FUNGSI DAN GRAFIK FUNGSI.
|
|
- Djaja Budiman
- 2 tahun lalu
- Tontonan:
Transkripsi
1 FUNGSI DAN GRAFIK FUNGSI Materi ke-4
2 Materi Fungsi Fungsi Surjekti, Fungsi Injekti, dan Fungsi Bijekti Operasi Pada Fungsi Fungsi Invers Fungsi Komposisi Graik Fungsi Dalam Sistem Koordinat Kartesius ( )
3 Fungsi Dalam berbagai aplikasi, hubungan/relasi antara dua himpunan ( sering disederhanakan menjadi variabel ) sering terjadi. Sebagai contoh, volume bola dengan jari-jari r diberikan oleh relasi 4 3 V π r 3 Secara deinisi : Diketahui R relasi dari A ke B. Apabila setiap Aberelasi R dengan tepat satu y B maka R disebut ungsidari A ke B.
4 Fungsi Fungsi dinyatakan dengan huru-huru:, g, h, F, H, dst. Apabila merupakan ungsi dari himpunan A ke himpunan B, maka dituliskan: : A B Dalam hal ini, himpunan Adinamakan domainatau daerah deinisiatau daerah asal, sedangkan himpunan B dinamakan kodomain atau daerah kawanungsi.
5 Fungsi Domain ungsiditulisdengannotasid, D { R : ( ) ada (terdeinisikan)} Himpunan semuaanggota Byang mempunyai kawan di A dinamakan range atau daerah hasil ungsi, ditulis atau Im() Perhatikan gambar berikut R
6 Fungsi
7 Fungsi Jika pada ungsi : A B, sebarang elemen A mempunyai kawan y B, maka dikatakan y merupakan nilai ungsi di dan ditulis y (). Selanjutnya, dan y masing-masing dinamakan variable bebas dan variabel tak bebas. Sedangkan y () disebut rumus ungsi.
8 Fungsi Contoh : Tentukan D ( ) + Jawab- : Suatu hasil bagi akan memiliki arti apabila penyebut tidak nol. Oleh karena itu, D R : terdeinisikan R + { R : + 0} { }
9 Fungsi Contoh : Tentukan D ) ( Jawab- : Karena akar suatu bilangan ada hanya apabila bilangan tersebut tak negati, maka: { } ). (,,0] ( atau 0 : 0 : ada : > < D R R R
10 Fungsi Surjekti, Fungsi Injekti, dan Fungsi Bijekti Apabila setiap anggota himpunan B mempunyai kawan anggota himpunan A, maka disebut ungsi surjekti
11 Fungsi Surjekti, Fungsi Injekti, dan Fungsi Bijekti Apabila setiap anggota himpunan Bmempunyai yang kawan di A, kawannya tunggal, maka disebut ungsi injekti
12 Fungsi Surjekti, Fungsi Injekti, dan Fungsi Bijekti Jika setiap anggota himpunan Bmempunyai tepat satu kawan di Amaka disebut ungsi bijekti atau korespodensi-. Mudah dipahami bahwa korespondensi - adalah ungsi surjekti sekaligus injekti.
13 Operasi Pada Fungsi Diberikan skalar real αdan ungsi-ungsi dan g., maka :, Domain masing-masing ungsi di atas adalah irisan domain dan domain g, kecuali untuk D g { D D : g( ) 0} g g
14 Fungsi Invers Apabila merupakan korespondensi, maka mudah ditunjukkan bahwa invers juga merupakan ungsi. Fungsi ini disebut ungsi invers, ditulis dengan notasi. ( y) y D R dan R dengan ( ) D
15 Fungsi Invers Contoh : Tentukan jika diketahui. Jawab : 3 ) ( + Jawab : 3 3 ) ( + + y y
16 Fungsi Invers ) )(3 ( y y y y y + + ) ( y y y y y 3 3 ) (
17 Fungsi Komposisi
18 Fungsi Komposisi Contoh : Jika ( ) dan maka tentukan ungsiungsi berikut ini beserta domainnya. a. b. g o o g Jawab : g ( )
19 Selingan
20 Graik Fungsi Dalam Sistem Koordinat Kartesius Dalam sistem koordinat kartesius ungsi dapat dibagi menjadi: Fungsi Aljabar Fungsi Transenden Fungsi disebut ungsi aljabar jika dapat dinyatakan sebagai jumlahan, selisih, hasil kali, hasil bagi, pangkat, ataupun akar ungsi-ungsi suku banyak.
21 Graik Fungsi Dalam Sistem Koordinat Kartesius Contoh ungsi aljabar: ( ) 3 ( + ) + Fungsi yang bukan ungsi aljabar disebut ungsi transenden. Beberapa contoh ungsi transenden adalah ungsi trigonometri, ungsi logaritma, dsb. 3
22 Graik Fungsi Dalam Sistem Koordinat Kartesius Fungsi Aljabar meliputi : Fungsi rasional : Fungsi bulat (ungsi suku banyak) Fungsi pecah. Fungsi irasional.
23 Graik Fungsi Dalam Sistem Koordinat Kartesius Fungsi suku banyak berderajat n mempunyai persamaan () P n () a 0 + a a n n dengan nbilangan bulat tak negati, a,..., a n bilangan-bilangan real dan a n 0.
24 Graik Fungsi Suku Banyak a. Fungsi konstan ( ) c
25 Graik Fungsi Suku Banyak b. Fungsi linear: () m+ n Graik ungsi ini berupa garis lurus dengan gradien mdan melalui titik.
26 Graik Fungsi Suku Banyak c. Fungsi kuadrat ( ) a + b + c, a 0 Graik ungsi kuadrat berupa parabola. Diskriminan: D b 4ac. Secara umum, graik ungsi kuadrat ini dapat digambarkan sebagai berikut:
27 Graik Fungsi Suku Banyak c. Fungsi kuadrat ( ) a + b + c, a 0
28 Graik Fungsi Suku Banyak Contoh graik ungsi kuadrat
29 Graik Fungsi Suku Banyak 3 ( d. Fungsi kubik ) a + a + a + a, a 0
30 Graik Fungsi Pecah Fungsi () yang dapat dinyatakan sebagai hasil bagi dua ungsi suku banyak ( ) a + a b b a n b n m n m disebut ungsi pecah.
31 Graik Fungsi Pecah Contoh graik () dan ( )
32 Graik Fungsi Irasional Contoh
33 Kata inspirasi pertemuan ini Berikir Banyak orang yang berikir. Tapi, sedikit yang bertindak. Ingat, tak seorangpun akan sukes hanya dengan berikir, tanpa bertindak. Semua ikiran, harus diikuti oleh tindakan.
FUNGSI DAN GRAFIK FUNGSI.
FUNGSI DAN GRAFIK FUNGSI Materi ke-4 eko@uns.ac.id ekop2003@yahoo.com Materi Fungsi ( deinisi, daerah asal dan daerah hasil ) Fungsi Surjekti, Injekti, Bijekti dan Invers Operasi Pada Fungsi dan Fungsi
Kalkulus I. Fungsi Dan Grafik Fungsi. Dr. Eko Pujiyanto, S.Si., M.T eko.staff.uns.ac.id/kalkulus1
Kalkulus I Funsi Dan Graik Funsi Dr. Eko Pujiyanto, S.Si., M.T. eko@uns.ac.id 081 2278 3991 eko.sta.uns.ac.id/kalkulus1 Materi Funsi ( Daerah deinisi, daerah asal dan daerah hasil ) Funsi Surjekti, Injekti,
BAB II FUNGSI DAN GRAFIK FUNGSI
BAB II FUNGSI DAN GRAFIK FUNGSI. Funsi. Graik Funsi. Barisan dan Deret.4 Irisan Kerucut. Funsi Dalam berbaai aplikasi, korespondensi/hubunan antara dua himpunan serin terjadi. Sebaai contoh, volume bola
YAYASAN PRAWITAMA SMK WIKRAMA BOGOR
Telp. 051-84411, email: prohumasi@smkwikrama.net, FUNGSI KOMPOSISI DAN INVERS Pembahasan : 1. Pengertian ungsi, daerah asal daerah hasil Fungsi merupakan Daerah Asal : Suatu ungsi : A B, dengan daerah
Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f.
Pertemuan ke 8 GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(,y): y = f(), D f } disebut grafik fungsi f. Grafik metode yang paling umum untuk menyatakan hubungan antara dua himpunan yaitu dengan menggunakan
MATERI : RELASI DAN FUNGSI KELAS : X. 1. Ada hal penting yang bisa dipetik dari contoh di atas. Misalkan X menyatakan
MTERI : RELSI DN FUNGSI KELS : X Pemahaman Fungsi Dalam berbagai aplikasi, korespondensi/hubungan antara dua himpunan sering terjadi 4 3 Sebagai contoh, volume bola dengan jari-jari r diberikan oleh relasi
MAT 602 DASAR MATEMATIKA II
MAT 60 DASAR MATEMATIKA II Disusun Oleh: Dr. St. Budi Waluya, M. Sc Jurusan Pendidikan Matematika Program Pascasarjana Unnes 1 HIMPUNAN 1. Notasi Himpunan. Relasi Himpunan 3. Operasi Himpunan A B : A B
5 F U N G S I. 1 Matematika Ekonomi
5 F U N G S I Pemahaman tentang konsep fungsi sangat penting dalam mempelajari ilmu ekonomi, mengingat kajian ekonomi banyak bekerja dengan fungsi. Fungsi dalam matematika menyatakan suatu hubungan formal
3. FUNGSI DAN GRAFIKNYA
3. FUNGSI DAN GRAFIKNYA 3.1 Pengertian Relasi Misalkan A dan B suatu himpunan. anggota A dikaitkan dengan anggota B berdasarkan suatu hubungan tertentu maka diperoleh suatu relasi dari A ke B. : A = {1,
Pengertian Fungsi. MA 1114 Kalkulus I 2
Fungsi Pengertian Fungsi Relasi : aturan yang mengawankan himpunan Fungsi Misalkan A dan B himpunan. Relasi biner dari A ke B merupakan suatu ungsi jika setiap elemen di dalam A dihubungkan dengan tepat
Menurut jenisnya, fungsi dapat dibedakan menjadi (1) Fungsi aljabar (2) Fungsi transenden
Lecture 3. Function (B) A. Macam-macam Fungsi Menurut jenisnya, fungsi dapat dibedakan menjadi (1) Fungsi aljabar (2) Fungsi transenden Fungsi aljabar dibedakan menjadi (1) Fungsi rasional (a) Fungsi konstan
BAB II FUNGSI DAN GRAFIK FUNGSI
BAB II FUNGSI DAN GRAFIK FUNGSI. Funsi. Graik Funsi. Barisan dan Deret.4 Irisan Kerucut. Funsi Dalam berbaai alikasi koresondensi/hubunan antara dua himunan serin terjadi. Sebaai 4 contoh volume bola denan
PENGERTIAN FUNGSI JENIS-JENIS FUNGSI PENGGAMBARAN GRAFIK FUNGSI
FUNGSI PENGERTIAN FUNGSI JENIS-JENIS FUNGSI PENGGAMBARAN GRAFIK FUNGSI PENGERTIAN FUNGSI Sebuah fungsi f dari himpunan A ke himpunan B adalah suatu aturan yang memasangkan setiap X anggota A dengan tepat
Fungsi. Pengertian Fungsi. Pengertian Fungsi ( ) ( )
Fungsi Pengertian Fungsi Relasi : aturan yang mengawankan/ mengkaitkan/ menugaskan himpunan Fungsi Misalkan A dan B himpunan. Relasi biner dari A ke B merupakan suatu ungsi jika setiap elemen di dalam
Matematika
dan D3 Analis Kimia FMIPA Universitas Islam Indonesia Definisi Suatu fungsi f adalah suatu aturan korespondensi yang menghubungkan setiap objek x dalam satu himpunan, yang disebut domain, dengan sebuah
SISTEM BILANGAN RIIL DAN FUNGSI
SISTEM BILANGAN RIIL DAN FUNGSI Matematika Juni 2016 Dosen : Dadang Amir Hamzah MATEMATIKA Juni 2016 1 / 67 Outline 1 Sistem Bilangan Riil Dosen : Dadang Amir Hamzah MATEMATIKA Juni 2016 2 / 67 Outline
FUNGSI KOMPOSISI DAN FUNGSI INVERS
FUNGSI KOMPOSISI DAN FUNGSI INVERS. Relasi dan Fungsi Pada saat di Sekolah Lanjutan Pertama (SMP) telah dipelajari tentang topik Relasi, Fungsi dan Grafik. Pada materi relasi ini selain menggunakan istilah
Matematika
Fungsi dan D3 Analis Kimia FMIPA Universitas Islam Indonesia Fungsi Definisi Suatu fungsi f adalah suatu aturan korespondensi yang menghubungkan setiap objek x dalam satu himpunan, yang disebut domain,
FUNGSI KOMPOSISI DAN FUNGSI INVERS
FUNGSI KOMPOSISI DAN FUNGSI INVERS Jika A dan B adalah dua himpunan yang tidak kosong, fungsi f dari A ke B; f : A B atau A f B adalah cara pengawanan anggota A dengan anggota B yang memenuhi aturan setiap
Fungsi Grafik Fungsi. Kalkulus 1. Fungsi dan Grafik Fungsi. Atina Ahdika, S.Si, M.Si. Statistika FMIPA Universitas Islam Indonesia
Kalkulus 1 Fungsi dan Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Fungsi Definisi Suatu fungsi f adalah suatu aturan korespondensi yang menghubungkan setiap objek x dalam satu
BAB 6 FUNGSI KOMPOSISI DAN FUNGSI INVERS Standar Kompetensi: Menentukan komposisi dua fungsi dan invers suatu fungsi
BAB 6 FUNGSI KOMPOSISI DAN FUNGSI INVERS Standar Kompetensi: Menentukan komposisi dua fungsi dan invers suatu fungsi A. Fungsi dan Macam-macam Fungsi Pada saat di Sekolah Lanjutan Pertama (SMP) telah dipelajari
1 Sistem Bilangan Real
Learning Outcome Rencana Pembelajaran Setelah mengikuti proses pembelajaran ini, diharapkan mahasiswa dapat ) Menentukan solusi pertidaksamaan aljabar ) Menyelesaikan pertidaksamaan dengan nilai mutlak
MBS - DTA. Sucipto UNTUK KALANGAN SENDIRI. SMK Muhammadiyah 3 Singosari
MBS - DTA Sucipto UNTUK KALANGAN SENDIRI SMK Muhammadiyah Singosari SERI : MBS-DTA FUNGSI STANDAR KOMPETENSI Siswa mampu memecahkan masalah yang berkaitan dengan fungsi, persamaan fungsi linear dan fungsi
BAB 1 PERSAMAAN. a) 2x + 3 = 9 a) 5 = b) x 2 9 = 0 b) = 12 c) x = 0 c) 2 adalah bilangan prima genap d) 3x 2 = 3x + 5
BAB PERSAMAAN Sifat Sifat Persamaan Persamaan adalah kalimat matematika terbuka yang menyatakan hubungan sama dengan. Sedangkan kesamaan adalah kalimat matematika tertutup yang menyatakan hubungan sama
Fungsi Komposisi dan Fungsi Invers
Bab 6 Sumber: Let s Learn about Korea, 00 Fungsi Komposisi dan Fungsi Invers Setelah mempelajari bab ini, Anda harus mampu menggunakan konsep, siat, dan aturan ungsi komposisi dalam pemecahan masalah;
fungsi Dan Grafik fungsi
fungsi Dan Grafik fungsi Suatu fungsi adalah pemadanan dua himpunan tidak kosong dengan pasangan terurut (x, y) dimana tidak terdapat elemen kedua yang berbeda. Fungsi (pemetaan) himpunan A ke himpunan
matematika wajib K-13 FUNGSI INVERS K e l a s f -1 Fungsi invers
K- matematika wajib K e l a s X FUNGSI INVERS tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Memahami pengertian invers dan ungsi invers.. Memahami cara
Komposisi fungsi dan invers fungsi. Syarat agar suatu fungsi mempunyai invers. Grafik fungsi invers
Komposisi fungsi dan invers fungsi mempelajari Fungsi komposisi menentukan Fungsi invers terdiri dari Syarat dan aturan fungsi yang dapat dikomposisikan Nilai fungsi komposisi dan pembentuknya Syarat agar
KALKULUS 1 HADI SUTRISNO. Pendidikan Matematika STKIP PGRI Bangkalan. Hadi Sutrisno/P.Matematika/STKIP PGRI Bangkalan
KALKULUS 1 HADI SUTRISNO 1 Pendidikan Matematika STKIP PGRI Bangkalan BAB I PENDAHULUAN A. Sistem Bilangan Real Untuk mempelajari kalkulus kita terlebih dahulu perlu memahami bahasan tentang sistem bilangan
Sistem Bilangan Real. Apa yang dimaksud dengan bilangan real, rasional dan bilangan irasional?
Oleh: Endang Ded Sistem Bilangan Real Apa ang dimaksud dengan bilangan real, rasional dan bilangan irasional? Bilangan Real adalah bilangan-bilangan ang merupakan gabungan dari bilangan rasional dan bilangan
BAB 3 FUNGSI KOMPOSISI DAN FUNGSI INVERS Standar Kompetensi: Menentukan komposisi dua fungsi dan invers suatu fungsi Kompetensi Dasar:
BAB 3 FUNGSI KOMPOSISI DAN FUNGSI INVERS Standar Kompetensi: Menentukan komposisi dua fungsi dan invers suatu fungsi Kompetensi Dasar:. Menentukan komposisi fungsi dari dua fungsi. Menentukan invers suatu
KONSEP DASAR FUNGSI DAN GRAFIK. Oleh : Agus Arwani, SE, M.Ag
KONSEP DASAR FUNGSI DAN GRAFIK Oleh : Agus Arwani, SE, M.Ag KONSEP DASAR FUNGSI DAN GRAFIK Definisi : Fungsi f : A B adalah suatu aturan yang mengaitkan (memadankan) setiap dengan tepat satu A y B Notasi
Mata Pelajaran Wajib. Disusun Oleh: Ngapiningsih
Mata Pelajaran Wajib Disusun Oleh: Ngapiningsih Disklaimer Daftar isi Disklaimer Powerpoint pembelajaran ini dibuat sebagai alternatif guna membantu Bapak/Ibu Guru melaksanakan pembelajaran. Materi powerpoint
Fungsi, Persamaaan, Pertidaksamaan
Fungsi, Persamaaan, Pertidaksamaan Disampaikan pada Diklat Instruktur/Pengembang Matematika SMA Jenjang Dasar Tanggal 6 s.d. 9 Agustus 004 di PPPG Matematika Oleh: Drs. Markaban, M.Si. Widyaiswara PPPG
Matematika Semester IV
F U N G S I KOMPETENSI DASAR Mendeskripsikan perbedaan konsep relasi dan fungsi Menerapkan konsep fungsi linear Menggambar fungsi kuadrat Menerapkan konsep fungsi kuadrat Menerapkan konsep fungsi trigonometri
Suatu pemetaan f dari himpunan A ke himpunan B disebut fungsi jika setiap anggota dari himpunan A dipetakan atau dikaitkan dengan tepat satu anggota
Suatu pemetaan dari himpunan A ke himpunan B disebut ungsi jika setiap anggota dari himpunan A dipetakan atau dikaitkan dengan tepat satu anggota dari himpunan B Suatu Fungsi biasanya dinyatakan dengan
RELASI DAN FUNGSI. A. Pengertian Relasi dan Fungsi
RELASI DAN FUNGSI A. Pengertian Relasi dan Fungsi Banyak enomena atau kejadian alam yang dapat dihubungkan dengan suatu relasi Sebagai contoh, misalkan diberikan dua himpunan : A = {sepeda, sepeda motor,
a 2 e. 7 p 7 q 7 r 7 3. a. 8p 3 c. (2 14 m 3 n 2 ) e. a 10 b c a. Uji Kompetensi a. a c. x 3. a. 29 c. 2
Kunci Jawaban Uji Kompetensi 1.1 1. a. {, 1,0,1,,3,4} BAB I Bilangan Riil Uji Kompetensi 1. 1. a. asosiatif b. memiliki elemen penting 3. 10 Uji Kompetensi 1.3 1. a. 1 4 e. 1 35 15 c. 1 8 1 1 c. 1 4 5.
BAB I. SISTEM KOORDINAT, NOTASI & FUNGSI
BAB I. SISTEM KRDINAT, NTASI & FUNGSI (Pertemuan ke 1 & 2) PENDAHULUAN Diskripsi singkat Pada bab ini akan dijelaskan tentang bilangan riil, sistem koordinat Cartesius, notasi-notasi ang sering digunakan
Silabus. 1 Sistem Bilangan Real. 2 Fungsi Real. 3 Limit dan Kekontinuan. Kalkulus 1. Arrival Rince Putri. Sistem Bilangan Real.
Silabus 1 2 3 Referensi E. J. Purcell, D. Varberg, and S. E. Rigdon, Kalkulus, Jilid 1 Edisi Kedelapan, Erlangga, 2003. Penilaian 1 Ujian Tengah Semester (UTS) : 30 2 Ujian Akhir Semester (UAS) : 20 3
Matematika Dasar FUNGSI DAN GRAFIK
FUNGSI DAN GRAFIK Suatu pengaitan dari himpunan A ke himpunan B disebut fungsi bila mengaitkan setiap anggota dari himpunan A dengan tepat satu anggota dari himpunan B. Notasi : f : A B f() y Himpunan
22. MATEMATIKA SMA/MA (PROGRAM IPA)
22. MATEMATIKA SMA/MA (PROGRAM IPA) NO. 1. Memahami pernyataan dalam matematika dan ingkarannya, menentukan nilai kebenaran pernyataan majemuk serta menggunakan prinsip logika matematika dalam pemecahan
*Tambahan Grafik Fungsi Kuadrat
*Tambahan Grafik Fungsi Kuadrat GRAFIK FUNGSI KUADRAT Langkah-langkah menggambar grafik: 1. Tentukan pembuat nol fungsi y=0 atau f(x)=0 2. Tentukan sumbu simetri x = -b/2a 3. Tentukan titik puncak P (x,y)
Sistem Bilangan Ri l
Sistem Bilangan Riil Sistem bilangan N : bilangan asli Z : bilangan bulat Q : bilangan rasional R : bilangan real N : 1,,,. Z :,-,-1,0,1,,.. Q : a q =, a, b Z, b 0 b R = Q Irasional Contoh Bil Irasional,,π
PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT
LA - WB (Lembar Aktivitas Warga Belajar) PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X Created By Ita Yuliana
BEBERAPA MACAM FUNGSI DALAM ALJABAR
BEBEAA MACAM FUNGI DALAM ALJABA 1. Fungsi Komposisi Dari dua jenis fungsi f dan g kita dapat membentuk sebuah fungsi baru dengan menggunakan sistem operasi komposisi. operasi komposisi biasa dilambangkan
Ringkasan Materi Kuliah Bab II FUNGSI
Ringkasan Materi Kuliah Bab II FUNGSI. FUNGSI REAL, FUNGSI ALJABAR, DAN FUNGSI TRIGONOMETRI. TOPIK-TOPIK YANG BERKAITAN DENGAN FUNGSI.3 FUNGSI KOMPOSISI DAN FUNGSI INVERS. FUNGSI REAL, FUNGSI ALJABAR,
y
Menyelesaikan Persamaan Kuadrat dengan Grafik Menyesaikan persamaan ax 2 +bx+c=0. Berarti menentukan nilai-nilai x bila f(x) = 0, dimana f(x) = ax 2 +bx+c. apabila grafik fungsi f(x) telah dilukis, maka
Bilangan Real. Modul 1 PENDAHULUAN
Modul 1 Bilangan Real S PENDAHULUAN Drs. Soemoenar emesta pembicaraan Kalkulus adalah himpunan bilangan real. Jadi jika akan belajar kalkulus harus paham terlebih dahulu tentang bilangan real. Bagaimanakah
FUNGSI DAN GRAFIK KED
FUNGSI DAN GRAFIK 1.1 Pendahuluan Deinisi unsi adalah suatu aturan padanan yan menhubunkan tiap objek x dalam satu himpunan, yan disebut daerah asal, denan sebuah nilai unik x dari himpunan kedua. Himpunan
Oleh: Mega Inayati Rif ah, S.T., M.Sc. Institut Sains dan Teknologi AKPRIND Yogyakarta
Oleh: Mega Inayati Rif ah, S.T., M.Sc. Institut Sains dan Teknologi AKPRIND Yogyakarta 1 RELASI Oleh: Mega Inayati Rif ah, S.T., M.Sc. 2 RELASI Relasi adalah suatu aturan yang memasangkan anggota himpunan
Sistem Bilangan Riil
Sistem Bilangan Riil Sistem bilangan N : 1,,,. Z :,-,-1,0,1,,.. N : bilangan asli Z : bilangan bulat Q : bilangan rasional R : bilangan real Q : q R a b, a, b Z, b Q Irasional Contoh Bil Irasional,, 0
KALKULUS BAB I. PENDAHULUAN DEPARTEMEN TEKNIK KIMIA
KALKULUS BAB I. PENDAHULUAN DEPARTEMEN TEKNIK KIMIA BAB I Bilangan Real dan Notasi Selang Pertaksamaan Nilai Mutlak Sistem Koordinat Cartesius dan Grafik Persamaan Bilangan Real dan Notasi Selang Bilangan
Silabus. Nama Sekolah : SMA Mata Pelajaran : MATEMATIKA Kelas / Program : X / UMUM Semester : GANJIL
Silabus Nama Sekolah : SMA Mata Pelajaran : MATEMATIKA Kelas / Program : X / UMUM Semester : GANJIL Sandar Kompetensi:. Memecahkan masalah yang berkaitan dengan bentuk pangkat, akar, dan logaritma Kompetensi
MATERI PELAJARAN MATEMATIKA SMA KELAS X BAB I: BENTUK PANGKAT, AKAR, DAN LOGARITMA. 1.1 Pangkat Bulat. A. Pangkat Bulat Positif
MATERI PELAJARAN MATEMATIKA SMA KELAS X BAB I: BENTUK PANGKAT, AKAR, DAN LOGARITMA 1.1 Pangkat Bulat A. Pangkat Bulat Positif B. Pangkat Bulat Negatif dan Nol C. Notasi Ilmiah D. Sifat-Sifat Bilangan Berpangkat
UJIAN NASIONAL TAHUN PELAJARAN 2007/2008
UJIAN NASIONAL TAHUN PELAJARAN 007/008 PANDUAN MATERI MATEMATIKA Kelompok Teknologi, Kesehatan, dan Pertanian PUSAT PENILAIAN PENDIDIKAN BALITBANG DEPDIKNAS Hak Cipta pada Pusat Penilaian Pendidikan BALITBANG
FUNGSI. Matematika Dasar 9/18/2013. TEP-FTP-UB MatDas_Meet 2 APA ITU FUNGSI? DOMAIN, KODOMAIN, RANGE. x f : x y / y=f(x) f : x y y=f(x) y=f(x)=x 2
APA ITU FUNGSI? FUNGSI Imajinasi : bermain golf f f : / =f() TEP FTP UB Sebuah fungsi adalah transformasi dari input pada output = f(). f : =f() =f()= DOMAIN, KODOMAIN, RANGE Fungsi adalah hubungan antara
Sistem Bilangan Real. Pendahuluan
Sistem Bilangan Real Pendahuluan Kalkulus didasarkan pada sistem bilangan real dan sifat-sifatnya. Sistem bilangan real adalah himpunan bilangan real yang disertai operasi penjumlahan dan perkalian sehingga
Catatan Kuliah MA1123 Kalkulus Elementer I
Catatan Kuliah MA1123 Kalkulus Elementer I Oleh Hendra Gunawan, Ph.D. Departemen Matematika ITB Sasaran Belajar Setelah mempelajari materi Kalkulus Elementer I, mahasiswa diharapkan memiliki (terutama):
4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN
4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN 4.1 Persamaan Garis a. Bentuk umum persamaan garis Garis lurus yang biasa disebut garis merupakan kurva yang paling sederhana dari semua kurva. Misalnya titik A(2,1)
KISI-KISI SOAL UJIAN SEKOLAH SEKOLAH MENENGAH KEJURUAN (SMK)
0 KISI-KISI UJIAN SEKOLAH SEKOLAH MENENGAH KEJURUAN (SMK) MATA PELAJARAN : MATEMATIKA KELAS : XII KELOMPOK : TEKNOLOGI, PERTANIAN DAN KESEHATAN BENTUK & JMl : PILIHAN GANDA = 35 DAN URAIAN = 5 WAKTU :
APA ITU FUNGSI? x f : x y atau y=f(x) f : x y y=f(x) y=f(x)=x 2. Imajinasi : bermain golf
FUNGSI TEP FTP UB APA ITU FUNGSI? Imajinasi : bermain golf x f f : x y atau y=f(x) y Sebuah fungsi adalah transformasi dari input x pada output y = f(x). f : x y y=f(x) y=f(x)=x 2 Fungsi adalah hubungan
BAB. VI. FUNGSI. Contoh 2. Dari diagram panah diatas tentukan: a. Domain b.kodomain. d.himpunan pasangan berurutan jawab:
A. FUNGSI I. Pengertian Fungsi Fungsi (pemetaan) yaitu relasi khusus, dimana setiap anggota daerah asal mempunyai pasangan tepat satu dengan anggota daerah kawan A B BAB. VI. FUNGSI Keterangan: A=Daerah
Modul Matematika MINGGU 4. g. Titik Potong fungsi linier
MINGGU 4 Pokok Bahasan Sub Pokok Bahasan Tujuan Instruksional Umum : Hubungan dan : 1. Hubungan 2. a. Pengertian fungsi b. Jenis-jenis fungsi c. Diagram fungsi d. Pengertian fungsi linier e. Penggambaran
DURASI PEMELAJARAN KURIKULUM SMK EDISI 2004
DESKRIPSI PEMELAJARAN MATA DIKLAT TUJUAN : MATEMATIKA : Melatih berfikir dan bernalar secara logis dan kritis serta mengembangkan aktifitas kreatif dalam memecahkan masalah dan mengkomunikasikan ide/gagasan
Pengertian Fungsi. Kalkulus Dasar 2
Funsi Penertian Funsi Relasi : aturan an menawankan himpunan Funsi Misalkan A dan B himpunan. Relasi biner dari A ke B merupakan suatu unsi jika setiap elemen di dalam A dihubunkan denan tepat satu elemen
KALKULUS 1. Oleh : SRI ESTI TRISNO SAMI, ST, MMSI /
Oleh : SRI ESTI TRISNO SAMI, ST, MMSI 08125218506 / 082334051234 E-mail : sriestits2@gmail.com Bahan Bacaan / Refferensi : 1. Frank Ayres J. R., Calculus, Shcaum s Outline Series, Mc Graw-Hill Book Company.
BAB 1 OPERASI PADA HIMPUNAN BAHAN AJAR STRUKTUR ALJABAR, BY FADLI
BAB 1 OPERASI PADA HIMPUNAN Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat menggunakan operasi pada himpunan untuk memecahkan masalah dan mengidentifikasi suatu himpunan
BAB 2. FUNGSI & GRAFIKNYA
. Fungsi BAB. FUNGSI & GRAFIKNYA Seara intuitif, kita pandang sebagai fungsi dari jika terdapat aturan dimana nilai (tunggal) mengkait nilai. Contoh:. a. 5 b. Definisi: Suatu fungsi adalah suatu himpunan
KALKULUS 1 UNTUK MAHASISWA CALON GURU MATEMATIKA OLEH: DADANG JUANDI, DKK PROGRAM STUDI PENDIDIKAN MATEMATIKA FPMIPA UNIVERSITAS PENDIDIKAN INDONESIA
KALKULUS UNTUK MAHASISWA 9 CALON GURU MATEMATIKA OLEH: DADANG JUANDI, DKK PROGRAM STUDI PENDIDIKAN MATEMATIKA FPMIPA UNIVERSITAS PENDIDIKAN INDONESIA BAB I PENDAHULUAN. Sistem Bilangan Real Dalam Uraian
MATEMATIKA DASAR PENDIDIKAN BIOLOGI UPI 0LEH: UPI 0716
MATEMATIKA DASAR PENDIDIKAN BIOLOGI UPI 0LEH: UPI 0716 N0 TOPIK FUNGSI 2.1 DEFINISI FUNGSI 2.2 DAERAH DEFINISI DAN DAERAH HASIL 2.3 JENIS-JENIS FUNGSI 2.4 OPERASI ALJABAR FUNGSI 2.5 FUNGSI GENAP, GANJIL,
PERTIDAKSAMAAN RASIONAL. Tujuan Pembelajaran
Kurikulum 1 Kelas matematika PEMINATAN PERTIDAKSAMAAN RASIONAL Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi pertidaksamaan rasional..
BAB 5 Bilangan Berpangkat dan Bentuk Akar
BAB 5 Bilangan Berpangkat dan Bentuk Akar Untuk materi ini mempunyai 3 Kompetensi Dasar yaitu: Kompetensi Dasar : 1. Mengidentifikasi sifat-sifat bilangan berpangkat dan bentuk akar 2. Melakukan operasi
SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN GURU KELAS SD
SUMBER BELAJAR PENUNJANG PLPG 016 MATA PELAJARAN/PAKET KEAHLIAN GURU KELAS SD BAB II ALJABAR Dra.Hj.Rosdiah Salam, M.Pd. Dra. Nurfaizah, M.Hum. Drs. Latri S, S.Pd., M.Pd. Prof.Dr.H. Pattabundu, M.Ed. Widya
DESKRIPSI PEMELAJARAN - MATEMATIKA
DESKRIPSI PEMELAJARAN MATA DIKLAT : MATEMATIKA TUJUAN : Melatih berfikir dan bernalar secara logis dan kritis serta mengembangkan aktifitas kreatif dalam memecahkan masalah dan mengkomunikasikan ide/gagasan
6 FUNGSI LINEAR DAN FUNGSI
6 FUNGSI LINEAR DAN FUNGSI KUADRAT 5.1. Fungsi Linear Pada Bab 5 telah dijelaskan bahwa fungsi linear merupakan fungsi yang variabel bebasnya paling tinggi berpangkat satu. Bentuk umum fungsi linear adalah
BAB 3 FUNGSI. f : x y
. Hubungan Relasi dengan Fungsi FUNGSI Relasi dari himpunan P ke himpunan Q disebut fungsi atau pemetaan, jika dan hanya jika tiap unsur pada himpunan P berpasangan tepat hanya dengan sebuah unsur pada
FUNGSI DAN MODEL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 63
FUNGSI DAN MODEL Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 63 Topik Bahasan 1 Fungsi 2 Jenis-jenis Fungsi 3 Fungsi Baru dari Fungsi Lama 4
03/08/2015. Sistem Bilangan Riil. Simbol-Simbol dalam Matematikaa
0/08/015 Sistem Bilangan Riil Simbol-Simbol dalam Matematikaa 1 0/08/015 Simbol-Simbol dalam Matematikaa Simbol-Simbol dalam Matematikaa 4 0/08/015 Simbol-Simbol dalam Matematikaa 5 Sistem bilangan N :
1 P E N D A H U L U A N
1 P E N D A H U L U A N 1.1.Himpunan Himpunan (set) adalah kumpulan objek-objek yang terdefenisi dengan baik (well defined). Artinya bahwa untuk sebarang objek x yang diberikan, maka kita selalu akan dapat
Materi Olimpiade Matematika Vektor Nasional 2016 Jenjang SD:
Materi Olimpiade Matematika Vektor Nasional 2016 Jenjang SD: 1. Bilangan dan Operasinya 2. Kelipatan dan Faktor 3. Angka Romawi, Pecahan dan Skala 4. Perpangkatan dan Akar 5. Waktu, Kecepatan, dan Debit
KOMPOSISI FUNGSI DAN FUNGSI INVERS
1 KOMPOSISI FUNGSI DAN FUNGSI INVERS Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) Relasi himpunan A ke himpunan B adalah relasi yang memasangkan/mengkawankan/mengkorepodensikan
PERTIDAKSAMAAN PECAHAN
PERTIDAKSAMAAN PECAHAN LESSON Pada topik sebelumnya, kalian telah mempelajari topik tentang konsep pertidaksamaan dan nilai mutlak. Dalam topik ini, kalian akan belajar tentang masalah pertidaksamaan pecahan.
NAMA : KELAS : SMA TARAKANITA 1 JAKARTA theresiaveni.wordpress.com
1 NAMA : KELAS : 2 KOMPOSISI FUNGSI DAN FUNGSI INVERS Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) Relasi himpunan A ke himpunan B adalah relasi yang memasangkan/mengkawankan/mengkorepodensikan
INFORMASI PENTING. No 1 Bilangan Bulat. 2 Pecahan Bentuk pecahan campuran p dapat diubah menjadi pecahan biasa Invers perkalian pecahan adalah
No RUMUS 1 Bilangan Bulat Sifat penjumlahan bilangan bulat a. Sifat tertutup a + b = c; c juga bilangan bulat b. Sifat komutatif a + b = b + a c. Sifat asosiatif (a + b) + c = a + (b + c) d. Mempunyai
SILABUS. Kegiatan Pembelajaran Teknik. Tugas individu.
SILABUS NAMA SEKOLAH : MATA PELAJARAN : Matematika KELAS : X STANDAR KOMPETENSI : Memecahkan masalah berkaitan dengan konsep operasi bilangan real. KODE KOMPETENSI : ALOKASI WAKTU : 57 x 45 Kompetensi
SILABUS ALOKASI WAKTU T M P S P D SUMBER BELAJAR MATERI PEMBELAJARAN KOMPETENSI DASAR INDIKATOR MODEL KURIKULUM TINGKAT SATUAN PENDIDIKAN
SILABUS KELAS / SEMESTER : X / 1 STANDAR : Memecahkan masalah berkaitan dengan konsep operasi bilangan riil KODE : D.9 : 44 x 45 menit 1. Menerapkan operasi pada bilangan riil Dua atau lebih bilangan bulat
SRI REDJEKI KALKULUS I
SRI REDJEKI KALKULUS I KLASIFIKASI BILANGAN RIIL n Bilangan yang paling sederhana adalah bilangan asli : n 1, 2, 3, 4, 5,. n n Bilangan asli membentuk himpunan bagian dari klas himpunan bilangan yang lebih
KALKULUS UNTUK STATISTIKA
Mulyana f( ) g( ).8.9.9 KALKULUS UNTUK STATISTIKA.8 8. BUKU AJAR g ( ) h ( ).. 8. UNIVERSITAS PADJADJARAN FAKULTAS MIPA JURUSAN STATISTIKA BANDUNG Kata Pengantar Diktat ini disusun dalam upaya pengadaan
6/28/2016 al muiz
6/28/2016 al muiz 2013 1 Unsur-unsur dalam model matematis Varia bel Kons tanta Para meter Unsur model matematis 6/28/2016 al muiz 2013 2 Variabel adalah sesuatu yang besarnya dapat berubah, misalnya sesuatu
FUNGSI DAN LIMIT FUNGSI
2 FUNGSI DAN LIMIT FUNGSI 2.1 Fungsi dan Grafiknya Definisi Sebuah fungsi f dari himpunan A ke himpunan B adalah suatu aturan yang memasangkan setiap x anggota A dengan tepat satu y anggota B. A disebut
DURASI PEMELAJARAN KURIKULUM SMK EDISI 2004
DESKRIPSI PEMELAJARAN MATA DIKLAT TUJUAN : MATEMATIKA : Melatih berfikir dan bernalar secara logis dan kritis serta mengembangkan aktifitas kreatif dalam memecahkan masalah dan mengkomunikasikan ide/gagasan
FUNGSI DAN GRAFIK KED. Fungsi Bukan Fungsi Definisi
FUNGSI DAN GRAFIK Deinisi Funsi adalah suatu aturan padanan yan menhubunkan tiap objek x dalam satu himpunan, yan disebut daerah asal, denan sebuah nilai unik x dari himpunan kedua. Himpunan nilai ya diperoleh
Aljabar 1. Modul 1 PENDAHULUAN
Modul 1 Aljabar 1 Drs. H. Karso, M.Pd. PENDAHULUAN M odul yang sekarang Anda pelajari adalah modul yang pertama dari mata kuliah Materi Kurikuler Matematika SMA. Materi-materi yang disajikan dalam modul
KELAS XI PROGRAM KEAHLIAN : BISNIS DAN MANAJEMEN & PARIWISATA SMK NEGERI 1 SURABAYA. BY : Drs. Abd. Salam, MM
KELAS XI PROGRAM KEAHLIAN : BISNIS DAN MANAJEMEN & PARIWISATA SMK NEGERI 1 SURABAYA BAHAN AJAR FUNGSI LINIER & KUADRAT SMK NEGERI 1 SURABAYA Halaman 1 BAB FUNGSI A. FUNGSI DAN RELASI Topik penting yang
MATEMATIKA EKONOMI 1 HIMPUNAN BILANGAN. Dosen : Fitri Yulianti, SP. MSi
MATEMATIKA EKONOMI 1 HIMPUNAN BILANGAN Dosen : Fitri Yulianti, SP. MSi Skema Himpunan Kompleks Real Rasional Bulat Cacah Asli Genap Ganjil Prima Komposit Nol Bulat Negatif Pecahan Irasional Imajiner Pengertian
FUNGSI. range. Dasar Dasar Matematika I 1
FUNGSI Pada bagian sebelumnya telah dibahas tentang relasi yaitu aturan yang menghubungkan elemen dua himpunan. Pada bagian ini akan dibahas satu jenis relasi yang lebih khusus yang dinamakan fungsi Suatu
BAB IV HASIL PENELITIAN DAN PEMBAHASAN
BAB IV HASIL PENELITIAN DAN PEMBAHASAN A. HASIL PENELITIAN 1. Hasil Pengembangan Produk Penelitian ini merupakan penelitian pengembangan yang bertujuan untuk mengembangkan produk berupa Skema Pencapaian
MATEMATIKA DASAR TAHUN 1987
MATEMATIKA DASAR TAHUN 987 MD-87-0 Garis singgung pada kurva y di titik potong nya dengan sumbu yang absisnya positif mempunyai gradien 0 MD-87-0 Titik potong garis y + dengan parabola y + ialah P (5,
MAKALAH FUNGSI KUADRAT GRAFIK FUNGSI,&SISTEM PERSAMAAN KUADRAT
MAKALAH FUNGSI KUADRAT GRAFIK FUNGSI,&SISTEM PERSAMAAN KUADRAT Kelompok 3 : 1.Suci rachmawati (ekonomi akuntansi) 2.Fitri rachmad (ekonomi akuntansi) 3.Elif (ekonomi akuntansi) 4.Dewi shanty (ekonomi management)