Suku Banyak a. Metode Substitusi Substitusikan nilai k pada x (mengganti nilai x oleh k), lalu lakukan perhitungan (pangkat, tambah, kali, kurang) untuk mendapatkan f(x). f x = a n x n + a n 1 x n 1 + a n 2 x n a 1 x + a 0 untukx=k, maka nilai suku banyak dinyatakan oleh: f k = a n k n + a n 1 k n 1 + a n 2 k n a 1 k + a 0 b. Metode Skema k a b c d ak ak 2 +bk ak 3 +bk 2 +ck + a ak+b ak 2 +bk+c ak 3 +bk 2 +ck+d=f(k) keterangan: tanda berarti dikalikan dengan k. 3. Operasi Antar Suku Banyak a. Penjumlahan dan Pengurangan Suku Banyak Penjumlahan dan pengurangan suku bayak f(x) dengan g(x) dapat ditentukan dengan cara penjumlahan dan pengurangan suku-suku sejenis dari kedua suku banyak. f(x) suku banyak berderajat m g(x) suku banyak berderajat n Modul Matematika SMA 303

310 Maka f(x) ± g(x) adalah suku banyak berderajat maksimum m atau n. b. Perkalian Suku Banyak f(x) dan g(x) masing-masing suku banyak berderajat m dan n maka: f(x).g(x) adalah suku banyak berderajat maksimum (m + n). c. Kesamaan Suku Banyak f(x) sama dengan g(x) (ditulis f(x) g(x)) maka dapat kita nyatakan sebagai berikut. a n = b n, a n 1 = b n 1,, a 2 = b 2, a 1 = b 1 d. Pembagian Rumus umum pembagian suku banyak: f x = p x. x + S f(x) = suku banyak yang dibagi berderajat m. p(x) = pembagi berderajat n h(x) = hasil bagi berderajat (m n) S = sisa pembagian berderajat (n 1) Modul Matematika SMA 304

311 Tes Formatif 1. Tentukan derajat suku banyak berikut beserta dengan koefisienkoefisien dan konstanta yang ada pada suku banyak berikut: 14b 25b 5 20b 3 + 3b 2 2. Susunlah setiap bentuk suku banyak berikut ini menurut pangkat turun dari variabel y. a. (9y 2 9) + (8y + 7y 2 5) b. (2y 2 + 9) (3y 2 7) 3. Manakah yang merupaan suku banyak dari bentuk berikut: a. 1 + a a2 b. x + 1 x 1 (x + 2) 4. Dengan cara substitusi tentukan nilai dari: a. f(3), jika f(x)=2x 3 9x 2 + 2x 5 b. f( 1 ), jika f x = 2 8x3 6x Dengan cara skema tentukan nilai dari: a. f(4), jika f x = x 3 5x 2 + 3x 4 b. f 2, jika f x = 4x 3 3x Diketahui f x = 2x 4 x 3 + 7x 1 dan g x = x 4 7x 3 x + 2 tentukanlah f x + g(x) dan derajatnya. 7. Diketahui f x = 2x 3 x dan g x = (x 2 + x) 2 tentukan f x. g(x) dan derajatnya. 8. Tentukan nilai konstanta p dari kesamaan x 2 + 4x 1 x + 1 x p 9. Tentukan hasil bagi dan sisa pada pembagian (x 3 + 4x 2 3x + 1 oleh (x + 3) 10. Tentukan hasil bagi dan sisa pada pembagian (6x 2 + x 8) dibagi oleh 2x 3 Modul Matematika SMA 305

312 Lembar Penilaian Nama : No. Absen : Judul Tugas : No. Kriteria Penilaian Rentang Nilai Nilai Prestasi 1. Benar cara maupun hasilnya Benar cara, hasil salah Benar hasil, cara salah 0-20 Jumlah Jumlah x 100% Jumlah Nilai Akhir Kesimpulan : Lulus / Tidak Lulus.,..20 Modul Matematika SMA 306

313 9.2.3 Kegiatan Belajar Pembagian Teorema Sisa Berdasarkan pembagian suku banyak f(x) dengan pembagi seperti (x - k), (ax - b),dan ax 2 + bx + c maka dapat diturunkan teorema sisa berikut. a. Pembagi Bentuk (x k) 1) Jika suku banyak f(x) dibagi (x k) maka sisanya S = f(k). 2) Jika suku banyak f(x) dibagi (x + k) maka sisanya S = f(-k). b. Pembagi Bentuk (ax -b) a. Jika suku banyak f(x) dibagi (ax -b) maka sisanya S = f b. Jika suku banyak f(x) dibagi (ax + b) maka sisanya S = f b a c. Pembagi Bentuk ax 2 + bx + c atau (x - a)(x - b) a. Jika suku banyak f(x) dibagi (x - a)(x - b) maka sisanya S = (x - a). h1 (b) + f(a). b. Jika suku banyak f(x) dibagi (ax - b)(x - c) maka sisanya S = (ax - b). h1 (c) + f b a. c. Jika suku banyak f(x) dibagi (x - a) sisanya S1 dan jika dibagi (x - b) sisanya S2 maka suku banyak f(x) jika dibagi (x - a)(x b) sisanya : S(x) = px + q Subtitusi x = a dan x = b diperoleh: P = s1 s2 a b dan d. Habis Dibagi (x - a) q = as2 bs1 a b Jika suku banyak f(x) habis dibagi (x - a) maka sisanya S = 0 atau f(a) = 0. Contoh: Jika f(x) dibagi dengan (x - 2) sisanya 24, sedangkan jika f(x) dibagi (2x-3) sisanya 20. Jika f(x) dibagi dengan (x - 2)( 2x - 3) sisanya adalah.. b a Modul Matematika SMA 307

314 Pembahasan: f(x) dibagi dengan (x - 2) sisanya 24 maka f(2) = 24 jika f(x) dibagi (2x-3) sisanya 20 maka f 3 2 = 20 f(x) dibagi dengan (x - 2)( 2x 3) maka sisanya S(x) = px + q. untuk x = 2 f(2) = 2p + q = 24 untuk x = 3 2 f( 3 2 ) = 3 2 p + q = p = 4 p= 8 Untuk p = 8 maka 2(8) + q = 24 q = 8 Jadi, s (x) = px + q = 8x Pengertian Teorema Faktor. a. Suku banyak f(x) mempunyai faktor (x a ), jika dan hanya jikaf(a)= 0. b. Jika suku banyak f(x) berlaku f(a)= 0, f(b)= 0 dan f(c) = 0 maka f(x) habis dibagi (x - a)(x - b)(x - c). c. Jika (x - a) adalah faktor dari f(x) maka x = a adalah akar dari f(x). 2. Menentukan Faktor-faktor Suku Banyak. a. Jika suku banyak f(x) = a n x n + a n 1 x n 1 + a n 2 x n a 1 x + a 0 dan (x - k) merupakan faktor dari f(x) maka nilai k yang mungkin adalah faktor-faktor dari a 0. b. Dengan cara mencoba-coba, subtitusikan x = k pada f(x). Jika f(x) = 0 maka nilai(x - k) merupakan faktor dari f(x), sebaliknya jika f(x) 0 maka (x - k) bukan faktor dari f(x). c. Jika f(x) faktornya (x - k) maka hasil baginya misalnya h(x) dapat dicari faktornya lagi seperti langkah 1 dan 2. Contoh: Salah satu faktor suku banyak p(x) = x 4 15x 2 10x + n adalah (x + 2). Faktor lainnya adalah... Modul Matematika SMA 308

315 Pembahasan: p(x) = x 4 15x 2 10x + n (x + 2) faktor dari p(x), maka p(-2) = 0 X = n n-24 = 0 h1(x) = x 3 2x 2 11x + 12 nilai k yang mungkinadalah faktor bilangan daria 0 = 12. Yaitu: ±1, ±2, 3±, 4±, 6±, ± 12. Dengan cara mencoba-coba bilangan diatas ditemukan faktor dari h1(x) adalah (x - 1) atau k = 1. X = = f(1) Maka (x - k) atau x = 1 merukan faktor dari p (x) karena p (1) = 0 h2(x)=x 2 x 12 bentukx 2 x 12 dapat difaktorkan menjadi (x + 3)(x - 4) sehinggax 4 15x 2 10x + 24 = (x + 2)(x - 1)(x + 3)(x + 4). Jadi, faktor lainnya dari f(x) adalah (x - 4) Akar-akar Suku Banyak A. Fungsi Derajat Tiga Jika x1, x2, dan x3 akar-akar suku banyak ax 3 bx 2 + cx + d = 0 maka berlaku: Modul Matematika SMA 309

316 x1 + x2 +x3 = b a x1x2 + x1x3 + x2x3 = c a x1. x2. x3 = d a B. Fungsi Derajat Empat Jika x1, x2, x3, x4 akar-akar suku banyak ax 4 + bx 3 + cx 2 + dx + e = 0 maka berlaku: x1 + x2 + x3 + x4 = b a x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 = c a x1x2x3 + x1x3x4 + x1x2x4 + x2x3x4 = d a x1. x2. x3. x4 = e a Modul Matematika SMA 310

317 Rangkuman Teorema sisa Persamaan dasar pada pembagian suku banyak f(x) = g(x). h (x) + s(x) dengan f(x) = suku banyak berderajat n g(x) = pembagi berderajat m, m<n h(x) = hasil bagi berderajat (n m ) s(x) = sisa Jika suku banyak f(x) dibagi (x k ), maka sisanya adalah f(k) Jika suku banyak f(k) dibagi (ax + b), maka sisanya adalah f b a Jika suku banyak f( x) dibagi (x a )(x b ), maka sisanya adalah[ (x a ). h(b) + f(a)]. Jika suku banyak f(x) dibagi (x k )(ax b ), maka sisanya adalah [(x k ). h Teorema factor b a +f(k) ] Persamaan dasar pada pembagian suku banyak f(x) = g(x). h (x) + s(x) jika s(x) = 0, maka g(x) merupakan factor dari f(x). (x k ) merupakan factor dari suku banyak f(x) jika dsan hanya jika s(x) = f(x) = 0 Akar akar Suku Banyak. Untuk fungsi berderajat tiga: x1 + x2 +x3 = b a x1x2 + x1x3 + x2x3 = c a x1. x2. x3 = d a Modul Matematika SMA 311

318 untuk fungsi berderajat empat: x1 + x2 + x3 + x4 = b a x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 = c a x1x2x3 + x1x3x4 + x1x2x4 + x2x3x4 = d a x1. x2. x3. x4 = e a Tes Formatif 1. Suku Banyak x 4 2x 3 3x 7 dibagi dengan (x 3) (x + 1), sisanya adalah.. 2. Jika p(x) = x 4 + 5x 3 + 9x x + a dibagi dengan (x+ 3) bersisa 2 maka p (x) dibagi (x + 1) akan bersisa.. 3. Suku Banyak x 4 3x 3 5x 2 + x 6 dibagi dengan x 2 x 2 sisanya adalah. 4. Suku banyak f(x) = 3x 3 13x 2 + 8x + 12 dapat dinyatakan dala bentuk perkalian faktoe-faktor liniernya menjadi Himpunan penyelesaian dari persamaan x 3 4x 2 + x + 6 = 0 adalah.. 6. Tunjukkan bahwa (x 2 ) merupakan factor dari 3x 3 + 2x 2 19x + 6, lalu tentukan factor-faktor yang lain. 7. Misalkan diketahui persamaan 2x 3 6x 2 8x + 20 = 0 mempunyai akar-akar x1,x2,x3. Modul Matematika SMA 312

319 Lembar Penilaian Nama : No. Absen : Judul Tugas : No. Kriteria Nilai Prestasi Rentang Nilai Penilaian Tes Formatif Evaluasi Benar cara 1. maupun 0 60 hasilnya 2. Benar cara, hasil salah Benar hasil, cara salah 0 20 Jumlah Jumlah x 60% Jumlah x 40% Jumlah Nilai Akhir Kesimpulan: Lulus / Tidak Lulus...,...Th... Modul Matematika SMA 313

320 9.3 EVALUASI Soal Evaluasi 1) Susunlah setiap bentuk suku banyak x 2 3x + 5 x 3 menurut pangkat turun dari variabel x dan sebutkan derajatnya. 2) Tentukan koefisienx 4 dari suku banyak (3x 2 + 1) 2 + x(2x 3) 3) Dengan menggunakan cara substitusi, tentukan nilai dari f(-3), jika f x = x 3 8x 3 4) Dengan menggunakan cara substitusi, tentukan nilai setiap suku banyak untuk nilai x yang diberikan.4x 2 6x + 2, untuk x = 1 2 5) Dengan menggunakan cara skema, tentukan nilai dari f(-5), jika f x = 2x 4 + 8x 3 x 2 19x + 8 6) Dengan menggunakan cara horner, tentukan nilai setiap suku banyak, untuk nilai x yang diberikan16x 3 4x + 6, untuk x = 1 2 7) Tentukan x yang menjadikan suku banyak berikut bernilai nol.f x = x 3 + 2x 2 8x 8) Tentukan nilai dibawah ini. a. Jika diketahuif x = 3x 2 + 5x 2 ax + 8 mempunyai nilai f(-2)= 26, tentukan nilai a. b. Diketahui f x = x 3 ax 2 + bk 9, jika f(1) = - 6 dan f(3)= 6 tentukan nilai dari (a b) 2. 9) Suku banyak 3x 3 + 7x 2 + ax 6 dibagi x + 2 sisanya 16. Tentukan nilai a. 10) Bila 2x 3 + x 2 + 4x + 4 dan 2x 3 + 3x 2 5x + p dibagi 2x 3 mempunyai sisa yang sama, tentukan nilai p. 11) Tentukan sisa pada pembagian (x 3 2 㔂 + 7) oleh (x + 2 ). 12) Tentukan sisa pada pembagian(4x 3 2x 2 + 3) oleh (2x 3 ). 13) Suku banyak (6x 3 + 7x 2 + px 24 habis dibagi oleh 2x- 3. tentukan nilai p=. 14) Suku banyak f(x) jika dibagi (x + 2) mempunyai sisa 14 dan dibagi (x 4 ) mempunyai sisa -4. tentukan sisanya jika f(x) dibagi (x 2 2x 8). Modul Matematika SMA 314

321 15) Tentukan k sehingga suku banyak (2x 4 9x 3 + 5x 2 + kx 4) mempunyai factor (x 4 ) Lembar Penilaian Nama :... Kelas :... No. Absen :... Judul Tugas :... No. Kriteria Penilaian Rentang Nilai Nilai Prestasi Tes Formatif Evaluasi 1. Benar cara maupun hasilnya Benar cara, hasil salah Benar hasil, cara salah 0 20 Jumlah Jumlah Jumlah x 60 % Jumlah x 40% Jumlah Nilai Akhir Kesimpulan: Lulus/Tidak Lulus...,...Th... Modul Matematika SMA 315

322 DAFTAR PUSTAKA Alisah, Erawati dan M,Idris Buku Pintar Matematika.Jogyakarta : Mitra Pelajar Estien, Yazid.2013,Matematika SMA dan MA.Yogyakarta:Andi. Fathurin Zen, Trigonometri.Bandung: Alfabeta Fitriana, Stalis Matematika Semester 3. Jakarta : Erlangga Kanginan, Marthen Matematika 1 untuk SMK/SMA Kelas X Kelompok Wajib. Bandung: Grafindo Media Pratama. Kasmina dan Toali Matematika untuk SMK/MAK Kelas X. Jakarta: Erlangga. Kementerian Pendidikan dan Kebudayaan Matematika untuk SMA/MA kelas X. Jakarta: Politeknik Negeri Media Kreatif Kementerian Pendidikan dan Kebudayaan Matematika: Buku Guru/Kementerian Kementrian pendidikan dan kebudayaan, Matematika : Buku Guru / Kementerian Pendidikan dan Kebudayaan untuk SMA/MA/SMK/MAK Kelas XI, Jakarta : 2014 Kementrian pendidikan dan kebudayaan, Matematika : Buku Siswa untuk SMA/MA/SMK/MAK Kelas XI, Jakarta : 2014 Kuntarti, Sri Kurnianingsih dan Sulistiyono.2007.Matematika SMA dan MA.Jakarta:Esis. Martono, Koko dan Eryanto, R. dan Noor, Firman Syah Matematika dan Kecakapan Hidup Untuk SMA Kelas X. Bekasi: Ganeca exact. Marwanta dkk Matematika SMA Kelas X. Jakarta: Yudhistira. Noormandiri, Matematika 2006.Jakarta: Penerbit Erlangga. Pendidikan dan Kebudayaan. Balitbang : Pusat Kurikulum dan Perbukuan, Kemdikbud. Rosihan dan Indriyastuti.2013 Prespektif Matematika 1.Solo.PT Tiga Serangkai Pustaka Mandiri Sharma, S N, Matematika 1 A. Jakarta: Yudhistira Sukino, 2013, Matematika Jilid 1B untuk SMA/MA Kelas X Semester 2, Jakarta: Erlangga Sulistiyono Matematika SMA. Jakarta : Erlangga Sunardi Hari Subagyo, Mathematics.Jakarta: PT Bumi Aksara Tim MGMP Matematika Kab Tulungagung.2013.Matematika SMA dan MA.Tulungagung. Modul Matematika SMA 316

323 Tung, Khoe Yau Pintar Matematika SMA Kelas X IPA untuk Olimpiade dan Pengayaan Pelajaran. Yogyakarta: C.V ANDI OFFSET. Widyantini STATISTIKA. Yogyakarta : Widyaiswara. Winokromo, Sartonp Matematika untuk SMA kelas X KTPS 2006.Jakarta : Erlangga Wirodikromo, Sartono Matematika Jilid 1 untuk Kelas X. Jakarta: Erlangga. Yuana, Rosihan Ari dan Indriyastuti Perspektif Matematika 1 untuk Kelas X SMA dan MA Kelompok Peminatan Matematika dan Ilmu Alam. Solo: PT Tiga Serangkai Pustaka Mandiri. Zaelani, Ahmad, dkk. 2006, Matematika SMA dan MA. Bandung: Yrama Widya Zen, Fathurin Trigonometri. ALFABETA : Bandung Modul Matematika SMA 317

324 KUNCI JAWABAN Kunci a. 2 5 x 2 9 = menggunakan sifat pertama = 2 14 b. 3 5 x 3 6 = menggunakan sifat pertama c. 45 x 4 3 = 3 11 = = menggunakan sifat pertama =4 8 2 menggunakan sifat kedua = a = 1 x pangkat bulat negatif = = x sifat pertama = b. 3 4 = = 1 81 pangkat bulat negatif c. x 3 x 3 = x3. x 3 = x 3+( 3) sifat pertama = x 0 aturan pangkat nol = 1 Kunci a. 8 = 4 x 2 = 4 x 2 = 2 2 bentuk akar b = Modul Matematika SMA 318

325 = a. 12 = 4 x 3 = 4 x 3 = 2 3 bukan bentuk akar b. 48 x 4 y 13 = 16 x 3 x 4. (y 12 y 1 ) = 16 x 4 y 12. 3y = 4x 2 y 6 3y 3. a = x x 2 = = = ( ) 2 = 3 2 b = 18 6 = 3 Kunci a = 6 10 x = = b x = 4 x 3x 5 3x 3x = 4 3x 5. 3x = 4 15x 3x 7. p + q = = = (2 3)2 +(2+ 3) 2 (2) 2 ( 3) 2 Modul Matematika SMA 319

326 = ( ) 4 3 = 14 1 = a = (2 2 x 3) 2 3 = 2 2 x 2 3 x 32 3 b. ɑ 3 = x = = ( = 2 x 2 3 = = 1 3 ɑ2 = 1 ɑ 1 1 x ɑ2 3 x 3 2 = 1 ɑ ɑ x ɑ ɑ 3 x ) x 9 3 x 9 = 1 ɑ x ɑ ɑ = 1 ɑ 2 ɑ = 7 1 x x 5 = 7 1 x 5 4 x x 5 4 x 5 4 = 7x 5 5 x 5 = 7x 4 5 x 1 = 7 5 x 4 x Kunci Nyatakan dalam bentuk logaritma yang ekuivalen : a. a n = b Penyelesaian : a n = b a log b = n Modul Matematika SMA 320

327 b. 3 x = y Penyelesaian : 3 x = y 3 log y = x 2. Nyatakan bentuk berikut menjadi bentuk pangkat : a. 2 log x = n Penyelesaian : 2 log x = n x = 2 n b. 3 log a = y Penyelesaian : 3 log a = y a = 3 y c. 10 log 100 = 2 Penyelesaian : 10 log 100 = = 10 2 d. 2 log a = 5 Penyelesaian : 2 log a = 5 a = Hitunglah nilai logaritma berikut : a. 5 log 625 Penyelesaian : Misal : 5 log 625 = x 5 x = 625 b. 5 log 0,2 x = 4 Penyelesaian : Misal : 5 log 0,2 = x 5 x = 0,2 x = 0,4 4. Sederhanakan! a. 6 log log 54 Penyelesaian : 6 log log 54 = 6 log (4 54) = 6 log 216 = 6 log 6 3 = 3 b. log 25 + log 4 Penyelesaian : log 25 + log 4 = log 25 4 Modul Matematika SMA 321

328 c. 2 log 7 2 log 28 Penyelesaian : 2 log 7 2 log 28 = 2 log 7 28 = 2 log 1 4 = = 2-2 = 2 d. 2 log 16 2 log 4 Penyelesaian : 2 log 16 2 log 4 = 2 log 16 4 e. 2 log log 3 = 2 log 4 = 2 log 2 2 =2 Penyelesaian : 2 log log 3 = log log 3 3 = log 4 + log 9 = log 4 9 = f. 2 log 5 log 25 log 36 = log 6 2 = 2 Penyelesaian : 2 log 5 log 25 = log 5 2 log 25 = log 25 log 25 = log = log 1 Kunci Jika 2 log 3 = a, nyatakan logaritma-logaritma berikut dalam bentuk a : a. 8 log 3 Penyelesaian : 8 log 3 = log 3 = log 3 = log 3 = 1 2 log 3 = 1 a log 8 log log b. 4log 81 Penyelesaian : 4 log 81 = c. 8log 27 Penyelesaian : 8 log 27 = log 81 log 4 log 27 log 8 = log 34 = 4 log 3 = 4 2 log 3 = 2a log log 2 2 = log 33 log 2 3 = 3 log 3 3 log 2 = 2 log 3 = a 2. Sederhanakan! a. p log 5 5 log y y log p Penyelesaian : gunakan sifat logaritma yang ke-5 p log 5 5 log y y log p = p log p b. 2 log 25 5log 16 Modul Matematika SMA 322

329 Penyelesaian : gunakan sifat logaritma yang ke-5 2 log 25 5 log 16 = 2 log 25 5 log 16 = 2 log 5 5l og 4 = 2 log 4 = 2 log 2 2 = 2 c. 3 log 16 (4log log 3) Penyelesaian : gunakan sifat logaritma yang ke-5 dan ke-1 3 log 16 ( 4 log log 3) = 3 log 4 ( 4 log 9 3) = 3 log 4 ( 4 log 27) = 3 log 4 ( 4 log 3 3 ) = 3 log 4 4 log 3 = 3 log 3 = 1 d. 9 log 3 3 log 27 Penyelesaian : gunakan sifat logaritma yang ke-5 9 log 3 3 log 27 = 9 log 27 = 32 log 3 3 = 3 3. Diketahui 2 log 3 = a, nyatakan dalam bentuk a dari logaritma berikut : a. 2 log 27 Penyelesaian : 2 log 27 = 2 log 27 = 2 log 33 = 3 2 log 3 = 3a = 3a 2 log 2 2 log b. 8log 9 Penyelesaian : 8 log 9 = log 9 = 2 log 32 = 2 2 log 3 log 8 2 log = 2a log 2 3 c. 4log 9 Penyelesaian : 4 log 9 = log 9 = 2 log 32 = 2 2 log 3 log 4 2 log = 2a log Dengan menggunakan kalkulator tentukanlah! a. log 4,186 = 0, b. log 4,2 = 0, c. log 0,096 = -1, d. log 103 = 2, Kunci a. 3x 4 x x 2 = 3 (x 4+2 ) = 3x 6 b. (3ɑ 3 b 2 ) 4 = 3 4 x (ɑ 3 ) 4 x (b 2 ) 4 = 81 x ɑ 3 x 4 x b 2 x 4 = 81 ɑ 12 b 8 2. ɑ2 b 3 c 1 ɑ 2 b c 2 = ɑ2+2 x b 3 1 x c 1 2 = ɑ 4 x b 2 x c 3 Modul Matematika SMA 323

330 = ɑ4 x b 2 c 3 = 24 x = 16 (9) 125 = (3x + 5) 9 = (3x + 5) 8 x (3x + 5) 1 = (3x + 5) 8 x (3x + 5) = (3x + 5) 4 (3x + 5) 4. ( )2 = = x = (3) = = a. 2x x 3 = 2x 1 (x 3 4) = 2x 3 4 b. 3x 2 3 = 3x 2 x 2 3 x 4 = 3x a = x 3 = x = ( ) 2 = Modul Matematika SMA 324

331 b = = ( 5 2) 2 7. Hitunglah : a. log 21 log 210 = 5 2 b. log 25 log 5 2 c. 3log 4,5 + 3 log 6 d. 6log log 8 6 log 2 e. log 2 + log 10 log 1 5 f. 3log 45 9 log 25 g. log log 3 log Sederhanakan! a. 2 log log 3 b log log 8 3 c. 5log log 4 d. 2log 24 8 log 27 e. 5 log 9 9 log 625 f. 5 log log 2 log 25 g. 8 log 8 2 log 2 9. Jika 5 log log 125 = x, maka nilai x adalah Diketahui 3 log 7 = a, 5 log 2 = b, dan 2 log 3 = c. Nyatakan logaritma berikut dalam bentuk a, b, dan c a. 7 log 3 b. 4 log 5 c. 3 log Jika 3 log 5 = p, tunjukkan bahwa 9 log 5 = 1 4 p 12. Diketahui 2 log 7 = a dan 2 log 3 = b, maka nilai dari 6 log 14 adalah Diketahui 3 log 4 = p dan 3 log 5 = q, maka nilai dari 3 log 80 adalah Dengan menggunakan kalkulator, tentukan nilai logaritma berikut : a. log 4,6 b. log 5,2 Modul Matematika SMA 325

332 c. log 69,4 d. log 0,17 Kunci ) y = x 2 + 2x 8 nilai koefisien a = 1, b = 2, dan c = 8 (a) Titik potong dengan sumbu koordinat (i) Titik potong dengan sumbu X y = 0, maka x 2 + 2x 8 = 0 x + 4 x 2 = 0 x = 4 atau x = 2 Jadi titik potong grafik dengan sumbu X adalah (-4,0) dan (2,0) (ii) Titik potong dengan sumbu Y x = 0, maka y = y = 8 Jadi, titik potong grafik dengan sumbu Y adalah (0,-8) (b) Sumbu simetri x = b 2a = (2) 2(1) = 1 (c) Nilai minimum fungsi y = D = b2 4ac 4a 4a (d) Koordinat titik puncak = 36 4 = 9 (x p, y p ) = b, (b2 4ac ) 2a 4a = 2, (22 4(1)( 8) = 1, 9 2) y = x 2 2x + 3 (i) Pasangan koordinat titik x, f(x) Modul Matematika SMA 326

333 x f(x) (ii) Gambar titik-titik (-3,0), (-2,3), (-1,4), (0,3), (1,0) (iii) Hubungkan titik-titik pada (ii) dengan kurva Kunci (1) Dengan menggunakan rumus y = a x x 2 p + y p untuk x p = 1 dan y p = 5, maka diperoleh y = a x x 2 p + y p = a x = a x 2 2x Karena grafik melalui titik (-1,1) maka 1 = a = a a = 1 Jadi, rumus fungsi kuadratnya adalah y = 1 x 2 2x y = x 2 + 2x + 4 (2) Grafik memotong sumbu X di titik (-3,0) dan (1,0), maka rumus fungsi kuadratnya adalah y = a x x 1 x x 2 = a x 3 x 1 = a x + 3 x 1 Karena grafik melalui titik (0,6) maka 6 = a Modul Matematika SMA 327

334 Jadi, rumus fungsi kuadratnya adalah 6 = a 3 1 a = 2 y = 2 x + 3 x 1 y = 2x 2 4x + 9 (3) Misalnya rumus fungsi kuadrat tersebut adalah y = ax 2 + bx + c melalui titik (1,2), maka 2 = a + b + c (i) melalui titik (2,0), maka 0 = 4a + 2b + c (ii) melalui titik (3,-1), maka -1 = 9a + 3b + c (iii) dengan metode eliminasi dan substitusi diperoleh a = 1, b = 7, dan c = Sehingga rumus kuadrat yang dicari adalah y = 1 2 x2 7 x (4) Dari gambar diperoleh titik puncak (3,0) dan melalui (0,9). Sehingga kita dapat menggunakan rumus y = a x x p 2 + y p Karena grafik melalui titik (0,9), maka 9 = a = a = 9a a = 1 Jadi, rumus fungsi kuadratnya adalah y = 1 (x 3) 2 y = x 2 6x +9 = a x = a x 3 2 (5) Misalkan, banyaknya peserta wisata adalah x orang. Bila x > 100, maka setiap peserta wisata akan membayar sebesar (800 5(x 100)) ribu rupiah. Besarnya pemasukan biro perjalanan untuk x orang dalam ribuan rupiah adalah f(x) = x(800 5(x 100)) = -5x x = -5(x 130) Nilai maksimum fungsi ini tercapai bila x = 130 orang dengan setiap peserta wisata membayar sebesar Rp ,00 dan pemasukan terbesar biro itu adalah Rp ,00. Kunci Modul Matematika SMA 328

335 1. L = 9 + 6x + x 2 nilai koefisien a = 1, b = 6, dan c = 9 1) Titik potong dengan sumbu koordinat a. Titik potong dengan sumbu X y = 0, maka 9 + 6x + x 2 = 0 x + 3 x + 3 = 0 x = 3 atau x = 3 Jadi, titik potong grafik dengan sumbu X adalah (-3,0) dan (-3,0) b. Titik potong dengan sumbu Y x = 0, maka y = (0) 2 y = 9 Jadi, titik potong grafik dengan sumbu Y adalah (0,9) 2) Sumbu simetri y = b 2a = (6) 2(1) = 3 3) Nilai minimum y = D = b2 4ac 4a 4a 4) Koordinat titik puncak x p, y p = b, b2 4ac 2a 4a = 6, = 3,0 = (6)2 4 1 (9) 4(1) = 0 2. Sketsa grafik secara sederhana (i) (x, f x ) Modul Matematika SMA 329

336 x f(x) (ii) Gambar titik-titik (-5,4), (-4,1), (-3,0), (-2,1), dan (-1,4) pada bidang cartesius. (iii) Hubungkan titik-titik pada (ii) dengan kurva 3. Rumus fungsi kuadrat a. Dengan menggunakan rumus y = a(x x p ) 2 + y p untuk x p = 1 dan y p = 0 y = a x x 2 p + y p = a x = a x = a(x 2 + 2x + 1) Karena grafik melalui titik (1,6), maka 6 = a( (1) + 1) 6 = 4a a = 3/2 Jadi, rumus fungsi kuadratnya adalah y = 3 2 (x2 + 2x + 1) y = 3 2 x2 + 3x b. Misalnya rumus fungsi kuadrat tersebut adalah y = ax 2 + bx + c melalui titik (1,3), maka 3 = a + b + c (i) melalui titik (2,3), maka 3 = 4a + 2b + c (ii) melalui titik (4,2), maka 2 = 16a + 4b +c (iii) Modul Matematika SMA 330

337 dengan metode eliminasi atau substitusi diperoleh a = 1 12, b = 1 4, dan c = Sehingga rumus kuadrat yang dicari adalah y = 1 12 x x Misalkan, ukuran kebun adalah x y meter, maka bagian kebun yang akan dipagari adalah 2x + y meter. Karena panjangnya pagar kawat adalah 100 meter, maka 2x + y = 100 yang menghasilkan y = 100 2x. Luas kebun adalah xy, yang dapat dinyatakan sebagai fungsi kuadrat L(x) = x(100 2x) = -2x x = -2(x 25) Nilai maksimum fungsi ini tercapai bila x = 25 meter, yang menghasilkan y = = 50 meter, dengan luas terbesar L(25) = 1250 meter persegi. Kunci x + 3y = 1 x 1 x + 3y = 1 2x - y = 9 x 3 6x 3y = x = 28 x = 4 x + 3y = 1 x 2 2x + 6y = 1 2x y = 9 x 1 2x y = 9 + 7y = -7 y = -1 Jadi, himpunan penyelesaiannya adalah {(4, -1)} 2. x + 7y = -1 x 1 3x + 7y = -1 x - 3y = 5 x 3 3x 9y = 15-16y = -16 y = -1 subsitusikan nilai y = -1 ke persamaan x 3y = 5 sehingga diperoleh x 3(-1) = 5 x + 3 = 5 x = 2 Modul Matematika SMA 331

338 Jadi Himpunan penyelesaiannya adalah {(2,-1)} Kunci x y + z = -1 (1) 3x + 2y z = 10.. (2) -4x y 3z = -3. (3) Dari persamaan (1) dan (3), eliminasikan variabel x. 2x y + z = -1 x 2 4x 2y + 4z = -2-4x y 3z =-3 x 1-4x y 3z = y + z = -5 (4) Dari persamaan (2) dan (3), eliminasikan variabel x. 3x + 2y z = 10 x 4 12x + 8y 4z = 40-4x y 3z = -3 x 3-12x - 3y 9z = y 13z = 31 (5) Kemudian, eliminasi variabel y dari persamaan (4) dan (5) -3y + z = -5 x 5-15y + 5z = -25 5y 13z = 31 x 3 15y 39z = z = 68 z = -2 subsitusikan nilai z = -2 ke persamaan (4) sehingga diperoleh y =1 subsitusikan nilai z = -2 dan y = 1 ke persamaan 1 sehingga diperoleh x = 2 jadi himpunan penyelesaiannya adalah {(2,1,-2)} Modul Matematika SMA 332

339 Kunci Kita misalkan jumlah beras jenis I = x dan jumlah beras jenis I = y, maka: x + y = x y = Selanjutnya, selesaikan dengan menggunakan salah satu metode penyelesaian, misalnya dengan metode cepat, maka: => y = ( )/( ) => y = ( )/( ) => y = 6000/200 => y = 30 Substitusi nilai y = 30 ke persamaan x + y = 50, maka: => x + y = 50 => x + 30 = 50 => x = => x = 20 Dengan demikian, jumlah beras jenis I dan beras jenis II yang dijual adalah 20 kg dan 30 kg. Kunci x + y 6 dan x 2y -4 merupakan pertidaksamaan linier dalam variabel x dan y, sehingga keduanya dapat membentuk sistem pertidaksamaan linier dua variabel. 2. 2x + y = 8 X 0 4 Modul Matematika SMA 333

340 Y 8 Titik (0, 8) 0 (4, 0) 8 y X = 2 Y = 3 2x + y = x 3. 3x + y = 3 x 0 1 y y titik (0, 3) (1, 0) 0 1 3x + y = 3 X y Pertidaksamaan 3x + y 3 Tanda didepan variabel y adalah + Tanda berarti + 3 Perkalian tanda +. + = + (atas) Arsir di atas garis pembatas (3x + y = 3) 0 1 3x + y = 3 X Kunci Modul Matematika SMA 334

341 1) C 6) A 11) D 16) C 21) A 2) C 7) B 12) A 17) B 22) B 3) D 8) A 13) C 18) C 23) B 4) A 9) C 14) B 19) C 24) C 5) D 10) B 15) A 20) B 25) C Kunci Koordinat Cartesius adalah letak suatu titik yang mempunyai absis x, ordinat y. 2. Koordinat Kutub adalah letak suatu titik yang disajikan dalam bentuk r dan α. 3. Penyelesaian : koordinat kutub koordinat kartesius (r, α) ( x, y ) r = 6 3 ; α = 60 (Karena α sudut di kuadran I, maka x positif f dan y positif) x = r cos α x = r cos α 6 3 x cos x y = r sin α y = r sin α 6 3 x sin x x 3 9 sehingga koordinat kartesiusnya ialah ( 3 3, 9) 4. penyelesaian : (x,y) (r, α) Modul Matematika SMA 335

342 x = -4, y=4 (karena x negatif dan y positif, maka α sudut di kuadran II) r = x 2 + y tan α = x y karena α sudut di kuadran II, maka : α = (180 45) = 135 maka koordinat kutubnya ialah ( 4 2, 135 ) 5. P ( -2 3, -2 ) r = 2 ( 2 3) ( 2) 2 = 12 4 = 4 Tan α = = = 2100 karena ada dikuadran III jadi koordinat kutup titik P adalah ( 4, 2100 ) Kunci Gunakan rumus Luas Δ ABC (L) = 1 a. b. sin C 2 L = sin L = L = 13,5 cm 2 Modul Matematika SMA 336

343 2. Keliling segitiga KLM (2s) = ( ) cm = 32 cm atau s = 16 cm. Luas Δ KLM = s s a s b (s c) Luas Δ KLM = (16 10) Luas Δ KLM = Luas Δ KLM = ,9 cm 2 3. Dengan rumus Luas Δ ABC = 1 sin A sin B c2 2 sin C Luas Δ ABC = sin 250 sin 35 0 Luas Δ ABC = sin Luas Δ ABC = 12,5 ( 0,2799) Luas Δ ABC 3,499 cm 2 0,4226 (0,5736) 0,8660 diperoleh Kunci Maka besar sudut B adalah C B = ( A+ C) B = ( ) B = cm 75 a B = 45 A 60 A 2. cos 20. Cos 40 + sin 20. Sin 40 = cos (20-40 ) = cos (-20 ) = cos Gunakan rumus Sin (α β) sin 42 cos 12 - cos 42 sin 12 = sin (42-12 ) = sin 30 = cos 90 + A = cos 90 cos A sin 90 sin A = 0. cos A 1. sin A = sin A Jadi, cos 90 + A = sin A Modul Matematika SMA 337

344 5. tan 80 +tan 55 1 tan 80 tan 55 = tan ( ) = tan 135 = tan ( ) = - 45 = -1 Jadi, nilai tan 80 +tan 55 1 tan 80 tan 55 adalah sin x = 3 sin x = sin x = sin 60 x 1 = 60 + k. 360 k = 0 Maka : x 1 = 60 x 1 = 180 a + k. 360 = k. 360 Untuk k= 0 x 2 = 120 Jadi, x 1 = 60, x 2 = 120 Kunci sin 135 = sin = sin 45 = cos 210 = cos = cos 30 = tan 315 = tan = tan 45 = 1 4. sec 300 = sec = sec 60 = 1 cos 60 = = 2 5. cos 60 = cos 60 = Luas ΔPQR = 1 PQ. PR sin P 2 = sin P = 40 sin P Modul Matematika SMA 338

345 Karena luas ΔPQR diketahui sama dengan 30 cm 2, maka diperoleh hubungan : 40 sin P = 30 sin P = 3 4 = 0,75 P = 48,5 atau P = ,6 = 131,4 Jadi, besar sudut P = 48,6 atau sudut P = 131,4 7. Diketahui : r = 4, α = 135 Maka x = r cos α = 4 cos 135 = 4 cos(180 45) = 4 ( cos 45 ) = 4 ( 1 2 2) = 2 2 y = r sin α = 4 sin 135 = 4 sin(180 45) = 4 sin 45 = 4 ( 1 2 2) = 2 2 Jadi, koordinat cartesiusnya adalah ( 2 2, 2 2 ) 8. Diketahui : x = 3, y = 1 Maka r = x 2 + y 2 = = = 10 tan α = y x = 1 3 Modul Matematika SMA 339

346 α = arc 1 3 = 18,43 Jadi, koordinat kutub nya ialah ( 10, 18,43 ) 9. dalam ABC α + β + γ = γ = 180 γ = 180 a sin a = b sinβ 8 = b sin 30 sin = b b = 11,313 m a sin a = c sin γ 8 sin 30 = c sin = c 0,9659 c = 15,455 m jadi, panjang bagian lauar kuda-kuda atap tersebut adalah 11,313 dan 15,455 m. 10. diketahi A= 60, b=10 cm, c= 16 cm. Maka dengan aturan kosinus diperoleh: a 2 = b 2 + c 2 2bc. cos A = x 10 x 16 x cos 60 = Modul Matematika SMA 340

347 = a 2 = 196 a = 14 Jadi a = sin (A+B)= sin A cos B + cos A sin B = 3 4 sin (A - B)= sin A cos B cos A sin B = sin A cos B = sin A cos B = 5 4 sin A cos B = 5 8 jadi, sin A cos B = Ruas kiri= Cos (α β) = cos (90 30) = cos 60 = 1 2 Ruas kanan= cos a cos β + sin a sin β = cos 90 cos 30 + sin 90 sin 30 = (0 x 1 2 3) + ( ) = 1 2 = ruas kiri Jadi, berlaku bahwa cos a β = cos a cos β + sin a sin β untuk a dan β = tan a + β = tan a β = 1 tan a+tan β = tan a tan β tan a tan β = tan a tan β = = = 7 = Kunci a. Kalimat terbuka, karena ada variabel x. Variabel harus diganti dengan angka agar dapat dinyatakan sebagai pernyataan. Modul Matematika SMA 341

348 b. Pernyataan, karena benar setiap orang membutuhkan oksigen untuk bernafas. c. Pernyataan, karena = 4 jadi pernyataan > 0 bernilai salah. d. Pernyataan, karena jumlah sudut dalam segitiga adalah 180 jadi pernyataan bernilai benar. e. Kalimat terbuka, karena ada variabel p. Variabel p harus diganti dengan angka agar dapat dinyatakan sebagai pernyataan 2. Diketahui: p = benar q = salah Ditanya: Nilai kebenaran dari ~ (p ~ q)? Jawab: ~q = benar p ~ q = B B = B ~ p ~ q = S 3. Hipotesis dari implikasi adalah Semarang ibu kota Jawa Tengah (p) bernilai benar. Agar implikasi tersebut bernilai benar, kesimpulan (q) juga harus bernilai benar. Sehingga, x 2 3x - 28 = 0 (x - 7)(x + 4) = 0 x = 7 atau x = Diketahui : p : saya lulus ujian q : semua keluarga berbahagia r : saya melanjutkan ke Perguruan Tinggi Negeri t : saya bekerja Ditanya : a. ~ p ~ t b. ~ q ~ r Jawab : Modul Matematika SMA 342

349 ~ p : saya tidak lulus ujian ~ q : beberapa keluarga tidak berbahagia ~ r : saya tidak melanjutkan ke Perguruan Tinggi Negeri ~ t : saya tidak bekerja a. ~ p ~ t Jika saya tidak lulus ujian maka saya tidak bekerja. b. ~ q ~ r Beberapa keluarga tidak berbahagia jika dan hanya jika saya tidak melanjutkan ke Perguruan Tinggi Negeri. Kunci ) a) Konvers q p : jika 5 merupakan bilangan prima, maka > 5 invers ~p ~q: jika , maka 5 bukan merupakan bilangan prima kontraposisi ~q ~p: jika 5 bukan merupakan bilangan prima, maka b) p = saya pergi ke dokter q = saya sakit Konvers q p : jika saya sakit, maka saya pergi ke dokter. Invers ~p ~q: jika saya tidak pergi ke dokter, maka saya tidak sakit. Kontraposisi ~q ~p: jika saya tidak sakit, maka saya tidak pergi ke dokter. c) p = harga turun q = permintaan naik Konvers : Jika permintaan naik, maka harga turun. Invers : Jika harga tidak turun, maka permintaan tidak naik Kontraposisi : Jika permintaan tidak naik, maka harga tidak turun 2) diketahui bahwa nilai kebenaran implikasi sama dengan nilai kebenaran kontraposisinya. Sehingga pernyataan yang senilai dengan implikasi adalah kontraposisinya a. jika ada pelajaran sekolah yang tidak dapat saya ikuti dengan baik, maka saya tidak rajin. Modul Matematika SMA 343

350 b. ~ q r ~ ~p atau (~q ~r) p c. ~ ~r ~(p q) atau r (p ~q) 3) Misalkan: x = siswa SMA p(x) = terpelajar Oleh karena itu, kalimat Setiap siswa SMA terpelajar dapat ditulis dalam kalimat kuantor x, p x. Negasi dari x, p x adalah x, ~p x. Berarti, negasi dari Setiap siswa SMA terpelajar adalah Terdapat siswa SMA yang tidak terpelajar. Kunci Kesimpulan yang sah dari premis berikut a) P 1 : Jika terjadi kecelakaan, maka jalan macet P 2 : jika jalan macet, maka banyak yang terlambat : jika terjadi kecelakaan, maka banyak yang terlambat b) P 1 : jika harga barang naik, maka permintaan barang turun P 2 : jika permintaan barang turun, maka produksi barang turun : jika harga barang naik, maka produksi barang turun c) P 1 : jika n bilangan ganjil, maka n 2 bilangan ganjil P 2 : jika n 2 bilangan ganjil, maka n bilangan genap : jika n bilangan ganjil, maka n bilangan genap 2. a) Tabel nilai kebenaran pernyataan majemuk ((p q) q) p. p q p q ( p q) q ((p q) q) p B B B B B B S S B B S B B B S S S B S B Dengan tabel kebenaran diketahui bahwa ((p q) q) p bukan tautologi. Maka penarikan kesimpulan di atas tidak sah atau tidak valid. Modul Matematika SMA 344

351 b) Tabel nilai kebenaran pernyataan majemuk ((~p ~q) q) p. p q ~p ~q ~p ~q ~p ~q q ((~p ~q) q) p B B S S B B B B S S B B S B S B B S S S B S S B B B S B Dengan tabel kebenaran diketahui bahwa ((~p ~q) q) p adalah tautology. Maka penarikan kesimpulan di atas sah atau valid. 3. a) Tabel nilai kebenaran pernyataan majemuk ((p q) ~q) p. p q ~q p q (p q) ~q ((p q) ~q) p B B S B S B B S B S S B S B S B S B S S B B B S Dengan tabel kebenaran diketahui bahwa ((p q) ~q) p bukan tautologi. Maka penarikan kesimpulan di atas tidak sah atau tidak valid. b) Tabel nilai kebenaran pernyataan majemuk ((p q) p) ~q. p q ~q p q ((p q) p) ((p q) p) ~q B B S B B S B S B S B B S B S B S B S S B B S B Dengan tabel kebenaran diketahui bahwa ((p q) p) ~q bukan tautologi. Maka penarikan kesimpulan di atas tidak sah atau tidak valid. Kunci Termasuk pernyataan Modul Matematika SMA 345

352 Untuk x + 2 = x 2 : Karena untuk setiap nilai x, x + 2 = x 2 bernilai salah, maka x + 2 = x 2 merupakan pernyataan bernilai salah Untuk 2(x + 1)+ 3 = 2x +5 : Karena untuk setiap nilai x, 2(x + 1)+ 3 = 2x +5 bernilai benar, maka 2(x+ 1)+ 3 = 2x +5 merupakan pernyataan bernilai benar. 2. Diketahui: 2 bilangan prima dan sama dengan 5 Ditanya : negasi pernyataan? Jawab : p : 2 bilangan prima q : sama dengan 5 p : 2 bukan bilangan prima q tidak sama dengan 5 Sehingga negasi pernyataannya menjadi, 2 bukan bilangan prima atau tidak sama dengan Diketahui: 3 bilangan prima atau 5 bilangan genap Ditanya : nilai kebenaran? Jawab : bilangan prima atau 5 bilangan gena B S Disjungsi bernilai benar apabila paling sedikit satu dari keduanya bernilai benar. Jadi, 3 bilangan prima atau 5 bilangan genap bernilai benar. 4. Diketahui : 6 bilangan prima dan 3 bilangan ganjil Ditanya : nilai kebenaran? Jawab : 6 bilangan prima dan 3 bilangan ganjil S B Suatu konjungsi bernilai benar jika kedua pernyataan tunggalnya bernilai benar. Jadi, 6 bilangan prima dan 3 bilangan ganjil bernilai salah. Modul Matematika SMA 346

353 5. Diketahui : jika = 5, maka = 7 Ditanya : nilai kebenaran? Jawab : p : = 5 ( B ) q : = 7 ( S ) Implikasi bernilai salah jika p bernilai benar dan q bernilai salah, dalam hal lain implikasi bernilai benar. Jadi, p q bernilai salah. 6. Diketahui : = = 8 Ditanya : nilai kebenaran? Jawab : = = 8 B B Biimplikasi bernilai benar, jika keduanya mempunyai nilai kebenaran yang sama (semua benar atau semua salah). Jadi, = = 8 bernilai benar. 7. Tabel kebenaran dari ~ p ~ q p Q ~ p ~ q ~ p ~ q B B S S B B S S B B S B B S S S S B B B 8. Diketahui : x ganjil 2x genap Ditanya : nilai kebenaran? Jawab : p : x ganjil, berarti p = (1, 3, 5,... ) q : 2x genap, berarti q = (2, 3, 10,...) Biimplikasi bernilai benar, jika keduanya mempunyai nilai kebenaran yang sama (semua benar atau semua salah). Karena p q, maka pernyataan p q bernilai salah. Modul Matematika SMA 347

354 9. p Q q p [p (q p)] [p (q p)] B B B B S B S B B S S B S S B S S B B S 10. Diketahui : p bernilai benar, q bernilai benar, dan r bernilai salah. Ditanya : nilai kebenaran a. p q r b. ~ p [(p q) r] Jawab : a. p q r B B S B S B b. ~ p p q r S B B S S ( B S) S S S 11. a) Konvers : Jika semua penduduk Indonesia pandai, maka biaya sekolah gratis Invers : Jika biaya sekolah tidak gratis, maka semua penduduk Indonesia tidak pandai. Kontraposisi : Jika semua penduduk Indonesia tidak pandai, maka biaya sekolah tidak gratis. b) Konvers : Jika Badu lulusan SMP, maka ia siswa SMA Invers : Jika Badu bukan siswa SMA, maka ia bukan lulusan SMP Kontraposisi : Jika Badu bukan lulusan SMP, maka ia bukan siswa SMA c) Konvers : Jika Carli lulus tes, maka ia siswa yang pandai Invers : Jika Carli siswa yang tidak pandai, maka ia tidak lulus tes Kontraposisi : Jika Carli tidak lulus tes, maka ia siswa yang tidak pandai. d) Konvers : Jika Ali seorang anggota DPR, maka ia seorang anggota MPR Modul Matematika SMA 348

355 Invers : Jika Ali bukan seorang anggota MPR, maka ia bukan seorang anggota DPR Kontraposisi : Jika Ali bukan seorang anggota DPR, maka ia bukan seorang anggota MPR 12. p = hari ini hujan q = saya tidak pergi r = saya nonton sepak bola premis 1 : p q premis 2 : q r (modus silogisme) Kesimpulan: p r 13. Jika hari ini hujan maka saya nonton sepak bola Pernyataan yang memuat kata "Semua" atau "Setiap" negasinya memuat kata "Beberapa" atau "Ada" seperti berikut: a) ~p : Ada dokter tidak memakai baju putih saat bekerja. Kunci a. Titik A,B b. Titik D,C,E,F,G,H 2. a. Titik D,C,G,H b. Titik A,B,E,F 3. a. Titik B,C b. Titik A,D,E,F,G,H c. Titik D,E d. Titik A,B,C,F,G,H e. Titik A,G f. Titik B,C,D,E,F,H 4. a. Titik K,L,M,N Modul Matematika SMA 349

356 b. Titik P,Q,R,S c. Titik K,L,Q,P d. Titik M,N,R,S e. Titik K,M,R,P f. Titik L,Q,S,N 5. a. Titik A,B,C,D b. Titik T c. Titik B dan C d. Titik A,C,dan D Kunci Q H E F G R D C P A Gambar 2.8 B Jarak dari P ke Q adalah 2 14 cm 2. a. Jarak titik A ke garis BC adalah AB = 5 cm b. Jarak titik A ke garis FG adalah AF = 5 2 cm c. Jarak titik C ke garis FH adalah CO = cm d. Jarak titik P ke garis CD adalah PC = 5 2 = cm e. Jarak titik P ke garis BF adalah PQ = CB = 5 cm f. Jarak titik P ke garis BD adalah PR = cm. 3. Jarak B ke garis EG = 2 6 cm 4. a. jarak titik A ke bidang DCGF adalah AB = 10 cm, sebab AB tegak lurus bidang BCGF. Modul Matematika SMA 350

357 b. jarak titik A ke bidang CDHG adalah AD = 8 cm, sebab AD tegak lurus bidang CDHG. c. jarak titik A ke bidang EFGH adalah AE = 6 cm, sebab AE tegak lurus bidang EFGH. d. jarak titik O ke bidang ABFE adalah OP = 1 PQ = 1 (8) = 4 cm. 2 2 e. jarak titik O ke bidang BCGF adalah OR = 1 SR = 1 (10) = 5 cm. 2 2 f. jarak titik O ke bidang EFGH adalah OT = AE = 6 cm, sebab OT tegak lurus bidang EFGH. 5. a. panjang AC = 5 cm b. jarak titik puncak T ke bidang alas ABCD adalah TO = 6 cm. Kunci Jarak antara titik V dan titik A adalah cm. 2. jarak antara garis AE dan garis CG yang sejajar sama dengan panjang diagonal bidang AC = 6 2 cm. H G E F A D 6 cm k B C Gambar Jarak antara garis AE dan bidang BCGF yang sejajar itu sama dengan panjang rusuk AB = 5 cm. 4. Jarak antara bidang ABCD dan bidang EFGH sama dengan panjang rusuk AE = 3 cm. 5. Jarak antara garis AE dan garis GH yang bersilangan tegak lurus sama dengan panjang rusuk EH = 6 cm. Kunci ) a. Titik yang berada pada garis DF adalah titik D dan F. Modul Matematika SMA 351

358 b. Titik yang berada di luar bidang BCHE adalah titik A, B, F dan G. c. Garis yang sejajar dengan CF adalah garis DE. 2) a. Jarak titik H ke garis AC = 3 6 cm. b. Jarak titik B ke garis AG = 3 5 cm. c. Jarak garis AE dan CG = 6 2 cm. d. Jarak garis AB dan CDHG = 6 cm. e. Jarak bidang HFC dan DBE = 3 2 cm. 3) Jarak titik C ke bidang AFH = 4 3 cm. 4) Jarak antara titik T ke bidang ABCD = 16,45 cm. 5) a. Jarak AE ke CG = AC = 10 3 cm. 6) 3 2 7) b. Jarak ABCD dan EFGH = AE = 10 cm ) b Tegak lurus a 9) Empat buah prisma segitiga sama sisi 10) ABEF dan DCGH Kunci bukan Kunci Jika data tersebut kita daftarkan tanpa menggunakan label barang maka kita dapat menggunakan tabulasi kolom, diperoleh tabel sebagai berikut: Data keuntungan barang/jasa koperasi sekolah Jenis Barang/Jasa Jumlah Keuntungan (Satuan Ribu Rupiah) Buku tulis 400 Pensil 300 Ballpoint 550 Keping CD 200 Tinta printer 325 Modul Matematika SMA 352

359 Makanan ringan 710 Kertas hvs 350 Kertas folio 600 Minuman ringan dan air mineral 750 Seragam sekolah 900 Seragam olahraga 500 Buku bacaan 600 Majalah/komik 300 Fotocopy 525 Total 7010 Bagaimana jika data yang ada lebih banyak? Dengan bantuan pelabelan pada setiap jenis pada setiap jenis barang/jasa akan membantu dan lebih memudahkan kita dalam menyajikan data yang banyak serta dalam berbagai bentuk tabel, sehingga dengan data berlabel diperoleh dat berikut ini (satuan ribu rupiah) : Data keuntungan barang/jasa menggunakan label Jenis barang/jasa keuntungan Jenis barang/jasa keuntungan Dari penyajian tabel diatas oleh 5 jenis barang dengan keuntungan tertinggi, yakni: Data barang/jasa dengan keuntungan tertinggi No Jenis barang/jasa Jumlah keuntungan 1 Seragam sekolah Minuman ringan dan air mineral Makanan ringan Buku catatan Kertas folio 600 Modul Matematika SMA 353

360 nilai tukar 2. Kita akan membuat diagram garis terlebih dahulu, dengan cara yang sudah di pelajari 9,200 9,100 9,000 8,900 8,800 kurs uang kertas asing 05-Jul 06-Jul 07-Jul 08-Jul 09-Jul 10-Jul Kurs jual Kurs beli Dari diagram di atas diperoleh data sebagai berikut: Harga kurs jual tertinggi Rp berada di tanggal 6 juli dan terendah Rp berada di tanggal 7 juli. Harga kurs jual tertinggi Rp berada di tanggal 5 juli dan terendah Rp berada di tanggal 10 juli. 3. Dari data di atas diperoleh data penjualan smartphone adalah 180 unit. 1) Untuk menggambarkan diagram lingkaran biasanya digunakan dalam dua bentuk yakni bentuk derajat dan bentuk persentase. Dalam bentuk persentase kita menghitung lebih dahulu besar persentase tiap bagian data penjualan smartphone terhadap seluruh penjualan yakni 100%. Sama halnya dengan sudut pusat lingkaran terlebih dahulu menghitung tiap sudut lingkaran yaitu 360. Atau dihitung dengan menggunakan cara yang telah diajarkan diatas. Dengan pembulatan desimal maka besar persentase dan besar sudut lingkaran tiap bagian data penjualan smartphone adalah: Tipe Handphone Banayak Penjualan Persentase Sudut Pusat Lingkaran Tipe I % = 19% = Tipe II % = 14% = Modul Matematika SMA 354

361 Tipe III % = 11% = Tipe IV % = 22% = Tipe V 10 Tipe IV % = 6% = % = 28% = Dengan memperoleh besaran persentase tiap bagian pada data penjualan smartpone tersebut maka bentuk diagram lingkaran dalam bentuk persentase adalah sebagai berikut. Banyaknya Penjualan Smartphone Tipe IV 28% Tipe I 19% Tipe V 6% Tipe IV 22% Tipe III 11% Tipe II 14% Untuk diagram lingkaran dengan besaran sudut kamu selesaikan sebagai latihan. Dengan demikian dapat dinyatakan bahwa diagram lingkaran adalah penyajian data statistik dengan menggunakan gambar yang berbentuk lingkaran yang pada bagianbagian dari daerah lingkaran menunjukan juring atau persentase dari keseluruhan. 2) dari data tersebut kita juga dapat menggambarkan diagram batang. Prinsip penyajian diagram batang relatif sama dengan diagram garis. Setelah menghubungkan variabel pengamatan dengan nilai pengamatan dapat dibentuk grafik batang dengan lebar Modul Matematika SMA 355

362 yang sama dan setinggi atau sejauh nilai data pengamatan. Dengan data penjualan smartphone di atas dapat disajikan diagram batang sebagai berikut banyak penjualan smarphone Tipe 1 Tipe 2 Tipe 3 Tipe 4 Tipe 5 Tipe 6 = banyak penjualan Kunci Yang pertama harus mengurutkan data terlebih dahulu 38, 48, 48, 49, 51, 56, 60, 61, 61 63, 63, 63, 65, 66, 67, 68, 70, 70, 70, 70, 71, 72, 72, 72, 73, 74, 74, 74, 81, 81, 81, 81, 82, 82, 82, 82, 83, 83, 83, 83, 84, 84, 84, 84, 85, 85, 86, 87, 88, 88, 88, 88, 88, 89, 90, 90, 90, 90, 91, 91, 92, 92, 92, 93, 93, 97, 97, 98, a) Jangkauan Data = = 60 banyak kelas = 1 + (3,3) log 80 = 1 + (3,3) (1,903) = 7,28 7 Jadi 80 data di atas akan dibagi menjadi 7 kelas interval. Panjang Kelas = jangakauan banyak kelas = 60 7 = 8,57 9 Tabel Distribusi Frekuensi Kelas Frekuensi Modul Matematika SMA 356

363 frekuensi Jumlah 80 b) Dengan data di atas kita dapat menggambar histogram sebagai berikut data nilai siswa kelas interval Kunci x = = 40 5 = 8 Jadi rata-rata nilai matematika Ani adalah Dengan cara langsung Modul Matematika SMA 357

364 Nilai f n i=1 f i = 40 f i x i n i=1 f i x i =249 x = n i=1 f i x i n i=1 f i = = 6,225 Sehingga rata-rata data tersebut adalah 6,225 Dengan menggunakan rataan sementara (x s = 7) Nilai (x i ) f i n i=1 f i = 40 x i x s f i (x i x s ) n f i (x i x s) = 31 i=1 Sehingga x = x s + = = 7 0,775 = 6, ,8 = x 1.f 1 +x 2.f 2 f 1 +f 2 6,8 = 7.30+x ,8.35 = x = x 2 5. x 2 = x 2 = 28 x 2 = 28 5 = 5,6 n i=1 f i (x i x s) n i=1 f i Jadi, rata-rata lima anak tersebut adalah 5,6. 4. Data diurutkan menjadi: 3, 4, 5, 6, 7, 7, 8, 9, 9. Karena datanya sebanyak ganjil, maka mediannya adalah X9+1 2 = X 5 = 7. Data diurutkan menjadi: 3, 4, 6, 7, 8, 8, 8, 9. Karena datanya sebanyak genap, maka X 8 +X median = +1 = X 4+X 5 = 7+8 = 7, Modul Matematika SMA 358

365 Kunci Karena data sudah URUT, maka tinggal mencari : 2, 2, 3, 4, 5, 6, 8, 8 Q Me Q Q1 2,5 Q Data diurutkan terlebih dahulu: 3, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9 Kuartil bawah (Q 1 ) = X = X13 4 = X X 4 X 3 = = 5 Kuartil atas (Q 3 ) = X = X39 4 = X X 10 X 9 = = 8 Kunci n 1. S R = 1 x n i=1 i x x = S R = = 7,6 = , , ,6 10 = ,4 +1,4+2 0,4 +2 0, ,6 +2,6 = = 1, , , , Modul Matematika SMA 359

366 2. S R1 = 2,29 S R2 = 2, = 22, = 32,9 10 = 3,29 3. x 1 = 20+x 8 8x 8 = 20 + x 7x = 28 x = 4 4. x = = 3,5 S = n x i x 2 i=1 n 1 = 3 6 3, , , , , = 3 2, , , , ,5 2 9 = 18,75+ 4,5+12,5+ 0,5+2,25 9 = 38,5 = 6,204 = 2, = 2,1 Kunci Berikut adalah penyataan dalam diagram garis Modul Matematika SMA 360

367 2. Sudut SD = % = 5 % Sudut SMP = % = 16, 5% 180 Sudut SMA/SMK = % = 11,5 % 180 Sudut perguruan tinggi = % = 11% 180 DATA PELAJAR 11% 5% sudut SD sudut SMP 11.50% 16.50% sudut SMA/SMK perguruan tinggi 3. Dari data di atas dapat kita peroleh diagram batang sebagai berikut : Modul Matematika SMA 361

368 frekuensi 4. Dari data di atas kita dapat kita buat histogram sebagai berikut: banyak data kelas interval 5. Rata-rata = Median = Modus = 7 = 7 8. Jangkauan = 9 5 = 4 9. Mean = Median = 6 Modus = Mean = Median = = 6 Modus = Rata-rata = 12. Mo = 64, Kuartil atas = 3 x 40 = 30 4 = 6 = 7 4(52) + 6(57) + 8(62) + 10(67) + 8(72) + 4(77) 40 5 = 64,5 + 2,5 = 67 = = 7 = = 65 kg Q 3 = L f fk 3 f Q 3 i Modul Matematika SMA 362

Modul ini berisi teori tentang Hiperbola dan praktek menggambarnya dengan bantuan lingkaran maupun dengan bantuan persegi panjang.

Modul ini berisi teori tentang Hiperbola dan praktek menggambarnya dengan bantuan lingkaran maupun dengan bantuan persegi panjang. BAB. I PENDAHULUAN A. Deskripsi Modul ini berisi teori tentang Hiperbola dan praktek menggambarnya dengan bantuan lingkaran maupun dengan bantuan persegi panjang. B. Prasyarat Dalam melaksanakan modul

Lebih terperinci

PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT

PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT LA - WB (Lembar Aktivitas Warga Belajar) PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X Created By Ita Yuliana

Lebih terperinci

FUNGSI. A. Relasi dan Fungsi Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii)

FUNGSI. A. Relasi dan Fungsi Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) FUNGSI A. Relasi dan Fungsi Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) Relasi himpunan A ke himpunan B adalah relasi yang memasangkan/mengkawankan/mengkorepodensikan

Lebih terperinci

BAB. I PENDAHULUAN. A. Deskripsi. B. Prasyarat. C. Petunjuk Penggunaan Modul

BAB. I PENDAHULUAN. A. Deskripsi. B. Prasyarat. C. Petunjuk Penggunaan Modul BAB. I PENDAHULUAN A. Deskripsi Modul ini berisi teori tentang Parabola dan praktek menggambarnya dengan bantuan persegi panjang. B. Prasyarat Dalam melaksanakan modul ini diperlukan prasarat telah menguasai

Lebih terperinci

fungsi Dan Grafik fungsi

fungsi Dan Grafik fungsi fungsi Dan Grafik fungsi Suatu fungsi adalah pemadanan dua himpunan tidak kosong dengan pasangan terurut (x, y) dimana tidak terdapat elemen kedua yang berbeda. Fungsi (pemetaan) himpunan A ke himpunan

Lebih terperinci

Silabus. Nama Sekolah : SMA Mata Pelajaran : MATEMATIKA Kelas / Program : X / UMUM Semester : GANJIL

Silabus. Nama Sekolah : SMA Mata Pelajaran : MATEMATIKA Kelas / Program : X / UMUM Semester : GANJIL Silabus Nama Sekolah : SMA Mata Pelajaran : MATEMATIKA Kelas / Program : X / UMUM Semester : GANJIL Sandar Kompetensi:. Memecahkan masalah yang berkaitan dengan bentuk pangkat, akar, dan logaritma Kompetensi

Lebih terperinci

Modul ini berisi teori tentang ELIPS dan praktek menggambarnya dengan bantuan lingkaran maupun dengan bantuan persegi panjang.

Modul ini berisi teori tentang ELIPS dan praktek menggambarnya dengan bantuan lingkaran maupun dengan bantuan persegi panjang. BAB. I PENDAHULUAN A. Deskripsi Modul ini berisi teori tentang ELIPS dan praktek menggambarnya dengan bantuan lingkaran maupun dengan bantuan persegi panjang. B. Prasyarat Dalam melaksanakan modul ini

Lebih terperinci

Bilangan Real. Modul 1 PENDAHULUAN

Bilangan Real. Modul 1 PENDAHULUAN Modul 1 Bilangan Real S PENDAHULUAN Drs. Soemoenar emesta pembicaraan Kalkulus adalah himpunan bilangan real. Jadi jika akan belajar kalkulus harus paham terlebih dahulu tentang bilangan real. Bagaimanakah

Lebih terperinci

MATERI PRASYARAT. ke y= f(x) =ax2 + bx +c

MATERI PRASYARAT. ke y= f(x) =ax2 + bx +c 1 MATERI PRASYARAT A. Fungsi Kuadrat Bentuk umum : y= f(x) = ax 2 + bx +c dengan a 0. Langkah-langkah dalam menggambar grafik fungsi kuadrat y= f(x) = ax 2 + bx +c 1. Tentukan titik potong dengan sumbu

Lebih terperinci

Matematika Ekonomi KUADRAT DAN FUNGSI RASIONAL (FUNGSI PECAH) GRAFIK FUNGSI KUADRAT BERUPA PARABOLA GRAFIK FUNGSI RASIONAL BERUPA HIPERBOLA

Matematika Ekonomi KUADRAT DAN FUNGSI RASIONAL (FUNGSI PECAH) GRAFIK FUNGSI KUADRAT BERUPA PARABOLA GRAFIK FUNGSI RASIONAL BERUPA HIPERBOLA Fungsi Non Linier Diskripsi materi: -Harga ekstrim pada fungsi kuadrat 1 Fungsi non linier FUNGSI LINIER DAPT BERUPA FUNGSI KUADRAT DAN FUNGSI RASIONAL (FUNGSI PECAH) GRAFIK FUNGSI KUADRAT BERUPA PARABOLA

Lebih terperinci

MBS - DTA. Sucipto UNTUK KALANGAN SENDIRI. SMK Muhammadiyah 3 Singosari

MBS - DTA. Sucipto UNTUK KALANGAN SENDIRI. SMK Muhammadiyah 3 Singosari MBS - DTA Sucipto UNTUK KALANGAN SENDIRI SMK Muhammadiyah Singosari SERI : MBS-DTA FUNGSI STANDAR KOMPETENSI Siswa mampu memecahkan masalah yang berkaitan dengan fungsi, persamaan fungsi linear dan fungsi

Lebih terperinci

5 F U N G S I. 1 Matematika Ekonomi

5 F U N G S I. 1 Matematika Ekonomi 5 F U N G S I Pemahaman tentang konsep fungsi sangat penting dalam mempelajari ilmu ekonomi, mengingat kajian ekonomi banyak bekerja dengan fungsi. Fungsi dalam matematika menyatakan suatu hubungan formal

Lebih terperinci

Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f.

Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f. Pertemuan ke 8 GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(,y): y = f(), D f } disebut grafik fungsi f. Grafik metode yang paling umum untuk menyatakan hubungan antara dua himpunan yaitu dengan menggunakan

Lebih terperinci

KELAS XI PROGRAM KEAHLIAN : BISNIS DAN MANAJEMEN & PARIWISATA SMK NEGERI 1 SURABAYA. BY : Drs. Abd. Salam, MM

KELAS XI PROGRAM KEAHLIAN : BISNIS DAN MANAJEMEN & PARIWISATA SMK NEGERI 1 SURABAYA. BY : Drs. Abd. Salam, MM KELAS XI PROGRAM KEAHLIAN : BISNIS DAN MANAJEMEN & PARIWISATA SMK NEGERI 1 SURABAYA BAHAN AJAR FUNGSI LINIER & KUADRAT SMK NEGERI 1 SURABAYA Halaman 1 BAB FUNGSI A. FUNGSI DAN RELASI Topik penting yang

Lebih terperinci

MODUL MATEMATIKA. Turunan UNIVERSITAS NEGERI MANADO

MODUL MATEMATIKA. Turunan UNIVERSITAS NEGERI MANADO MODUL MATEMATIKA Turunan UNIVERSITAS NEGERI MANADO FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA 2008 1 KATA PENGANTAR Modul pembelajaran ini di rancang untuk membimbing peserta didik

Lebih terperinci

A. Kajian ulang tentang fungsi Pada gambar di bawah ini diberikan diagram panah suatu relasi dari himpunan

A. Kajian ulang tentang fungsi Pada gambar di bawah ini diberikan diagram panah suatu relasi dari himpunan MODUL MATEMATIKA UNTUK SMA istiyanto.com Mari Berbagi Ilmu Dengan Yang Lain Pesan soal-soal matematika untuk SD, SMP dan SMA? Soal ulangan harian, ulangan mid, ulangan semester, soal-soal UAN dll. Tulis

Lebih terperinci

Aljabar 1. Modul 1 PENDAHULUAN

Aljabar 1. Modul 1 PENDAHULUAN Modul 1 Aljabar 1 Drs. H. Karso, M.Pd. PENDAHULUAN M odul yang sekarang Anda pelajari adalah modul yang pertama dari mata kuliah Materi Kurikuler Matematika SMA. Materi-materi yang disajikan dalam modul

Lebih terperinci

sama dengan p q. Perhatikan tabel berikut. p q B B S S B S S B S S B B S S S B B S B S S S S B B S B B

sama dengan p q. Perhatikan tabel berikut. p q B B S S B S S B S S B B S S S B B S B S S S S B B S B B Soal nomor 1, dengan soal sebagai berikut: Jawab : D Pernyataan majemuk pada soal ini adalah suatu disjungsi. Misalkan p: Petani panen beras. q: Harga beras murah., pernyataan di atas dapat dinotasikan

Lebih terperinci

Matematik Ekonom Fungsi nonlinear

Matematik Ekonom Fungsi nonlinear 1 FUNGSI Fungsi adalah hubungan antara 2 buah variabel atau lebih, dimana masing-masing dari dua variabel atau lebih tersebut saling pengaruh mempengaruhi. Variabel merupakan suatu besaran yang sifatnya

Lebih terperinci

Fungsi Linear dan Fungsi Kuadrat

Fungsi Linear dan Fungsi Kuadrat Modul 1 Fungsi Linear dan Fungsi Kuadrat Drs. Susiswo, M.Si. K PENDAHULUAN ompetensi umum yang diharapkan, setelah mempelajari modul ini, adalah Anda dapat memahami konsep tentang persamaan linear dan

Lebih terperinci

Mata Pelajaran Wajib. Disusun Oleh: Ngapiningsih

Mata Pelajaran Wajib. Disusun Oleh: Ngapiningsih Mata Pelajaran Wajib Disusun Oleh: Ngapiningsih Disklaimer Daftar isi Disklaimer Powerpoint pembelajaran ini dibuat sebagai alternatif guna membantu Bapak/Ibu Guru melaksanakan pembelajaran. Materi powerpoint

Lebih terperinci

Mata Pelajaran MATEMATIKA Kelas X

Mata Pelajaran MATEMATIKA Kelas X Mata Pelajaran MATEMATIKA Kelas X SEKOLAH MENENGAH ATAS dan MADRASAH ALIYAH PG Matematika Kelas X 37 Bab 1 Bentuk Pangkat, Akar, dan Logaritma Nama Sekolah : SMA dan MA Mata Pelajaran : Matematika Kelas

Lebih terperinci

BAB IV PENYAJIAN DATA DAN ANALISIS DATA. A. Deskripsi Buku Ajar Matematika SMA/MA Kelas X yang digunakan di

BAB IV PENYAJIAN DATA DAN ANALISIS DATA. A. Deskripsi Buku Ajar Matematika SMA/MA Kelas X yang digunakan di BAB IV PENYAJIAN DATA DAN ANALISIS DATA A. Deskripsi Buku Ajar Matematika SMA/MA Kelas X yang digunakan di SMA/MA Kecamatan Anjir Muara Berdasarkan BAB III telah diuraikan bahwa penelitian ini bertujuan

Lebih terperinci

Hand out_x_fungsi kuadrat

Hand out_x_fungsi kuadrat STANDAR KOMPETENSI: Memecahkan masalah yang berkaitan dengan fungsi, persamaan dan fungsi kuadrat serta pertidaksamaan kuadrat. KOMPETENSI DASAR: Menggambar grafik fungsi aljabar sederhana dan fungsi kuadrat

Lebih terperinci

Modul Matematika 2012

Modul Matematika 2012 Modul Matematika MINGGU V Pokok Bahasan : Fungsi Non Linier Sub Pokok Bahasan :. Pendahuluan. Fungsi kuadrat 3. Fungsi pangkat tiga. Fungsi Rasional 5. Lingkaran 6. Ellips Tujuan Instruksional Umum : Agar

Lebih terperinci

Materi Matematika Persamaan dan Pertidaksamaan kuadrat Persamaan Linear Persamaan Kuadrat Contoh : Persamaan Derajat Tinggi

Materi Matematika Persamaan dan Pertidaksamaan kuadrat Persamaan Linear Persamaan Kuadrat Contoh : Persamaan Derajat Tinggi Materi Matematika Persamaan dan Pertidaksamaan kuadrat Persamaan Linear Persamaan linear dengan n peubah adalah persamaan dengan bentuk : dengan adalah bilangan- bilangan real, dan adalah peubah. Secara

Lebih terperinci

PERSAMAAN DAN FUNGSI KUADRAT

PERSAMAAN DAN FUNGSI KUADRAT Materi W2e PERSAMAAN DAN FUNGSI KUADRAT Kelas X, Semester 1 E. Grafik Fungsi Kuadrat www.yudarwi.com E. Grafik Fungsi Kuadrat Grafik fungsi kuadrat f(x) = ax 2 + bx + c dapat dilukis dengan langkah-langkah

Lebih terperinci

β α α β SOAL MATEMATIKA UNTUK SMA istiyanto.com Mari Berbagi Ilmu Dengan Yang Lain A. Persamaan Kuadrat dan Fungsi Kuadrat

β α α β SOAL MATEMATIKA UNTUK SMA istiyanto.com Mari Berbagi Ilmu Dengan Yang Lain A. Persamaan Kuadrat dan Fungsi Kuadrat A. Persamaan Kuadrat dan Fungsi Kuadrat 1. Salah satu akar persamaan kuadrat ( a 1) x + (3a 1) x 3a = 0 adalah 1, maka akar lainnya adalah.... Nilai m yang memenuhi agar persamaan kuadrat ( m + 1) x +

Lebih terperinci

I. PETUNJUK: Untuk soal nomor 1 sampai dengan nomor, pilihlah salah satu jawaban yang paling tepat!

I. PETUNJUK: Untuk soal nomor 1 sampai dengan nomor, pilihlah salah satu jawaban yang paling tepat! I. PETUNJUK: Untuk soal nomor sampai dengan nomor, pilihlah salah satu jawaban yang paling tepat!. Persamaan ( p + ) x ( p + ) x + ( p ) = 0, p, merupakan persamaan kuadrat dalam x untuk nilai p... p c.

Lebih terperinci

Materi Fungsi Linear Fungsi Variabel, koefisien, dan konstanta Variabel variabel bebas Koefisien Konstanta 1). Pengertian fungsi linier

Materi Fungsi Linear Fungsi Variabel, koefisien, dan konstanta Variabel variabel bebas Koefisien Konstanta 1). Pengertian fungsi linier Materi Fungsi Linear Admin 8:32:00 PM Duhh akhirnya nongol lagi... kali ini saya akan bahas mengenai pelajaran yang paling disukai oleh hampir seluruh warga dunia :v... MATEMATIKA, ya itu namanya. materi

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Satuan Pendidikan Mata Pelajaran Kelas/Semester Alokasi waktu : SMA Negeri 1 Sukasada : Matematika : X/1 (Ganjil) : 2 x 45 menit (1 pertemuan) I. Standar Kompetensi

Lebih terperinci

Bagian 1 Sistem Bilangan

Bagian 1 Sistem Bilangan Bagian 1 Sistem Bilangan Dalam bagian 1 Sistem Bilangan kita akan mempelajari berbagai jenis bilangan, pemakaian tanda persamaan dan pertidaksamaan, menggambarkan himpunan penyelesaian pada selang bilangan,

Lebih terperinci

y

y Menyelesaikan Persamaan Kuadrat dengan Grafik Menyesaikan persamaan ax 2 +bx+c=0. Berarti menentukan nilai-nilai x bila f(x) = 0, dimana f(x) = ax 2 +bx+c. apabila grafik fungsi f(x) telah dilukis, maka

Lebih terperinci

Komposisi fungsi dan invers fungsi. Syarat agar suatu fungsi mempunyai invers. Grafik fungsi invers

Komposisi fungsi dan invers fungsi. Syarat agar suatu fungsi mempunyai invers. Grafik fungsi invers Komposisi fungsi dan invers fungsi mempelajari Fungsi komposisi menentukan Fungsi invers terdiri dari Syarat dan aturan fungsi yang dapat dikomposisikan Nilai fungsi komposisi dan pembentuknya Syarat agar

Lebih terperinci

TEOREMA SISA 1. Nilai Sukubanyak Tugas 1

TEOREMA SISA 1. Nilai Sukubanyak Tugas 1 TEOREMA SISA 1. Nilai Sukubanyak Apa yang dimaksud sukubanyak (polinom)? Ingat kembali bentuk linear seperti 2x + 1 atau bentuk kuadrat 2x 2-3x + 5 dan juga bentuk pangkat tiga 2x 3 x 2 + x 7. Bentuk-bentuk

Lebih terperinci

Silabus dan Rencana Pelaksanaan Pembelajaran (RPP)

Silabus dan Rencana Pelaksanaan Pembelajaran (RPP) Siswanto MODEL Silabus dan Rencana Pelaksanaan Pembelajaran (RPP) for Grade X of Senior High School and Islamic Senior High School Berdasarkan Permendiknas Nomor 22 Tahun 2006 tentang Standar Isi dan Permendiknas

Lebih terperinci

BAB 5 TEOREMA SISA. Menggunakan aturan sukubanyak dalam penyelesaian masalah. Kompetensi Dasar

BAB 5 TEOREMA SISA. Menggunakan aturan sukubanyak dalam penyelesaian masalah. Kompetensi Dasar Standar Kompetensi BAB 5 TEOREMA SISA Menggunakan aturan sukubanyak dalam penyelesaian masalah. Kompetensi Dasar Menggunakan algoritma pembagian sukubanyak untuk menentukan hasil bagi dan sisa pembagian

Lebih terperinci

Persamaan dan pertidaksamaan kuadrat BAB II

Persamaan dan pertidaksamaan kuadrat BAB II BAB II Misalkan a,b,c Є R dan a 0 maka persamaan yang berbentuk dinamakan persamaan kuadrat dalam peubah x. Dalam persamaan kuadrat ax bx c 0, a adalah koefisien dari x, b adalah koefisien dari x dan c

Lebih terperinci

2. PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT

2. PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT 2. PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT A. Persamaan Kuadrat 1) Bentuk umum persamaan kuadrat : ax 2 + bx + c =, a 2) Nilai determinan persamaan kuadrat : D = b 2 4ac 3) Akar-akar persamaan kuadrat

Lebih terperinci

6 FUNGSI LINEAR DAN FUNGSI

6 FUNGSI LINEAR DAN FUNGSI 6 FUNGSI LINEAR DAN FUNGSI KUADRAT 5.1. Fungsi Linear Pada Bab 5 telah dijelaskan bahwa fungsi linear merupakan fungsi yang variabel bebasnya paling tinggi berpangkat satu. Bentuk umum fungsi linear adalah

Lebih terperinci

3. FUNGSI DAN GRAFIKNYA

3. FUNGSI DAN GRAFIKNYA 3. FUNGSI DAN GRAFIKNYA 3.1 Pengertian Relasi Misalkan A dan B suatu himpunan. anggota A dikaitkan dengan anggota B berdasarkan suatu hubungan tertentu maka diperoleh suatu relasi dari A ke B. : A = {1,

Lebih terperinci

2. FUNGSI KUADRAT. , D = b 2 4ac

2. FUNGSI KUADRAT. , D = b 2 4ac . FUNGSI KUADRAT A. Persamaan Kuadrat 1) Bentuk umum persamaan kuadrat : ax + bx + c =, a ) Akar akar persamaan kuadrat dapat dicari dengan memfaktorkan ataupun dengan rumus: x 1, b D, D = b 4ac a 3) Jumlah,

Lebih terperinci

Fungsi, Persamaaan, Pertidaksamaan

Fungsi, Persamaaan, Pertidaksamaan Fungsi, Persamaaan, Pertidaksamaan Disampaikan pada Diklat Instruktur/Pengembang Matematika SMA Jenjang Dasar Tanggal 6 s.d. 9 Agustus 004 di PPPG Matematika Oleh: Drs. Markaban, M.Si. Widyaiswara PPPG

Lebih terperinci

*Tambahan Grafik Fungsi Kuadrat

*Tambahan Grafik Fungsi Kuadrat *Tambahan Grafik Fungsi Kuadrat GRAFIK FUNGSI KUADRAT Langkah-langkah menggambar grafik: 1. Tentukan pembuat nol fungsi y=0 atau f(x)=0 2. Tentukan sumbu simetri x = -b/2a 3. Tentukan titik puncak P (x,y)

Lebih terperinci

FUNGSI. Berdasarkan hubungan antara variabel bebas dan terikat, fungsi dibedakan dua: fungsi eksplisit dan fungsi implisit.

FUNGSI. Berdasarkan hubungan antara variabel bebas dan terikat, fungsi dibedakan dua: fungsi eksplisit dan fungsi implisit. FUNGSI Fungsi merupakan hubungan antara dua variabel atau lebih. Variabel dibedakan :. Variabel bebas yaitu variabel yang besarannya dpt ditentukan sembarang, mis:,, 6, 0 dll.. Variabel terikat yaitu variabel

Lebih terperinci

Dosen Pengampu: Prof. Dr. H. Almasdi Syahza, SE., MP. Website : HUBUNGAN NONLINEAR

Dosen Pengampu: Prof. Dr. H. Almasdi Syahza, SE., MP.   Website :  HUBUNGAN NONLINEAR Dosen Pengampu: Prof. Dr. H. Almasdi Syahza, SE., MP. Email : asyahza@yahoo.co.id Website : http://almasdi.unri,ac,id HUBUNGAN NONLINEAR a. Fungsi Kuadrat b. Fungsi Kubik c. Penerapan Ekonomi Permintaan,

Lebih terperinci

MAKALAH FUNGSI KUADRAT GRAFIK FUNGSI,&SISTEM PERSAMAAN KUADRAT

MAKALAH FUNGSI KUADRAT GRAFIK FUNGSI,&SISTEM PERSAMAAN KUADRAT MAKALAH FUNGSI KUADRAT GRAFIK FUNGSI,&SISTEM PERSAMAAN KUADRAT Kelompok 3 : 1.Suci rachmawati (ekonomi akuntansi) 2.Fitri rachmad (ekonomi akuntansi) 3.Elif (ekonomi akuntansi) 4.Dewi shanty (ekonomi management)

Lebih terperinci

FUNGSI DAN PERSAMAAN LINEAR. EvanRamdan

FUNGSI DAN PERSAMAAN LINEAR. EvanRamdan FUNGSI DAN PERSAMAAN LINEAR TEORI FUNGSI Fungsi yaitu hubungan matematis antara suatu variabel dengan variabel lainnya. Unsur-unsur pembentukan fungsi yaitu variabel (terikat dan bebas), koefisien dan

Lebih terperinci

MODUL 1. Teori Bilangan MATERI PENYEGARAN KALKULUS

MODUL 1. Teori Bilangan MATERI PENYEGARAN KALKULUS MODUL 1 Teori Bilangan Bilangan merupakan sebuah alat bantu untuk menghitung, sehingga pengetahuan tentang bilangan, mutlak diperlukan. Pada modul pertama ini akan dibahas mengenai bilangan (terutama bilangan

Lebih terperinci

BAB. I PENDAHULUAN. A. Deskripsi. B. Prasyarat. C. Petunjuk Penggunaan Modul

BAB. I PENDAHULUAN. A. Deskripsi. B. Prasyarat. C. Petunjuk Penggunaan Modul BAB. I PENDAHULUAN A. Deskripsi Dalam modul ini Siswa akan mempelajari tentang menggambar proyeksi orthogonal dan berbagai istilah yang terkait dengan proyeksi tersebut yang dikenali dan dipahami. Untuk

Lebih terperinci

Relasi, Fungsi, dan Transformasi

Relasi, Fungsi, dan Transformasi Modul 1 Relasi, Fungsi, dan Transformasi Drs. Ame Rasmedi S. Dr. Darhim, M.Si. M PENDAHULUAN odul ini merupakan modul pertama pada mata kuliah Geometri Transformasi. Modul ini akan membahas pengertian

Lebih terperinci

Modul Matematika MINGGU 4. g. Titik Potong fungsi linier

Modul Matematika MINGGU 4. g. Titik Potong fungsi linier MINGGU 4 Pokok Bahasan Sub Pokok Bahasan Tujuan Instruksional Umum : Hubungan dan : 1. Hubungan 2. a. Pengertian fungsi b. Jenis-jenis fungsi c. Diagram fungsi d. Pengertian fungsi linier e. Penggambaran

Lebih terperinci

PENGERTIAN FUNGSI JENIS-JENIS FUNGSI PENGGAMBARAN GRAFIK FUNGSI

PENGERTIAN FUNGSI JENIS-JENIS FUNGSI PENGGAMBARAN GRAFIK FUNGSI FUNGSI PENGERTIAN FUNGSI JENIS-JENIS FUNGSI PENGGAMBARAN GRAFIK FUNGSI PENGERTIAN FUNGSI Sebuah fungsi f dari himpunan A ke himpunan B adalah suatu aturan yang memasangkan setiap X anggota A dengan tepat

Lebih terperinci

MODUL MATA PELAJARAN MATEMATIKA

MODUL MATA PELAJARAN MATEMATIKA KERJASAMA DINAS PENDIDIKAN KOTA SURABAYA DENGAN FAKULTAS MIPA UNIVERSITAS NEGERI SURABAYA MODUL MATA PELAJARAN MATEMATIKA Bilangan dan Aljabar untuk kegiatan PELATIHAN PENINGKATAN MUTU GURU DINAS PENDIDIKAN

Lebih terperinci

Fakultas Teknik UNY Jurusan Pendidikan Teknik Otomotif INTEGRASI FUNGSI. 0 a b X A. b A = f (X) dx a. Penyusun : Martubi, M.Pd., M.T.

Fakultas Teknik UNY Jurusan Pendidikan Teknik Otomotif INTEGRASI FUNGSI. 0 a b X A. b A = f (X) dx a. Penyusun : Martubi, M.Pd., M.T. Kode Modul MAT. TKF 20-03 Fakultas Teknik UNY Jurusan Pendidikan Teknik Otomotif INTEGRASI FUNGSI Y Y = f (X) 0 a b X A b A = f (X) dx a Penyusun : Martubi, M.Pd., M.T. Sistem Perencanaan Penyusunan Program

Lebih terperinci

SISTEM BILANGAN RIIL DAN FUNGSI

SISTEM BILANGAN RIIL DAN FUNGSI SISTEM BILANGAN RIIL DAN FUNGSI Matematika Juni 2016 Dosen : Dadang Amir Hamzah MATEMATIKA Juni 2016 1 / 67 Outline 1 Sistem Bilangan Riil Dosen : Dadang Amir Hamzah MATEMATIKA Juni 2016 2 / 67 Outline

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN ( RPP

RENCANA PELAKSANAAN PEMBELAJARAN ( RPP RENCANA PELAKSANAAN PEMBELAJARAN ( RPP ) Mata Pelajaran : Matematika Satuan Pendidikan : SMA Kelas/Semester : X/ 1 (Ganjil) Alokasi waktu : 2 x 45 menit I. Standar Kompetensi 1.1 Memecahkan masalah yang

Lebih terperinci

MAT. 05. Relasi dan Fungsi

MAT. 05. Relasi dan Fungsi MAT. 05. Relasi dan Fungsi i Kode MAT. 05 Relasi dan fungsi BAGIAN PROYEK PENGEMBANGAN KURIKULUM DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DEPARTEMEN PENDIDIKAN

Lebih terperinci

Selamat Belajar dan Bekerja!

Selamat Belajar dan Bekerja! i M Tinjauan Mata Kuliah ata Kuliah Pembelajaran Matematika SD (PDGK4406) dengan bobot 3 sks merupakan mata kuliah yang akan membekali Anda dengan pengetahuan dan keterampilan yang akan membantu Anda dalam

Lebih terperinci

Matematika Semester IV

Matematika Semester IV F U N G S I KOMPETENSI DASAR Mendeskripsikan perbedaan konsep relasi dan fungsi Menerapkan konsep fungsi linear Menggambar fungsi kuadrat Menerapkan konsep fungsi kuadrat Menerapkan konsep fungsi trigonometri

Lebih terperinci

SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2008 MATEMATIKA SMA BAGIAN PERTAMA

SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2008 MATEMATIKA SMA BAGIAN PERTAMA SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2008 MATEMATIKA SMA BAGIAN PERTAMA PETUNJUK UNTUK PESERTA: 1. Tes bagian pertama ini terdiri dari 20 soal. 2. Waktu yang disediakan adalah

Lebih terperinci

MATEMATIKA EKONOMI DAN BISNIS. Nuryanto.ST.,MT

MATEMATIKA EKONOMI DAN BISNIS. Nuryanto.ST.,MT MATEMATIKA EKONOMI DAN BISNIS Fungsi Non Linear Fungsi non-linier merupakan bagian yang penting dalam matematika untuk ekonomi, karena pada umumnya fungsi-fungsi yang menghubungkan variabel-variabel ekonomi

Lebih terperinci

SILABUS. Kegiatan Pembelajaran Teknik. Tugas individu.

SILABUS. Kegiatan Pembelajaran Teknik. Tugas individu. SILABUS NAMA SEKOLAH : MATA PELAJARAN : Matematika KELAS : X STANDAR KOMPETENSI : Memecahkan masalah berkaitan dengan konsep operasi bilangan real. KODE KOMPETENSI : ALOKASI WAKTU : 57 x 45 Kompetensi

Lebih terperinci

MAT 602 DASAR MATEMATIKA II

MAT 602 DASAR MATEMATIKA II MAT 60 DASAR MATEMATIKA II Disusun Oleh: Dr. St. Budi Waluya, M. Sc Jurusan Pendidikan Matematika Program Pascasarjana Unnes 1 HIMPUNAN 1. Notasi Himpunan. Relasi Himpunan 3. Operasi Himpunan A B : A B

Lebih terperinci

Matematika EBTANAS Tahun 1986

Matematika EBTANAS Tahun 1986 Matematika EBTANAS Tahun 986 EBT-SMA-86- Bila diketahui A = { x x bilangan prima < }, B = { x x bilangan ganjil < }, maka eleman A B =.. 3 7 9 EBT-SMA-86- Bila matriks A berordo 3 dan matriks B berordo

Lebih terperinci

http://meetabied.wordpress.com Matematika X Semester 1 SMAN 1 Bone-Bone Kita dibentuk oleh sesuatu yang kita lakukan berulang kali. Keunggulan, bukan hasil dari satu tindakan, melainkan dari kebiasaan.

Lebih terperinci

UJIAN SARINGAN MASUK PERGURUAN TINGGI NEGERI MATEMATIKA DASAR FUNGSI KUADRAT. A. 1 B. 2 C. 3 D. 5 E. 7 Solusi: [D]

UJIAN SARINGAN MASUK PERGURUAN TINGGI NEGERI MATEMATIKA DASAR FUNGSI KUADRAT. A. 1 B. 2 C. 3 D. 5 E. 7 Solusi: [D] UJIAN SARINGAN MASUK PERGURUAN TINGGI NEGERI MATEMATIKA DASAR FUNGSI KUADRAT. SBMPTN MADAS 4 Jika fungsi f x a x x c menyinggung sumbu x di x, maka a A. B. C. D. 5 E. 7 Solusi: [D] 6 f x a x x c f ' x

Lebih terperinci

SISTEM PERSAMAAN LINEAR, KUADRAT DAN PERTIDAKSAMAAN SATU VARIABEL

SISTEM PERSAMAAN LINEAR, KUADRAT DAN PERTIDAKSAMAAN SATU VARIABEL LA - WB (Lembar Aktivitas Warga Belajar) SISTEM PERSAMAAN LINEAR, KUADRAT DAN PERTIDAKSAMAAN SATU VARIABEL Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X

Lebih terperinci

SMA / MA Bahasa Mata Pelajaran : Matematika

SMA / MA Bahasa Mata Pelajaran : Matematika Latihan Soal UN Paket Sekolah Menengah Atas / Madrasah Aliyah SMA / MA Bahasa Mata Pelajaran : Matematika Dalam UN berlaku Petunjuk Umum seperti ini :. Isikan identitas Anda ke dalam Lembar Jawaban Ujian

Lebih terperinci

Soal-Soal dan Pembahasan SBMPTN - SNMPTN Matematika Dasar Tahun Pelajaran 2010/2011

Soal-Soal dan Pembahasan SBMPTN - SNMPTN Matematika Dasar Tahun Pelajaran 2010/2011 Soal-Soal dan Pembahasan SBMPTN - SNMPTN Matematika Dasar Tahun Pelajaran 2010/2011 Tanggal Ujian: 31 Mei 2011 1. Jika 6(3 40 ) ( 2 log a) + 3 41 ( 2 log a) = 3 43, maka nilai a adalah... A. B. C. 4 D.

Lebih terperinci

SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 2011/2012

SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 2011/2012 SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 0/0. Akar-akar persamaan kuadrat x +ax - 40 adalah p dan q. Jika p - pq + q 8a, maka nilai a... A. -8 B. -4 C. 4 D. 6 E. 8 BAB III Persamaan

Lebih terperinci

BEBERAPA MACAM FUNGSI DALAM ALJABAR

BEBERAPA MACAM FUNGSI DALAM ALJABAR BEBEAA MACAM FUNGI DALAM ALJABA 1. Fungsi Komposisi Dari dua jenis fungsi f dan g kita dapat membentuk sebuah fungsi baru dengan menggunakan sistem operasi komposisi. operasi komposisi biasa dilambangkan

Lebih terperinci

II. TINJAUAN PUSTAKA. bilangan riil. Bilangan riil biasanya dilambangkan dengan huruf R (Negoro dan

II. TINJAUAN PUSTAKA. bilangan riil. Bilangan riil biasanya dilambangkan dengan huruf R (Negoro dan II. TINJAUAN PUSTAKA 2.1 Sistem Bilangan Riil Definisi Bilangan Riil Gabungan himpunan bilangan rasional dan himpunan bilangan irrasional disebut bilangan riil. Bilangan riil biasanya dilambangkan dengan

Lebih terperinci

1untuk Kelas X SMA dan MA

1untuk Kelas X SMA dan MA Rosihan Ari Y. Indriyastuti MODEL Silabus dan Rencana Pelaksanaan Pembelajaran (RPP) KHAZANAH MATEMATIKA 1untuk Kelas X SMA dan MA Berdasarkan Permendiknas Nomor 22 Tahun 2006 tentang Standar Isi dan Permendiknas

Lebih terperinci

PERSAMAAN GARIS BAHAN BELAJAR MANDIRI 4

PERSAMAAN GARIS BAHAN BELAJAR MANDIRI 4 BAHAN BELAJAR MANDIRI 4 PERSAMAAN GARIS PENDAHULUAN Secara umum bahan belajar mandiri ini menjelaskan tentang konsep garis, dan persamaan garis lurus yang dinyatakan ke dalam bentuk implisit maupun bentuk

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN

BAB IV HASIL PENELITIAN DAN PEMBAHASAN BAB IV HASIL PENELITIAN DAN PEMBAHASAN A. HASIL PENELITIAN 1. Hasil Pengembangan Produk Penelitian ini merupakan penelitian pengembangan yang bertujuan untuk mengembangkan produk berupa Skema Pencapaian

Lebih terperinci

Menurut jenisnya, fungsi dapat dibedakan menjadi (1) Fungsi aljabar (2) Fungsi transenden

Menurut jenisnya, fungsi dapat dibedakan menjadi (1) Fungsi aljabar (2) Fungsi transenden Lecture 3. Function (B) A. Macam-macam Fungsi Menurut jenisnya, fungsi dapat dibedakan menjadi (1) Fungsi aljabar (2) Fungsi transenden Fungsi aljabar dibedakan menjadi (1) Fungsi rasional (a) Fungsi konstan

Lebih terperinci

Modul Matrikulasi, SMA Labschool Kebayoran 2017 Page 1

Modul Matrikulasi, SMA Labschool Kebayoran 2017 Page 1 Modul : Grafik Fungsi Kuadrat Teori: Bagian bagian grafik fungsi kuadrat = a + b + c, a 0 Grafik fungsi kuadrat Titik ekstrim fungsi kuadrat = f () = a + b + c D = 0 Memiliki dua akar kembar Grafik fungsi

Lebih terperinci

Pengertian Fungsi. MA 1114 Kalkulus I 2

Pengertian Fungsi. MA 1114 Kalkulus I 2 Fungsi Pengertian Fungsi Relasi : aturan yang mengawankan himpunan Fungsi Misalkan A dan B himpunan. Relasi biner dari A ke B merupakan suatu ungsi jika setiap elemen di dalam A dihubungkan dengan tepat

Lebih terperinci

Catatan Kuliah MA1123 Kalkulus Elementer I

Catatan Kuliah MA1123 Kalkulus Elementer I Catatan Kuliah MA1123 Kalkulus Elementer I Oleh Hendra Gunawan, Ph.D. Departemen Matematika ITB Sasaran Belajar Setelah mempelajari materi Kalkulus Elementer I, mahasiswa diharapkan memiliki (terutama):

Lebih terperinci

MATEMATIKA PM Peminatan: MIPA Kamis, 16 Maret 2017 ( )

MATEMATIKA PM Peminatan: MIPA Kamis, 16 Maret 2017 ( ) MATEMATIKA PM Peminatan: MIPA Kamis, 16 Maret 017 (10.00-1.00) UJIAN SEKOLAH SMA NEGERI 56 JAKARTA TAHUN PELAJARAN 016/017 PETUNJUK UMUM 1. Hitamkan nomor peserta ujian dengan benar. Tulis nama peserta,

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT PROVINSI 2008 TIM OLIMPIADE MATEMATIKA INDONESIA 2009

SELEKSI OLIMPIADE TINGKAT PROVINSI 2008 TIM OLIMPIADE MATEMATIKA INDONESIA 2009 SELEKSI OLIMPIADE TINGKAT PROVINSI 2008 TIM OLIMPIADE MATEMATIKA INDONESIA 2009 Bidang Matematika Bagian Pertama Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL MANAJEMEN PENDIDIKAN

Lebih terperinci

DURASI PEMELAJARAN KURIKULUM SMK EDISI 2004

DURASI PEMELAJARAN KURIKULUM SMK EDISI 2004 DESKRIPSI PEMELAJARAN MATA DIKLAT TUJUAN : MATEMATIKA : Melatih berfikir dan bernalar secara logis dan kritis serta mengembangkan aktifitas kreatif dalam memecahkan masalah dan mengkomunikasikan ide/gagasan

Lebih terperinci

DESKRIPSI PEMELAJARAN - MATEMATIKA

DESKRIPSI PEMELAJARAN - MATEMATIKA DESKRIPSI PEMELAJARAN MATA DIKLAT : MATEMATIKA TUJUAN : Melatih berfikir dan bernalar secara logis dan kritis serta mengembangkan aktifitas kreatif dalam memecahkan masalah dan mengkomunikasikan ide/gagasan

Lebih terperinci

Fungsi kuadrat. Hafidh munawir

Fungsi kuadrat. Hafidh munawir Fungsi kuadrat Hafidh munawir Bentuk Umum Persamaan Kuadrat Bentuk umum atau Bentuk Baku persamaan kuadrat adalah: a + b + c = Dengan a,b,c R dan a serta adalah peubah (variabel) a merupakan koefisien

Lebih terperinci

OSN Guru Matematika SMA (Olimpiade Sains Nasional)

OSN Guru Matematika SMA (Olimpiade Sains Nasional) ocsz Pembahasan Soal OSN Guru 2012 OLIMPIADE SAINS NASIONAL KHUSUS GURU MATEMATIKA SMA OSN Guru Matematika SMA (Olimpiade Sains Nasional) Disusun oleh: Pak Anang Halaman 2 dari 26 PEMBAHASAN SOAL OLIMPIADE

Lebih terperinci

SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMA/MA IPS TAHUN PELAJARAN 2011/2012

SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMA/MA IPS TAHUN PELAJARAN 2011/2012 SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMA/MA IPS TAHUN PELAJARAN 2011/2012 1. Ingkaran pernyataan: Petani panen beras atau harga beras murah. A. Petani panen beras dan harga beras mahal B. Petani panen

Lebih terperinci

B I L A N G A N 1.1 SKEMA DARI HIMPUNAN BILANGAN. Bilangan Kompleks. Bilangan Nyata (Riil) Bilangan Khayal (Imajiner)

B I L A N G A N 1.1 SKEMA DARI HIMPUNAN BILANGAN. Bilangan Kompleks. Bilangan Nyata (Riil) Bilangan Khayal (Imajiner) 1 B I L A N G A N 1.1 SKEMA DARI HIMPUNAN BILANGAN Bilangan Kompleks Bilangan Nyata (Riil) Bilangan Khayal (Imajiner) Bilangan Rasional Bilangan Irrasional Bilangan Pecahan Bilangan Bulat Bilangan Bulat

Lebih terperinci

FUNGSI dan LIMIT. 1.1 Fungsi dan Grafiknya

FUNGSI dan LIMIT. 1.1 Fungsi dan Grafiknya FUNGSI dan LIMIT 1.1 Fungsi dan Grafiknya Fungsi : suatu aturan yang menghubungkan setiap elemen suatu himpunan pertama (daerah asal) tepat kepada satu elemen himpunan kedua (daerah hasil) fungsi Daerah

Lebih terperinci

UJIAN NASIONAL TAHUN PELAJARAN 2006/2007

UJIAN NASIONAL TAHUN PELAJARAN 2006/2007 UJIAN NASIONAL TAHUN PELAJARAN 006/007 PANDUAN MATERI SMA DAN MA M A T E M A T I K A PROGRAM STUDI IPA PUSAT PENILAIAN PENDIDIKAN BALITBANG DEPDIKNAS KATA PENGANTAR Dalam rangka sosialisasi kebijakan dan

Lebih terperinci

LINGKARAN. Lingkaran. pusat lingkaran diskriminan posisi titik posisi garis garis kutub gradien. sejajar tegak lurus persamaan lingkaran

LINGKARAN. Lingkaran. pusat lingkaran diskriminan posisi titik posisi garis garis kutub gradien. sejajar tegak lurus persamaan lingkaran LINGKARAN Persamaan Persamaan garis singgung lingkaran Persamaan lingkaran berpusat di (0, 0) dan (a, b) Kedudukan titik dan garis terhadap lingkaran Merumuskan persamaan garis singgung yang melalui suatu

Lebih terperinci

MATEMATIKA TEKNIK DASAR-I FUNGSI-2 SEBRIAN MIRDEKLIS BESELLY PUTRA TEKNIK PENGAIRAN

MATEMATIKA TEKNIK DASAR-I FUNGSI-2 SEBRIAN MIRDEKLIS BESELLY PUTRA TEKNIK PENGAIRAN MATEMATIKA TEKNIK DASAR-I FUNGSI-2 SEBRIAN MIRDEKLIS BESELLY PUTRA TEKNIK PENGAIRAN FUNGSI Perhatikan relasi {(x,y) x, y R; y=x 2 } Untuk tiap-tiap nilai x dalam wilayahnya, relasi itu hanya menyatakan

Lebih terperinci

MATEMATIKA EKONOMI 1 HIMPUNAN BILANGAN. Dosen : Fitri Yulianti, SP. MSi

MATEMATIKA EKONOMI 1 HIMPUNAN BILANGAN. Dosen : Fitri Yulianti, SP. MSi MATEMATIKA EKONOMI 1 HIMPUNAN BILANGAN Dosen : Fitri Yulianti, SP. MSi Skema Himpunan Kompleks Real Rasional Bulat Cacah Asli Genap Ganjil Prima Komposit Nol Bulat Negatif Pecahan Irasional Imajiner Pengertian

Lebih terperinci

PERTIDAKSAMAAN PECAHAN

PERTIDAKSAMAAN PECAHAN PERTIDAKSAMAAN PECAHAN LESSON Pada topik sebelumnya, kalian telah mempelajari topik tentang konsep pertidaksamaan dan nilai mutlak. Dalam topik ini, kalian akan belajar tentang masalah pertidaksamaan pecahan.

Lebih terperinci

LOGO MAM 4121 KALKULUS 1. Dr. Wuryansari Muharini K.

LOGO MAM 4121 KALKULUS 1. Dr. Wuryansari Muharini K. LOGO MAM 4121 KALKULUS 1 Dr. Wuryansari Muharini K. BAB I. PENDAHULUAN SISTEM BILANGAN REAL, NOTASI SELANG, dan NILAI MUTLAK PERTAKSAMAAN SISTEM KOORDINAT GRAFIK PERSAMAAN SEDERHANA www.themegallery.com

Lebih terperinci

KALKULUS 1 HADI SUTRISNO. Pendidikan Matematika STKIP PGRI Bangkalan. Hadi Sutrisno/P.Matematika/STKIP PGRI Bangkalan

KALKULUS 1 HADI SUTRISNO. Pendidikan Matematika STKIP PGRI Bangkalan. Hadi Sutrisno/P.Matematika/STKIP PGRI Bangkalan KALKULUS 1 HADI SUTRISNO 1 Pendidikan Matematika STKIP PGRI Bangkalan BAB I PENDAHULUAN A. Sistem Bilangan Real Untuk mempelajari kalkulus kita terlebih dahulu perlu memahami bahasan tentang sistem bilangan

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Standar Kompetensi : 1. Memecahkan masalah yang berkaitan dengan bentuk pangkat, akar, dan logaritma.

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Standar Kompetensi : 1. Memecahkan masalah yang berkaitan dengan bentuk pangkat, akar, dan logaritma. RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah : SMA Mata Pelajaran : Matematika Kelas / Semester : X (Sepuluh) / Ganjil Standar Kompetensi : 1. Memecahkan masalah yang berkaitan dengan bentuk pangkat,

Lebih terperinci

UJIAN NASIONAL TAHUN PELAJARAN 2007/2008

UJIAN NASIONAL TAHUN PELAJARAN 2007/2008 UJIAN NASIONAL TAHUN PELAJARAN 007/008 PANDUAN MATERI SMA DAN MA M A T E M A T I K A PROGRAM STUDI IPA PUSAT PENILAIAN PENDIDIKAN BALITBANG DEPDIKNAS KATA PENGANTAR Dalam rangka sosialisasi kebijakan dan

Lebih terperinci

Modul 6 SISTEM PERSAMAAN LINEAR DUA VARIABEL

Modul 6 SISTEM PERSAMAAN LINEAR DUA VARIABEL Standar Kompetensi Modul 6 SISTEM PERSAMAAN LINEAR DUA VARIABEL Memahami dan dapat melakukan operasi bentuk aljabar, persamaan dan pertidaksamaan linear satu variabel, himpunan serta dapat menggunakan

Lebih terperinci

NAMA : KELAS : SMA TARAKANITA 1 JAKARTA theresiaveni.wordpress.com

NAMA : KELAS : SMA TARAKANITA 1 JAKARTA theresiaveni.wordpress.com 1 NAMA : KELAS : 2 KOMPOSISI FUNGSI DAN FUNGSI INVERS Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) Relasi himpunan A ke himpunan B adalah relasi yang memasangkan/mengkawankan/mengkorepodensikan

Lebih terperinci