PTE 4109, Agribisnis UB

Save this PDF as:
Ukuran: px
Mulai penontonan dengan halaman:

Download "PTE 4109, Agribisnis UB"

Transkripsi

1 MATEMATIKA EKONOMI PTE 4109, Agribisnis UB 1

2 Materi ang dipelajari Pengertian dan Unsur- unsur Fungsi Jenis- jenis fungsi Penggambaran fungsi Linear Penggambaran fungsi non linear -Penggal -Simetri - Perpanjangan -Asimtot - Faktorisasi PTE 4109, Agribisnis UB 2

3 Definisi Fungsi : suatu bentuk hubungan matematis ang menatakan hubungan ketergantungan (hub. fungsional) antara suatu variabel dengan variabel lain. = a + bx Dependent variable Konstanta Independent variable Koefisien var. x PTE 4109, Agribisnis UB 3

4 Jenis-jenisfungsi Fungsi Fungsi irrasional Fungsi aljabar F. Polinom F. Linier F. Kuadrat F. Kubik F. Bikuadrat Fungsi rasional F.Pangkat Fungsi non-aljabar (transenden) F. Eksponensial F. Logaritmik F. Trigonometrik F. Hiperbolik PTE 4109, Agribisnis UB 4

5 Jenis-jenisfungsi Fungsi polinom : fungsi ang mengandung banak suku (polinom) dalam variabel bebasna. = a 0 + a 1 x + a 2 x a n x n Fungsi Linear : fungsi polinom khusus ang pangkat tertinggi dari variabelna adalah pangkat satu (fungsi berderajat satu). = a 0 + a 1 x a1 0 PTE 4109, Agribisnis UB 5

6 Jenis-jenisfungsi Fungsi Kuadrat : fungsi polinom ang pangkat tertinggi dari variabelna adalah pangkat dua, sering juga disebut fungsi berderajat dua. = a 0 + a 1 x + a 2 x 2 a Fungsi berderajat n : fungsi ang pangkat tertinggi dari variabelna adalah pangkat n (n = bilangan nata). = a 0 + a 1 x + a 2 x a n-1 x n-1 + a n x n a n 0 PTE 4109, Agribisnis UB 6

7 Jenis-jenisfungsi Fungsi Pangkat: fungsi ang veriabel bebasna berpangkat sebuah bilangan nata bukan nol. = x n n = bilangan nata bukan nol. Fungsi eksponensial: fungsi ang variabel bebasna merupakan pangkat dari suatu konstanta bukan nol. = n x n > 0 PTE 4109, Agribisnis UB 7

8 Jenis-jenisfungsi Fungsi logaritmik: fungsi balik (inverse) dari fungsi eksponensial, variabel bebasna merupakan bilangan logaritmik. = n log x Fungsi trigonometrik dan fungsi hiperbolik: fungsi ang variabel bebasna merupakan bilangan-bilangan goneometrik. persamaan trigonometrik = sin x persamaan hiperbolik = arc cos x PTE 4109, Agribisnis UB 8

9 Jenis-jenisfungsi Berdasarkan letak ruas variabelvariabelna : fungsi eksplisit dan implisit PTE 4109, Agribisnis UB 9

10 Jenis-jenisfungsi Linear = a 0 + a 1 x Kuadratik = a 0 + a 1 x + a 2 x 2 Kemiringan = a 1 (Kasus a 2 < 0) a 0 a 0 0 x 0 (a) (b) x PTE 4109, Agribisnis UB 10

11 Jenis-jenisfungsi Kubik Bujur sangkar hiperbolik = a 0 + a 1 x + a 2 x 2 + a 3 x 3 = a / x (a > 0) a 0 0 x 0 (c) (d) x PTE 4109, Agribisnis UB 11

12 Jenis-jenisfungsi Eksponen = b x Logaritma = log b x (b > 1) 0 x 0 (e) (f) x PTE 4109, Agribisnis UB 12

13 Penimpangan Eksponen x n = x xxx..x x n suku Aturan I : x m xx n = x m+n Contoh : x 3 xx 4 = x 7 Aturan II : x m /x n = x m-n Contoh : x 4 /x 3 = x Aturan III : x -n = 1/x n (x 0) PTE 4109, Agribisnis UB 13

14 Penimpangan Eksponen Aturan IV : x 0 = 1 (x 0) Aturan V : x 1/n = Aturan VI : (x m ) n = x mn Aturan VII : x m x m = (x) m PTE 4109, Agribisnis UB 14

15 Fungsi Dari Dua Atau Lebih Variabel Bebas z = g (x, ) z = ax + b z = a 0 + a 1 x + a 2 x 2 + b 1 + b 2 2 Fungsi gmembuat peta dari suatu titik dalam ruang dua dimensi, ke satu titik pada garis ruas (titik dalam ruang satu dimensi), seperti : dari titik (x 1, 1 ) ke titik z 1 dari titik (x 2, 2 ) ke titik z 2 PTE 4109, Agribisnis UB 15

16 Fungsi Dari Dua Atau Lebih Variabel Bebas z 1 2 (x 1, 1 ) g (x 2, 2 ) z 1 z 2 0 x x 1 x 2 PTE 4109, Agribisnis UB 16

17 Fungsi Dari Dua Atau Lebih Variabel Bebas z (x 2, 2, z 2 ) (x 2, 2, z2) 1 2 x 1 x 2 x PTE 4109, Agribisnis UB 17

18 Penggal Penggal sebuah kurva adalah titik-titik potong kurva tersebut pada sumbusumbu koordinat. Penggal pada sumbu x dapat dicari dengan memisalkan = 0 (berlaku sebalikna). Contoh : = 16 8x + x 2 penggal pada sumbu x : = 0 x = 4 penggal pada sumbu : x = 0 = 16 PTE 4109, Agribisnis UB 18

19 Simetri Dua buah titik dikatakan simetrik terhadap sebuah garis apabila garis tersebut berjarak sama terhadap kedua titik tadi dan tegak lurus teradap segmen garis ang menghubungkanna. Dua buah titik dikatakan simetrik terhadap titik ketiga apabila titik ketiga ini terletak persis di tengah segmen garis ang menghubungkan kedua titik tadi. PTE 4109, Agribisnis UB 19

20 Simetri (x,) (x,) (-x,) (x,) 0 x 0 x 0 x (x,-) (-x,-) Titik (x, ) adalah simetrik terhadap titik : (x, -) sehubungan dengan sumbu x (-x, ) sehubungan dengan sumbu (-x, -) sehubungan dengan titik pangkal PTE 4109, Agribisnis UB 20

21 Simetri (x,) (-x,) (x,) (x,) 0 x 0 x x (x,-) (-x,-) Kurva dari suatu persamaan f (x, ) = 0 adalah simetrik terhadap : Sumbu x jika f(x, ) = f(x, -) = 0 Sumbu jika f(x, ) = f(-x, ) = 0 Titik pangkal jika f(x, ) = f(-x, -) = 0 PTE 4109, Agribisnis UB 21

22 Perpanjangan Konsep perpanjangan menjelaskan apakah ujung-ujung sebuah kurva dapat terus menerus diperpanjang sampai tak terhingga (tidak terdapat batas perpanjangan) ataukah hana dapat diperpanjang sampai nilai x atau tertentu. Coba selidiki apakah terdapat batas perpanjangan bagi kurva an dicerminkan oleh persamaan : x = 0 dan x PTE 4109, Agribisnis UB 25 = 0 22

23 Asimtot Asimtot suatu kurva adalah sebuah garis lurus ang jarakna semakin dan semakin dekat dengan salah satu ujung kurva tersebut. Jarak tersebut tidak akan menjadi nol. Tidak akan terjadi perpotongan antara garis lurus dan kurva. Penelidikan asimtot berguna untuk mengetahui pola kelengkungan kurva ang akan digambarkan PTE 4109, Agribisnis UB 23

24 = - a - bx x = - a - bx x = f(x) = f(x) x x = k x = k PTE 4109, Agribisnis UB 24

25 Faktorisasi Faktorisasi fungsi maksudna ialah menguraikan ruas utama fungsi tersebut menjadi bentuk perkalian ruas-ruas utama dari dua fungsi ang lebih kecil. f(x, ) = g(x, ). h(x, ) Persamaan 2x 2 x 2 = 0 faktorisasi persamaan di atas menghasilkan : (x ) (2x + ) = 0 PTE 4109, Agribisnis UB 25

26 Latihan Gambarkan kurva dari persamaan 2x 2 x 2 = 0 Gambarkan kurva dari persamaan 3 + x 2 x 2 = 0 PTE 4109, Agribisnis UB 26

27 TERIMAKASIH SELAMAT BELAJAR PTE 4109, Agribisnis UB 27

F U N G S I A. PENGERTIAN DAN UNSUR-UNSUR FUNGSI

F U N G S I A. PENGERTIAN DAN UNSUR-UNSUR FUNGSI F U N G S I A. PENGERTIAN DAN UNSUR-UNSUR FUNGSI Fungsi Fungsi ialah suatu bentuk hubungan matematis yang menyatakan hubungan ketergantungan (hubungan fungsional) antara satu variabel dengan variabel lain.

Lebih terperinci

FUNGSI. Matematika Dasar 9/18/2013. TEP-FTP-UB MatDas_Meet 2 APA ITU FUNGSI? DOMAIN, KODOMAIN, RANGE. x f : x y / y=f(x) f : x y y=f(x) y=f(x)=x 2

FUNGSI. Matematika Dasar 9/18/2013. TEP-FTP-UB MatDas_Meet 2 APA ITU FUNGSI? DOMAIN, KODOMAIN, RANGE. x f : x y / y=f(x) f : x y y=f(x) y=f(x)=x 2 APA ITU FUNGSI? FUNGSI Imajinasi : bermain golf f f : / =f() TEP FTP UB Sebuah fungsi adalah transformasi dari input pada output = f(). f : =f() =f()= DOMAIN, KODOMAIN, RANGE Fungsi adalah hubungan antara

Lebih terperinci

APA ITU FUNGSI? x f : x y atau y=f(x) f : x y y=f(x) y=f(x)=x 2. Imajinasi : bermain golf

APA ITU FUNGSI? x f : x y atau y=f(x) f : x y y=f(x) y=f(x)=x 2. Imajinasi : bermain golf FUNGSI TEP FTP UB APA ITU FUNGSI? Imajinasi : bermain golf x f f : x y atau y=f(x) y Sebuah fungsi adalah transformasi dari input x pada output y = f(x). f : x y y=f(x) y=f(x)=x 2 Fungsi adalah hubungan

Lebih terperinci

PENGERTIAN FUNGSI JENIS-JENIS FUNGSI PENGGAMBARAN GRAFIK FUNGSI

PENGERTIAN FUNGSI JENIS-JENIS FUNGSI PENGGAMBARAN GRAFIK FUNGSI FUNGSI PENGERTIAN FUNGSI JENIS-JENIS FUNGSI PENGGAMBARAN GRAFIK FUNGSI PENGERTIAN FUNGSI Sebuah fungsi f dari himpunan A ke himpunan B adalah suatu aturan yang memasangkan setiap X anggota A dengan tepat

Lebih terperinci

MATEMATIKA EKONOMI Program Studi Agribisnis

MATEMATIKA EKONOMI Program Studi Agribisnis MATEMATIKA EKONOMI Program Studi Agribisnis Dosen Pengampu: Prof. Dr. H. Almasdi Syahza, SE., MP. Email : asyahza@yahoo.co.id Website: http://almasdi.unri.ac.id HUBUNGAN FUNGSIONAL Pengertian dan unsur-unsur

Lebih terperinci

Jenis Jenis--jenis jenis fungsi dan fungsi linier Hafidh Munawir

Jenis Jenis--jenis jenis fungsi dan fungsi linier Hafidh Munawir Jenis-jenis fungsi dan fungsi linier Hafidh Munawir Diskripsi Mata Kuliah Memperkenalkan unsur-unsur fungsi ialah variabel bebas dan variabel terikat, koefisien, dan konstanta, yang saling berkaitan satu

Lebih terperinci

Institut Manajemen Telkom

Institut Manajemen Telkom Institut Manajemen Telkom Osa Omar Sharif JENIS JENIS FUNGSI1 JENIS JENIS FUNGSI 2 Jenis Fungsi Gambar 1. FUNGSI POLINOM mengandung banyak suku (polinom) dalam variabel bebas y = a 0 + a 1 x + a 2 x 2

Lebih terperinci

PERTEMUAN 2-3 FUNGSI LINIER

PERTEMUAN 2-3 FUNGSI LINIER PERTEMUAN 2-3 FUNGSI LINIER Fungsi Fungsi ialah suatu bentuk hubungan matematis yang menyatakan hubungan ketergantungan (hubungan fungsional) antara satu variabel dengan variabel lainnya. Unsur-unsur pembentuk

Lebih terperinci

FUNGSI DAN PERSAMAAN LINEAR. EvanRamdan

FUNGSI DAN PERSAMAAN LINEAR. EvanRamdan FUNGSI DAN PERSAMAAN LINEAR TEORI FUNGSI Fungsi yaitu hubungan matematis antara suatu variabel dengan variabel lainnya. Unsur-unsur pembentukan fungsi yaitu variabel (terikat dan bebas), koefisien dan

Lebih terperinci

FUNGSI. Berdasarkan hubungan antara variabel bebas dan terikat, fungsi dibedakan dua: fungsi eksplisit dan fungsi implisit.

FUNGSI. Berdasarkan hubungan antara variabel bebas dan terikat, fungsi dibedakan dua: fungsi eksplisit dan fungsi implisit. FUNGSI Fungsi merupakan hubungan antara dua variabel atau lebih. Variabel dibedakan :. Variabel bebas yaitu variabel yang besarannya dpt ditentukan sembarang, mis:,, 6, 0 dll.. Variabel terikat yaitu variabel

Lebih terperinci

JENIS JENIS FUNGSI 2. Gambar. Jenis Fungsi. mengandung banyak suku (polinom) dalam variabel bebas y = a 0 + a 1 x + a 2 x a n x n

JENIS JENIS FUNGSI 2. Gambar. Jenis Fungsi. mengandung banyak suku (polinom) dalam variabel bebas y = a 0 + a 1 x + a 2 x a n x n Telkom University Alamanda JENIS JENIS FUNGSI1 JENIS JENIS FUNGSI 2 Jenis Fungsi Gambar 1. FUNGSI POLINOM mengandung banyak suku (polinom) dalam variabel bebas y = a 0 + a 1 x + a 2 x 2 + + a n x n 2.

Lebih terperinci

5 F U N G S I. 1 Matematika Ekonomi

5 F U N G S I. 1 Matematika Ekonomi 5 F U N G S I Pemahaman tentang konsep fungsi sangat penting dalam mempelajari ilmu ekonomi, mengingat kajian ekonomi banyak bekerja dengan fungsi. Fungsi dalam matematika menyatakan suatu hubungan formal

Lebih terperinci

Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f.

Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f. Pertemuan ke 8 GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(,y): y = f(), D f } disebut grafik fungsi f. Grafik metode yang paling umum untuk menyatakan hubungan antara dua himpunan yaitu dengan menggunakan

Lebih terperinci

Modul Matematika MINGGU 4. g. Titik Potong fungsi linier

Modul Matematika MINGGU 4. g. Titik Potong fungsi linier MINGGU 4 Pokok Bahasan Sub Pokok Bahasan Tujuan Instruksional Umum : Hubungan dan : 1. Hubungan 2. a. Pengertian fungsi b. Jenis-jenis fungsi c. Diagram fungsi d. Pengertian fungsi linier e. Penggambaran

Lebih terperinci

KONSEP DASAR FUNGSI DAN GRAFIK. Oleh : Agus Arwani, SE, M.Ag

KONSEP DASAR FUNGSI DAN GRAFIK. Oleh : Agus Arwani, SE, M.Ag KONSEP DASAR FUNGSI DAN GRAFIK Oleh : Agus Arwani, SE, M.Ag KONSEP DASAR FUNGSI DAN GRAFIK Definisi : Fungsi f : A B adalah suatu aturan yang mengaitkan (memadankan) setiap dengan tepat satu A y B Notasi

Lebih terperinci

FUNGSI EKSPONENSIAL & FUNGSI LOGARITMA

FUNGSI EKSPONENSIAL & FUNGSI LOGARITMA FUNGSI EKSPONENSIAL & FUNGSI LOGARITMA NAMA: KELAS: 1 P a g e FUNGSI EKSPONENSIAL DAN LOGARITMA I. FUNGSI EKSPONEN Fungsi eksponen f dengan bilangan pokok a (a konstan) adalah fungsi yang didefinsikan

Lebih terperinci

MATEMATIKA EKONOMI 1 FUNGSI DAN GRAFIK. DOSEN Fitri Yulianti, SP, MSi.

MATEMATIKA EKONOMI 1 FUNGSI DAN GRAFIK. DOSEN Fitri Yulianti, SP, MSi. MATEMATIKA EKONOMI 1 FUNGSI DAN GRAFIK DOSEN Fitri Yulianti, SP, MSi. Fungsi Fungsi merupakan hubungan antara dua variabel atau lebih. Variabel dibedakan : 1. Variabel bebas yaitu variabel yang besarannya

Lebih terperinci

Matematika Ekonomi KUADRAT DAN FUNGSI RASIONAL (FUNGSI PECAH) GRAFIK FUNGSI KUADRAT BERUPA PARABOLA GRAFIK FUNGSI RASIONAL BERUPA HIPERBOLA

Matematika Ekonomi KUADRAT DAN FUNGSI RASIONAL (FUNGSI PECAH) GRAFIK FUNGSI KUADRAT BERUPA PARABOLA GRAFIK FUNGSI RASIONAL BERUPA HIPERBOLA Fungsi Non Linier Diskripsi materi: -Harga ekstrim pada fungsi kuadrat 1 Fungsi non linier FUNGSI LINIER DAPT BERUPA FUNGSI KUADRAT DAN FUNGSI RASIONAL (FUNGSI PECAH) GRAFIK FUNGSI KUADRAT BERUPA PARABOLA

Lebih terperinci

Peminatan Matematika dan Ilmu-Ilmu Alam. Disusun Oleh: Miyanto

Peminatan Matematika dan Ilmu-Ilmu Alam. Disusun Oleh: Miyanto MATEMATIKA Peminatan Matematika dan Ilmu-Ilmu Alam Disusun Oleh: Miyanto Disklaimer Daftar isi Disklaimer Powerpoint pembelajaran ini dibuat sebagai alternatif guna membantu Bapak/Ibu Guru melaksanakan

Lebih terperinci

Matematik Ekonom Fungsi nonlinear

Matematik Ekonom Fungsi nonlinear 1 FUNGSI Fungsi adalah hubungan antara 2 buah variabel atau lebih, dimana masing-masing dari dua variabel atau lebih tersebut saling pengaruh mempengaruhi. Variabel merupakan suatu besaran yang sifatnya

Lebih terperinci

BAB 5 TEOREMA SISA. Menggunakan aturan sukubanyak dalam penyelesaian masalah. Kompetensi Dasar

BAB 5 TEOREMA SISA. Menggunakan aturan sukubanyak dalam penyelesaian masalah. Kompetensi Dasar Standar Kompetensi BAB 5 TEOREMA SISA Menggunakan aturan sukubanyak dalam penyelesaian masalah. Kompetensi Dasar Menggunakan algoritma pembagian sukubanyak untuk menentukan hasil bagi dan sisa pembagian

Lebih terperinci

Modul Matematika 2012

Modul Matematika 2012 Modul Matematika MINGGU V Pokok Bahasan : Fungsi Non Linier Sub Pokok Bahasan :. Pendahuluan. Fungsi kuadrat 3. Fungsi pangkat tiga. Fungsi Rasional 5. Lingkaran 6. Ellips Tujuan Instruksional Umum : Agar

Lebih terperinci

2.1 Fungsi dan Grafiknya

2.1 Fungsi dan Grafiknya FUNGSI DAN LIMIT 2.1 Fungsi dan Grafiknya Definisi Fungsi Sebuah fungsi f adalah suatu aturan padanan yang menghubungkan tiap obyek x dalam satu himpunan, yang disebut daerah asal, dengan sebuah nilai

Lebih terperinci

MODUL 11 FUNGSI EKSPONENSIAL & LOGARITMA

MODUL 11 FUNGSI EKSPONENSIAL & LOGARITMA MODUL 11 FUNGSI EKSPONENSIAL & LOGARITMA 11.1. Ketentuan dan Sifat-Sifat KETENTUAN a P = a. a. a. a................. sampai p faktor (a dinamakan bilangan pokok, p dinamakan pangkat atau eksponen) SIFAT-SIFAT

Lebih terperinci

6/28/2016 al muiz

6/28/2016 al muiz 6/28/2016 al muiz 2013 1 Unsur-unsur dalam model matematis Varia bel Kons tanta Para meter Unsur model matematis 6/28/2016 al muiz 2013 2 Variabel adalah sesuatu yang besarnya dapat berubah, misalnya sesuatu

Lebih terperinci

Logaritma adalah operasi matematika yang merupakan kebalikan dari eksponen atau pemangkatan.

Logaritma adalah operasi matematika yang merupakan kebalikan dari eksponen atau pemangkatan. Logaritma adalah operasi matematika ang merupakan kebalikan dari eksponen atau pemangkatan. Rumus dasar logaritma: b c = a ditulis sebagai b log a = c (b disebut basis) Beberapa orang menuliskan b log

Lebih terperinci

MATEMATIKA BISNIS BAB 2 FUNGSI LINIER

MATEMATIKA BISNIS BAB 2 FUNGSI LINIER MATEMATIKA BISNIS BAB FUNGSI LINIER Hikmah Agustin, S.P.,MM DEFINISI FUNGSI Fungsi adalah hubungan matematis antara suatu variabel dengan variabel lainna. Unsur-unsur pembentukan fungsi : 1. Variabel Variabel

Lebih terperinci

Menurut jenisnya, fungsi dapat dibedakan menjadi (1) Fungsi aljabar (2) Fungsi transenden

Menurut jenisnya, fungsi dapat dibedakan menjadi (1) Fungsi aljabar (2) Fungsi transenden Lecture 3. Function (B) A. Macam-macam Fungsi Menurut jenisnya, fungsi dapat dibedakan menjadi (1) Fungsi aljabar (2) Fungsi transenden Fungsi aljabar dibedakan menjadi (1) Fungsi rasional (a) Fungsi konstan

Lebih terperinci

MATEMATIKA EKONOMI DAN BISNIS. Nuryanto.ST.,MT

MATEMATIKA EKONOMI DAN BISNIS. Nuryanto.ST.,MT MATEMATIKA EKONOMI DAN BISNIS Fungsi Non Linear Fungsi non-linier merupakan bagian yang penting dalam matematika untuk ekonomi, karena pada umumnya fungsi-fungsi yang menghubungkan variabel-variabel ekonomi

Lebih terperinci

(2) Titik potong kurva dengan sumbu y, bila x = 0, diperoleh x = 0 y = mx + n y = m(0) + n y = n Jadi, titik potongnya dengan sumbu y, adalah (0, n) y

(2) Titik potong kurva dengan sumbu y, bila x = 0, diperoleh x = 0 y = mx + n y = m(0) + n y = n Jadi, titik potongnya dengan sumbu y, adalah (0, n) y BAB 3 FUNGSI LINIER DAN PERSAMAAN GARIS LURUS 3.1 Pengantar Fungsi linier adalah bentuk fungsi yang paling sederhana. Banyak hubungan antara variable ekonomi, dalam jangka pendek dianggap linier. Pengetahuan

Lebih terperinci

MBS - DTA. Sucipto UNTUK KALANGAN SENDIRI. SMK Muhammadiyah 3 Singosari

MBS - DTA. Sucipto UNTUK KALANGAN SENDIRI. SMK Muhammadiyah 3 Singosari MBS - DTA Sucipto UNTUK KALANGAN SENDIRI SMK Muhammadiyah Singosari SERI : MBS-DTA FUNGSI STANDAR KOMPETENSI Siswa mampu memecahkan masalah yang berkaitan dengan fungsi, persamaan fungsi linear dan fungsi

Lebih terperinci

TEOREMA SISA 1. Nilai Sukubanyak Tugas 1

TEOREMA SISA 1. Nilai Sukubanyak Tugas 1 TEOREMA SISA 1. Nilai Sukubanyak Apa yang dimaksud sukubanyak (polinom)? Ingat kembali bentuk linear seperti 2x + 1 atau bentuk kuadrat 2x 2-3x + 5 dan juga bentuk pangkat tiga 2x 3 x 2 + x 7. Bentuk-bentuk

Lebih terperinci

BAB I. SISTEM KOORDINAT, NOTASI & FUNGSI

BAB I. SISTEM KOORDINAT, NOTASI & FUNGSI BAB I. SISTEM KRDINAT, NTASI & FUNGSI (Pertemuan ke 1 & 2) PENDAHULUAN Diskripsi singkat Pada bab ini akan dijelaskan tentang bilangan riil, sistem koordinat Cartesius, notasi-notasi ang sering digunakan

Lebih terperinci

KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia

KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN DEPARTEMEN TEKNIK KIMIA Universitas Indonesia BAB II. FUNGSI, LIMIT, DAN KEKONTINUAN Fungsi dan Operasi pada Fungsi Beberapa Fungsi Khusus Limit dan Limit

Lebih terperinci

PENDAHULUAN KALKULUS

PENDAHULUAN KALKULUS . BILANGAN REAL PENDAHULUAN KALKULUS Ada beberapa jenis bilangan ang telah kita kenal ketika di bangku sekolah. Bilangan-bilangan tersebut adalah bilangan asli, bulat, cacah, rasional, irrasional. Tahu

Lebih terperinci

Catatan Kuliah MA1123 Kalkulus Elementer I

Catatan Kuliah MA1123 Kalkulus Elementer I Catatan Kuliah MA1123 Kalkulus Elementer I Oleh Hendra Gunawan, Ph.D. Departemen Matematika ITB Sasaran Belajar Setelah mempelajari materi Kalkulus Elementer I, mahasiswa diharapkan memiliki (terutama):

Lebih terperinci

atau y= f(x) = ax 2 + bx + c (3.17) y= f(x) = a 2 x + a 0 x 2 + a 1

atau y= f(x) = ax 2 + bx + c (3.17) y= f(x) = a 2 x + a 0 x 2 + a 1 i. Fungsi kuadrat - Penyelesaian fungsi kuadrat dengan pemfaktoran Fungsi kuadrat adalah fungsi polinomial yang mempunyai derajad dua dan mempunyai bentuk umum : y= f(x) = a 2 x 2 + a 1 x + a 0 atau y=

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Aljabar dapat didefinisikan sebagai manipulasi dari simbol-simbol. Secara

BAB II TINJAUAN PUSTAKA. Aljabar dapat didefinisikan sebagai manipulasi dari simbol-simbol. Secara 4 BAB II TINJAUAN PUSTAKA A. Aljabar Definisi II.A.: Aljabar (Wahyudin, 989:) Aljabar dapat didefinisikan sebagai manipulasi dari simbol-simbol. Secara historis aljabar dibagi menjadi dua periode waktu,

Lebih terperinci

yang tak terdefinisikan dalam arti keberadaannya tidak perlu didefinisikan. yang sejajar dengan garis yang diberikan tersebut.

yang tak terdefinisikan dalam arti keberadaannya tidak perlu didefinisikan. yang sejajar dengan garis yang diberikan tersebut. 3 Gariis Lurus Dalam geometri aksiomatik/euclide konsep garis merupakan salah satu unsur ang tak terdefinisikan dalam arti keberadaanna tidak perlu didefinisikan. Karakteristik suatu garis diberikan pada

Lebih terperinci

KALKULUS 1. Oleh : SRI ESTI TRISNO SAMI, ST, MMSI /

KALKULUS 1. Oleh : SRI ESTI TRISNO SAMI, ST, MMSI / Oleh : SRI ESTI TRISNO SAMI, ST, MMSI 08125218506 / 082334051234 E-mail : sriestits2@gmail.com Bahan Bacaan / Refferensi : 1. Frank Ayres J. R., Calculus, Shcaum s Outline Series, Mc Graw-Hill Book Company.

Lebih terperinci

MATEMATIKA BISNIS I. M Riza Radyanto, S.T, M.T. Akademi Keuangan dan Perbankan Widya Buana

MATEMATIKA BISNIS I. M Riza Radyanto, S.T, M.T. Akademi Keuangan dan Perbankan Widya Buana MATEMATIKA BISNIS I M Riza Radyanto, S.T, M.T Akademi Keuangan dan Perbankan Widya Buana 2013 BAB I FUNGSI Pengetahuan dan pemahaman akan konsep fungsi baik berbentuk persamaan maupun pertidaksamaan dalam

Lebih terperinci

Materi Fungsi Linear Fungsi Variabel, koefisien, dan konstanta Variabel variabel bebas Koefisien Konstanta 1). Pengertian fungsi linier

Materi Fungsi Linear Fungsi Variabel, koefisien, dan konstanta Variabel variabel bebas Koefisien Konstanta 1). Pengertian fungsi linier Materi Fungsi Linear Admin 8:32:00 PM Duhh akhirnya nongol lagi... kali ini saya akan bahas mengenai pelajaran yang paling disukai oleh hampir seluruh warga dunia :v... MATEMATIKA, ya itu namanya. materi

Lebih terperinci

MODUL MATEMATIKA SEKOLAH

MODUL MATEMATIKA SEKOLAH 1 MODUL MATEMATIKA SEKOLAH 1 Oleh: DIDIK HERMANTO, M. Pd. STKIP PGRI BANGKALAN PRODI S1PENDIDIKAN MATEMATIKA 2014 2 BAB I PENDAHULUAN I. PENGERTIAN Matematika sekolah adalah bagian matematika yang diberikan

Lebih terperinci

Fungsi dan Limit Fungsi 23. Contoh 5. lim. Buktikan, jika c 0, maka

Fungsi dan Limit Fungsi 23. Contoh 5. lim. Buktikan, jika c 0, maka Contoh 5 Buktikan jika c 0 maka c c Analisis Pendahuluan Akan dicari bilangan 0 sedemikian sehingga apabila c untuk setiap 0. 0 c berlaku Perhatikan: c ( c)( c) c c c c Dapat dipilih c Bukti: c c c Ambil

Lebih terperinci

A B A B. ( a ) ( b )

A B A B. ( a ) ( b ) BAB. FUNGSI A. Relasi dan Fungsi Misalkan A dan B dua himpunan tak kosong. Relasi T dari himpunan A ke B adalah himpunan bagian dari A B. Jadi relasi A ke B merupakan himpunan (,y), dengan pada himpunan

Lebih terperinci

fungsi rasional adalah rasio dari dua polinomial. Secara umum,

fungsi rasional adalah rasio dari dua polinomial. Secara umum, fungsi rasional adalah rasio dari dua polinomial. Secara umum, Fungsi Rasional Fungsi rasional adalah fungsi yang memiliki bentuk Dengan p dan d merupakan polinomial dan d(x) 0. Domain dari V(x) adalah

Lebih terperinci

BAB 2. FUNGSI & GRAFIKNYA

BAB 2. FUNGSI & GRAFIKNYA . Fungsi BAB. FUNGSI & GRAFIKNYA Seara intuitif, kita pandang sebagai fungsi dari jika terdapat aturan dimana nilai (tunggal) mengkait nilai. Contoh:. a. 5 b. Definisi: Suatu fungsi adalah suatu himpunan

Lebih terperinci

FUNGSI dan LIMIT. 1.1 Fungsi dan Grafiknya

FUNGSI dan LIMIT. 1.1 Fungsi dan Grafiknya FUNGSI dan LIMIT 1.1 Fungsi dan Grafiknya Fungsi : suatu aturan yang menghubungkan setiap elemen suatu himpunan pertama (daerah asal) tepat kepada satu elemen himpunan kedua (daerah hasil) fungsi Daerah

Lebih terperinci

Dosen Pengampu: Prof. Dr. H. Almasdi Syahza, SE., MP. Website : HUBUNGAN NONLINEAR

Dosen Pengampu: Prof. Dr. H. Almasdi Syahza, SE., MP.   Website :  HUBUNGAN NONLINEAR Dosen Pengampu: Prof. Dr. H. Almasdi Syahza, SE., MP. Email : asyahza@yahoo.co.id Website : http://almasdi.unri,ac,id HUBUNGAN NONLINEAR a. Fungsi Kuadrat b. Fungsi Kubik c. Penerapan Ekonomi Permintaan,

Lebih terperinci

SISTEM BILANGAN RIIL DAN FUNGSI

SISTEM BILANGAN RIIL DAN FUNGSI SISTEM BILANGAN RIIL DAN FUNGSI Matematika Juni 2016 Dosen : Dadang Amir Hamzah MATEMATIKA Juni 2016 1 / 67 Outline 1 Sistem Bilangan Riil Dosen : Dadang Amir Hamzah MATEMATIKA Juni 2016 2 / 67 Outline

Lebih terperinci

Aljabar 1. Modul 1 PENDAHULUAN

Aljabar 1. Modul 1 PENDAHULUAN Modul 1 Aljabar 1 Drs. H. Karso, M.Pd. PENDAHULUAN M odul yang sekarang Anda pelajari adalah modul yang pertama dari mata kuliah Materi Kurikuler Matematika SMA. Materi-materi yang disajikan dalam modul

Lebih terperinci

MATEMATIKA 1. Achmad Basuki Departemen Teknologi Multimedia Kreatif Politeknik Elektronika Negeri 1

MATEMATIKA 1. Achmad Basuki Departemen Teknologi Multimedia Kreatif Politeknik Elektronika Negeri 1 MATEMATIKA 1 Achmad Basuki Departemen Teknologi Multimedia Kreatif Politeknik Elektronika Negeri 1 Materi Fungsi Grafik Fungsi Sifat Simetri Fungsi Genap dan Fungsi Ganjil Operasi Pada Beberapa Fungsi

Lebih terperinci

BAB 1 PERSAMAAN. a) 2x + 3 = 9 a) 5 = b) x 2 9 = 0 b) = 12 c) x = 0 c) 2 adalah bilangan prima genap d) 3x 2 = 3x + 5

BAB 1 PERSAMAAN. a) 2x + 3 = 9 a) 5 = b) x 2 9 = 0 b) = 12 c) x = 0 c) 2 adalah bilangan prima genap d) 3x 2 = 3x + 5 BAB PERSAMAAN Sifat Sifat Persamaan Persamaan adalah kalimat matematika terbuka yang menyatakan hubungan sama dengan. Sedangkan kesamaan adalah kalimat matematika tertutup yang menyatakan hubungan sama

Lebih terperinci

Persamaan dan Pertidaksamaan Linear

Persamaan dan Pertidaksamaan Linear MATERI POKOK Persamaan dan Pertidaksamaan Linear MATERI BAHASAN : A. Persamaan Linear B. Pertidaksamaan Linear Modul.MTK X 0 Kalimat terbuka adalah kalimat matematika yang belum dapat ditentukan nilai

Lebih terperinci

FUNGSI DAN MODEL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 63

FUNGSI DAN MODEL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 63 FUNGSI DAN MODEL Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 63 Topik Bahasan 1 Fungsi 2 Jenis-jenis Fungsi 3 Fungsi Baru dari Fungsi Lama 4

Lebih terperinci

Silabus. Kegiatan Pembelajaran Instrumen. Tugas individu.

Silabus. Kegiatan Pembelajaran Instrumen. Tugas individu. Silabus Jenjang : SMP dan MTs Mata Pelajaran : Matematika Kelas : VIII Semester : 1 Standar Kompetensi : ALJABAR 1. Memahami bentuk aljabar, relasi, fungsi, dan garis lurus. Kompetensi Dasar Materi Ajar

Lebih terperinci

1. Pengertian Tentang Fungsi dan Grafik

1. Pengertian Tentang Fungsi dan Grafik Darpublic Oktober 3 www.darpublic.com. Pengertian Tentang Fungsi dan Grafik Fungsi Apabila suatu besaran memiliki nilai ang tergantung dari nilai besaran lain, maka dikatakan bahwa besaran tersebut merupakan

Lebih terperinci

fungsi Dan Grafik fungsi

fungsi Dan Grafik fungsi fungsi Dan Grafik fungsi Suatu fungsi adalah pemadanan dua himpunan tidak kosong dengan pasangan terurut (x, y) dimana tidak terdapat elemen kedua yang berbeda. Fungsi (pemetaan) himpunan A ke himpunan

Lebih terperinci

MA1101 MATEMATIKA 1A Hendra Gunawan

MA1101 MATEMATIKA 1A Hendra Gunawan MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2019/2020 27 Agustus 2019 Bab 0. Pendahuluan 0.1 Bilangan Real 0.2 Pertaksamaan dan Nilai Mutlak 0.3 Sistem Koordinat 0.4 Grafik Persamaan 0.5 Fungsi dan

Lebih terperinci

KURVA DAN PENCOCOKAN KURVA. Matematika Industri 1 TIP FTP UB

KURVA DAN PENCOCOKAN KURVA. Matematika Industri 1 TIP FTP UB KURVA DAN PENCOCOKAN KURVA TIP FTP UB Pokok Bahasan Pendahuluan Kurva-kurva standar Asimtot Penggambaran kurva secara sistematis, jika persamaan kurvanya diketahui Pencocokan kurva Metode kuadrat terkecil

Lebih terperinci

MAKALAH FUNGSI KUADRAT GRAFIK FUNGSI,&SISTEM PERSAMAAN KUADRAT

MAKALAH FUNGSI KUADRAT GRAFIK FUNGSI,&SISTEM PERSAMAAN KUADRAT MAKALAH FUNGSI KUADRAT GRAFIK FUNGSI,&SISTEM PERSAMAAN KUADRAT Kelompok 3 : 1.Suci rachmawati (ekonomi akuntansi) 2.Fitri rachmad (ekonomi akuntansi) 3.Elif (ekonomi akuntansi) 4.Dewi shanty (ekonomi management)

Lebih terperinci

Fungsi dan Limit Fungsi 23. Contoh 5. lim. Buktikan, jika c > 0, maka

Fungsi dan Limit Fungsi 23. Contoh 5. lim. Buktikan, jika c > 0, maka Contoh 5 Buktikan jika c > 0 maka c c Analisis Pendahuluan Akan dicari bilangan δ > 0 sedemikian sehingga apabila c < ε untuk setiap ε > 0. 0 < c < δ berlaku Perhatikan: c ( c)( c) c c c c c c c Dapat

Lebih terperinci

LOGO MAM 4121 KALKULUS 1. Dr. Wuryansari Muharini K.

LOGO MAM 4121 KALKULUS 1. Dr. Wuryansari Muharini K. LOGO MAM 4121 KALKULUS 1 Dr. Wuryansari Muharini K. BAB I. PENDAHULUAN SISTEM BILANGAN REAL, NOTASI SELANG, dan NILAI MUTLAK PERTAKSAMAAN SISTEM KOORDINAT GRAFIK PERSAMAAN SEDERHANA www.themegallery.com

Lebih terperinci

FUNGSI TRIGONOMETRI, FUNGSI EKSPONENSIAL, dan FUNGSI LOGARITMA

FUNGSI TRIGONOMETRI, FUNGSI EKSPONENSIAL, dan FUNGSI LOGARITMA FUNGSI TRIGONOMETRI, FUNGSI EKSPONENSIAL, dan FUNGSI LOGARITMA Makalah ini disusun untuk memenuhi tugas Mata Kuliah Kalkulus 1 Dosen Pengampu : Muhammad Istiqlal, M.Pd Disusun Oleh : 1. Sufi Anisa (23070160086)

Lebih terperinci

Fungsi Linier & Grafik Fungsi Aplikasi dalam Ekonomi

Fungsi Linier & Grafik Fungsi Aplikasi dalam Ekonomi Fungsi Linier & Grafik Fungsi Aplikasi dalam Ekonomi Diskripsi materi: -Bentuk umum dari fungsi linier dan menggambarkan grafik fungsi linier -Menentukan koefisien arah/ Kemiringan -Cara-cara pembentukan

Lebih terperinci

FUNGSI. Sesi XI 12/4/2015

FUNGSI. Sesi XI 12/4/2015 Mata Kuliah : Matematika Rekayasa Lanjut Kode MK : TKS 8105 Pengampu : Achfas Zacoeb Sesi XI FUNGSI dan GRAFIK e-mail : zacoeb@ub.ac.id www.zacoeb.lecture.ub.ac.id Hp. 081233978339 FUNGSI Secara intuitif,

Lebih terperinci

KETIDAKSAMAAN. A. Pengertian

KETIDAKSAMAAN. A. Pengertian A. Pengertian KETIDAKSAMAAN Ketidaksamaan dinotasikan dengan 1. < (lebih Kecil 2. ( lebih kecil atau sama dengan)) 3. > ( lebih besar) 4. ( lebih besar atau sama dengan) Tanda di atas digunakan untuk membuat

Lebih terperinci

Hendra Gunawan. 4 September 2013

Hendra Gunawan. 4 September 2013 MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 4 September 2013 Latihan (Kuliah yang Lalu) 1. Tentukan daerah asal dan daerah nilai fungsi 2 f(x) = 1 x. sudah dijawab 2. Gambar grafik fungsi

Lebih terperinci

MODUL 1. Teori Bilangan MATERI PENYEGARAN KALKULUS

MODUL 1. Teori Bilangan MATERI PENYEGARAN KALKULUS MODUL 1 Teori Bilangan Bilangan merupakan sebuah alat bantu untuk menghitung, sehingga pengetahuan tentang bilangan, mutlak diperlukan. Pada modul pertama ini akan dibahas mengenai bilangan (terutama bilangan

Lebih terperinci

yang tak terdefinisikan dalam arti keberadaannya tidak perlu didefinisikan.

yang tak terdefinisikan dalam arti keberadaannya tidak perlu didefinisikan. 3 Gariis Lurus Dalam geometri aksiomatik/euclide konsep garis merupakan salah satu unsur ang tak terdefinisikan dalam arti keberadaanna tidak perlu didefinisikan. Karakteristik suatu garis diberikan pada

Lebih terperinci

Pengintegralan Fungsi Rasional

Pengintegralan Fungsi Rasional Pengintegralan Fungsi Rasional Ahmad Kamsyakawuni, M.Kom Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Jember 25 Maret 2014 Pengintegralan Fungsi Rasional 1 Pengintegralan Fungsi Rasional 2

Lebih terperinci

POLINOM (SUKU BANYAK) Menggunakan aturan suku banyak dalam penyelesaian masalah.

POLINOM (SUKU BANYAK) Menggunakan aturan suku banyak dalam penyelesaian masalah. POLINOM (SUKU BANYAK) Standar Kompetensi: Menggunakan aturan suku banyak dalam penyelesaian masalah. Kompetensi Dasar: 1. Menggunakan algoritma pembagian suku banyak untuk menentukan hasil bagi dan sisa

Lebih terperinci

Sudaryatno Sudirham. Studi Mandiri. Fungsi dan Grafik. Darpublic

Sudaryatno Sudirham. Studi Mandiri. Fungsi dan Grafik. Darpublic Sudaratno Sudirham Studi Mandiri Fungsi dan Grafik ii Darpublic BAB 1 Pengertian Tentang Fungsi dan Grafik 1.1. Fungsi Apabila suatu besaran memiliki nilai ang tergantung dari nilai besaran lain, maka

Lebih terperinci

Pembahasan Matematika IPA SIMAK UI 2009

Pembahasan Matematika IPA SIMAK UI 2009 Pembahasan Matematika IPA SIMAK UI 2009 Kode 924 Oleh Kak Mufidah 1. Diketahui fungsi. Agar fungsi tersebut senantiasa berada di bawah sumbu x, maka nilai m yang mungkin adalah Agar fungsi tersebut senantiasa

Lebih terperinci

dengan X sebagai Domain dan Y sebagai Range, yang ditulis sebagai R: X Y. Jika setiap x X dapat dipetakan ke setiap y Y.

dengan X sebagai Domain dan Y sebagai Range, yang ditulis sebagai R: X Y. Jika setiap x X dapat dipetakan ke setiap y Y. 1 BAB. I RELASI DAN FUNGSI Dalam matematika modern, Relasi dan Fungsi digunakan untuk menunjukkan hubungan setiap elemen Domain dengan setiap elemenrange yang membentuk pasangan bilangan berurut. Hubungan

Lebih terperinci

Fungsi Non-Linear. Modul 5 PENDAHULUAN

Fungsi Non-Linear. Modul 5 PENDAHULUAN Modul 5 Fungsi Non-Linear F PENDAHULUAN Drs. Wahyu Widayat, M.Ec ungsi non-linier merupakan bagian yang penting dalam matematika untuk ekonomi, karena pada umumnya fungsi-fungsi yang menghubungkan variabel-variabel

Lebih terperinci

PERSAMAAN LINEAR/GARIS LURUS

PERSAMAAN LINEAR/GARIS LURUS PERSAMAAN LINEAR/GARIS LURUS SILABI Fungsi linear Titik potong gradien dari garis lurus Penggal dan lereng garis lurus Pembentukan Persamaan Linear - Cara dwi- kordinat - Cara koordinat- lereng - Cara

Lebih terperinci

TUJUAN INSTRUKSIONAL KHUSUS

TUJUAN INSTRUKSIONAL KHUSUS PREVIEW KALKULUS TUJUAN INSTRUKSIONAL KHUSUS Mahasiswa mampu: menyebutkan konsep-konsep utama dalam kalkulus dan contoh masalah-masalah yang memotivasi konsep tersebut; menjelaskan menyebutkan konsep-konsep

Lebih terperinci

D. (1 + 2 ) 27 E. (1 + 2 ) 27

D. (1 + 2 ) 27 E. (1 + 2 ) 27 1. Nilai dari untuk x = 4 dan y = 27 adalah... A. (1 + 2 ) 9 B. (1 + 2 ) 9 C. (1 + 2 ) 18 D. (1 + 2 ) 27 E. (1 + 2 ) 27 2. Persamaan 2x² + qx + (q - 1) = 0, mempunyai akar-akar x 1 dan x 2. Jika x 1 2

Lebih terperinci

Letak Sebuah Titik :

Letak Sebuah Titik : BAB V FUNGSI Letak Sebuah Titik : Y+ Kuadran II Kuadran I X+ Kuadran III Kuadran IV Fungsi ialah : Suatu bentuk hubungan matematis yg menyatakan hub. Ketergantungan/ fungsional antara satu variabel dengan

Lebih terperinci

MATEMATIKA EKONOMI ( FUNGSI LINIER, GRAFIK FUNGSI DAN SISTEM PERSAMAAN LINIER )

MATEMATIKA EKONOMI ( FUNGSI LINIER, GRAFIK FUNGSI DAN SISTEM PERSAMAAN LINIER ) MATEMATIKA EKONOMI ( FUNGSI LINIER, GRAFIK FUNGSI DAN SISTEM PERSAMAAN LINIER ) KELOMPOK 2 1. UMAR ATTAMIMI (01212043) 2. SITI WASI ATUL MUFIDA (01212096) 3. DEVI PRATNYA. P. (01212078) 4. POPPY MERLIANA

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN

RENCANA PELAKSANAAN PEMBELAJARAN RENCANA PELAKSANAAN PEMBELAJARAN Mata Pelajaran : Matematika Kelas/ Semester: XI Program IPA/2 Alokasi Waktu: 8 jam Pelajaran (4 Pertemuan) A. Standar Kompetensi Menggunakan aturan sukubanyak dalam penyelesaian

Lebih terperinci

PERSAMAAN DIFFERENSIAL ORDE I. Nurdinintya Athari

PERSAMAAN DIFFERENSIAL ORDE I. Nurdinintya Athari PERSAMAAN DIFFERENSIAL ORDE I Nurdininta Athari Definisi PERSAMAAN DIFERENSIAL Persamaan diferensial adalah suatu persamaan ang memuat satu atau lebih turunan fungsi ang tidak diketahui. Jika persamaan

Lebih terperinci

BAB IV PERTIDAKSAMAAN. 1. Pertidaksamaan Kuadrat 2. Pertidaksamaan Bentuk Pecahan 3. Pertidaksamaan Bentuk Akar 4. Pertidaksamaan Nilai Mutlak

BAB IV PERTIDAKSAMAAN. 1. Pertidaksamaan Kuadrat 2. Pertidaksamaan Bentuk Pecahan 3. Pertidaksamaan Bentuk Akar 4. Pertidaksamaan Nilai Mutlak BAB IV PERTIDAKSAMAAN 1. Pertidaksamaan Kuadrat. Pertidaksamaan Bentuk Pecahan 3. Pertidaksamaan Bentuk Akar 4. Pertidaksamaan Nilai Mutlak 86 LEMBAR KERJA SISWA 1 Mata Pelajaran : Matematika Uraian Materi

Lebih terperinci

DTH1B3 - MATEMATIKA TELEKOMUNIKASI I

DTH1B3 - MATEMATIKA TELEKOMUNIKASI I DTH1B3 - MATEMATIKA TELEKOMUNIKASI I Sistem Persamaan Linear By : Dwi Andi Nurmantris Capaian Pembelajaran Mampu menyelesaikan sistem persamaan linier dengan beberapa metode pencarian. Mampu menyelesaikan

Lebih terperinci

E-LEARNING MATEMATIKA

E-LEARNING MATEMATIKA MODUL E-LEARNING E-LEARNING MATEMATIKA Oleh : NURYADIN EKO RAHARJO, M.PD. NIP. 9705 00 00 Penulisan Modul e Learning ini diiayai oleh dana DIPA BLU UNY TA 00 Sesuai dengan Surat Perjanjian Pelaksanaan

Lebih terperinci

Bilangan Real. Modul 1 PENDAHULUAN

Bilangan Real. Modul 1 PENDAHULUAN Modul 1 Bilangan Real S PENDAHULUAN Drs. Soemoenar emesta pembicaraan Kalkulus adalah himpunan bilangan real. Jadi jika akan belajar kalkulus harus paham terlebih dahulu tentang bilangan real. Bagaimanakah

Lebih terperinci

MATEMATIKA I (FIS 6111, Wajib, 3 SKS)

MATEMATIKA I (FIS 6111, Wajib, 3 SKS) MATEMATIKA I (FIS 6111, Wajib, 3 SKS) Kompetensi Umum Sistem bilangan real, fungsi, barisan dan deret bilangan real, Limit dan keontinuan, turunan dan penggunaannya, interpretasi derivatif. Teorema Rolle,

Lebih terperinci

Matematika EBTANAS Tahun 1991

Matematika EBTANAS Tahun 1991 Matematika EBTANAS Tahun 99 EBT-SMA-9-0 Persamaan sumbu simetri dari parabola y = 8 x x x = 4 x = x = x = x = EBT-SMA-9-0 Salah satu akar persamaan kuadrat mx 3x + = 0 dua kali akar yang lain, maka nilai

Lebih terperinci

x X dapat dipetakan ke setiap y Y. hanya jika (jikka) satu x X dapat dipetakan ke satu y Y. RELASI : F: X Y menghasilkan himpunan pasangan berurut:

x X dapat dipetakan ke setiap y Y. hanya jika (jikka) satu x X dapat dipetakan ke satu y Y. RELASI : F: X Y menghasilkan himpunan pasangan berurut: RELASI DAN FUNGSI Dalam matematika modern, Relasi dan Fungsi digunakan untuk menunjukkan hubungan setiap elemen Domain dengan setiap elemenrange ang membentuk pasangan bilangan berurut. Hubungan himpunan

Lebih terperinci

MATEMATIKA TEKNIK DASAR-I FUNGSI-2 SEBRIAN MIRDEKLIS BESELLY PUTRA TEKNIK PENGAIRAN

MATEMATIKA TEKNIK DASAR-I FUNGSI-2 SEBRIAN MIRDEKLIS BESELLY PUTRA TEKNIK PENGAIRAN MATEMATIKA TEKNIK DASAR-I FUNGSI-2 SEBRIAN MIRDEKLIS BESELLY PUTRA TEKNIK PENGAIRAN FUNGSI Perhatikan relasi {(x,y) x, y R; y=x 2 } Untuk tiap-tiap nilai x dalam wilayahnya, relasi itu hanya menyatakan

Lebih terperinci

Fungsi Eksponensial dan Logaritma Beserta Aplikasinya

Fungsi Eksponensial dan Logaritma Beserta Aplikasinya Fungsi Eksponensial dan Logaritma Beserta Aplikasinya Week 04 W. Rofianto, ST, MSi PERBANDINGAN ANTAR JENIS FUNGSI x 0 1 2 3 4 5 y = 2x 0 2 4 6 8 10 ( y/ x) 2 2 2 2 2 ( y/ x)/y - 100% 50% 33.33% 25% y

Lebih terperinci

Wardaya College. Tes Simulasi Ujian Nasional SMA Berbasis Komputer. Mata Pelajaran Matematika Tahun Ajaran 2017/2018

Wardaya College. Tes Simulasi Ujian Nasional SMA Berbasis Komputer. Mata Pelajaran Matematika Tahun Ajaran 2017/2018 Tes Simulasi Ujian Nasional SMA Berbasis Komputer Mata Pelajaran Matematika Tahun Ajaran 07/08 -. Jika diketahui x = 8, y = 5 dan z = 8, maka nilai dari x y z adalah.... (a) 0 (b) 00 (c) 500 (d) 750 (e)

Lebih terperinci

HUBUNGAN FUNGSI NON-LINEAR DALAM PENERAPAN EKONOMI. Disusun Guna Memenuhi Tugas Matematika Ekonomi. Dosen Pengampu : Rombel 1 Oleh:

HUBUNGAN FUNGSI NON-LINEAR DALAM PENERAPAN EKONOMI. Disusun Guna Memenuhi Tugas Matematika Ekonomi. Dosen Pengampu : Rombel 1 Oleh: HUBUNGAN FUNGSI NON-LINEAR DALAM PENERAPAN EKONOMI Disusun Guna Memenuhi Tugas Matematika Ekonomi Dosen Pengampu : Wardono Rombel 1 Oleh: 1. Farah Anisah Zahra 4101413064. Rizky Rahman 4101413066 3. Hana

Lebih terperinci

Silabus. Nama Sekolah : SMA Mata Pelajaran : MATEMATIKA Kelas / Program : X / UMUM Semester : GANJIL

Silabus. Nama Sekolah : SMA Mata Pelajaran : MATEMATIKA Kelas / Program : X / UMUM Semester : GANJIL Silabus Nama Sekolah : SMA Mata Pelajaran : MATEMATIKA Kelas / Program : X / UMUM Semester : GANJIL Sandar Kompetensi:. Memecahkan masalah yang berkaitan dengan bentuk pangkat, akar, dan logaritma Kompetensi

Lebih terperinci

Bab 0 Pendahuluan. MA1101 Matematika 1A Semester I Tahun 2018/2019 FMIPA (K-03) Dosen: Dr. Rinovia Simanjuntak

Bab 0 Pendahuluan. MA1101 Matematika 1A Semester I Tahun 2018/2019 FMIPA (K-03) Dosen: Dr. Rinovia Simanjuntak Bab 0 Pendahuluan MA1101 Matematika 1A Semester I Tahun 2018/2019 FMIPA (K-03) Dosen: Dr. Rinovia Simanjuntak 0.1 Bilangan Real Bilangan Real Desimal Berulang dan Tak Berulang Setiap bilangan rasional

Lebih terperinci

Mata Pelajaran Wajib. Disusun Oleh: Ngapiningsih

Mata Pelajaran Wajib. Disusun Oleh: Ngapiningsih Mata Pelajaran Wajib Disusun Oleh: Ngapiningsih Disklaimer Daftar isi Disklaimer Powerpoint pembelajaran ini dibuat sebagai alternatif guna membantu Bapak/Ibu Guru melaksanakan pembelajaran. Materi powerpoint

Lebih terperinci

SUKU BANYAK. A. Teorema Sisa 1) F(x) = (x b) H(x) + S, maka S = F(b) 2) F(x) = (ax b) H(x) + S, maka S = F( a

SUKU BANYAK. A. Teorema Sisa 1) F(x) = (x b) H(x) + S, maka S = F(b) 2) F(x) = (ax b) H(x) + S, maka S = F( a SUKU BANYAK A. Teorema Sisa 1) F(x) = (x b) H(x) + S, maka S = F(b) 2) F(x) = (ax b) H(x) + S, maka S = F( a b ) 3) F(x) : [(x a)(x b)], maka S(x) = (x a)s 2 + S 1, dengan S 2 adalah sisa pembagian pada

Lebih terperinci

Kelompok Mata Kuliah : MKU Program Studi/Program : Pendidikan Teknik Elektro/S1 Status Mata Kuliah : Wajib Prasyarat : - : Aip Saripudin, M.T.

Kelompok Mata Kuliah : MKU Program Studi/Program : Pendidikan Teknik Elektro/S1 Status Mata Kuliah : Wajib Prasyarat : - : Aip Saripudin, M.T. DESKRIPSI MATA KULIAH TK-302 Matematika: S1, 3 SKS, Semester I Mata kuliah ini merupakan kuliah dasar. Selesai mengikuti perkuliahan ini mahasiswa diharapkan mampu memahami konsep-konsep matematika dan

Lebih terperinci

SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 2011/2012

SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 2011/2012 SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 0/0. Akar-akar persamaan kuadrat x +ax - 40 adalah p dan q. Jika p - pq + q 8a, maka nilai a... A. -8 B. -4 C. 4 D. 6 E. 8 BAB III Persamaan

Lebih terperinci