OPTIMASI PENJADWALAN PEMBANGKITAN DI ANTARA UNIT-UNIT PEMBANGKIT TERMAL BERDASARKAN INCREMENTAL PRODUCTION COST YANG SAMA. Abstrak

Save this PDF as:

Ukuran: px
Mulai penontonan dengan halaman:

Download "OPTIMASI PENJADWALAN PEMBANGKITAN DI ANTARA UNIT-UNIT PEMBANGKIT TERMAL BERDASARKAN INCREMENTAL PRODUCTION COST YANG SAMA. Abstrak"

Transkripsi

1 OTIMASI ENJADWALAN EMBANGKITAN DI ANTARA UNIT-UNIT EMBANGKIT TERMAL BERDASARKAN INCREMENTAL RODUCTION COST YANG SAMA. (Al Imra) OTIMASI ENJADWALAN EMBANGKITAN DI ANTARA UNIT-UNIT EMBANGKIT TERMAL BERDASARKAN INCREMENTAL RODUCTION COST YANG SAMA. Al Imra Dose Jurusa eddka Tekk Elektro Fakultas Tekk Uverstas Neger Makassar Abstrak Artkel mejelaska tekk optmas pejadwala pembagkta pada sebuah pusat pembagkt teaga lstrk yag mempuya beberapa ut pembagkt termal. Tekk yag dguaka adalah dega memmas da meyelesaka fugs-fugs objektf berupa quadratc fuel cost fucto, persamaa koordas, serta persamaa-persamaa da pertdaksamaa-pertdaksamaa pembatas, dega megaggap bahwa semua pembagkt harus beroperas pada cremetal producto cost yag sama. Dega metode dapat dperoleh berapa besar daya yag dbagktka oleh tap pembagkt termal pada sebuah pusat pembagkt utuk mesupla sejumlah beba tertetu dega baya pembagkta total palg mmum. Kata kuc : Optmas, ejadwala pembagkta, embagkt termal, Icremetal producto cost. Tujua dar pejadwala pembagkta adalah megatur daya keluar dar masg-masg pusat pembagkt yag ada dalam sstem atau daya keluar dar masg-masg ut pembagkt yag ada dalam suatu pusat pembagkt, utuk mesupla beba tertetu sehgga jumlah baya pembagkta semmum mugk. Selajutya pembcaraa kta adalah pejadwala pembagkta dar ut-ut pembagkt termal dalam suatu pusat pembagkt berdasarka prsp Icremetal roducto Cost yag sama. Metode dapat pula dterapka utuk pejadwala pembagkta dar pusat-pusat pembagkt dalam suatu sstem yag mempuya salaura trasms yag pedek, dmaa rug-rug trasms dabaka. rsp prsp yag basa dperguaka utuk megatur pejdawala pembagkta alah : a. Berdasarka kapastas dar ut pembagkt, dmaa ut pembagkt datur utuk memkul beba sesua dega kapastasya. Msalya : Ada ut pembagkt A da B, dega kapastas masg-masg 0 MW da 0 MW. Bla beba 4 MW, maka A memkul {0/(0+0)}x4 6 MW, da B memkul {0/(0+0)}x4 8 MW. b. Berdasarka umur dar ut pembagkt, dmaa ut pembagkt yag baru (lebh efse) dbeba sesua dega kapastasya, sedagka pembagkt yag tua memkul ssaya. eerapa kedua prsp d atas dapat saja tdak ekooms. c. Berdasarka prsp Icremetal roducto Cost yag sama. egguaa prsp tersebut yag aka duraka pada tulsa, dega peyelesaa fugs objektfya megguaka metode egal Lagrage. Baya Operas embagkt Termal Baya operas dar pusat pembagkt termal adalah harga baha bakar, gaj karyawa, baya pemelharaa serta baya-baya kompoe pedukug laya. ejadwala pembagkta secara ekooms dapat damat dar hubuga atara baya put baha bakar (fuel cost) dar ut pembagkt (Rp/jam) dega daya output yag dhaslka (MW), sepert pada Gambar, dmaa dalam perhtuga, bayabaya la dapat dmasukka ke dalam baya baha bakar.

2 OTIMASI ENJADWALAN EMBANGKITAN DI ANTARA UNIT-UNIT EMBANGKIT TERMAL BERDASARKAN INCREMENTAL RODUCTION COST YANG SAMA. (Al Imra) dmaa j,,,..., da bayakya data Baya baha bakar (C, Rp/ jam) Gambar. Kurva hubuga baya put baha bakar dega daya output yag dhaslka oleh ut pembagkt termal. Meurut Marsud, Djteg (006), persamaa hubuga baya baha bakar suatu ut pembagkt sebaga fugs daya outputya, umumya dapat ddekat dega bak sebaga fugs polomal orde dua sebaga berkut, Dmaa C a + b. + c. () C Baya baha bakar ut pembagkt ke- (Rp/jam) Daya output ut pembagkt ke- (MW) a, b, da c, adalah kostata. Kostata-kostata a, b, da c dapat dtetuka berdasarka data hasl percobaa atau hasl peelta, yatu dega megambl beberapa data C yag dperluka utuk membagktka daya yata sebesar dar ut pembagkt ke- selama selag waktu tertetu, da a, b, da c dapat dhtug dar sstem persamaa, Daya output (, MW) yag dambl. Dega cara kostata a, b, da c, serta fugs baya baha bakar kuadrats tap ut pembagkt dapat dperoleh. Turua pertama persamaa () terhadap daya output, dc d c + b, () dsebut Icremetal roducto Cost (IC), yatu hubuga lear, yag meyataka baya tambaha yag dperluka (Rp/jam) utuk meakka daya output pembagkt ke- sebesar MW. rsp dstrbus beba yag ekooms atara ut-ut pembagkt termal d dalam suatu pusat pembagkt adalah bahwa semua ut tu harus bekerja dega IC yag sama, dalam hal adalah Icremetal Fuel Cost (IFC) yag sama. (Glover, 007). Jka keluara pusat pembagkt aka dakka, baya tambaha (Icremetal cost) dar masg-masg ut yag bekerja juga harus ak, tetap harus tetap sama utuk semuaya. Fugs Objektf Utuk ejadwala embagkta Sepert duraka sebelumya bahwa pembcaraa kta adalah pejadwala pembagkta dar ut-ut pembagkt termal dalam suatu pusat pembagkt, sepert yag dgambarka pada Gambar. C C C a + b j + C. c j j. C a j + b j + c...() j C a j + b j + c 4. j (Walpole & Myers, 995) j D Gambar. Kofguras Ut ut pembagkt dalam suatu pusat pembagkt

3 OTIMASI ENJADWALAN EMBANGKITAN DI ANTARA UNIT-UNIT EMBANGKIT TERMAL BERDASARKAN INCREMENTAL RODUCTION COST YANG SAMA. (Al Imra) Solusya adalah dega meyelesaka fugs objektf dar baya baha bakar total C t da persamaa koordas utuk mecar, yatu daya output yag dbagktka oleh masg-masg ut pembagkt. Berdasarka persamaa (), persamaa utuk C t dberka oleh, C t C + C C. c. a + b + C (4) yatu jumlah baya baha bakar ut pembagkt, pembagkt ke-,, pembagkt ke- ; da harus mmum. I dpeuh jka dc d dc dc l, l,..., l d d (5) artya semua ut harus bekerja pada baya baha bakar tambaha l yag sama atau IC yag sama da mmum. Karea tu berdasarka persamaa () dperoleh, dc d c. + b l atau - b l (6) c dsebut dega persamaa koordas (coordato equatos). ersamaa pembatasya (equalty costrat) adalah D, (7) dmaa D adalah total permtaa beba atau daya total yag aka dsupla oleh pusat pembagkt ke sstem, yag harus sama dega jumlah daya yag dbagktka oleh semua ut pembagkt. Dsampg tu pertdaksamaa pembatas (equalty costrat) yag harus dpeuh adalah, (m) (max),,,,. (8) dmaa (m) da (max) adalah kemampua daya mmum da maksmum yag dapat dbagktka oleh pembagkt ke-. Utuk medapatka la yag memeuh persamaa da pertdaksamaa pembatas (7) da (8) dega suatu la l, dapat dlakuka dega cara teras. ertama-tama ddefska suatu persamaa yag sama dega persamaa (7) da dapat meggatkaya sebaga persamaa pembatas, yatu D ( k ) D - ( k ) Dmaa k bayakya teras, da (k) adalah la pada teras ke-k. Kemuda perkraka suatu la awal l (), kemuda substtus ke persamaa (6) utuk medapat la () (). Jka belum memeuh pertdaksamaa da persamaa pembatas (8) da (9), maka la l yag baru dapat dcoba utuk teras berkutya, yatu teras ke-(k+) yag besarya l l + Dl ( k + ) ( k ) ( k ) (9) (0) ( k ) ( k ) D Dmaa Dl (Saadat, 00) () c l (k) adalah la yag dperoleh pada teras ke-k. Nla l yag baru kemuda dsubsttus kembal ke persamaa (6) utuk medapatka la yag baru. Demka seterusya sampa ddapat la yag memeuh pertdaksamaa pembatas (8) da sampa D (k) lebh kecl atau sama dega la tgkat kesalaha (galat) yag dzka (e). Utuk melakuka semua perhtuga, pegguaa program komputer sagatlah tepat. Utuk memudahka pembuata program, berkut dberka dgram alur uruta peyelesaaaya sepert pada Gambar.

4 OTIMASI ENJADWALAN EMBANGKITAN DI ANTARA UNIT-UNIT EMBANGKIT TERMAL BERDASARKAN INCREMENTAL RODUCTION COST YANG SAMA. (Al Imra) START Tetuka la a, b, da c Betuk fugs baya bakar kuadrats Betuk fugs objektf Tetuka beba total D lh la awal l (k) l (k) l 0 Htug persamaa koordas (k) l - b c (k) > (max) Ya Tdak (k) < (m) Tdak (max) Dl l ( k+ ) ( K) D D - D c Tdak D (k) Î l +Dl Tuls la l,, da C t C t C Ya STO Gambar. Dagram alur uruta peyelesaa optmas pejadwala pembagkta berdasarka Icremetal roducto Cost yag sama. 4

5 OTIMASI ENJADWALAN EMBANGKITAN DI ANTARA UNIT-UNIT EMBANGKIT TERMAL BERDASARKAN INCREMENTAL RODUCTION COST YANG SAMA. (Al Imra) Cotoh Kasus Fugs suatu baha bakar ut pembagkt termal pada suatu pusat pembagkt (Rp x 0.000/Jam) dberka oleh : C , + 0,004 C ,5 + 0,006 C ,8 + 0,009, dmaa,, da dalam MW. Beba total yag harus dpkul adalah 975 MW. Masg-masg ut membagktka daya pada batas-batas : Ut : ; Ut : ; Ut : a. Tetuka la Icremetal roducto Cost l ( Rp/MWh), daya output masg-masg ut pembagkt (MW) da baya baha bakar total pusat pembagkt C t (Rp/jam), agar pusat pembagkt beroperas secara ekooms. b. Tetuka peghemata baya baha bakar utuk dstrbus beba total sebesar 975 MW secara ekooms atara ketga ut-ut pembagkt sepert pada a). dbadgka dega dstrbus beba berdasarka kapastas masg-masg ut pembagkt. eyelesaa a. Nla-la a 500 b 5, c0,004 a 400 b 5,5 c 0,006 a 00 b 5,8 c 0,009 Msalka la awal l () 6,0; dar persamaa koordas yag dberka oleh persamaa (6),,, da adalah () () () 6,0-5, 87,5000.(0,004) 6,0-5,5 4,6667.(0,006) 6,0-5,8,.(0,009) D () (87, ,6667 +,) 84,7 Msalka tgkat ketelta e yag dgka adalah ol, maka 84,7 >(e0) Dar persamaa (), Dl () (0,004),6 84,7 + + (0,006) Oleh karea tu la baru utuk l adalah : (0,009) () () () l l + Dl 6,0 +,6 9,6. roses dlajutka utuk teras kedua, dperoleh : () () () 9,6-5, 48,8947.(0,004) 9,6-5,5 05,6.(0,006) 9,6-5,8 86,84.(0,009) da D () 975 (48, ,6 + 86,84) 0,0 Karea D () 0,0 e, persamaa pembatas (9) terpeuh pada teras ke-. Namu melebh batas atasya yag haya 450 MW. Karea tu dtetapka 450 MW da djaga tetap kosta pada la tu. Jad la ketdaksembaga baru utuk daya adalah D () 975 ( ,6 + 86,84),8947 Dar persamaa () Dl (), (0,006) (0,009) 0,68 Dega demka la baru, utuk l adalah : Jka adalah D () 975 MW, la D dar persamaa 9 l () () () l + Dl 9,6 + 0,68 9,4 5

6 OTIMASI ENJADWALAN EMBANGKITAN DI ANTARA UNIT-UNIT EMBANGKIT TERMAL BERDASARKAN INCREMENTAL RODUCTION COST YANG SAMA. (Al Imra) Utuk teras ke-, d dapat : () () () 450 9,4-5,5 5.(0,006) 9,4-5,8 00.(0,009) da D () ( ) 0,0 D () 0,0 e, persamaa-persamaa pembatas telah terpeuh da, mash dalam batas pembagkta yag dzka. Maka, pembagkta yag optmal (ekooms) adalah, 450 MW, 5 MW, 00 MW da l 9,4 x 0000 Rp /MWh, da baya baha bakar total sepert yag dberka oleh pers. () adalah Ct ,.(450) + 0,004.(450) ,5.(5) + 0,006.(5) ,8.(00) + 0,009.(00) 86,5 x 0000 Rp /jam b. jka beba 975 MW d pkul oleh ut-ut pembagkt berdasarka kapastasya, maka Ut memkul 450 x MW Ut memkul 50 x975 MW Ut memkul 5 x MW Sehgga baya baha bakar total, adalah, C t ,.(48) + 0,004.(48) ,5.() + 0,006.() ,8.(4) + 0,009.(4) 85,4 x 0000 Rp /jam. Oleh karea tu peghemata baya baha bakar total adalah, Rp /jam Rp /jam Rp /jam. Nlaya memag tdak terlalu besar, tetap jka dalam setahu aka mejad : Rp x 4 x 65 Rp /tahu, suatu la yag cukup besar. KESIMULAN Berdasarka uraa yag telah djelaska d atas, dapat dsmpulka sebaga berkut :. erhtuga utuk pejadwala pembagkta secara optmum da ekooms dar ut-ut pembagkt termal dalam suatu pusat pembagkt dapat dlakuka dega membetuk suatu fugs baya baha bakar kuadrats (quadratc fuel cost fucto).. egoperasa pembagkt termal yag haya berdasarka ratg dayaya dalam usaha memeuh permtaa beba dapat tdak optmum da ekooms, dbadgka jka megguaka hasl pejadwala pembagkta yag meerapka prsp Icremetal roducto Cost yag sama. DAFTAR USTAKA Chapra, Steve C, h.d & Raymod. Caale, h.d.(995). Metode Numerk. Jld I. Jakarta : eerbt Erlagga. Glover, J.D. (007). ower System Aalyss ad Desg. Sgapore: The McGraw-Hll Book Co, Ic. Marsud, Djteg (006). Operas Sstem Teaga Lstrk. Jakarta: eerbt Graha Ilmu. Saadat, Had. (00). ower System Aalyss. Sgapore : The McGraw-Hll Book Co, Ic. Walpole, Roald E & Raymod H. Myers.(995). Ilmu eluag da Statstka Utuk Isyur da Ilmuwa. Badug : eerbt ITB. 6

STUDI OPERASI EKONOMIS ANTARA UNIT-UNIT PEMBANGKIT TENAGA LISTRIK DI PT. PLN (PERSERO) WILAYAH SULTANBATARA SEKTOR TELLO

STUDI OPERASI EKONOMIS ANTARA UNIT-UNIT PEMBANGKIT TENAGA LISTRIK DI PT. PLN (PERSERO) WILAYAH SULTANBATARA SEKTOR TELLO AlImra, Stud Operas Ekooms Atara Ut-ut embagkt Teaga Lstrk Tello STUDI OERASI EKONOMIS ANTARA UNIT-UNIT EMBANGKIT TENAGA LISTRIK DI T. LN (ERSERO) WILAYAH SULTANBATARA SEKTOR TELLO Al Imra Jurusa eddka

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu.

BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu. BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa yag varabel bebasya ( berpagkat palg tgg satu. Utuk regres ler sederhaa, regres ler haya melbatka dua varabel ( da. Persamaa regresya dapat dtulska

Lebih terperinci

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM 1 Megetahu perhtuga persamaa regres ler Meggambarka persamaa regres ler ke dalam dagram pecar TEORI PENUNJANG Persamaa Regres adalah persamaa matematka

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa merupaka baga regres yag mecakup hubuga ler satu peubah acak tak bebas dega satu peubah bebas. Hubuga ler da dar satu populas dsebut gars regres

Lebih terperinci

I adalah himpunan kotak terbatas dan tertutup yang berisi lebih dari satu

I adalah himpunan kotak terbatas dan tertutup yang berisi lebih dari satu METODE FUNGS QUAS-FED SATU ARAMETER UNTUK MENYEESAKAN MASAAH ROGRAM NTEGER TAK NEAR Ra Hardyat (M4) ABSTRAK Dalam kehdupa sehar-har serg djumpa masalah optmas yag membutuhka hasl teger Masalah tersebut

Lebih terperinci

BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP

BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP Msal dguaka kode ler C[, k, d] dega matrks pembagu G da matrks cek partas H. Sebuah blok formas x = x 1 x 2 x k, x = 0 atau 1, yag aka dkrm terlebh

Lebih terperinci

BAB III PERSAMAAN PANAS DIMENSI SATU

BAB III PERSAMAAN PANAS DIMENSI SATU BAB III PERSAMAAN PANAS DIMENSI SAU Pada baga sebelumya, kta telah membahas peerapa metoda Ruge-Kutta orde 4 utuk meyelesaka masalah la awal dar persamaa dferesal basa orde. Pada bab, kta aka melakuka

Lebih terperinci

PENJADWALAN PEMBANGKIT THERMIS MENGGUNAKAN METODE DYNAMIC PROGRAMMING

PENJADWALAN PEMBANGKIT THERMIS MENGGUNAKAN METODE DYNAMIC PROGRAMMING Sujto, ejadwala embagkt Therms Megguaka Metode Dyamc rogrammg 25 ENJADWAAN EMBANGKIT THERMIS MENGGUNAKAN METODE DYNAMIC ROGRAMMING Sujto Abstrak: eelta bertujua megetahu karakterstk ut pembagkt dalam stasu

Lebih terperinci

PENDAHULUAN Metode numerik merupakan suatu teknik atau cara untuk menganalisa dan menyelesaikan masalah masalah di dalam bidang rekayasa teknik dan

PENDAHULUAN Metode numerik merupakan suatu teknik atau cara untuk menganalisa dan menyelesaikan masalah masalah di dalam bidang rekayasa teknik dan Aalsa Numerk Baha Matrkulas PENDAHULUAN Metode umerk merupaka suatu tekk atau cara utuk megaalsa da meyelesaka masalah masalah d dalam bdag rekayasa tekk da sa dega megguaka operas perhtuga matematk Masalah-masalah

Lebih terperinci

PROSIDING ISBN :

PROSIDING ISBN : ROSIDING ISBN : 978 979 6353 3 2 A.4 IMLEMENTASI LAGRANGE EQUATION ADA OTIMASI INCREMENTAL FUEL COST EMBANGKIT ENERGI GUNA ENJADWALAN EMBANGKIT BERBASIS METODE DYNAMIC ROGRAMMING Sujto Jurusa Tekk Elektro

Lebih terperinci

UKURAN GEJALA PUSAT DAN UKURAN LETAK

UKURAN GEJALA PUSAT DAN UKURAN LETAK UKURAN GEJALA PUSAT DAN UKURAN LETAK MODUL 4 UKURAN GEJALA PUSAT DAN UKURAN LETAK. Pedahulua Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu persoala, bak megea sampel atau pu

Lebih terperinci

WAKTU PERGANTIAN ALAT BERAT JENIS WHEEL LOADER DENGAN METODE LEAST COST

WAKTU PERGANTIAN ALAT BERAT JENIS WHEEL LOADER DENGAN METODE LEAST COST Koferes Nasoal Tekk Spl 3 (KoNTekS 3) Jakarta, 6 7 Me 009 WAKTU PERGANTIAN ALAT BERAT JENIS WHEEL LOADER DENGAN METODE LEAST COST Maksum Taubrata Program Stud Tekk Spl, Uverstas Krste Maraatha Badug Jl.

Lebih terperinci

BAB 6 PRINSIP INKLUSI DAN EKSKLUSI

BAB 6 PRINSIP INKLUSI DAN EKSKLUSI BB 6 PRINSIP INKLUSI DN EKSKLUSI Pada baga aka ddskuska topk berkutya yatu eumeras yag damaka Prsp Iklus da Eksklus. Kosep dalam bab merupaka perluasa de dalam Dagram Ve beserta oepras rsa da gabuga, amu

Lebih terperinci

BAB 5 BARISAN DAN DERET KOMPLEKS. Secara esensi, pembahasan tentang barisan dan deret komlpeks sama dengan barisan dan deret real.

BAB 5 BARISAN DAN DERET KOMPLEKS. Secara esensi, pembahasan tentang barisan dan deret komlpeks sama dengan barisan dan deret real. BAB 5 BARIAN DAN DERET KOMPLEK ecara eses, pembahasa tetag barsa da deret komlpeks sama dega barsa da deret real. 5. Barsa Barsa merupaka sebuah fugs dega doma berupa hmpua blaga asl N. ebuah barsa kompleks

Lebih terperinci

BAB 5. ANALISIS REGRESI DAN KORELASI

BAB 5. ANALISIS REGRESI DAN KORELASI BAB 5. ANALISIS REGRESI DAN KORELASI Tujua utama aalss regres adalah mecar ada tdakya hubuga ler atara dua varabel: Varabel bebas (X), yatu varabel yag mempegaruh Varabel terkat (Y), yatu varabel yag dpegaruh

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1 Pedahulua Sebelum membahas megea prosedur peguja hpotess, terlebh dahulu aka djelaska beberapa teor da metode yag meujag utuk mempermudah pembahasa. Adapu teor da metode tersebut

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Dalam pemodela program ler, semua parameter yag dguaka dalam model dasumska dapat dketahu secara past. Parameter-parameter terdr dar koefse batasa ( ) a, la kuattas batasa

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB LANDASAN TEOR Umum Sstem teaga lstrk dbagu dega tuua membagktka eerg lstrk utuk kemuda dsalurka da dmafaatka sesua dega kebutuhapada dasaraya sstem terdr dar tga ut, pusat pembagkt, salura trasms da

Lebih terperinci

NPV DAN IRR IR. ASEP TOTO KARTAMAN, MENG

NPV DAN IRR IR. ASEP TOTO KARTAMAN, MENG DAN IRR IR. ASEP TOTO KARTAMAN, MENG SEMESTER PENDEK SEMESTER TAHUN AKADEMIK 03-04 Prod Tekk Idustr Fakultas Tekk Uverstas Pasuda Badug 04 PERHITUNGAN KELAYAKAN INVESTASI. Net Preset Value () merupaka

Lebih terperinci

BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL. Masalah regresi invers dengan bentuk linear dapat dijumpai dalam

BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL. Masalah regresi invers dengan bentuk linear dapat dijumpai dalam BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL 3. Pegerta Masalah regres vers dega betuk lear dapat djumpa dalam berbaga bdag kehdupa, dataraya dalam bdag ekoom, kesehata, fska, kma

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Sampa saat, model Regres da model Aalss Varas telah dpadag sebaga dua hal ag tdak berkata. Meskpu merupaka pedekata ag umum dalam meeragka kedua cara pada taraf permulaa,

Lebih terperinci

KALKULUS LANJUT. Pertemuan ke-4. Reny Rian Marliana, S.Si.,M.Stat.

KALKULUS LANJUT. Pertemuan ke-4. Reny Rian Marliana, S.Si.,M.Stat. KALKULUS LANJUT Pertemua ke-4 Rey Ra Marlaa, S.S.,M.Stat. Plot Mater Notas Jumlah & Sgma Itegral Tetu Jumlah Rema Pedahulua Luas Notas Jumlah & Sgma Purcell, et all. (page 226,2003): Sebuah fugs yag daerah

Lebih terperinci

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu KORELASI 1 D dua kta tdak dapat hdup sedr, tetap memerluka hubuga dega orag la. Hubuga tu pada umumya dlakuka dega maksud tertetu sepert medapat kergaa pajak, memperoleh kredt, memjam uag, serta mta pertologa/batua

Lebih terperinci

SIFAT-SIFAT LANJUT FUNGSI TERBATAS

SIFAT-SIFAT LANJUT FUNGSI TERBATAS Bulet Ilmah Mat. Stat. da Terapaya (Bmaster) Volume 03, No. 2(204), hal 35 42. SIFAT-SIFAT LANJUT FUNGSI TERBATAS Suhard, Helm, Yudar INTISARI Fugs terbatas merupaka fugs yag memlk batas atas da batas

Lebih terperinci

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu BAB II LADASA TEORI Dalam pegambla sampel dar suatu populas, dperluka suatu tekk pegambla sampel yag tepat sesua dega keadaa populas tersebut. Sehgga sampel yag dperoleh adalah sampel yag dapat mewakl

Lebih terperinci

INTERPOLASI. FTI-Universitas Yarsi

INTERPOLASI. FTI-Universitas Yarsi BAB VI INTERPOLASI FTI-Uverstas Yars Pedahulua Bla dketahu taulas ttk-ttk (y seaga erkut (yag dalam hal rumus ugs y ( tdak dketahu secara eksplst: Htug taksra la y utuk 3.8! FTI-Uverstas Yars Persoala

Lebih terperinci

BAB 1 ERROR PERHITUNGAN NUMERIK

BAB 1 ERROR PERHITUNGAN NUMERIK BAB ERROR PERHITUNGAN NUMERIK A. Tujua a. Memaham galat da hampra b. Mampu meghtug galat da hampra c. Mampu membuat program utuk meelesaka perhtuga galat da hampra dega Matlab B. Peragkat da Mater a. Software

Lebih terperinci

Optimalisasi Biaya Bahan Bakar Untuk Penjadwalan Unit-Unit Pada Pembangkit Thermal Sistem Minahasa Dengan Metode Iterasi Lamda

Optimalisasi Biaya Bahan Bakar Untuk Penjadwalan Unit-Unit Pada Pembangkit Thermal Sistem Minahasa Dengan Metode Iterasi Lamda Optmalsas Baya Baha Bakar Utuk Pejadwala Ut-Ut Pada Pembagkt Thermal Sstem Mahasa Dega Metode Iteras Lamda Sartka Veroka Agdre, L.S. Patras, H. Tumalag, F. Ls, Jurusa Tekk Elektro-FT, UNSRAT, Maado-955,

Lebih terperinci

11/10/2010 REGRESI LINEAR SEDERHANA DAN KORELASI TUJUAN

11/10/2010 REGRESI LINEAR SEDERHANA DAN KORELASI TUJUAN // REGRESI LINEAR SEDERHANA DAN KORELASI. Model Regres Lear. Peaksr Kuadrat Terkecl 3. Predks Nla Respos 4. Iferes Utuk Parameter-parameter Regres 5. Kecocoka Model Regres 6. Korelas Utrwe Mukhayar MA

Lebih terperinci

PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN

PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN Idah Vltr, Harso, Haposa Srat Mahassa Program S Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu

Lebih terperinci

ALGORITMA MENENTUKAN HIMPUNAN TERBESAR DARI SUATU MATRIKS INTERVAL DALAM ALJABAR MAX-PLUS

ALGORITMA MENENTUKAN HIMPUNAN TERBESAR DARI SUATU MATRIKS INTERVAL DALAM ALJABAR MAX-PLUS LGORITM MENENTUKN HIMPUNN TERBESR DRI SUTU MTRIKS INTERVL DLM LJBR MX-PLUS Rata Novtasar Program Stud Matematka FMIP UNDIP JlProfSoedarto SH Semarag 575 bstract Ths research dscussed about how to obtaed

Lebih terperinci

BAB III INTEGRAL RIEMANN-STIELTJES. satu pendekatan untuk membentuk proses titik. Berkaitan dengan masalah

BAB III INTEGRAL RIEMANN-STIELTJES. satu pendekatan untuk membentuk proses titik. Berkaitan dengan masalah BAB III INEGRAL RIEMANN-SIELJES. Pedahulua Pada Bab, telah dsggug bahwa ukura meghtug merupaka salah satu pedekata utuk membetuk proses ttk. Berkata dega masalah perhtuga, ada hal meark yag perlu amat,

Lebih terperinci

POLIGON TERBUKA TERIKAT SEMPURNA

POLIGON TERBUKA TERIKAT SEMPURNA MODUL KULIAH ILMU UKUR TANAH POLIGON TERBUKA TERIKAT SEMPURNA Pegerta : peetua azmuth awal da akhr, peetuat kesalaha peutup sudut,koreks sudut, kesalaha lear da koreks lear kearah sumbu X da Y, Peetua

Lebih terperinci

TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM. Sudarno Jurusan Matematika FMIPA UNDIP

TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM. Sudarno Jurusan Matematika FMIPA UNDIP JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 11-19, Aprl 004, ISSN : 1410-8518 TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM Sudaro Jurusa Matematka FMIPA UNDIP Abstrak Sstem yag dbetuk

Lebih terperinci

BAB 2. Tinjauan Teoritis

BAB 2. Tinjauan Teoritis BAB Tjaua Teorts.1 Regres Lear Sederhaa Regres lear adalah alat statstk yag dperguaka utuk megetahu pegaruh atara satu atau beberapa varabel terhadap satu buah varabel. Varabel yag mempegaruh serg dsebut

Lebih terperinci

BAB III UKURAN PEMUSATAN DATA

BAB III UKURAN PEMUSATAN DATA BAB III UKURAN PEMUSATAN DATA A. Ukura Gejala Pusat Ukura pemusata adalah suatu ukura yag meujukka d maa suatu data memusat atau suatu kumpula pegamata memusat (megelompok). Ukura pemusata data adalah

Lebih terperinci

ANALISIS INDEKS DISTURBANCES STORM TIME DENGAN KOMPONEN H GEOMAGNET

ANALISIS INDEKS DISTURBANCES STORM TIME DENGAN KOMPONEN H GEOMAGNET Prosdg Semar Nasoal Peelta, Peddka da Peerapa MIPA Fakultas MIPA, Uverstas Neger Yogyakarta, 6 Me 9 ANALISIS INDEKS DISTURBANCES STORM TIME DENGAN KOMPONEN H GEOMAGNET Sty Rachyay Pusat Pemafaata Sas Atarksa,

Lebih terperinci

EKONOMIC DISPATCH SISTEM KELISTRIKAN LOMBOK MENGGUNAKAN METODE CHAOTIC ANT SWARM OPTIMIZATION (CASO)

EKONOMIC DISPATCH SISTEM KELISTRIKAN LOMBOK MENGGUNAKAN METODE CHAOTIC ANT SWARM OPTIMIZATION (CASO) elektrka, ISSN 2086-9487 Vol., No. : - 5, Pebruar 204 EKONOMIC ISPATCH SISTEM KEISTRIKAN OMBOK MENGGUNAKAN METOE CHAOTIC ANT SWARM OPTIMIZATION (CASO) Raa Yursta.,I Made Ar Nrartha 2, Agug Bud Muljoo 3

Lebih terperinci

XI. ANALISIS REGRESI KORELASI

XI. ANALISIS REGRESI KORELASI I ANALISIS REGRESI KORELASI Aalss regres mempelajar betuk hubuga atara satu atau lebh peubah bebas dega satu peubah tak bebas dalam peelta peubah bebas basaya peubah yag dtetuka oelh peelt secara bebas

Lebih terperinci

BAB 2 LANDASAN TEORI. Istilah regresi pertama kali diperkenalkan oleh Francis Galton. Menurut Galton,

BAB 2 LANDASAN TEORI. Istilah regresi pertama kali diperkenalkan oleh Francis Galton. Menurut Galton, BAB LANDASAN TEORI Pegerta Regres Istlah regres pertama kal dperkealka oleh Fracs Galto Meurut Galto, aalss regres berkeaa dega stud ketergatuga dar suatu varabel yag dsebut varabel tak bebas (depedet

Lebih terperinci

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai BAB LANDASAN TEORI. Kosep Dasar Aalss Regres Aalss regres regressso aalyss merupaka suatu tekk utuk membagu persamaa da megguaka persamaa tersebut utuk membuat perkraa predcto. Dega demka, aalss regres

Lebih terperinci

SUM BER BELA JAR Menerap kan aturan konsep statistika dalam pemecah an masalah INDIKATOR MATERI TUGAS

SUM BER BELA JAR Menerap kan aturan konsep statistika dalam pemecah an masalah INDIKATOR MATERI TUGAS C. Pembelajara 3 1. Slabus N o STANDA R KOMPE TENSI KOMPE TENSI DASAR INDIKATOR MATERI TUGAS BUKTI BELAJAR KON TEN INDIKA TOR WAK TU SUM BER BELA JAR Meerap ka atura kosep statstka dalam pemecah a masalah

Lebih terperinci

STATISTIKA: UKURAN PEMUSATAN. Tujuan Pembelajaran

STATISTIKA: UKURAN PEMUSATAN. Tujuan Pembelajaran Kurkulum 013/006 matematka K e l a s XI STATISTIKA: UKURAN PEMUSATAN Tujua Pembelajara Setelah mempelajar mater, kamu dharapka memlk kemampua berkut. 1. Dapat meetuka rata-rata data tuggal da data berkelompok..

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 1 Pegerta Regres Istlah regres pertama kal dperkealka oleh Fracs Galto Meurut Galto, aalss regres berkeaa dega stud ketergatuga dar suatu varabel yag dsebut tak bebas depedet varable,

Lebih terperinci

OPTIMISASI ECONOMIC DISPATCH MENGGUNAKAN ANT COLONY OPTIMIZATION PADA SISTEM IEEE 26 BUS

OPTIMISASI ECONOMIC DISPATCH MENGGUNAKAN ANT COLONY OPTIMIZATION PADA SISTEM IEEE 26 BUS Jural ITEKA, Tahu XI, o., Me 0 : 9-3 OTIMISASI ECOOMIC DISATCH MEGGUAKA AT COO OTIMIZATIO ADA SISTEM IEEE 6 BUS Ruslawat ( ( egaar Tekk Elektro, Akadem Tekk embagua asoal, Baarbaru Rgkasa Ecoomc dspatch

Lebih terperinci

Ruang Banach. Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA

Ruang Banach. Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA Ruag Baach Sumaag Muhtar Gozal UNIVERSITAS PENDIDIKAN INDONESIA Satu kose etg d kulah Aalss ugsoal adalah teor ruag Baach. Pada baga aka drevu defs, cotoh-cotoh, serta sfat-sfat etg ruag Baach. Kta aka

Lebih terperinci

IMPLEMENTASI DAN KOMPARASI ATURAN SEGIEMPAT UNTUK PENYELESAIAN INTEGRAL DENGAN BATAS MENGGUNAKAN MATLAB

IMPLEMENTASI DAN KOMPARASI ATURAN SEGIEMPAT UNTUK PENYELESAIAN INTEGRAL DENGAN BATAS MENGGUNAKAN MATLAB Semar Nasoal Tekolog 007 (SNT 007) ISSN : 978 9777 IMPLEMENTASI DAN KOMPARASI ATURAN SEGIEMPAT UNTUK PENYELESAIAN INTEGRAL DENGAN BATAS MENGGUNAKAN MATLAB Krsawat STMIK AMIKOM Yogyakarta e-mal : krsa@amkom.ac.d

Lebih terperinci

SOLUSI TUGAS I HIMPUNAN

SOLUSI TUGAS I HIMPUNAN Program Stud S1 Tekk Iformatka Fakultas Iformatka, Telkom Uversty SOLUSI TUGAS I HIMPUNAN Matematka Dskrt (MUG2A3) Halama 1 dar 6 Soal 1 Tetukalah eleme-eleme dar hmpua berkut! 2 x x adalah blaga real

Lebih terperinci

Regresi & Korelasi Linier Sederhana. Gagasan perhitungan ditetapkan oleh Sir Francis Galton ( )

Regresi & Korelasi Linier Sederhana. Gagasan perhitungan ditetapkan oleh Sir Francis Galton ( ) Regres & Korelas Ler Sederhaa 1. Pedahulua Gagasa perhtuga dtetapka oleh Sr Fracs Galto (18-1911) Persamaa regres :Persamaa matematk yag memugkka peramala la suatu peubah takbebas (depedet varable) dar

Lebih terperinci

III. METODE PENELITIAN. yang hidup dan berguna bagi masyarakat, maupun bagi peneliti sendiri

III. METODE PENELITIAN. yang hidup dan berguna bagi masyarakat, maupun bagi peneliti sendiri III. METODE PEELITIA A. Metodolog Peelta Metodolog peelta adalah cara yag dlakuka secara sstemats megkut atura-atura, recaaka oleh para peeltutuk memecahka permasalaha yag hdup da bergua bag masyarakat,

Lebih terperinci

TUGAS MATA KULIAH TEORI RING LANJUT MODUL NOETHER

TUGAS MATA KULIAH TEORI RING LANJUT MODUL NOETHER TUGAS ATA KULIAH TEORI RING LANJUT ODUL NOETHER Da Aresta Yuwagsh (/364/PPA/03489) Sebelumya, telah dketahu bahwa sebaga rg dega eleme satua memeuh sfat rata ak utuk deal-deal d. Apabla dpadag sebaga modul,

Lebih terperinci

* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES

* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES * PENYAJIAN DATA Secara umum, ada dua cara peyaja data, yatu : 1. Tabel atau daftar. Grafk atau dagram Macam-macam daftar yag dkeal : a. Daftar bars kolom b. Daftar kotges c. Daftar dstrbus frekues Sedagka

Lebih terperinci

ANALISIS ALGORITMA REKURSIF DAN NONREKURSIF

ANALISIS ALGORITMA REKURSIF DAN NONREKURSIF ANALISIS ALGORITMA REKURSIF DAN NONREKURSIF KELOMPOK A I GUSTI BAGUS HADI WIDHINUGRAHA (0860500) NI PUTU SINTYA DEWI (0860507) LUH GEDE PUTRI SUARDANI (0860508) I PUTU INDRA MAHENDRA PRIYADI (0860500)

Lebih terperinci

MINGGU KE-10 HUBUNGAN ANTAR KONVERGENSI

MINGGU KE-10 HUBUNGAN ANTAR KONVERGENSI MINGGU KE-0 HUBUNGAN ANTAR KONVERGENSI Hubuga atar koverges Hrark atar koverges dyataka dalam teorema berkut. Teorema Msalka X da X, X, X 3,... adalah varabel radom yag ddefska pada ruag probabltas yag

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel

BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel BAB I PENDAHULUAN 1.1 Statstka Deskrptf da Statstka Iferesal Dewasa d berbaga bdag lmu da kehdupa utuk memaham/megetahu sesuatu dperluka dat Sebaga cotoh utuk megetahu berapa bayak rakyat Idoesa yag memerluka

Lebih terperinci

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS Tgg tekaa [m] UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS Se, 11 Desember 017 100 met [ Boleh membuka buku Tdak boleh memaka komputer ] SOAL 1 [SO A-3, BOBOT NILAI 50%] Sebuah PDAM melakuka pegukura

Lebih terperinci

3.1 Biaya Investasi Pipa

3.1 Biaya Investasi Pipa BAB III Model Baya Pada model baya [8] d tugas akhr, baya tahua total utuk megoperaska jarga ppa terdr dar dua kompoe, yatu baya operasoal da baya vestas. Baya operasoal terdr dar baya operasoal ppa da

Lebih terperinci

BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI

BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI 9.1. Dstrbus Kotu Dstrbus memlk sfat kotu dmaa data yag damat berjala secara kesambuga da tdak terputus. Maksudya adalah bahwa data yag damat tersebut tergatug

Lebih terperinci

4/1/2013. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut. Dengan: n = banyak data

4/1/2013. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut. Dengan: n = banyak data //203 UKURAN GEJALA PUSAT DAN UKURAN LETAK Kaa Evta Dew, S.Pd., M.S. Ukura gejala pusat Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu hal, bak tu dar sampel ataupu populas Ukura

Lebih terperinci

Penarikan Contoh Acak Sederhana (Simple Random Sampling)

Penarikan Contoh Acak Sederhana (Simple Random Sampling) Pearka Cotoh Acak Sederhaa (Smple Radom Samplg) Defs Jka sebuah cotoh berukura dambl dar suatu populas sedemka rupa sehgga setap cotoh berukura ag mugk memlk peluag sama utuk terambl, maka prosedur tu

Lebih terperinci

TEKNIK SAMPLING. Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Universitas Andalas

TEKNIK SAMPLING. Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Universitas Andalas TEKNIK SAMPLING Hazmra Yozza Izzat Rahm HG Jurusa Matematka FMIPA Uverstas Adalas Defs Suatu cotoh gerombol adalah suatu cotoh acak sederhaa dmaa setap ut pearka cotoh adalah kelompok atau gerombol dar

Lebih terperinci

Sudaryatno Sudirham. Permutasi dan Kombinasi

Sudaryatno Sudirham. Permutasi dan Kombinasi Sudaryato Sudrham Permutas da Kombas Permutas Permutas adalah bayakya peelompoka sejumlah tertetu kompoe ya dambl dar sejumlah kompoe ya terseda; dalam setap kelompok uruta kompoe dperhatka Msalka terseda

Lebih terperinci

S2 MP Oleh ; N. Setyaningsih

S2 MP Oleh ; N. Setyaningsih S2 MP Oleh ; N. Setyagsh MATERI PERTEMUAN 1-3 (1)Pedahulua pera statstka dalam peelta ; (2)Peyaja data : dalam betuk (a) tabel da (b) dagram; (3) ukura tedes setaral da ukura peympaga (4)dstrbus ormal

Lebih terperinci

Uji Statistika yangb digunakan dikaitan dengan jenis data

Uji Statistika yangb digunakan dikaitan dengan jenis data Uj Statstka yagb dguaka dkata dega jes data Jes Data omal Ordal Iterval da Raso Uj Statstka Koefse Kotges Rak Spearma Kedall Tau Korelas Parsal Kedall Tau Koefse Kokordas Kedall W Pearso Korelas Gada Korelas

Lebih terperinci

( ) ( ) ( ) ( ) ( ) III MODEL. , θ Ω. 1 Pendugaan parameter dengan metode maximum lkelihood estimation dapat diperoleh dari:

( ) ( ) ( ) ( ) ( ) III MODEL. , θ Ω. 1 Pendugaan parameter dengan metode maximum lkelihood estimation dapat diperoleh dari: 5 Mamum Lkelhood Estmato Defs Fugs Lkelhood Msalka X, X,, X adalah eubah acak d dega fugs massa eluag ( ; θ, dega θ dasumska skalar da tdak dketahu, maka rosedur fugs lkelhood daat dtulska sebaga berkut

Lebih terperinci

Mean untuk Data Tunggal. Definisi. Jika suatu sampel berukuran n dengan anggota x1, x2, x3,, xn, maka mean sampel didefinisiskan : n Xi.

Mean untuk Data Tunggal. Definisi. Jika suatu sampel berukuran n dengan anggota x1, x2, x3,, xn, maka mean sampel didefinisiskan : n Xi. Mea utuk Data Tuggal Des. Jka suatu sampel berukura dega aggota x1, x, x3,, x, maka mea sampel ddesska : 1... N 1 Mea utuk Data Kelompok Des Mea dar data yag dkelompoka adalah : x x 1 1 1 dega : x = ttk

Lebih terperinci

3/19/2012. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut

3/19/2012. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut 3/9/202 UKURAN GEJALA PUSAT DAN UKURAN LETAK Kaa Evta Dew, S.Pd., M.S. Ukura gejala pusat Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu hal, bak tu dar sampel ataupu populas

Lebih terperinci

FMDAM (2) TOPSIS TOPSIS TOPSIS. Charitas Fibriani

FMDAM (2) TOPSIS TOPSIS TOPSIS. Charitas Fibriani FMDAM (2) Chartas Fbra Techque for Order Preferece by Smlarty to Ideal Soluto () ddasarka pada kosep dmaa alteratf terplh yag terbak tdak haya memlk jarak terpedek dar solus deal postf, amu juga memlk

Lebih terperinci

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS Se, 19 Desember 016 100 met [ Boleh membuka buku Tdak boleh memaka komputer ] SOAL 1 [SO A-3, BOBOT NILAI 40%] Hasl pegukura sampel d beberapa sekolah da

Lebih terperinci

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten BAB III METODE PENELITIAN 3. Tempat da Waktu Peelta 3.. Tempat Tempat peelta dlaksaaka d SMP Neger 4 Tlamuta Kabupate Boalemo pada sswa kelas VIII. 3.. Waktu Peelta dlaksaaka dalam waktu 3 bula yatu dar

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Bab aka mejelaska megea ladasa teor yag dpaka oleh peuls dalam peelta. Bab dbag mejad beberapa baga, yag masg masg aka mejelaska Prcpal Compoet Aalyss (PCA), Egeface, Klusterg K-Meas,

Lebih terperinci

PRAKTIKUM 7 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel

PRAKTIKUM 7 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel Praktkum 7 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel PRAKTIKUM 7 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel Tujua : Mempelajar metode Secat dega modfkas tabel utuk peelesaa

Lebih terperinci

PENJADWALAN EKONOMIS PEMBANGKIT THERMAL DENGAN MEMPERHITUNGKAN RUGI RUGI SALURAN TRANSMISI MENGGUNAKAN METODE ALGORITMA GENETIK

PENJADWALAN EKONOMIS PEMBANGKIT THERMAL DENGAN MEMPERHITUNGKAN RUGI RUGI SALURAN TRANSMISI MENGGUNAKAN METODE ALGORITMA GENETIK No.33 Vol. Th.XVII Aprl 00 ISSN : 0854-847 PENJADWALAN EKONOMIS PEMBANGKIT THERMAL DENGAN MEMPERHITUNGKAN RUGI RUGI SALURAN TRANSMISI MENGGUNAKAN METODE ALGORITMA GENETIK Adrat Jurusa Tekk Elektro, Fakultas

Lebih terperinci

2.2.3 Ukuran Dispersi

2.2.3 Ukuran Dispersi 3 Ukura Dspers Yag aka dbahas ds adalah smpaga baku da varas karea dua ukura dspers yag palg serg dguaka Hubuga atara smpaga baku dega varas adalah Varas = Kuadrat dar Smpaga baku otas yag umum dguaka

Lebih terperinci

PRAKTIKUM 5 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel

PRAKTIKUM 5 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel Praktkum 5 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel PRAKTIKUM 5 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel Tujua : Mempelajar metode Secat dega modfkas tabel utuk peelesaa

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. melakukan smash sebelum dan sesudah latihan power otot lengan adalah sebagai

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. melakukan smash sebelum dan sesudah latihan power otot lengan adalah sebagai BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4. Deskrps Peelta Berdasarka hasl peelta, d peroleh data megea kemempua sswa melakuka smash sebelum da sesudah latha power otot lega adalah sebaga berkut : Tabel.

Lebih terperinci

PENAKSIR PARAMETER DISTRIBUSI EKSPONENSIAL PARETO DENGAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD

PENAKSIR PARAMETER DISTRIBUSI EKSPONENSIAL PARETO DENGAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD PENAKSIR PARAMETER DISTRIBUSI EKSPONENSIAL PARETO DENGAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD Mayag Novhta Sar *, Bustam, Sgt Sugarto Mahasswa Program Stud S Matematka FMIPA Uverstas Rau Dose Fakultas

Lebih terperinci

Aliran Daya Optimal Pada Sistem Minahasa

Aliran Daya Optimal Pada Sistem Minahasa Alra Daya Optmal Pada Sstem Mahasa Nova Gama, elma Ls, M Tuegeh, A.. Nelwa, Jurusa Tekk Elektro-T, UNSRAT, Maado-955, Emal: ovag.03@gmal.com Abstrak-Sstem Mahasa merupaka sstem teaga lstrk dega daerah

Lebih terperinci

UKURAN GEJALA PUSAT (UGP)

UKURAN GEJALA PUSAT (UGP) UKURAN GEJALA PUSAT (UGP) Pegerta: Rata-rata (average) alah suatu la yag mewakl suatu kelompok data. Nla dsebut juga ukura gejala pusat karea pada umumya mempuya kecederuga terletak d tegah-tegah da memusat

Lebih terperinci

BAB 2 LANDASAN TEORI. disebut dengan bermacam-macam istilah: variabel penjelas, variabel

BAB 2 LANDASAN TEORI. disebut dengan bermacam-macam istilah: variabel penjelas, variabel BAB LANDASAN TEORI.1 Pegerta Regres Regres dalam statstka adalah salah satu metode utuk meetuka tgkat pegaruh suatu varabel terhadap varabel yag la. Varabel yag pertama dsebut dega bermacam-macam stlah:

Lebih terperinci

P n e j n a j d a u d a u l a a l n a n O pt p im i a m l a l P e P m e b m a b n a g n k g i k t Oleh Z r u iman

P n e j n a j d a u d a u l a a l n a n O pt p im i a m l a l P e P m e b m a b n a g n k g i k t Oleh Z r u iman OTIMISASI enjadualan Optmal embangkt Oleh : Zurman Anthony, ST. MT Optmas pengrman daya lstrk Dmaksudkan untuk memperkecl jumlah keseluruhan baya operas dengan memperhtungkan rug-rug daya nyata pada saluran

Lebih terperinci

BAB 2 : BUNGA, PERTUMBUHAN DAN PELURUHAN

BAB 2 : BUNGA, PERTUMBUHAN DAN PELURUHAN Jl. Raya Wagu Kel. Sdagsar Kota Bogor Telp. 0251-8242411, emal: prohumas@smkwkrama.et, webste : www.smkwkrama.et BAB 2 : BUNGA, PERTUBUHAN DAN PELURUHAN PENGERTIAN BUNGA Buga adalah jasa dar smpaa atau

Lebih terperinci

ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas:

ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas: ANALISIS REGRESI Pedahulua Aalss regres berkata dega stud megea ketergatuga satu peubah (peubah terkat) terhadap satu atau lebh peubah laya (peubah pejelas). Jka Y dumpamaka sebaga peubah terkat da X1,X,...,X

Lebih terperinci

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD Eka Mer Krst ), Arsma Ada ), Sgt Sugarto ) ekamer_tross@ymal.com ) Mahasswa Program S Matematka FMIPA-UR

Lebih terperinci

LANGKAH-LANGKAH UJI HIPOTESIS DENGAN 2 (Untuk Data Nominal)

LANGKAH-LANGKAH UJI HIPOTESIS DENGAN 2 (Untuk Data Nominal) LANGKAH-LANGKAH UJI HIPOTESIS DENGAN (Utuk Data Nomal). Merumuska hpotess (termasuk rumusa hpotess statstk). Data hasl peelta duat dalam etuk tael slag (tael frekues oservas) 3. Meetuka krtera uj atau

Lebih terperinci

BAB 2 LANDASAN TEORI. Analisis regresi adalah suatu proses memperkirakan secara sistematis tentang apa yang paling

BAB 2 LANDASAN TEORI. Analisis regresi adalah suatu proses memperkirakan secara sistematis tentang apa yang paling BAB LANDASAN TEORI Kosep Dasar Aalss Regres Aalss regres adalah suatu proses memperkraka secara sstemats tetag apa yag palg mugk terjad dmasa yag aka datag berdasarka formas yag sekarag dmlk agar memperkecl

Lebih terperinci

Uji Modifikasi Peringkat Bertanda Wilcoxon Untuk Masalah Dua Sampel Berpasangan 1 Wili Solidayah 2 Siti Sunendiari 3 Lisnur Wachidah

Uji Modifikasi Peringkat Bertanda Wilcoxon Untuk Masalah Dua Sampel Berpasangan 1 Wili Solidayah 2 Siti Sunendiari 3 Lisnur Wachidah Prosdg Statstka ISSN 40-45 Uj Modfkas Pergkat Bertada Wlcoxo Utuk Masalah Dua Sampel Berpasaga 1 Wl Soldayah St Suedar 3 Lsur Wachdah 1, Statstka, Fakultas MIPA, Uverstas Islam Badug, Jl. Tamasar No. 1

Lebih terperinci

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL Hesty ala, Arsma Ada, Bustam hestyfala@ymalcom Mahasswa Program S Matematka MIPA-UR Dose Matematka MIPA-UR

Lebih terperinci

PENDAHULUAN. Di dalam modul ini Anda akan mempelajari teori gangguan bebas waktu yang mencakup:

PENDAHULUAN. Di dalam modul ini Anda akan mempelajari teori gangguan bebas waktu yang mencakup: PENDAULUAN D dalam modul Ada aka mempelajar teor gaggua bebas waktu yag mecakup: teor gaggua tak degeeras bebas waktu, teor gaggua degeeras bebas waktu, da efek Stark. Oleh karea tu, sebelum mempelajar

Lebih terperinci

Penyelesaian Sistem Persamaan Linier Kompleks Dengan Invers Matriks Menggunakan Metode Faddev (Contoh Kasus: SPL Kompleks dan Hermit)

Penyelesaian Sistem Persamaan Linier Kompleks Dengan Invers Matriks Menggunakan Metode Faddev (Contoh Kasus: SPL Kompleks dan Hermit) Jural Sas Matematka da Statstka, Vol., No. I, Jauar ISSN - Peyelesaa Sstem Persamaa Ler Kompleks Dega Ivers Matrks Megguaka Metode Faddev Cotoh Kasus: SPL Kompleks da Hermt F. rya da Tka Rzka, Jurusa Matematka,

Lebih terperinci

8. MENGANALISIS HASIL EVALUASI

8. MENGANALISIS HASIL EVALUASI 8. MENGANALISIS HASIL EVALUASI Tujua : Mampu megaalsa tgkat kesukara hasl evaluas utuk megkatka hasl proses pembelajara Kegata megaals hasl evaluas merupaka upaya utuk memperbak programprogram pembelajara

Lebih terperinci

Implementasi Algoritma Genetik dalam Economic Dispatch dengan Valve Point Loading

Implementasi Algoritma Genetik dalam Economic Dispatch dengan Valve Point Loading Semar Tugas Akhr Halama 1 dar 6 Implemetas Algortma Geetk dalam Ecoomc Dspatch dega Valve Pot Loadg Date Rumaa 1 Dr. Ir. Hermawa, DEA 2 Mochammad Facta, ST, MT 3 Jurusa Tekk Elektro Uverstas Dpoegoro Jl.

Lebih terperinci

PELABELAN HARMONIS GANJIL PADA GRAF

PELABELAN HARMONIS GANJIL PADA GRAF Jural EduTech ol. No. Maret 08 ISSN: -60 e-issn: -06 PELABELAN HARMONIS GANJIL PADA GRAF Zulf Amr, Arda Aula, Army Syella, Harsma Pratamal, Saftr Ramadha, Charusa Uverstas Muhammadyah Sumatera Utara zulfamr@umsu.ac.d;

Lebih terperinci

b) Untuk data berfrekuensi fixi Data (Xi)

b) Untuk data berfrekuensi fixi Data (Xi) B. Meghtug ukura pemusata, ukura letak da ukura peyebara data serta peafsraya A. Ukura Pemusata Data Msalka kumpula data berkut meujukka hasl pegukura tgg bada dar orag sswa. 0 cm 30 cm 5 cm 5 cm 35 cm

Lebih terperinci

3 Departemen Statistika FMIPA IPB

3 Departemen Statistika FMIPA IPB Supleme Respos Pertemua ANALISIS DATA KATEGORIK (STK51) Departeme Statstka FMIPA IPB Pokok Bahasa Sub Pokok Bahasa Referes Waktu U potess Tga Cotoh atau Lebh U Kruskal-Walls (aalss ragam satu-arah berdasarka

Lebih terperinci

REGRESI LINIER SEDERHANA

REGRESI LINIER SEDERHANA MODUL REGRESI LINIER SEDERHANA Dsusu oleh : I MADE YULIARA Jurusa Fska Fakultas Matematka Da Ilmu Pegetahua Alam Uverstas Udayaa Tahu 016 Kata Pegatar Puj syukur saya ucapka ke hadapa Tuha Yag Maha Kuasa

Lebih terperinci

INTERPOLASI INTERPOLASI LINIER INTERPOLASI KUADRATIK

INTERPOLASI INTERPOLASI LINIER INTERPOLASI KUADRATIK INTERPOASI INTERPOASI INIER INTERPOASI KUADRATIK INTERPOASI POINOMIA Dua ttk data : Gars Tga ttk data : Kuadratk g Empat ttk data :Polomal tgkat-3 Dketahu: ttk data ( y ) ( y ) ( y ) D ttk data :Polomal

Lebih terperinci

I PENDAHULUAN II LANDASAN TEORI

I PENDAHULUAN II LANDASAN TEORI I PENDAHULUAN 11 Latar Belakag Peelta yag dlakuka oleh Va der Pol pada sebuah tabug trode tertutup, yatu sebuah alat yag dguaka utuk megedalka arus lstrk dalam suatu srkut pada trasmtter da recever meghaslka

Lebih terperinci

; θ ) dengan parameter θ,

; θ ) dengan parameter θ, Vol. 4. No. 3, 5-59, Desember 00, ISSN : 40-858 APLIKASI METODE BESARAN PIVOTAL DALAM PENENTUAN SELANG KEYAKINAN TAKSIRAN PARAMETER POPULASI. Agus Rusgyoo Jurusa Matematka FMIPA UNDIP Abstraks Dberka populas

Lebih terperinci

MATEMATIKA INTEGRAL RIEMANN

MATEMATIKA INTEGRAL RIEMANN MATEMATIKA KELAS XII IPA - KURIKULUM GABUNGAN Ses NGAN INTEGRAL RIEMANN A. NOTASI SIGMA a. Defs Notas Sgma Sgma (Σ) adalah otas matematka megguaka smbol yag mewakl pejumlaha da beberapa suku yag memlk

Lebih terperinci