SISTEM PERSAMAAN LINEAR, KUADRAT DAN PERTIDAKSAMAAN SATU VARIABEL

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "SISTEM PERSAMAAN LINEAR, KUADRAT DAN PERTIDAKSAMAAN SATU VARIABEL"

Transkripsi

1 LA - WB (Lembar Aktivitas Warga Belajar) SISTEM PERSAMAAN LINEAR, KUADRAT DAN PERTIDAKSAMAAN SATU VARIABEL Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X Created By Ita Yuliana 25

2 Sistem Persamaan Linear, Kuadrat, dan Pertidaksamaan Satu Variabel Kompetensi Dasar 1. Menyelesaikan sistem persamaan linear dan sistem persamaan campuran linear dan kuadrat dalam dua variabel. 2. Merancang model matematika dari masalah yang berkaitan dengan sistem persamaan linear. 3. Menyelesaikan model matematika dari masalah yang berkaitan dengan sistem persamaan linear dan penafsirannya 4. Menyelesaikan pertidaksamaan satu variabel yang melibatkan bentuk pecahan aljabar 5. Merancang model matematika dari masalah yang berkaitan dengan pertidaksamaan satu variabel 6. Menyelesaikan model matematika dari masalah yang berkaitan dengan pertidaksamaan satu variabel dan penafsirannya Indikator 1. Warga belajar dapat menentukan penyelesaian sistem persamaan linear dan sistem persamaan linear-kuadrat dua variabel 2. Warga belajar dapat merumuskan sistem persamaan linear yang merupakan model matematika dari masalah 3. Warga belajar dapat menentukan penyelesaian sistem persamaan linear dari model matematika 4. Warga belajar dapat menentukan penyelesaian pertidaksamaan satu variabel yang melibatkan bentuk pecahan aljabar 5. Warga belajar dapat merumuskan sistem pertidaksamaan satu variabel yang merupakan model matematika dari masalah 6. Warga belajar dapat menentukan penyelesaian sistem pertidaksamaan satu variabel dari model matematika 7. Warga belajar dapat memberikan tafsiran terhadap solusi masalah Kasus Suatu ketika Pak Wayan mendapat pesanan membuat 3 ukiran patung dan 1 ornamen rumah dari seorang turis asal Belanda dengan batas waktu pembuatan diberikan selama 5 bulan. Pak Wayan dan Putu dapat menyelesaikan keempat jenis ukiran di atas dalam waktu 7 bulan. Jika Pak Wayan bekerja bersama Gede, mereka dapat menyelesaikan pesanan dalam waktu 6 bulan. Karena Putu dan Gede bekerja setelah pulang sekolah, mereka berdua membutuhkan waktu 8 bulan untuk menyelesaikan pesanan ukiran tersebut. Dapatkah pesanan ukiran diselesaikan, sesuai batas waktu yang diberikan? Kamu dapat membantu menyelesaikan masalah tersebut setelah mempelajari bab ini. Created By Ita Yuliana 26

3 Ringkasan Materi A. Sistem Persamaan Linear dan Linear 1. Sistem Persamaan Linear dengan Dua Variabel (SPLDV) Bentuk umum persamaan linear dengan dua variabel : { Contoh : a. x + y = 5 b. 2x + y = 5 -x + 2y = 4 3x 4y = 2 Untuk menentukan himpunan penyelesaian sistem persamaan linear ada beberapa metode diantaranya: a. metode grafik b. metode substitusi c. metode eliminasi a. Metode Grafik Langkah-langkahnya: 1) Gambarlah grafik ax + by = c dan px + qy = r pada suatu bidang koordinat 2) Tentukan koordinat titik potong antara garis ax + by = c dan px + qy = r. Dari langkah (2) terdapat tiga kemingkinan penyelesaian, yaitu: a) Kedua garis berpotongan pada satu titik Dalam hal ini sistem persamaan linear mempunyai tepat satu penyelesaian b) Kedua garis sejajar Dalam hal ini sistem persamaan linear tidak mempunyai penyelesaian c) Kedua garis berimpit Dalam hal ini sistem persamaan linear mempunyai tak hingga penyelesaian Tentukan himpunan penyelesaian dari sistem persamaan linear berikut, { Jawab: Untuk mempermudah menggambar grafik, buat tabel seperti berikut Persamaan x + 2y = 4 x 0 4 Y y 2 0 (x,y) (0,2) (4,0) Persamaan 2x + 2y = 6 x 0 3 y 3 0 (x,y) (0,3) (3,0) (2,1) X Created By Ita Yuliana 27

4 Dari gambar terlihat bahwa kedua garis berpotongan di titik (2,1) Jadi HP = { 2, 1 } b. Metode Subtitusi (mengganti) Langkah-langkahnya 1) Ambil salah satu persamaan yang sederhana, dari persamaan tersebut nyatakanlah salah satu variabel ke dalam variabel yang lain 2) Dari hasil (1) substituusikan ke persamaan yang lain Tentukan himpunan penyelesaian dari sistem persamaan linear berikut { Jawab: Dari persamaan 1) x + 2y = 4 x = 4 2y Substitusikan nilai x ke persamaan (2) 2x + 2y = 6 diperoleh : 2 (4 2y) + 2y = 6 8 4y + 2y = 6 8 2y = 6 2y = 2 y = 1 Substitusikan y = 1 ke persamaan (1) x = 4 2 (1) = 2 Jadi, HP {2, 1} c. Metode Eliminasi Langkahnya adalah dengan menghilangkan salah satu variabel terlebih dulu Dengan metode eliminasi tentukan HP dari : { Jawab: Eliminasi variabel y sehingga diperoleh variabel x x + 2y = 4 2x + 2y = 6 -x = -2 x = 2 Eliminasi variabel x sehingga diperoleh variabel y x + 2y = 4 x 2 2x + 4y = 8 2x + 2y = 6 x 1 2x + 2y = 6 2y = 2 y = 1 Jadi, HP {2, 1} Created By Ita Yuliana 28

5 Aktivitas 1 1. Dengan metode grafik tentukan HP dari : a. x y = 5 b. 2x + 3y = 11 2x + y = 4 3x y = 1 2. Dengan metode substitusi tentukan HP dari : a. 2x 3y = 7 b. 3x + 4y 17 = 0 3x + 2y = 7 2x 2y 8 = 0 3. Dengan metode eliminasi tentukan HP dari : a. 3x + 5y = 5 b. x 2y = 4 2x + 3y = 3 3x + y = 5 2. Sistem Persamaan Linear dengan Tiga Variabel (SPLTV) Bentuk umum persamaan linear dengan dua variabel : { a, b, c, d, e, f, g, h, i, j, k, l R Untuk menentukan himpunan penyelesaian SPLTV ada beberapa cara yaitu: a. metode substitusi b. metode eliminasi A. Metode substitusi Langkah-langkahnya sama dengan langkah-langkah penyelesaian SPLDV Tentukan Hp dari SPL berikut : { Jawab : Dari persamaan x 2y + z = 6 x = 2y z + 6 Variabel x disubstitusikan ke persamaan 3x + y 2z = 4 dan 7x 6y z = 10 sehingga diperoleh: 3(2y z + 6) + y 2z = 4 6y 3z y 2z = 4 7y 5z = -14 Created By Ita Yuliana 29

6 dan 7(2y z + 6) 6y z = 10 14y 7z y z = 10 8y 8z = -32 y z = -4 menghasilkan persamaan linear dua variabel sbb. : { dari persamaan y z = -4 y = z 4, variabel y subtitusikan ke persamaan 7y 5z = -14 sehingga diperoleh : 7z 28 5z = -14 2z = 14 z = 7 Substitusikan nilai z ke persamaan y = z 4 y = 7 4 = 3 Substitusikan nilai y dan z ke persamaan x 2y + z = 6 maka diperoleh x 2(3) + 7 = 6 x = 6 x = 5 Jadi, himpunan penyelesaiannya adalah {(5, 3, 7)} B. Metode Eliminasi Dalam SPLTV untuk mengeliminasi suatu variabel diperoleh dari setiap dua persamaan, sehingga akan diperoleh SPLDV Tentukan Hp dari : { Jawab: Eliminasi variabel z dari persamaan (1) dan (2) dari persamaan (2) dan (3) 2x y + z = 6 x 3y + z = -2 x 3y + z = -2 x + 2y z = 3 x + 2y = 8... (4) 2x y = 1...(5) persamaan (4) dan (5) membentuk SPLDV : { Eliminasi variabel y x + 2y = 8 x 1 x + 2y = 8 2x y = 1 x 2 4x 2y = 2 5x = 10 x = 2 Created By Ita Yuliana 30

7 Eliminasi variabel x x + 2y = 8 x 2 2x + 4y = 16 2x y = 1 x 1 2x y = 1 5y = 15 y = 3 Nilai z dicari dengan mensubstitusikan x = 2 dan y = 3 ke salah satu persamaan semula. Misalnya, dipilih x + 2y z = 3 diperoleh 2 + 2(3) z = 3 z = 5 Jadi, himpunan penyelesaiannya adalah {(2, 3, 5)} Aktivitas 2 1. Tentukan HP dari persamaan berikut dengan metode substitusi a. 2x + z = 7 b. x + y + z = 1 y 2 = -2 2x y + 3z = 2 x + y = 2 2x y z = 2 2. Tentukan HP dari persamaan berikut dengan metode eliminasi a. x + y + 2z = 0 b. x + 2y 3z = -4 2x 2y + z = 8 2x y + z = 3 3x + 2y + z = 2 3x + 2y + z = 10 B. Sistem Persamaan Linear dan Kuadrat Sistem persamaan linear dan kuadrat yang dimaksud adalah sistem persamaan dengan dua peubah yaitu persamaan linear dan persamaan kuadrat Bentuk umumnya : } a, b, p, q, dan r R Untuk menentukan himpunan penyelesaian sistem persamaan linear dan kuadrat salah satunya adalah dengan cara substitusi, yaitu : 1. salah satu variabel dari persamaan linear dinyatakan dengan variabel yang lain. Misalnya variabel y dinyatakan sebagai variabel x atau sebaliknya 2. kemudian substitusikan ke persamaan kuadrat sehingga diperoleh persamaan kuadrat dengan satu variabel. Created By Ita Yuliana 31

8 Secara geometris, grafik fungsi linear merupakan garis lurus dan fungsi kuadrat merupakan parabola Substitusi y = ax + b ke penyelesaian persamaan tersebut ditentukan oleh banyaknya akar persamaan tersebut, sedangkan banyaknya akar persamaan tersebut ditentukan oleh diskriminan (D) yaitu D = (q a) 2 4p(r b) Ada tiga kemungkinan nilai diskriminan, yaitu 1. jika D > 0, persamaan kuadrat mempunyai dua akar real berlainan sehingga sistem persamaan memiliki dua penyelesaian yang berbeda 2. jika D = 0, persamaan kuadrat mempunyai tepat satu akar real sehingga sistem persamaan mempunyai tepat satu penyelesaian 3. jika D < 0, persamaan kuadrat tidak mempunyai akar real sehingga sistem persamaan tidak mempunyai penyelesaian Uraian di atas dapat digambarkan sebagai berikut. D > 0 D = 0 D < 0 Tentukan himpunan penyelesaian sistem persamaan berikut y = 2x (1) y = x (2) Jawab: Dari persamaan (1) y = 2x + 1 disubstitusikan ke persamaan 92) diperoleh y = x x + 1 = x x 2 2x = 0 x (x 2) = 0 x = 0 atau x = 2 Nilai x = 0 dan x = 2 disubstitusikan ke persamaan (1) diperoleh: Untuk x = 0 y = 2x + 1 = = 1 Untuk x = 2 y = 2x + 1 = = 5 Jadi, himpunan penyelesaiannya adalah {(0, 1) dan (2, 5)} Created By Ita Yuliana 32

9 Aktivitas 3 Tentukan himpunan penyelesaian dari sistem persamaan berikut 1. y = 4x y = x y + 3x = 1 y = x 2 2x + 1 C. Sistem Persamaan Kuadrat dan Kuadrat Sistem perrsamaan ini terdiri dari dua persamaan kuadrat, yaitu } a, b, c, p, q, dan r R Untuk menyelesaikan sistem persamaan kuadrat dan kuadrat ini, pada dasarnya sama dengan sistem persamaan linear dan kuadrat yang menggunakan metode eliminasi atau substitusi. Penyelesaian dari sistem persamaan ini merupakan koordinat titik potong kedua parabola. Ada tiga kemungkinan penyelesaian, yaitu: 1. jika D > 0, persamaan kuadrat mempunyai dua akar real berlainan sehingga sistem persamaan kuadrat memiliki dua penyelesaian yang berbeda 2. jika D = 0, persamaan kuadrat mempunyai tepat satu akar real sehingga sistem persamaan mempunyai tepat satu penyelesaian 3. jika D < 0, persamaan kuadrat tidak mempunyai akar real sehingga sistem persamaan tidak mempunyai penyelesaian Grafik geometri dari uraian di atas dapat digambarkan sbb. D > 0 D = 0 D < 0 Created By Ita Yuliana 33

10 Tentukan himpunan penyelesaian dari sistem persamaan berikut y = x 2 + 2x + 8 y = 2x 2 + 4x 7 jawab: Dari kedua persamaan di atas kita eliminir variabel y sehingga diperoleh: y = x 2 + 2x + 8 y = 2x 2 + 4x 7 0 = -x 2 2x + 15 atau x 2 + 2x 15 = 0 x 2 + 2x 15 = 0 a = 1, b = 2, c = -15 jika dilihat D = b 2 4ac maka diperoleh D = (-15) = = 64 D > 0 (terdapat 2 titik yang berbeda) x 2 + 2x 15 = 0 (x 3) (x + 5) = 0 x = 3 atau x = -5 Untuk x = 3 y = 23 (3, 23) Untuk x = -5 y = 23 (-5, 23) Jadi himpunan penyelesaiannya adalah {(-5, 23), (3, 23)} Aktivitas 4 Tentukan himpunan penyelesaian dari sistem persamaan berikut 1. y = 3x 2 5x 5 y = 2x 2 6x y = 4x 2 + 3x + 6 y = 3x x 8 Created By Ita Yuliana 34

11 D. Pertidaksamaan Linear 1. Pengertian pertidaksamaan linear Pertidaksamaan adalah kalimat terbuka yang menyatakan hubungan tidak sama yang dihubungkan dengan tanda pertidaksamaan yaitu <, >,, Pada garis bilangan, semua bilangan positif terletak di sebelah kanan 0 (nol) dan semua bilangan negatif terletak di sebelah kiri 0 (nol), sehingga dapat dinyatakan sbb. untuk x bilangan positif, ditulis x > 0 untuk x bilangan negatif, ditulis x < 0 2. Sifat pertidaksamaan linear a. Untuk a, b, c R berlaku : a > b dan b > c maka a > c a < b dan b < c maka a < c b. Tanda atau notasi ketidaksamaan tidak berubah jika kedua ruas pertidaksamaan dijumlahkan atau dikurangi bilangan yang sama } a,b, c R c. Tanda ketidaksamaan tidak berubah jika kedua ruas pertidaksamaan dikali atau dibagi bilangan positif yang sama a,b, c R } d. Tanda ketidaksamaan berubah jika kedua ruas pertidaksamaan dikali atau dibagi bilangan negatif yang sama a,b, c R } 3. Menyelesaikan pertidaksamaan linear Menyelesaikan sebuah pertidaksamaan linear satu variabel dapat diartikan mencari bentuk paling sederhana dari pertidaksamaan linear. Bentuk paling sederhana itu disebut penyelesaian dari pertidaksamaan linear satu variabel. Created By Ita Yuliana 35

12 Tentukan himpunan penyelesaian dari pertidaksamaan berikut kemudian gambarlah grafik himpunan penyelesaiannya a. 3x 2 > 13 c. x 6 2x 2 b. 4x + 3 < 2x 5 d. x + 2 3x 4 Jawab : a. Cara 1 Cara 2 3x 2 > 13 3x 2 > 13 3x > x > x > 15 3x > 15 x > 5 x > 5 Jadi himpunan penyelesaiannya adalah {x x > 5, x R} Grafik himpunan penyelesaiannya adalah: b. 4x + 3 < 2x 5 4x 2x < x < -8 x < -4 Jadi himpunan penyelesaiannya adalah {x x < -4, x R} Grafik himpunan penyelesaiannya adalah: c. x 6 2x x x -4 x Jadi himpunan penyelesaiannya adalah {x x -4, x R} Grafik himpunan penyelesaiannya adalah: d. x + 2 3x x x 6 2x 3 x Jadi himpunan penyelesaiannya adalah {x x 3, x R} Grafik himpunan penyelesaiannya adalah: Created By Ita Yuliana 36

13 Aktivitas 4 1. Tentukan himpunan penyelesaian dari pertidaksamaan linear berikut, kemudian gambarlah himpunan penyelesaiannya a. x + 3 > 0 b. 3x 9 < 0 c. 4x 12 d. 14 7x 0 e. 8 2x 0 2. Carilah himpunan penyelesaian dari pertidaksamaan berikut a. 1 x < 2 + 7x b. 2x 1 5x + 8 c. d Merancang model matematika yang berkaitan dengan pertidaksamaan satu variabel Langkah-langkah memecahkan masalah pertidaksamaan linear adalah: a. menentukan besaran dalam yang dirancang sebagai variabel pertidaksamaan b. merumuskan pertidaksamaan yang merupakan model matematika dari masalah c. memberi penyelesaian dari model matematika d. memberikan tafsiran terhadap hasil yang diperoleh contoh: Jumlah dua mata dadu tidak kurang dari 8. Jika bilangan kedua adalah tiga kalinya bilangan yang pertama, tentukan batas-batas nilai dari kedua bilangan itu. Jawab: Misalkan, bilangan yang pertama adalah x maka bilangan yang kedua adalah 3x sehingga diperoleh pertidaksamaan x + 3x 8 x + 3x 8 4x 8 x 2 Jadi, batas-batas mata dadu pertama adalah tidak kurang dari 2 dan batas mata dadu kedua tidak kurang dari 6 Aktivitas 5 Jumlah dua bilangan tidak kurang dari 150 dan bilangan kedua sama dengan dua kali bilangan pertama. Tentukan batas-batas nilai dari kedua bilangan itu. Created By Ita Yuliana 37

PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT

PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT LA - WB (Lembar Aktivitas Warga Belajar) PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X Created By Ita Yuliana

Lebih terperinci

Mata Pelajaran Wajib. Disusun Oleh: Ngapiningsih

Mata Pelajaran Wajib. Disusun Oleh: Ngapiningsih Mata Pelajaran Wajib Disusun Oleh: Ngapiningsih Disklaimer Daftar isi Disklaimer Powerpoint pembelajaran ini dibuat sebagai alternatif guna membantu Bapak/Ibu Guru melaksanakan pembelajaran. Materi powerpoint

Lebih terperinci

Limit Fungsi. semua x bilangan real, kecuali x = 2

Limit Fungsi. semua x bilangan real, kecuali x = 2 LA - WB (Lembar Aktivitas Warga Belajar) LIMIT FUNGSI Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XI Created By Ita Yuliana 27 Limit Fungsi Kompetensi Dasar

Lebih terperinci

MADRASAH ALIYAH AL-MU AWANAH BEKASI SELATAN 2012

MADRASAH ALIYAH AL-MU AWANAH BEKASI SELATAN 2012 MODUL MATEMATIKA PERSIAPAN UJIAN NASIONAL 0 TAHUN AJARAN 0/0 MATERI PERSAMAAN KUADRAT DAN PERTIDAKSAMAAN KUADRAT UNTUK KALANGAN MA AL-MU AWANAH MADRASAH ALIYAH AL-MU AWANAH BEKASI SELATAN 0 Jalan RH. Umar

Lebih terperinci

Persamaan dan Pertidaksamaan Linear

Persamaan dan Pertidaksamaan Linear MATERI POKOK Persamaan dan Pertidaksamaan Linear MATERI BAHASAN : A. Persamaan Linear B. Pertidaksamaan Linear Modul.MTK X 0 Kalimat terbuka adalah kalimat matematika yang belum dapat ditentukan nilai

Lebih terperinci

PROGRAM LINEAR. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XII

PROGRAM LINEAR. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XII LA - WB (Lembar Aktivitas Warga Belajar) PROGRAM LINEAR Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XII Created By Ita Yuliana 9 Program Linear Kompetensi

Lebih terperinci

PERSAMAAN DAN PERTIDAKSAMAAN PERSAMAAN LINEAR

PERSAMAAN DAN PERTIDAKSAMAAN PERSAMAAN LINEAR PERSAMAAN DAN PERTIDAKSAMAAN PERSAMAAN LINEAR Persamaan linear Bentuk umun persamaan linear satu vareabel Ax + b = 0 dengan a,b R ; a 0, x adalah vareabel Contoh: Tentukan penyelesaian dari 4x-8 = 0 Penyelesaian.

Lebih terperinci

6 FUNGSI LINEAR DAN FUNGSI

6 FUNGSI LINEAR DAN FUNGSI 6 FUNGSI LINEAR DAN FUNGSI KUADRAT 5.1. Fungsi Linear Pada Bab 5 telah dijelaskan bahwa fungsi linear merupakan fungsi yang variabel bebasnya paling tinggi berpangkat satu. Bentuk umum fungsi linear adalah

Lebih terperinci

A. DEFINISI DAN BENTUK UMUM SISTEM PERSAMAAN LINEAR KUADRAT

A. DEFINISI DAN BENTUK UMUM SISTEM PERSAMAAN LINEAR KUADRAT K-13 Kelas X matematika PEMINATAN SISTEM PERSAMAAN LINEAR KUADRAT TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi dan bentuk umum sistem

Lebih terperinci

Sistem PERSAMAAN dan PERTIDAKSAMAAN linier

Sistem PERSAMAAN dan PERTIDAKSAMAAN linier Materi W4a Sistem PERSAMAAN dan PERTIDAKSAMAAN linier Kelas X, Semester 1 A. Sistem Persamaan Linier dengan Dua Variabel www.yudarwi.com A. Sistem Persamaan Linier dengan dua Variabel Bentuk umum : ax

Lebih terperinci

BAB 1 PERSAMAAN. a) 2x + 3 = 9 a) 5 = b) x 2 9 = 0 b) = 12 c) x = 0 c) 2 adalah bilangan prima genap d) 3x 2 = 3x + 5

BAB 1 PERSAMAAN. a) 2x + 3 = 9 a) 5 = b) x 2 9 = 0 b) = 12 c) x = 0 c) 2 adalah bilangan prima genap d) 3x 2 = 3x + 5 BAB PERSAMAAN Sifat Sifat Persamaan Persamaan adalah kalimat matematika terbuka yang menyatakan hubungan sama dengan. Sedangkan kesamaan adalah kalimat matematika tertutup yang menyatakan hubungan sama

Lebih terperinci

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN GURU KELAS SD

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN GURU KELAS SD SUMBER BELAJAR PENUNJANG PLPG 016 MATA PELAJARAN/PAKET KEAHLIAN GURU KELAS SD BAB II ALJABAR Dra.Hj.Rosdiah Salam, M.Pd. Dra. Nurfaizah, M.Hum. Drs. Latri S, S.Pd., M.Pd. Prof.Dr.H. Pattabundu, M.Ed. Widya

Lebih terperinci

1 King s Learning. Nama Siswa. Kelas KOMPETENSI DASAR: x = 4. Untuk x = 4 disubstitusikan ke persamaan (1) 4 y = 2 y = 4 2. y = 2

1 King s Learning. Nama Siswa. Kelas KOMPETENSI DASAR: x = 4. Untuk x = 4 disubstitusikan ke persamaan (1) 4 y = 2 y = 4 2. y = 2 Nama Siswa Kelas : : KOMPETENSI DASAR: 3.3 Mendeskripsikan konsep sistem persamaan linier dua dan tiga variable serta pertidaksamaan linier dua variabel dan mampu menerapkan berbagai strategi yang efektif

Lebih terperinci

SISTEM PERSAMAAN LINEAR DUA VARIABEL

SISTEM PERSAMAAN LINEAR DUA VARIABEL SMP - 1 SISTEM PERSAMAAN LINEAR DUA VARIABEL A. Pengertian persamaan linear dua variabel (PLDV) Persamaan linear dua variabel ialah persamaan yang mengandung dua variabel dimana pangkat/derajat tiap-tiap

Lebih terperinci

PERSAMAAN & PERTIDAKSAMAAN

PERSAMAAN & PERTIDAKSAMAAN PERSAMAAN & PERTIDAKSAMAAN PERTEMUAN III Nur Edy, PhD. Tujuan Mengaplikasikan konsep persamaan dan pertidaksamaan Pokok Bahasan: Persamaan (Minggu 3 dan 4) Pertidaksamaan (Minggu 3 dan 4) Harga mutlak

Lebih terperinci

Sistem Persamaan dan Pertidaksamaan Linear

Sistem Persamaan dan Pertidaksamaan Linear Bab Sistem Persamaan dan Pertidaksamaan Linear A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR Kompetensi Dasar Setelah mengikuti pembelajaran sistem persamaan dan pertidaksamaan linear, siswa mampu:. Menunjukkan

Lebih terperinci

BAB IV PERTIDAKSAMAAN. 1. Pertidaksamaan Kuadrat 2. Pertidaksamaan Bentuk Pecahan 3. Pertidaksamaan Bentuk Akar 4. Pertidaksamaan Nilai Mutlak

BAB IV PERTIDAKSAMAAN. 1. Pertidaksamaan Kuadrat 2. Pertidaksamaan Bentuk Pecahan 3. Pertidaksamaan Bentuk Akar 4. Pertidaksamaan Nilai Mutlak BAB IV PERTIDAKSAMAAN 1. Pertidaksamaan Kuadrat. Pertidaksamaan Bentuk Pecahan 3. Pertidaksamaan Bentuk Akar 4. Pertidaksamaan Nilai Mutlak 86 LEMBAR KERJA SISWA 1 Mata Pelajaran : Matematika Uraian Materi

Lebih terperinci

Hal terburuk yang bisa menimpa manusia adalah jika ia berpikir buruk tentang dirinya sendiri.

Hal terburuk yang bisa menimpa manusia adalah jika ia berpikir buruk tentang dirinya sendiri. http://meetabied.wordpress.com Hal terburuk yang bisa menimpa manusia adalah jika ia berpikir buruk tentang dirinya sendiri. (Goethe) [BAB 3 SISTEM PERSAMAAN LINEAR] [Menyelesaikan Sistem Persamaan Linear

Lebih terperinci

Sistem Persamaan dan Pertidaksamaan Linear

Sistem Persamaan dan Pertidaksamaan Linear Bab Sistem Persamaan dan Pertidaksamaan Linear A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR Kompetensi Dasar Setelah mengikuti pembelajaran sistem persamaan dan pertidaksamaan linear, siswa mampu: 1. menghayati

Lebih terperinci

A. Sistem Persamaan Linier dengan dua Variabel

A. Sistem Persamaan Linier dengan dua Variabel Jurnal Materi Umum Peta Konsep Peta Konsep Daftar Hadir MateriA SISTEM PERSAMAAN DAN PERTIDAKSAMAAN LINIER Kelas X, Semester 1 Sistem Persamaan Linier Dua Variabel Tiga Variabel Sistem Pertidaksamaan linier

Lebih terperinci

matematika PEMINATAN Kelas X SISTEM PERTIDAKSAMAAN LINEAR DAN KUADRAT K13 A. Pertidaksamaan Linear B. Daerah Pertidaksamaan Linear

matematika PEMINATAN Kelas X SISTEM PERTIDAKSAMAAN LINEAR DAN KUADRAT K13 A. Pertidaksamaan Linear B. Daerah Pertidaksamaan Linear K13 Kelas matematika PEMINATAN SISTEM PERTIDAKSAMAAN LINEAR DAN KUADRAT Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi pertidaksamaan

Lebih terperinci

Sistem Persamaan dan Pertidaksamaan Linear

Sistem Persamaan dan Pertidaksamaan Linear Bab Sistem Persamaan dan Pertidaksamaan Linear A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR Kompetensi Dasar Setelah mengikuti pembelajaran sistem persamaan dan pertidaksamaan linear, siswa mampu:. menghayati

Lebih terperinci

Persamaan dan pertidaksamaan kuadrat BAB II

Persamaan dan pertidaksamaan kuadrat BAB II BAB II Misalkan a,b,c Є R dan a 0 maka persamaan yang berbentuk dinamakan persamaan kuadrat dalam peubah x. Dalam persamaan kuadrat ax bx c 0, a adalah koefisien dari x, b adalah koefisien dari x dan c

Lebih terperinci

β α α β SOAL MATEMATIKA UNTUK SMA istiyanto.com Mari Berbagi Ilmu Dengan Yang Lain A. Persamaan Kuadrat dan Fungsi Kuadrat

β α α β SOAL MATEMATIKA UNTUK SMA istiyanto.com Mari Berbagi Ilmu Dengan Yang Lain A. Persamaan Kuadrat dan Fungsi Kuadrat A. Persamaan Kuadrat dan Fungsi Kuadrat 1. Salah satu akar persamaan kuadrat ( a 1) x + (3a 1) x 3a = 0 adalah 1, maka akar lainnya adalah.... Nilai m yang memenuhi agar persamaan kuadrat ( m + 1) x +

Lebih terperinci

SOLUSI SISTEM PERSAMAAN LINEAR

SOLUSI SISTEM PERSAMAAN LINEAR SOLUSI SISTEM PERSAMAAN LINEAR Bentuk umum persamaan linear dengan n peubah diberikan sebagai berikut : a1 x1 + a2 x2 +... + an xn = b ; a 1, a 2,..., a n R merupakan koefisien dari persamaaan dan x 1,

Lebih terperinci

Untuk mencari akar-akar dari persamaan kuadrat, dapat menggunakan rumus :

Untuk mencari akar-akar dari persamaan kuadrat, dapat menggunakan rumus : RUMUS-RUMUS PERSAMAAN KUADRAT Bentuk umum: ax 2 + bx + c = 0, a 0 AKAR-AKAR PERSAMAAN KUADRAT Untuk mencari akar-akar dari persamaan kuadrat, dapat menggunakan rumus : X 1.2 = Dengan : D = b 2 4ac, dan

Lebih terperinci

PERSAMAAN KUADRAT. Persamaan. Sistem Persamaan Linear

PERSAMAAN KUADRAT. Persamaan. Sistem Persamaan Linear Persamaan Sistem Persamaan Linear PENGERTIAN Definisi Persamaan kuadrat adalah kalimat matematika terbuka yang memuat hubungan sama dengan yang pangkat tertinggi dari variabelnya adalah 2. Bentuk umum

Lebih terperinci

PerencanaanPembelajaran. RPP SMA Kelas X Semester 1 BAB IV

PerencanaanPembelajaran. RPP SMA Kelas X Semester 1 BAB IV PerencanaanPembelajaran RPP SMA Kelas X Semester 1 BAB IV OLEH : Fajri Rahmat : 2411.060 DosenPembimbing : M. ImammudinM.Pd PendidikanMatematika STAIN Sjech M. DjamilDjambekBukittinggi 2013 RENCANA PELAKSANAAN

Lebih terperinci

PERSAMAAN & SISTEM PERSAMAAN LINEAR

PERSAMAAN & SISTEM PERSAMAAN LINEAR PERSAMAAN & SISTEM PERSAMAAN LINEAR Persamaan Sistem Persamaan Linear DEFINISI PERSAMAAN Persamaan adalah kalimat matematika terbuka yang memuat hubungan sama dengan. Sedangkan kalimat matematika tertutup

Lebih terperinci

PERTIDAKSAMAAN RASIONAL. Tujuan Pembelajaran

PERTIDAKSAMAAN RASIONAL. Tujuan Pembelajaran Kurikulum 1 Kelas matematika PEMINATAN PERTIDAKSAMAAN RASIONAL Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi pertidaksamaan rasional..

Lebih terperinci

MATRIKS. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XII. Oleh: Hj. ITA YULIANA, S.Pd, M.

MATRIKS. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XII. Oleh: Hj. ITA YULIANA, S.Pd, M. LA - WB (Lembar Aktivitas Warga Belajar) MATRIKS Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XII Created By Ita Yuliana 15 Matriks Kompetensi Dasar 1. Menggunakan

Lebih terperinci

Materi Matematika Persamaan dan Pertidaksamaan kuadrat Persamaan Linear Persamaan Kuadrat Contoh : Persamaan Derajat Tinggi

Materi Matematika Persamaan dan Pertidaksamaan kuadrat Persamaan Linear Persamaan Kuadrat Contoh : Persamaan Derajat Tinggi Materi Matematika Persamaan dan Pertidaksamaan kuadrat Persamaan Linear Persamaan linear dengan n peubah adalah persamaan dengan bentuk : dengan adalah bilangan- bilangan real, dan adalah peubah. Secara

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP ) Mata Pelajaran : Matematika Satuan Pendidikan : SMA Kelas/ Semester : X/ Ganjil Alokasi Waktu : 2 x 45 menit

RENCANA PELAKSANAAN PEMBELAJARAN (RPP ) Mata Pelajaran : Matematika Satuan Pendidikan : SMA Kelas/ Semester : X/ Ganjil Alokasi Waktu : 2 x 45 menit RENCANA PELAKSANAAN PEMBELAJARAN (RPP ) Mata Pelajaran : Matematika Satuan Pendidikan : SMA Kelas/ Semester : X/ Ganjil Alokasi Waktu : x 45 menit I. Standar Kompetensi 1.1 Memecahkan masalah yang berkaitan

Lebih terperinci

BAB I PERTIDAKSAMAAN RASIONAL, IRASIONAL & MUTLAK

BAB I PERTIDAKSAMAAN RASIONAL, IRASIONAL & MUTLAK Matematika Peminatan SMA kelas X Kurikulum 2013 BAB I PERTIDAKSAMAAN RASIONAL, IRASIONAL & MUTLAK I. Pertidaksamaan Rasional (Bentuk Pecahan) A. Pengertian Secara umum, terdapat empat macam bentuk umum

Lebih terperinci

MATERI PRASYARAT. ke y= f(x) =ax2 + bx +c

MATERI PRASYARAT. ke y= f(x) =ax2 + bx +c 1 MATERI PRASYARAT A. Fungsi Kuadrat Bentuk umum : y= f(x) = ax 2 + bx +c dengan a 0. Langkah-langkah dalam menggambar grafik fungsi kuadrat y= f(x) = ax 2 + bx +c 1. Tentukan titik potong dengan sumbu

Lebih terperinci

BAB II PERSAMAAN KUADRAT DAN FUNGSI KUADRAT

BAB II PERSAMAAN KUADRAT DAN FUNGSI KUADRAT BAB II PERSAMAAN KUADRAT DAN FUNGSI KUADRAT 1. Menentukan koefisien persamaan kuadrat 2. Jenis-jenis akar persamaan kuadrat 3. Menyusun persamaan kuadrat yang akarnya diketahui 4. Fungsi kuadrat dan grafiknya

Lebih terperinci

matematika PEMINATAN Kelas X PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN K13 A. PERSAMAAN EKSPONEN BERBASIS KONSTANTA

matematika PEMINATAN Kelas X PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN K13 A. PERSAMAAN EKSPONEN BERBASIS KONSTANTA K1 Kelas X matematika PEMINATAN PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami bentuk-bentuk persamaan

Lebih terperinci

A. PERSAMAAN GARIS LURUS

A. PERSAMAAN GARIS LURUS A. PERSAMAAN GARIS LURUS Persamaan garis lurus adalah hubungan nilai x dan nilai y yang terletak pada garis lurus serta dapat di tulis px + qy = r dengan p, q, r bilangan real dan p, q 0. Persamaan dalam

Lebih terperinci

Sistem Bilangan Real. Pendahuluan

Sistem Bilangan Real. Pendahuluan Sistem Bilangan Real Pendahuluan Kalkulus didasarkan pada sistem bilangan real dan sifat-sifatnya. Sistem bilangan real adalah himpunan bilangan real yang disertai operasi penjumlahan dan perkalian sehingga

Lebih terperinci

Silabus. Nama Sekolah : SMA Mata Pelajaran : MATEMATIKA Kelas / Program : X / UMUM Semester : GANJIL

Silabus. Nama Sekolah : SMA Mata Pelajaran : MATEMATIKA Kelas / Program : X / UMUM Semester : GANJIL Silabus Nama Sekolah : SMA Mata Pelajaran : MATEMATIKA Kelas / Program : X / UMUM Semester : GANJIL Sandar Kompetensi:. Memecahkan masalah yang berkaitan dengan bentuk pangkat, akar, dan logaritma Kompetensi

Lebih terperinci

Mata Pelajaran MATEMATIKA Kelas X

Mata Pelajaran MATEMATIKA Kelas X Mata Pelajaran MATEMATIKA Kelas X SEKOLAH MENENGAH ATAS dan MADRASAH ALIYAH PG Matematika Kelas X 37 Bab 1 Bentuk Pangkat, Akar, dan Logaritma Nama Sekolah : SMA dan MA Mata Pelajaran : Matematika Kelas

Lebih terperinci

BAB 2 PERSAMAAN DAN PERTIDAKSAMAAN LINEAR

BAB 2 PERSAMAAN DAN PERTIDAKSAMAAN LINEAR BAB 2 PERSAMAAN DAN PERTIDAKSAMAAN LINEAR MATERI A. Persamaan dan Pertidaksamaan Nilai Mutlak A. PERSAMAAN DAN PERTIDAKSAMAAN YANG MEMUAT NILAI MUTLAK Dalam matematika, sesuatu yang nilainya selalu positif

Lebih terperinci

Sistem Bilangan Ri l

Sistem Bilangan Ri l Sistem Bilangan Riil Sistem bilangan N : bilangan asli Z : bilangan bulat Q : bilangan rasional R : bilangan real N : 1,,,. Z :,-,-1,0,1,,.. Q : a q =, a, b Z, b 0 b R = Q Irasional Contoh Bil Irasional,,π

Lebih terperinci

Bilangan Real. Modul 1 PENDAHULUAN

Bilangan Real. Modul 1 PENDAHULUAN Modul 1 Bilangan Real S PENDAHULUAN Drs. Soemoenar emesta pembicaraan Kalkulus adalah himpunan bilangan real. Jadi jika akan belajar kalkulus harus paham terlebih dahulu tentang bilangan real. Bagaimanakah

Lebih terperinci

LEMBAR AKTIVITAS SISWA PERSAMAAN DAN PERTIDAKSAMAAN NILAI MUTLAK

LEMBAR AKTIVITAS SISWA PERSAMAAN DAN PERTIDAKSAMAAN NILAI MUTLAK Nama Siswa LEMBAR AKTIVITAS SISWA PERSAMAAN DAN PERTIDAKSAMAAN NILAI MUTLAK : Kelas : KOMPETENSI DASAR: 3.2 Mendeskripsikan dan menganalisis konsep nilai mutlak dalam persamaan dan pertidaksamaan serta

Lebih terperinci

KALKULUS BAB I. PENDAHULUAN DEPARTEMEN TEKNIK KIMIA

KALKULUS BAB I. PENDAHULUAN DEPARTEMEN TEKNIK KIMIA KALKULUS BAB I. PENDAHULUAN DEPARTEMEN TEKNIK KIMIA BAB I Bilangan Real dan Notasi Selang Pertaksamaan Nilai Mutlak Sistem Koordinat Cartesius dan Grafik Persamaan Bilangan Real dan Notasi Selang Bilangan

Lebih terperinci

Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk :

Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk : Persamaan Linear Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk : a x + a y = b Persamaan jenis ini disebut sebuah persamaan linear dalam peubah x dan y. Definisi

Lebih terperinci

Modul 6 SISTEM PERSAMAAN LINEAR DUA VARIABEL

Modul 6 SISTEM PERSAMAAN LINEAR DUA VARIABEL Standar Kompetensi Modul 6 SISTEM PERSAMAAN LINEAR DUA VARIABEL Memahami dan dapat melakukan operasi bentuk aljabar, persamaan dan pertidaksamaan linear satu variabel, himpunan serta dapat menggunakan

Lebih terperinci

FUNGSI. A. Relasi dan Fungsi Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii)

FUNGSI. A. Relasi dan Fungsi Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) FUNGSI A. Relasi dan Fungsi Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) Relasi himpunan A ke himpunan B adalah relasi yang memasangkan/mengkawankan/mengkorepodensikan

Lebih terperinci

Modul 05 Persamaan Linear dan Persamaan Linear Simultan

Modul 05 Persamaan Linear dan Persamaan Linear Simultan Modul 05 Persamaan Linear dan Persamaan Linear Simultan 5.1. Persamaan Linear Persamaan adalah pernyataan kesamaan antara dua ekspresi aljabar yang cocok untuk bilangan nilai variable tertentu atau variable

Lebih terperinci

SISTEM PERTIDAKSAMAAN KUADRAT DUA VARIABEL SPtKDV

SISTEM PERTIDAKSAMAAN KUADRAT DUA VARIABEL SPtKDV SISTEM PERTIDAKSAMAAN KUADRAT DUA VARIABEL SPtKDV A. Pertidaksamaan Kuadrat Dua Variabel Pertidaksamaan kuadrat dua variabel adalah kalimat terbuka matematika yang memuat dua variabel dengan setidaknya

Lebih terperinci

Materi Fungsi Linear Fungsi Variabel, koefisien, dan konstanta Variabel variabel bebas Koefisien Konstanta 1). Pengertian fungsi linier

Materi Fungsi Linear Fungsi Variabel, koefisien, dan konstanta Variabel variabel bebas Koefisien Konstanta 1). Pengertian fungsi linier Materi Fungsi Linear Admin 8:32:00 PM Duhh akhirnya nongol lagi... kali ini saya akan bahas mengenai pelajaran yang paling disukai oleh hampir seluruh warga dunia :v... MATEMATIKA, ya itu namanya. materi

Lebih terperinci

y

y Menyelesaikan Persamaan Kuadrat dengan Grafik Menyesaikan persamaan ax 2 +bx+c=0. Berarti menentukan nilai-nilai x bila f(x) = 0, dimana f(x) = ax 2 +bx+c. apabila grafik fungsi f(x) telah dilukis, maka

Lebih terperinci

BAB IV PENYAJIAN DATA DAN ANALISIS DATA. A. Deskripsi Buku Ajar Matematika SMA/MA Kelas X yang digunakan di

BAB IV PENYAJIAN DATA DAN ANALISIS DATA. A. Deskripsi Buku Ajar Matematika SMA/MA Kelas X yang digunakan di BAB IV PENYAJIAN DATA DAN ANALISIS DATA A. Deskripsi Buku Ajar Matematika SMA/MA Kelas X yang digunakan di SMA/MA Kecamatan Anjir Muara Berdasarkan BAB III telah diuraikan bahwa penelitian ini bertujuan

Lebih terperinci

PROGRAM LINEAR Jenis-jenis soal program linear yang sering diujikan adalah soal-soal tentang :

PROGRAM LINEAR Jenis-jenis soal program linear yang sering diujikan adalah soal-soal tentang : PROGRAM LINEAR Jenis-jenis soal program linear yang sering diujikan adalah soal-soal tentang : 1. Menggambar daerah yang memenuhi 2. Menentukan system pertidaksamaan suatu daerah 3. Menentukan nilai optimum

Lebih terperinci

PERTIDAKSAMAAN PECAHAN

PERTIDAKSAMAAN PECAHAN PERTIDAKSAMAAN PECAHAN LESSON Pada topik sebelumnya, kalian telah mempelajari topik tentang konsep pertidaksamaan dan nilai mutlak. Dalam topik ini, kalian akan belajar tentang masalah pertidaksamaan pecahan.

Lebih terperinci

Silabus. 1 Sistem Bilangan Real. 2 Fungsi Real. 3 Limit dan Kekontinuan. Kalkulus 1. Arrival Rince Putri. Sistem Bilangan Real.

Silabus. 1 Sistem Bilangan Real. 2 Fungsi Real. 3 Limit dan Kekontinuan. Kalkulus 1. Arrival Rince Putri. Sistem Bilangan Real. Silabus 1 2 3 Referensi E. J. Purcell, D. Varberg, and S. E. Rigdon, Kalkulus, Jilid 1 Edisi Kedelapan, Erlangga, 2003. Penilaian 1 Ujian Tengah Semester (UTS) : 30 2 Ujian Akhir Semester (UAS) : 20 3

Lebih terperinci

Matematik Ekonom Fungsi nonlinear

Matematik Ekonom Fungsi nonlinear 1 FUNGSI Fungsi adalah hubungan antara 2 buah variabel atau lebih, dimana masing-masing dari dua variabel atau lebih tersebut saling pengaruh mempengaruhi. Variabel merupakan suatu besaran yang sifatnya

Lebih terperinci

fungsi Dan Grafik fungsi

fungsi Dan Grafik fungsi fungsi Dan Grafik fungsi Suatu fungsi adalah pemadanan dua himpunan tidak kosong dengan pasangan terurut (x, y) dimana tidak terdapat elemen kedua yang berbeda. Fungsi (pemetaan) himpunan A ke himpunan

Lebih terperinci

PERTIDAKSAMAAN

PERTIDAKSAMAAN PERTIDAKSAMAAN A. Pengertian 1. Notasi Pertidaksamaan Misalnya ada dua bilangan riil a dan b. Ada beberapa notasi yang bisa dibuat yaitu: a. a dikatakan kurang dari b, ditulis a b jika dan hanya jika a

Lebih terperinci

Sistem Persamaan linier

Sistem Persamaan linier Sistem Persamaan linier 5.1 Sistem Persamaan Linier Dua Peubah (Variabel) Bentuk Umum: a 1 x + b 1 y = c 1 a 2 x + b 2 y = c 2 Dimana a 1, b 1, c 1, a 2, b 2, c 2 R. Himpunan pasangan berurutan (x, y)

Lebih terperinci

Modul Matematika 2012

Modul Matematika 2012 Modul Matematika MINGGU V Pokok Bahasan : Fungsi Non Linier Sub Pokok Bahasan :. Pendahuluan. Fungsi kuadrat 3. Fungsi pangkat tiga. Fungsi Rasional 5. Lingkaran 6. Ellips Tujuan Instruksional Umum : Agar

Lebih terperinci

Sistem-sistem Persamaan (Linear dan Non Linear)

Sistem-sistem Persamaan (Linear dan Non Linear) Sistem-sistem Persamaan (Linear dan Non Linear) Pendekatan Menu Restoran Oleh: Drs. Turmudi, M.Ed., M.Sc., Ph.D. 27 Bab 3 Sistem-Sistem Persamaan A. Pengantar Di dalam Aljabar representasi suatu besaran

Lebih terperinci

MATEMATIKA EKONOMI ( FUNGSI LINIER, GRAFIK FUNGSI DAN SISTEM PERSAMAAN LINIER )

MATEMATIKA EKONOMI ( FUNGSI LINIER, GRAFIK FUNGSI DAN SISTEM PERSAMAAN LINIER ) MATEMATIKA EKONOMI ( FUNGSI LINIER, GRAFIK FUNGSI DAN SISTEM PERSAMAAN LINIER ) KELOMPOK 2 1. UMAR ATTAMIMI (01212043) 2. SITI WASI ATUL MUFIDA (01212096) 3. DEVI PRATNYA. P. (01212078) 4. POPPY MERLIANA

Lebih terperinci

Dosen Pengampu: Prof. Dr. H. Almasdi Syahza, SE., MP. Website : HUBUNGAN NONLINEAR

Dosen Pengampu: Prof. Dr. H. Almasdi Syahza, SE., MP.   Website :  HUBUNGAN NONLINEAR Dosen Pengampu: Prof. Dr. H. Almasdi Syahza, SE., MP. Email : asyahza@yahoo.co.id Website : http://almasdi.unri,ac,id HUBUNGAN NONLINEAR a. Fungsi Kuadrat b. Fungsi Kubik c. Penerapan Ekonomi Permintaan,

Lebih terperinci

1. Akar-akar persamaan kuadrat 5x 2 3x + 1 = 0 adalah

1. Akar-akar persamaan kuadrat 5x 2 3x + 1 = 0 adalah 1. Akar-akar persamaan kuadrat 5x 3x + 1 0 adalah A. imajiner B. kompleks C. nyata, rasional dan sama D. nyata dan rasional E. nyata, rasional dan berlainan. NOTE : D > 0, memiliki akar-akar riil dan berbeda

Lebih terperinci

matematika WAJIB Kelas X PERTIDAKSAMAAN LINEAR SATU VARIABEL K-13 A. PENDAHULUAN

matematika WAJIB Kelas X PERTIDAKSAMAAN LINEAR SATU VARIABEL K-13 A. PENDAHULUAN K-1 Kelas X matematika WAJIB PERTIDAKSAMAAN LINEAR SATU VARIABEL TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi pertidaksamaan linear

Lebih terperinci

1. Fungsi Objektif z = ax + by

1. Fungsi Objektif z = ax + by Nilai Optimum Suatu Fungsi Objektif, Program Linear, Fungsi Objektif, Cara Menentukan, Contoh Soal, Rumus, Pembahasan, Metode Uji Titik Sudut, Metode Garis Selidik, Matematika Nilai Optimum Suatu Fungsi

Lebih terperinci

4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN

4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN 4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN 4.1 Persamaan Garis a. Bentuk umum persamaan garis Garis lurus yang biasa disebut garis merupakan kurva yang paling sederhana dari semua kurva. Misalnya titik A(2,1)

Lebih terperinci

Aljabar 1. Modul 1 PENDAHULUAN

Aljabar 1. Modul 1 PENDAHULUAN Modul 1 Aljabar 1 Drs. H. Karso, M.Pd. PENDAHULUAN M odul yang sekarang Anda pelajari adalah modul yang pertama dari mata kuliah Materi Kurikuler Matematika SMA. Materi-materi yang disajikan dalam modul

Lebih terperinci

A. MENYELESAIKAN PERSAMAAN KUADRAT

A. MENYELESAIKAN PERSAMAAN KUADRAT A. MENYELESAIKAN PERSAMAAN KUADRAT STANDAR KOMPETENSI Memecahkan masalah yang berkaitan dengan fungsi, persamaan dan fungsi kuadrat serta pertidaksamaan kuadrat KOMPETENSI DASAR Menggunakan sifat dan aturan

Lebih terperinci

A. Persamaan Linier Dua

A. Persamaan Linier Dua Apa yang akan Anda Pelajari? Mengenal PLDV dalam berbagai bentuk dan variabel Menentukan himpunan penyelesaian PLDV dan grafiknya Mengenal SPLDV dalam berbagai bentuk dan variabel Menentukan penyelesaian

Lebih terperinci

BAB V. PERTIDAKSAMAAN

BAB V. PERTIDAKSAMAAN BAB V. PERTIDAKSAMAAN Pengertian: Pertidaksamaan adalah kalimat terbuka dimana ruas kiri dan kanannya dihubungkan dengan tanda pertidaksamaan > (lebih dari), < (kurang dari), (lebih besar dari dan sama

Lebih terperinci

MAT 602 DASAR MATEMATIKA II

MAT 602 DASAR MATEMATIKA II MAT 60 DASAR MATEMATIKA II Disusun Oleh: Dr. St. Budi Waluya, M. Sc Jurusan Pendidikan Matematika Program Pascasarjana Unnes 1 HIMPUNAN 1. Notasi Himpunan. Relasi Himpunan 3. Operasi Himpunan A B : A B

Lebih terperinci

2. FUNGSI KUADRAT. , D = b 2 4ac

2. FUNGSI KUADRAT. , D = b 2 4ac . FUNGSI KUADRAT A. Persamaan Kuadrat 1) Bentuk umum persamaan kuadrat : ax + bx + c =, a ) Akar akar persamaan kuadrat dapat dicari dengan memfaktorkan ataupun dengan rumus: x 1, b D, D = b 4ac a 3) Jumlah,

Lebih terperinci

5 F U N G S I. 1 Matematika Ekonomi

5 F U N G S I. 1 Matematika Ekonomi 5 F U N G S I Pemahaman tentang konsep fungsi sangat penting dalam mempelajari ilmu ekonomi, mengingat kajian ekonomi banyak bekerja dengan fungsi. Fungsi dalam matematika menyatakan suatu hubungan formal

Lebih terperinci

LOGO MAM 4121 KALKULUS 1. Dr. Wuryansari Muharini K.

LOGO MAM 4121 KALKULUS 1. Dr. Wuryansari Muharini K. LOGO MAM 4121 KALKULUS 1 Dr. Wuryansari Muharini K. BAB I. PENDAHULUAN SISTEM BILANGAN REAL, NOTASI SELANG, dan NILAI MUTLAK PERTAKSAMAAN SISTEM KOORDINAT GRAFIK PERSAMAAN SEDERHANA www.themegallery.com

Lebih terperinci

Fungsi Linear dan Fungsi Kuadrat

Fungsi Linear dan Fungsi Kuadrat Modul 1 Fungsi Linear dan Fungsi Kuadrat Drs. Susiswo, M.Si. K PENDAHULUAN ompetensi umum yang diharapkan, setelah mempelajari modul ini, adalah Anda dapat memahami konsep tentang persamaan linear dan

Lebih terperinci

MA5032 ANALISIS REAL

MA5032 ANALISIS REAL (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. August 16, 2011 Pada bab ini anda diasumsikan telah mengenal dengan cukup baik bilangan asli, bilangan bulat, dan bilangan

Lebih terperinci

BAB 1. PENDAHULUAN KALKULUS

BAB 1. PENDAHULUAN KALKULUS BAB. PENDAHULUAN KALKULUS (Himpunan,selang, pertaksamaan, dan nilai mutlak) Pembicaraan kalkulus didasarkan pada sistem bilangan nyata. Sebagaimana kita ketahui sistem bilangan nyata dapat diklasifikasikan

Lebih terperinci

Sistem Persamaan Linear Dua Variabel

Sistem Persamaan Linear Dua Variabel Bab Sistem Persamaan Linear Dua Variabel Tujuan Pembelajaran Setelah mempelajari bab ini siswa diharapkan mampu: Menyebutkan perbedaan persamaan linear dua variabel dan sistem persamaan linear dua variabel;

Lebih terperinci

Sistem Bilangan Riil. Pendahuluan

Sistem Bilangan Riil. Pendahuluan Sistem Bilangan Riil Pendahuluan Kalkulus didasarkan pada sistem bilangan riil dan sifat-sifatnya. Sistem bilangan riil adalah himpunan bilangan riil yang disertai operasi penjumlahan dan perkalian sehingga

Lebih terperinci

PELUANG. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XI. Oleh: Hj. ITA YULIANA, S.Pd, M.

PELUANG. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XI. Oleh: Hj. ITA YULIANA, S.Pd, M. LA - WB (Lembar Aktivitas Warga Belajar) PELUANG Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XI Created By Ita Yuliana 13 Peluang Kompetensi Dasar 1. Menggunakan

Lebih terperinci

PERSAMAAN GARIS SINGGUNG PARABOLA

PERSAMAAN GARIS SINGGUNG PARABOLA 1 KEGIATAN BELAJAR 11 PERSAMAAN GARIS SINGGUNG PARABOLA Setelah mempelajari kegiatan belajar 11 ini, mahasiswa diharapkan mampu Menentukan Persamaan Garis Singgung Parabola, Titik dan Garis Polar Pada

Lebih terperinci

1. Penyelesaian persamaan linier tiga variabel dengan metode eliminasi

1. Penyelesaian persamaan linier tiga variabel dengan metode eliminasi Bahan ajar A. Kompetensi Inti KI 1: Menghayati dan mengamalkan ajaran agama yang dianutnya. KI 2: Menghayati dan mengamalkan perilaku jujur, disiplin, tanggungjawab, peduli (gotong royong, kerjasama, toleran,

Lebih terperinci

BAB I BILANGAN BULAT dan BILANGAN PECAHAN

BAB I BILANGAN BULAT dan BILANGAN PECAHAN File asli diunduh di 8-Spensasi.blogspot.com BAB I BILANGAN BULAT dan BILANGAN PECAHAN A. Bilangan Bulat I. Pengertian Bilangan bulat terdiri atas bilangan bulat positif atau bilangan asli, bilangan nol

Lebih terperinci

Catatan Kuliah MA1123 Kalkulus Elementer I

Catatan Kuliah MA1123 Kalkulus Elementer I Catatan Kuliah MA1123 Kalkulus Elementer I Oleh Hendra Gunawan, Ph.D. Departemen Matematika ITB Sasaran Belajar Setelah mempelajari materi Kalkulus Elementer I, mahasiswa diharapkan memiliki (terutama):

Lebih terperinci

Sistem Persamaan Linear Dua Variabel

Sistem Persamaan Linear Dua Variabel Sistem Persamaan Linear Dua Variabel Harga 3 buku tulis dan 4 pensil adalah Rp13.200,00, sedangkan harga 5 buku tulis dan 2 pensil adalah Rp15.000,00. Dapatkah kamu menghitung harga satuan untuk buku tulis

Lebih terperinci

SOAL DAN JAWABAN TENTANG NILAI MUTLAK. Tentukan himpunan penyelesaian dari persamaan nilai Mutlak di bawah ini.

SOAL DAN JAWABAN TENTANG NILAI MUTLAK. Tentukan himpunan penyelesaian dari persamaan nilai Mutlak di bawah ini. SOAL DAN JAWABAN TENTANG NILAI MUTLAK Tentukan himpunan penyelesaian dari persamaan nilai Mutlak di bawah ini. Jawaban: Bentuk-Bentuk persamaan nilai mutlak di atas dapat diselesaikan sebagai berikut.

Lebih terperinci

Sistem Bilangan Riil

Sistem Bilangan Riil Sistem Bilangan Riil Sistem bilangan N : 1,,,. Z :,-,-1,0,1,,.. N : bilangan asli Z : bilangan bulat Q : bilangan rasional R : bilangan real Q : q R a b, a, b Z, b Q Irasional Contoh Bil Irasional,, 0

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Satuan Pendidikan : SMA Kelas/Semester : X/Ganjil Mata Pelajaran : Matematika-Wajib Topik : Sistem Persamaan Linier Dua Variabel Waktu : 2 45 menit A. Kompetensi

Lebih terperinci

matematika WAJIB Kelas X SISTEM PERSAMAAN LINEAR TIGA VARIABEL (SPLTV) K-13 A. Definisi Sistem Persamaan Linear Tiga Variabel

matematika WAJIB Kelas X SISTEM PERSAMAAN LINEAR TIGA VARIABEL (SPLTV) K-13 A. Definisi Sistem Persamaan Linear Tiga Variabel K-13 Kelas X matematika WAJIB SISTEM PERSAMAAN LINEAR TIGA VARIABEL (SPLTV) TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi sistem persamaan

Lebih terperinci

[BAB 3 SISTEM PERSAMAAN LINEAR]

[BAB 3 SISTEM PERSAMAAN LINEAR] http://meetabied.wordpress.com Hal terburuk yang bisa menimpa manusia adalah jika ia berpikir buruk tentang dirinya sendiri. (Goethe) [BAB 3 SISTEM PERSAMAAN LINEAR] [Menyelesaikan Sistem Persamaan Linear

Lebih terperinci

matematika PEMINATAN Kelas X PERSAMAAN KUADRAT K-13 A. BENTUK UMUM PERSAMAAN KUADRAT

matematika PEMINATAN Kelas X PERSAMAAN KUADRAT K-13 A. BENTUK UMUM PERSAMAAN KUADRAT K-13 Kelas X matematika PEMINATAN PERSAMAAN KUADRAT TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi dan bentuk umum persamaan kuadrat..

Lebih terperinci

Persamaan dan Pertidaksamaan

Persamaan dan Pertidaksamaan I TU URI HANDAY AN TW DIKLAT GURU PENGEMBANG MATEMATIKA SMK JENJANG DASAR TAHUN 009 Persamaan dan Pertidaksamaan GY A Y O M AT E M A T AK A R Markaban, M.Si. DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL

Lebih terperinci

MODUL MATA PELAJARAN MATEMATIKA

MODUL MATA PELAJARAN MATEMATIKA KERJASAMA DINAS PENDIDIKAN KOTA SURABAYA DENGAN FAKULTAS MIPA UNIVERSITAS NEGERI SURABAYA MODUL MATA PELAJARAN MATEMATIKA Bilangan dan Aljabar untuk kegiatan PELATIHAN PENINGKATAN MUTU GURU DINAS PENDIDIKAN

Lebih terperinci

BAB IV. SISTEM PERSAMAAN LINEAR DAN KUADRAT

BAB IV. SISTEM PERSAMAAN LINEAR DAN KUADRAT BAB IV. SISTEM PERSAMAAN LINEAR DAN KUADRAT Persamaan Linear:. Persamaan linear satu variabel : a + b = 0 dengan a 0. Persamaan linear dua variabel a + by = c dengan a dan b 0 Sistem Persamaan Linear Dua

Lebih terperinci

MATEMATIKA EKONOMI DAN BISNIS. Nuryanto.ST.,MT

MATEMATIKA EKONOMI DAN BISNIS. Nuryanto.ST.,MT MATEMATIKA EKONOMI DAN BISNIS Fungsi Non Linear Fungsi non-linier merupakan bagian yang penting dalam matematika untuk ekonomi, karena pada umumnya fungsi-fungsi yang menghubungkan variabel-variabel ekonomi

Lebih terperinci

Pertemuan Ke 2 SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST.,MT

Pertemuan Ke 2 SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST.,MT Pertemuan Ke SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST,MT Pendahuluan Suatu sistem persamaan linier (atau himpunan persaman linier simultan) adalah satu set persamaan dari sejumlah unsur yang tak diketahui

Lebih terperinci

Sistem Persamaan Linear Tiga Variabel (SPLTV) LOGO

Sistem Persamaan Linear Tiga Variabel (SPLTV) LOGO Sistem Persamaan Linear Tiga Variabel (SPLTV) LOGO Tujuan Pembelajaran Mengetahui Penerapan SPLTV dalam kehidupan Mengetahui Pengertian & Bentuk Umum SPLTV Mengetahui SPLTV Homogen Menemukan Bentuk Geometri

Lebih terperinci