BAB 2 LANDASAN TEORI. disebut dengan bermacam-macam istilah: variabel penjelas, variabel
|
|
- Inge Sanjaya
- 4 tahun lalu
- Tontonan:
Transkripsi
1 BAB LANDASAN TEORI.1 Pegerta Regres Regres dalam statstka adalah salah satu metode utuk meetuka tgkat pegaruh suatu varabel terhadap varabel yag la. Varabel yag pertama dsebut dega bermacam-macam stlah: varabel pejelas, varabel eksplaatork, varabel depede, atau secara bebas, varabel karea sergkal dgambarka dalam grafk sebaga abss, atau sumbu. Varabel yag kedua adalah varabel yag dpegaruh, varabel depede, varabel terkat, atau varabel. Kedua varabel dapat merupaka varabel acak radom, amu varabel yag dpegaruh harus selalu varabel acak. Regres pertama kal dperguaka sebaga kosep statstka oleh Sr Fracs Galto Belau memperkealka model peramala, peaksra, atau pedugaa, yag selajutya damaka regres, sehubuga dega peeltaya terhadap tgg bada mausa. Galto melakuka suatu peelta d maa peelta tersebut membadgka atara tgg aak lak-lak da tgg bada ayahya. Galto meujukka bahwa tgg bada aak lak-lak dar ayah yag tgg setelah beberapa geeras cederug mudur regressed medekat la tegah populas. Dega kata la, aak lak-lak dar ayah yag badaya sagat tgg cederug lebh pedek dar pada ayahya, sedagka aak lak-lak dar ayah yag badaya sagat pedek cederug lebh tgg dar Uverstas Sumatera Utara
2 ayahya, jad seolah-seolah semua aak lak-lak yag tgg da aak lak-lak yag pedek bergerak meuju kerata-rata tgg dar seluruh aak lak-lak yag meurut stlah Galto dsebut dega regresso to medocrty. Dar uraa tersebut dapat dsmpulka bahwa pada umumya tgg aak megkut tgg oragtuaya. Istlah regres pada mulaya bertujua utuk membuat perkraa la satu varabel tgg bada aak terhadap satu varabel yag la tgg bada orag tua. Pada perkembaga selajutya aalss regres dapat dguaka sebaga alat utuk membuat perkraa la suatu varabel dega megguaka beberapa varabel la yag berhubuga dega varabel tersebut.jad prsp dasar yag harus dpeuh dalam membagu suatu persamaa regres adalah bahwa atara suatu varabel tdak bebas depedet varable dega varabelvarabel bebas depedet varable laya memlk sfat hubuga sebab akbat hubuga kausaltas, bak ddasarka pada teor, hasl peelta sebelumya, maupu yag ddasarka pada pejelasa logs tertetu.. Aalss Regres Ler Aalss Regres adalah metoda statstka yag dguaka utuk meetuka kemugka betuk dar hubuga atar varabel-varabel. ag maa tujua metoda adalah utuk meramalka atau meduga la dar satu varabel dalam Uverstas Sumatera Utara
3 hubugaya dega varabel yag la yag dketahu melalu persamaa gars regresya. sekelumt aalsa regres & korelas Aalss regres dperguaka utuk meelaah hubuga atara dua varabel atau lebh, terutama utuk meelusur pola hubuga yag modelya belum dketahu dega bak, atau utuk megetahu bagamaa varas dar beberapa varabel depede mempegaruh varabel depede dalam suatu feomea yag komplek. Jka,,,..., adalah varabel-varabel depede da adalah varabel depede, maka terdapat hubuga fugsoal atara da, dmaa varas dar aka drg pula oleh varas dar. Jka dbuat secara matemats hubuga tu dapat djabarka sebaga berkut: dega : = f,,...,, e e = varabel depede tak bebas = varabel depede bebas = varabel resdu dsturbace term Varabel depede adalah varabel yag laya tergatug dar varabel yag laya sedagka varabel depede adalah varabel yag tdak tergatug dega varabel yag la malah cederug mempegaruh la varabel yag la. Berkata dega aalss regres, setdakya ada empat kegata yag lazm dlaksaaka yak : 1 Megadaka estmas terhadap parameter berdasarka data emprs Uverstas Sumatera Utara
4 Meguj berapa besar varas varabel depede dapat dteragka oleh varas depede 3 Meguj apakah estmas parameter tersebut sgfka atau tdak, 4 Melhat apakah tada dar estmas parameter cocok dega teor. Sela darpada tu aalss regres sedr tedr dar dua betuk persamaa yatu : 1. Aalss Regres Ler Sederhaa. Aalss Regres Ler Bergada Aalss Regres sederhaa adalah betuk regres dega model yag bertujua utuk mempelajar hubuga atara dua varabel, yak varabel sebaga varabel depede da varabel sebaga varabel depede Sedagka aalss regres bergada adalah betuk regres dega model yag memlk hubuga atara satu varabel depede dega dua atau lebh varabel depede yag dapat dtuls dalam betuk,,..., 1..1 Aalss Regres Ler Sederhaa Regres ler sederhaa dguaka utuk memperkraka hubuga atara dua varabel d maa haya terdapat satu varabel/peubah bebas da satu peubah tak bebas. Uverstas Sumatera Utara
5 Dalam betuk persamaa, model regres sederhaa adalah : dega : = a + b = varabel terkat/tak bebas depedet a = peduga bag tercept ttk potog kurva terhadap sumbu b = kemrga slope kurva ler = varabel bebas depedet 1.. Aalss Regres Ler Bergada Dsampg hubuga ler atar varabel, ada juga regres ler bergada, yag persamaa regresya memlk satu varabel tak bebas yatu varabel da memlk dua atau lebh varabel bebas yatu varabel dmaa varabel tersebut bsa kta buat dalam betuk,, da,...,. Pegguaa regres ler bergada yatu utuk memperhtugka varabel-varabel bebas la yag kut mempegaruh la Secara umum persamaa regres bergada dapat dtuls sebaga berkut : Utuk populas = Utuk sampel = ε dega : = Nla estmas = 1,,.., = Nla pada perpotoga atar gars ler dega sumbu vertka Uverstas Sumatera Utara
6 , = Nla varabel depede, da, = Kemrga slope yag berhubuga dega varabel, da Dalam peelta, dguaka empat varabel yag terdr dar satu varabel tak bebas da tga varabel bebas yatu 1,, da 3 sehgga dapat dbetuk rumus : = da dar persamaa datas, dapat dbuat persamaa regres bergada dalam empat betuk yag aka dguaka utuk mecar koefse-koefse,, da sepert dbawah : = = = = Harga setap koefse peduga yag dperoleh kemuda dsubttuska kepersamaa awal sehgga dperoleh model regres ler bergada atas, da. Dalam persamaa model regres ler yag dperoleh, maka atara la da aka membulka perbedaa hasl yag serg dsebut sebaga kekelrua. Utuk megetahu ketepata persamaa estmas dapat dguaka kesalaha Uverstas Sumatera Utara
7 stadar estmas stadard error of estmate. Besarya kesalaha stadar estmas meujukka ketepata persamaa estmas utuk mejelaska la varabel tdak bebas yag sesugguhya. Semak kecl la kesalaha stadar estmas, mak tgg ketepata persamaa estmas yag dhaslka utuk mejelaska la varabel tdak bebas sesugguhya. Sebalkya, semak besar la kesalaha stadar estmas, mak redah ketepata persamaa estmas yag dhaslka utuk mejelaska la varabel tdak bebas sesugguhya. Kesalaha stadar estmas dapat dtetuka dega rumus: dega : = Kesalaha baku = la data sebearya = la taksra k = bayak ukura sampel = bayak varabel bebas.. Koefse Determas Koefse determas yag dsmbolka dega R adalah salah satu la statstk yag dapat dguaka utuk megetahu apakah ada hubuga pegaruh atara dua varabel. Koefse determas tu juga berfugs sebaga la yag meyataka besarya keteradala model, yatu meyataka besarya varas Uverstas Sumatera Utara
8 yag dapat dteragka oleh varas.nla R dkataka bak jka berada d atas 0,5 karea la R berksar atara 0 da 1. Pada umumya model regres ler bergada dapat dkataka layak dpaka utuk peelta, karea sebaga besar varabel depede djelaska oleh varabel depede yag dguaka dalam model. Koefse determas dapat dhtug dar : = Sehgga rumus umum koefse determas yatu : JK R = y 1 reg HargaR dperoleh sesua dega varas yag djelaska oleh masg-masg varabel yag tggal dalam regres. Hal megakbatka varas yag djelaska peduga haya dsebabka oleh varabel yag berpegaruh saja.aka tetap dalam peelta peuls megguaka batua softwere SPSS vers Uj Korelas Uj korelas adalah alat statstk yag dapat dguaka utuk megetahu derajat hubuga ler atara satu varabel dega varabel la. Umumya korelas Uverstas Sumatera Utara
9 dguaka dalam hubugaya dega regres ler, utuk megukur ketepata gars regres dalam mejelaska explag varas la varas depede. Uj korelas juga dguaka utuk meguj hubuga atara dua varabel yag tdak meujukka hubuga fugsoal berhubuga buka berart dsebabka. Uj korelas tdak membedaka jes varabel tdak ada varabel depede maupu depede. Keerata hubuga dyataka dalam betuk koefse korelas. Uj korelas terdr dar Pearso, Spearma da Kedall. Jka sampel data lebh dar 30 sampel besar da kods data ormal, sebakya megguaka korelas Pearsokarea memeuh asums parametrk. Jka jumlah sampel kurag dar 30 sampel kecl da kods data tdak ormal maka sebakya megguaka korelas Spearma atau Kedall karea memeuh asums o-parametrk..4.1 Koefse Korelas Nla koefse korelas merupaka la yag dguaka utuk meyataka besarya derajat keerata hubuga atar varabel.koefse korelas basaya dsmbolka dega r. Koefse korelas dapat drumuska sebaga berkut : r = Uverstas Sumatera Utara
10 Utuk meghtug koefse korelas atara varabel tak bebas dega tga varabel bebas,, yatu : 1. Koefse korelas atara dega. Koefse korelas atara dega 3. Koefse korelas atara dega 3 Koefse korelas memlk la atara -1 hgga+1. Sfat la koefse korelas adalah plus+ atau mus- yag meujuka arah korelas. Maka sfat korelas: Korelas postf + berart jka varabel megalam keaka maka varabel juga megalam keaka atau jka varabel megalam keaka maka varabel juga megalam keaka. r 1 y = r y = r 3 y = Uverstas Sumatera Utara
11 Korelas egatf - berart jka varabel megalam keaka maka varabel aka megalam peurua, atau jka varabel megalam keaka maka varabel aka megalam peurua. Sfat korelas aka meetuka arah dar korelas. Keerata korelas dapat dkelompokka sebaga berkut : 1. 0,00 sampa dega 0,0 berart korelas memlk keerata sagat lemah.. 0,1 sampa dega 0,40 berart korelas memlk keerata lemah. 3. 0,41 sampa dega 0,70 berart korelas memlk keerata kuat. 4. 0,71 sampa dega 0,90 berart korelas memlk keerata sagat kuat. 5. 0,91 sampa dega 0,99 berart korelas memlk keerata sagat kuat sekal berart korelas sempura..5 Uj Regres Ler Bergada Peguja hpotess bag koefse-koefse regres ler bergada dapat dlakuka secara seretak atau keseluruha. Peguja regres ler perlu dlakuka utuk megetahu apakah varabel-varabel bebas secara bersamaa memlk pegaruh terhadap varabel tak bebas. Lagkah-lagkah pegujaya adalah sebaga berkut:.1 Meetuka formulas hpotess : = = =... = = 0 : mmal ada satu parameter koefse regres yag tdak sama dega ol Uverstas Sumatera Utara
12 atau mempegaruh.. Peetua la krts. Nla krts dalam peguja hpotess terhadap koefse regres dapat dtetuka dega megguaka tabel dstrbus ormal dega memperhatka tgkat sgfka da bayakya sampel dguaka serta la dega derajat kebebasa = k da = -k-1.3 Meetuka krtera peguja dterma bla dtolak bla.4 Meetuka la statstk F dega rumus : dega : = jumlah kuadrat regres = jumlah kuadrat resdu ssa = derajat kebebasa.5 Membuat kesmpula apakah dterma atau dtolak. Uverstas Sumatera Utara
13 .6 Uj Koefse Regres Ler Bergada Keberarta adaya varabel-varabel bebas dalam regres ler bergada, perlu duj utuk meujukka seberapa besar pegaruh yag dberka pada varabel tak bebas. Da cara yag tepat utuk megujya adalah dega megguaka uj statstk t studet. ag aka dtaksr oleh regres berbetuk : = Adaya krtera bahwa varabel-varabel tersebut memberka pegaruh yag berart atau tdak terhadap varabel tak bebas aka duj hpotess melawa hpotess tadga dalam betuk: = = 0 = 1,,..., k = 0 = 1,,..., k Utuk meguj hpotess tersebut dguaka kekelrua baku taksra. Jad utuk melhat kekelrua baku dar koefse adalah : dega : Uverstas Sumatera Utara
14 Kemuda dcar perhtuga statstk t yatu: Dar tabel dstrbus t-studet serta dk = -k-1, =, d maa krtera peguja dperoleh: : dtolakjka : dterma jka Uverstas Sumatera Utara
BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai
BAB LANDASAN TEORI. Kosep Dasar Aalss Regres Aalss regres regressso aalyss merupaka suatu tekk utuk membagu persamaa da megguaka persamaa tersebut utuk membuat perkraa predcto. Dega demka, aalss regres
BAB 2. Tinjauan Teoritis
BAB Tjaua Teorts.1 Regres Lear Sederhaa Regres lear adalah alat statstk yag dperguaka utuk megetahu pegaruh atara satu atau beberapa varabel terhadap satu buah varabel. Varabel yag mempegaruh serg dsebut
BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier
BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa merupaka baga regres yag mecakup hubuga ler satu peubah acak tak bebas dega satu peubah bebas. Hubuga ler da dar satu populas dsebut gars regres
BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu.
BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa yag varabel bebasya ( berpagkat palg tgg satu. Utuk regres ler sederhaa, regres ler haya melbatka dua varabel ( da. Persamaa regresya dapat dtulska
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 1 Pegerta Regres Istlah regres pertama kal dperkealka oleh Fracs Galto Meurut Galto, aalss regres berkeaa dega stud ketergatuga dar suatu varabel yag dsebut tak bebas depedet varable,
BAB 2 LANDASAN TEORI. Analisis regresi adalah suatu proses memperkirakan secara sistematis tentang apa yang paling
BAB LANDASAN TEORI Kosep Dasar Aalss Regres Aalss regres adalah suatu proses memperkraka secara sstemats tetag apa yag palg mugk terjad dmasa yag aka datag berdasarka formas yag sekarag dmlk agar memperkecl
BAB II TINJAUAN TEORITIS. Statistik merupakan cara cara tertentu yang digunakan dalam mengumpulkan,
BAB II TINJAUAN TEORITIS.1 Kosep Dasar Statstka Statstk merupaka cara cara tertetu yag dguaka dalam megumpulka, meyusu atau megatur, meyajka, megaalsa da member terpretas terhadap sekumpula data, sehgga
BAB 5. ANALISIS REGRESI DAN KORELASI
BAB 5. ANALISIS REGRESI DAN KORELASI Tujua utama aalss regres adalah mecar ada tdakya hubuga ler atara dua varabel: Varabel bebas (X), yatu varabel yag mempegaruh Varabel terkat (Y), yatu varabel yag dpegaruh
BAB 2 LANDASAN TEORI
0 BAB LANDASAN TEORI. Pegerta Regres da Korelas.. Pegerta Regres Regres adalah suatu metode statstka yag ergua utuk memerksa atau memodelka huuga datara varael-varael. Varael-varael terseut dega megguaka
PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM
PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM 1 Megetahu perhtuga persamaa regres ler Meggambarka persamaa regres ler ke dalam dagram pecar TEORI PENUNJANG Persamaa Regres adalah persamaa matematka
BAB 2 LANDASAN TEORI. Regresi dalam statistika adalah salah satu metode untuk menentukan tingkat
0 BAB LANDASAN TEORI. Pegerta Regres Regres dalam statstka adalah salah satu metode utuk meetuka tgkat pegaruh suatu varael terhadap varael yag la. Varael yag pertama dseut dega ermacam-macam stlah: varael
BAB 2 LANDASAN TEORI
BAB LANDASAN TEORI. Defes Aalss Korelas da Regres a Aalss Korelas adalah metode statstka yag dguaka utuk meetuka kuatya atau derajat huuga lear atara dua varael atau leh. Semak yata huuga ler gars lurus,
BAB 2 TINJAUAN TEORITIS. regresi berkenaan dengan studi ketergantungan antara dua atau lebih variabel yaitu
BAB TINJAUAN TEORITIS. Pegerta Aalsa Regres Istlah regres pertama kal dperkealka oleh Fracs Galto. Meurutya, aalss regres berkeaa dega stud ketergatuga atara dua atau lebh varabel yatu varabel yag meeragka
Regresi Linier Sederhana Definisi Pengaruh
Regres Ler Sederhaa Dah Idra Baga Bostatstka da Kepeduduka Fakultas Kesehata Masyarakat Uverstas Arlagga Defs Pegaruh Jka terdapat varabel, msalka da yag data-dataya dplot sepert gambar dbawah 3 Defs Pegaruh
11/10/2010 REGRESI LINEAR SEDERHANA DAN KORELASI TUJUAN
// REGRESI LINEAR SEDERHANA DAN KORELASI. Model Regres Lear. Peaksr Kuadrat Terkecl 3. Predks Nla Respos 4. Iferes Utuk Parameter-parameter Regres 5. Kecocoka Model Regres 6. Korelas Utrwe Mukhayar MA
Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu
KORELASI 1 D dua kta tdak dapat hdup sedr, tetap memerluka hubuga dega orag la. Hubuga tu pada umumya dlakuka dega maksud tertetu sepert medapat kergaa pajak, memperoleh kredt, memjam uag, serta mta pertologa/batua
ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas:
ANALISIS REGRESI Pedahulua Aalss regres berkata dega stud megea ketergatuga satu peubah (peubah terkat) terhadap satu atau lebh peubah laya (peubah pejelas). Jka Y dumpamaka sebaga peubah terkat da X1,X,...,X
LANGKAH-LANGKAH UJI HIPOTESIS DENGAN 2 (Untuk Data Nominal)
LANGKAH-LANGKAH UJI HIPOTESIS DENGAN (Utuk Data Nomal). Merumuska hpotess (termasuk rumusa hpotess statstk). Data hasl peelta duat dalam etuk tael slag (tael frekues oservas) 3. Meetuka krtera uj atau
* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES
* PENYAJIAN DATA Secara umum, ada dua cara peyaja data, yatu : 1. Tabel atau daftar. Grafk atau dagram Macam-macam daftar yag dkeal : a. Daftar bars kolom b. Daftar kotges c. Daftar dstrbus frekues Sedagka
BAB 2 LANDASAN TEORI
BAB LANDASAN TEORI. Pegerta Regres Regres dalam statstka adalah salah satu metode utuk meetuka tgkat pegaruh suatu varael terhadap varael ag la. Varael ag pertama dseut dega ermacam-macam stlah: varael
Pendahuluan. Relasi Antar Variabel. Relasi Antar Variabel. Relasi Antar Variabel 4/6/2015. Oleh : Fauzan Amin
4/6/015 Oleh : Fauza Am Se, 06 Aprl 015 GDL 11 (07.30-10.50) Pedahulua Aalsa regres dguaka utuk mempelajar da megukur hubuga statstk ag terjad atara dua atau lebh varbel. Dalam regres sederhaa dkaj dua
REGRESI LINIER SEDERHANA
MODUL REGRESI LINIER SEDERHANA Dsusu oleh : I MADE YULIARA Jurusa Fska Fakultas Matematka Da Ilmu Pegetahua Alam Uverstas Udayaa Tahu 016 Kata Pegatar Puj syukur saya ucapka ke hadapa Tuha Yag Maha Kuasa
Uji Statistika yangb digunakan dikaitan dengan jenis data
Uj Statstka yagb dguaka dkata dega jes data Jes Data omal Ordal Iterval da Raso Uj Statstka Koefse Kotges Rak Spearma Kedall Tau Korelas Parsal Kedall Tau Koefse Kokordas Kedall W Pearso Korelas Gada Korelas
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA.1 Pedahulua Sebelum membahas megea prosedur peguja hpotess, terlebh dahulu aka djelaska beberapa teor da metode yag meujag utuk mempermudah pembahasa. Adapu teor da metode tersebut
Regresi & Korelasi Linier Sederhana. Gagasan perhitungan ditetapkan oleh Sir Francis Galton ( )
Regres & Korelas Ler Sederhaa 1. Pedahulua Gagasa perhtuga dtetapka oleh Sr Fracs Galto (18-1911) Persamaa regres :Persamaa matematk yag memugkka peramala la suatu peubah takbebas (depedet varable) dar
XI. ANALISIS REGRESI KORELASI
I ANALISIS REGRESI KORELASI Aalss regres mempelajar betuk hubuga atara satu atau lebh peubah bebas dega satu peubah tak bebas dalam peelta peubah bebas basaya peubah yag dtetuka oelh peelt secara bebas
III. METODE PENELITIAN. yang hidup dan berguna bagi masyarakat, maupun bagi peneliti sendiri
III. METODE PEELITIA A. Metodolog Peelta Metodolog peelta adalah cara yag dlakuka secara sstemats megkut atura-atura, recaaka oleh para peeltutuk memecahka permasalaha yag hdup da bergua bag masyarakat,
BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten
BAB III METODE PENELITIAN 3. Tempat da Waktu Peelta 3.. Tempat Tempat peelta dlaksaaka d SMP Neger 4 Tlamuta Kabupate Boalemo pada sswa kelas VIII. 3.. Waktu Peelta dlaksaaka dalam waktu 3 bula yatu dar
S2 MP Oleh ; N. Setyaningsih
S2 MP Oleh ; N. Setyagsh MATERI PERTEMUAN 1-3 (1)Pedahulua pera statstka dalam peelta ; (2)Peyaja data : dalam betuk (a) tabel da (b) dagram; (3) ukura tedes setaral da ukura peympaga (4)dstrbus ormal
Regresi & Korelasi Linier Sederhana
Regres & Korelas Ler Sederhaa. Pedahulua Gagasa perhtuga dtetapka oleh Sr Fracs Galto (8-9) Persamaa regres :Persamaa matematk ag memugkka peramala la suatu peubah takbebas (depedet varable) dar la peubah
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB PENDAHULUAN. Latar Belakag Sampa saat, model Regres da model Aalss Varas telah dpadag sebaga dua hal ag tdak berkata. Meskpu merupaka pedekata ag umum dalam meeragka kedua cara pada taraf permulaa,
BAB IV HASIL PENELITIAN DAN PEMBAHASAN. melakukan smash sebelum dan sesudah latihan power otot lengan adalah sebagai
BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4. Deskrps Peelta Berdasarka hasl peelta, d peroleh data megea kemempua sswa melakuka smash sebelum da sesudah latha power otot lega adalah sebaga berkut : Tabel.
Analisis Korelasi dan Regresi
Aalss Korelas da Regres Hazmra Yozza Izzat Rahm HG Jurusa Matematka FMIPA Uad LOGO www.themegaller.com LOGO Data varat Data dega dua varael Terhadap satu pegamata dlakuka pegukurapegamata terhadap varael
BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL. Masalah regresi invers dengan bentuk linear dapat dijumpai dalam
BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL 3. Pegerta Masalah regres vers dega betuk lear dapat djumpa dalam berbaga bdag kehdupa, dataraya dalam bdag ekoom, kesehata, fska, kma
Jawablah pertanyaan berikut dengan ringkas dan jelas menggunakan bolpoin. Total nilai 100. A. ISIAN SINGKAT (Poin 20) 2
M 81 STTISTIK DSR SEMESTER II 11/1 KK STTISTIK, FMIP IT SOLUSI UJIN TENGH SEMESTER (UTS) Sabtu, 1 Me 1, Pukul 9. 1.4 WI (1 met) Kelas 1. Pegajar: Udjaa S. Pasarbu/Rr. Kura Novta Sar, Kelas. Pegajar: Utrwe
REGRESI & KORELASI LINIER SEDERHANA
1. Pedahulua REGRESI & KORELASI LINIER SEDERHANA Gagasa perhtuga dtetapka oleh Sr Fracs Galto (18-1911) Persamaa regres :Persamaa matematk ag memugkka peramala la suatu peubah takbebas (depedet varable)
TINJAUAN PUSTAKA Evaluasi Pengajaran
TINJAUAN PUSTAKA Evaluas Pegajara Evaluas adalah suatu proses merecaaka, memperoleh da meyedaka formas yag sagat dperluka utuk membuat alteratf- alteratf keputusa. Dalam hubuga dega kegata pegajara evaluas
BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI
BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI 9.1. Dstrbus Kotu Dstrbus memlk sfat kotu dmaa data yag damat berjala secara kesambuga da tdak terputus. Maksudya adalah bahwa data yag damat tersebut tergatug
REGRESI SEDERHANA Regresi
P a g e REGRESI SEDERHANA.. Regres Istlah regres dkemukaka utuk pertama kal oleh seorag atropolog da ahl meteorology Fracs Galto dalam artkelya Famly Lkeess Stature pada tahu 886. Ada juga sumber la yag
ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS
ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS = 1 + + + + k k + u PowerPot Sldes baa Rohmaa Educato Uverst of Idoesa 007 Laboratorum Ekoom & Koperas Publshg Jl. Dr. Setabud
REGRESI & KORELASI LINIER SEDERHANA
. Pedahulua REGRESI & KORELASI LINIER SEDERHANA Gagasa perhtuga dtetapka oleh Sr Fracs Galto (8-9) Persamaa regres :Persamaa matematk ag memugkka peramala la suatu peubah takbebas (depedet varable) dar
PEMBELAJARAN 4 ANALISIS REGRESI KORELASI
PEMBELAJARAN ANALISIS REGRESI KORELASI Kompetes Dasar Mahasswa memaham tetag aalss regres korelas, serta mampu megguakaya utuk megaalss data kuattatf Idkator pecapaa Mahasswa dapat: a Mejelaska, meghtug
III BAHAN/OBJEK DAN METODE PENELITIAN. Objek yang digunakan dalam penelitian ini adalah 50 ekor sapi Pasundan
III BAHAN/OBJEK DAN METODE PENELITIAN 3.1. Baha da Alat Peelta 3.1.1. Baha Peelta Objek yag dguaka dalam peelta adalah 50 ekor sap Pasuda jata da beta dewasa dega umur -3 tahu da tdak butg utuk meghdar
BAB 2 LANDASAN TEORI. yang akan terjadi pada masa yang akan datang dengan waktu yang relative lama.
BAB 2 LANDASAN TEORI 2.1 Pegerta Peramala Peramala ( forecastg ) adalah kegata memperkraka atau mempredkska apa yag aka terjad pada masa yag aka datag dega waktu yag relatve lama. Sedagka ramala adalah
BAB 2 LANDASAN TEORITIS. yang akan terjadi pada masa yang akan datang dengan waktu yang relatif lama.
BAB 2 LANDASAN TEORITIS 2.1 Pegerta Peramala Peramala ( forecastg ) adalah kegata memperkraka atau mempredkska apa yag aka terjad pada masa yag aka datag dega waktu yag relatf lama. Sedagka ramala adalah
8. MENGANALISIS HASIL EVALUASI
8. MENGANALISIS HASIL EVALUASI Tujua : Mampu megaalsa tgkat kesukara hasl evaluas utuk megkatka hasl proses pembelajara Kegata megaals hasl evaluas merupaka upaya utuk memperbak programprogram pembelajara
BAB 2 LANDASAN TEORI
BAB LANDASAN TEORI.1 Pengertan Regres Regres pertama kal dgunakan sebaga konsep statstka oleh Sr Francs Galton (18 1911).Belau memperkenalkan model peramalan, penaksran, atau pendugaan, yang selanjutnya
Analisis Regresi dan Korelasi
Metode Statstka Pertemua III Aalss Regres da Korelas Pegatar Apa tu aalss regres? Apa edaya dega korelas? Aalss Regres Aalss statstka yag memafaatka huuga atara dua atau leh peuah kuattatf sehgga salah
BAB III PERSAMAAN PANAS DIMENSI SATU
BAB III PERSAMAAN PANAS DIMENSI SAU Pada baga sebelumya, kta telah membahas peerapa metoda Ruge-Kutta orde 4 utuk meyelesaka masalah la awal dar persamaa dferesal basa orde. Pada bab, kta aka melakuka
Bab II Teori Pendukung
Bab II Teor Pedukug.. asar Statstka Utuk keperlua peaksra outstadg clams lablty, pegetahua dalam statstka mead hal yag petg. asar statstka yag dguaka dalam tess atara la :. strbus ormal Sebuah peubah acak
STATISTIK. Ukuran Gejala Pusat Ukuran Letak Ukuran Simpangan, Dispersi dan Variasi Momen, Kemiringan, dan Kurtosis
STATISTIK Ukura Gejala Pusat Ukura Letak Ukura Smpaga, Dspers da Varas Mome, Kemrga, da Kurtoss Notas Varabel dyataka dega huruf besar Nla dar varabel dyataka dega huruf kecl basaya dtuls Tmes New Roma
UKURAN GEJALA PUSAT DAN UKURAN LETAK
UKURAN GEJALA PUSAT DAN UKURAN LETAK MODUL 4 UKURAN GEJALA PUSAT DAN UKURAN LETAK. Pedahulua Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu persoala, bak megea sampel atau pu
SUM BER BELA JAR Menerap kan aturan konsep statistika dalam pemecah an masalah INDIKATOR MATERI TUGAS
C. Pembelajara 3 1. Slabus N o STANDA R KOMPE TENSI KOMPE TENSI DASAR INDIKATOR MATERI TUGAS BUKTI BELAJAR KON TEN INDIKA TOR WAK TU SUM BER BELA JAR Meerap ka atura kosep statstka dalam pemecah a masalah
MODUL ANALISIS REGRESI DAN KORELASI
ANALISIS REGRESI DAN KORELASI MODUL 13 ANALISIS REGRESI DAN KORELASI Dalam kehdupa sehar-har, sergkal djumpa hubuga atara suatu varabel dega satu atau lebh varabel la. D dalam bdag pertaa sebaga cotoh,
Uji Modifikasi Peringkat Bertanda Wilcoxon Untuk Masalah Dua Sampel Berpasangan 1 Wili Solidayah 2 Siti Sunendiari 3 Lisnur Wachidah
Prosdg Statstka ISSN 40-45 Uj Modfkas Pergkat Bertada Wlcoxo Utuk Masalah Dua Sampel Berpasaga 1 Wl Soldayah St Suedar 3 Lsur Wachdah 1, Statstka, Fakultas MIPA, Uverstas Islam Badug, Jl. Tamasar No. 1
BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel
BAB I PENDAHULUAN 1.1 Statstka Deskrptf da Statstka Iferesal Dewasa d berbaga bdag lmu da kehdupa utuk memaham/megetahu sesuatu dperluka dat Sebaga cotoh utuk megetahu berapa bayak rakyat Idoesa yag memerluka
Analisis Regresi. Oleh : Dewi Rachmatin
Aalss Regres Oleh : Dew Rachmat Pedahulua Dalam peelta basaya dguaka suatu model atau hubuga fugsoal atara peubah. Dega model kta berusaha memaham, meeragka, megedalka da kemuda mempredkska kelakua sstem
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Pengertan Regres Regres pertama kal dpergunakan sebaga konsep statstka oleh Sr Francs Galton (1822 1911). Belau memperkenalkan model peramalan, penaksran, atau pendugaan, yang
ANALISIS REGRESI. . Berdasarkan sample acak, persamaan regresi populasi (1) akan ditaksir, ini dilakukan dengan jalan menaksir parameter-parameter 1
ANALII REGREI. PENDAHULUAN Jka kta memlk data yag terdr atas dua atau lebh varabel, adalah sewajarya utuk suatu cara bagamaa varabel-varabel tersebut berhubuga. Hubuga yag dperoleh pada umumya dyataka
BAB 2 LANDASAN TEORI
BAB LANDASAN TEORI. Keluarga Berecaa.. Beberapa Kosep Tetag KB Keluarga Berecaa KB merupaka salah satu usaha utuk mecapa kesejahteraa dega jala memberka asehat perkawa, pegobata kemadula da pejaraga kelahra
2.2.3 Ukuran Dispersi
3 Ukura Dspers Yag aka dbahas ds adalah smpaga baku da varas karea dua ukura dspers yag palg serg dguaka Hubuga atara smpaga baku dega varas adalah Varas = Kuadrat dar Smpaga baku otas yag umum dguaka
PENDAHULUAN Metode numerik merupakan suatu teknik atau cara untuk menganalisa dan menyelesaikan masalah masalah di dalam bidang rekayasa teknik dan
Aalsa Numerk Baha Matrkulas PENDAHULUAN Metode umerk merupaka suatu tekk atau cara utuk megaalsa da meyelesaka masalah masalah d dalam bdag rekayasa tekk da sa dega megguaka operas perhtuga matematk Masalah-masalah
STATISTIKA: UKURAN PEMUSATAN. Tujuan Pembelajaran
Kurkulum 013/006 matematka K e l a s XI STATISTIKA: UKURAN PEMUSATAN Tujua Pembelajara Setelah mempelajar mater, kamu dharapka memlk kemampua berkut. 1. Dapat meetuka rata-rata data tuggal da data berkelompok..
BAB 6 PRINSIP INKLUSI DAN EKSKLUSI
BB 6 PRINSIP INKLUSI DN EKSKLUSI Pada baga aka ddskuska topk berkutya yatu eumeras yag damaka Prsp Iklus da Eksklus. Kosep dalam bab merupaka perluasa de dalam Dagram Ve beserta oepras rsa da gabuga, amu
BAB 2 LANDASAN TEORI
BAB LANDAAN TORI. Regres Ler ederhaa Dalam beberapa masalah terdapat dua atau lebh varabel yag hubugaya tdak dapat dpsahka, da hal tersebut basaya dseldk sfat hubugaya. Aalss regres adalah sebuah tekk
ANALISIS INDEKS DISTURBANCES STORM TIME DENGAN KOMPONEN H GEOMAGNET
Prosdg Semar Nasoal Peelta, Peddka da Peerapa MIPA Fakultas MIPA, Uverstas Neger Yogyakarta, 6 Me 9 ANALISIS INDEKS DISTURBANCES STORM TIME DENGAN KOMPONEN H GEOMAGNET Sty Rachyay Pusat Pemafaata Sas Atarksa,
METODOLOGI PENELITIAN. pengaruh atau akibat dari suatu perlakuan atau treatment, dalam hal ini yaitu
47 III. METODOLOGI PENELITIAN A. Metode Peelta Metode peelta yag dguaka dalam peelta adalah metode eksperme. Metode dguaka atas pertmbaga bahwa sfat peelta ekspermetal yatu mecobaka suatu program latha
WAKTU PERGANTIAN ALAT BERAT JENIS WHEEL LOADER DENGAN METODE LEAST COST
Koferes Nasoal Tekk Spl 3 (KoNTekS 3) Jakarta, 6 7 Me 009 WAKTU PERGANTIAN ALAT BERAT JENIS WHEEL LOADER DENGAN METODE LEAST COST Maksum Taubrata Program Stud Tekk Spl, Uverstas Krste Maraatha Badug Jl.
TEKNIK SAMPLING. Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Universitas Andalas
TEKNIK SAMPLING Hazmra Yozza Izzat Rahm HG Jurusa Matematka FMIPA Uverstas Adalas Defs Suatu cotoh gerombol adalah suatu cotoh acak sederhaa dmaa setap ut pearka cotoh adalah kelompok atau gerombol dar
BAB III METODOLOGI PENELITIAN. Metode penelitian sangat diperlukan dalam sebuah penelitian untuk
BAB III METODOLOGI PENELITIAN A. Metode Peelta Metode peelta sagat dperluka dalam sebuah peelta utuk memaham suatu objek peelta da utuk medapatka sejumlah formas tetag masalah pokok yag aka dpecahka. Ada
INTERVAL KEPERCAYAAN UNTUK PERBEDAAN KOEFISIEN VARIASI DARI DISTRIBUSI LOGNORMAL I. Pebriyani 1*, Bustami 2, S. Sugiarto 2
INTERVAL KEPERCAAAN UNTUK PERBEDAAN KOEFIIEN VARIAI DARI DITRIBUI LOGNORMAL I. Pebrya * Bustam. ugarto Mahasswa Program Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu Pegetahua Alam Uverstas
Metode Statistika Pertemuan XII. Analisis Korelasi dan Regresi
Metode Statstka Pertemua XII Aalss Korelas da Regres Aalss Hubuga Jes/tpe hubuga Ukura Keterkata Skala pegukura varabel Pemodela Keterkata Relatoshp vs Causal Relatoshp Tdak semua hubuga (relatoshp) berupa
3 Departemen Statistika FMIPA IPB
Supleme Respos Pertemua ANALISIS DATA KATEGORIK (STK51) Departeme Statstka FMIPA IPB Pokok Bahasa Sub Pokok Bahasa Referes Waktu U potess Tga Cotoh atau Lebh U Kruskal-Walls (aalss ragam satu-arah berdasarka
BAB III METODOLOGI PENELITIAN
BAB III METODOLOGI PENELITIAN A. Jes Peelta Dalam pelta peelt megguaka racaga eksperme. Eksperme adalah observas dbawah kods buata (artfcal codto), dmaa kods tersebut dbuat da d atur oleh s peelt. Dega
POLIGON TERBUKA TERIKAT SEMPURNA
MODUL KULIAH ILMU UKUR TANAH POLIGON TERBUKA TERIKAT SEMPURNA Pegerta : peetua azmuth awal da akhr, peetuat kesalaha peutup sudut,koreks sudut, kesalaha lear da koreks lear kearah sumbu X da Y, Peetua
BAB II LANDASAN TEORI. teori dan definisi mengenai variabel random, regresi linier, metode kuadrat
BAB II LANDASAN TEORI Sebaga pedukug dalam pembahasa selajutya, dperluka beberapa teor da defs megea varabel radom, regres ler, metode kuadrat terkecl, peguja asums aalss regres, outler, da regres robust.
II. LANDASAN TEORI. Pada bab II ini, akan dibahas pengertian-pengertian (definisi) dan teoremateorema
II. LANDAAN TEORI Pada bab II aka dbahas pegerta-pegerta (defs) da teoremateorema ag medukug utuk pembahasa pada bab IV. Pegerta (defs) da teorema tersebut dtulska sebaga berkut.. Teorema Proeks Teorema
Pemodelan Regresi Linier Menggunakan Metode Theil (Studi Kasus: Kompensasi Pegawai di Badan Kepegawaian Daerah Kota Samarinda)
Jural EKSPONENSIAL Volume 4, Nomor 1, Me 2013 ISSN 2085-7829 Pemodela Regres Ler Megguaka Metode Thel (Stud Kasus: Kompesas Pegawa d Bada Kepegawaa Daerah Kota Samarda) Lear Regresso Modelg Wth Thel Method
BAB II LANDASAN TEORI. digunakan dengan mengabaikan asumsi-asumsi yang melandasi penggunaan metode
BAB II ANDASAN TEORI. Regres Noparametrk Metode statstka oparametrk merupaka metode statstka ag dapat dguaka dega megabaka asums-asums ag meladas pegguaa metode statstk parametrk. Terutama ag berkata dega
Jurnal Matematika Murni dan Terapan Vol. 4 No.2 Desember 2010: ANALISIS REGRESI LINEAR BERGANDA DENGAN SATU VARIABEL BONEKA (DUMMY VARIABLE)
Jural Matematka Mur da Terapa Vol. 4 No. esember : 4 - ANALISIS REGRESI LINEAR BERGANA ENGAN SATU VARIABEL BONEKA (UMMY VARIABLE Tat Krsawardha Nur Salam da ew Aggra Program Stud Matematka Uverstas Lambug
UKURAN GEJALA PUSAT (UGP)
UKURAN GEJALA PUSAT (UGP) Pegerta: Rata-rata (average) alah suatu la yag mewakl suatu kelompok data. Nla dsebut juga ukura gejala pusat karea pada umumya mempuya kecederuga terletak d tegah-tegah da memusat
III. METODOLOGI PENELITIAN. Metode penelitian merupakan strategi umum yang di anut dalam
III. METODOLOGI PENELITIAN A. Metode Peelta Metode peelta merupaka strateg umum yag d aut dalam pegumpula data da aalss data yag dperluka, gua mejawab persoala yag dhadap. Meurut Arkuto (006 : 3) peelta
III. METODOLOGI PENELITIAN. Menurut Arikunto (1991 : 3) penelitian eksperimendalah suatu penelitian yang
37 III. METODOLOGI PENELITIAN A. Metode Peelta Metode peelta merupaka suatu cara tertetu yag dguaka utuk meelt suatu permasalaha sehgga medapatka hasl atau tujua yag dgka. Meurut Arkuto (1991 : 3) peelta
FMDAM (2) TOPSIS TOPSIS TOPSIS. Charitas Fibriani
FMDAM (2) Chartas Fbra Techque for Order Preferece by Smlarty to Ideal Soluto () ddasarka pada kosep dmaa alteratf terplh yag terbak tdak haya memlk jarak terpedek dar solus deal postf, amu juga memlk
TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL
TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL Hesty ala, Arsma Ada, Bustam hestyfala@ymalcom Mahasswa Program S Matematka MIPA-UR Dose Matematka MIPA-UR
Penerapan Model Regresi Ensemble Non-Hybrid pada Data Kemiskinan di Provinsi Jawa Tengah
The 6 th Uversty Research Colloquum 7 Peerapa Model Regres Esemble No-Hybrd pada Data Kemska d Provs Jawa Tegah Corela Ardaa Savta, Sr Sulstjowat Hadaja, Bowo Waro 3,3 Program Stud Matematka FMIPA, Uverstas
REGRESI LINEAR SEDERHANA
REGRESI LINEAR SEDERHANA MODUL Dra. Sr Pagest, S.U. PENDAHULUAN A alss regres merupaka aalss statstk yag mempelajar ubuga atara dua varabel atau leb. Dalam aalss regres lear dasumska berlakuya betuk ubuga
BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu
BAB II LADASA TEORI Dalam pegambla sampel dar suatu populas, dperluka suatu tekk pegambla sampel yag tepat sesua dega keadaa populas tersebut. Sehgga sampel yag dperoleh adalah sampel yag dapat mewakl
BAB 2 LANDASAN TEORI
BAB LANDASAN TEORI.1 Aalisis Regresi Istilah regresi pertama kali diperkealka oleh seorag ahli yag berama Facis Galto pada tahu 1886. Meurut Galto, aalisis regresi berkeaa dega studi ketergatuga dari suatu
BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah
BAB 1 PENDAHULUAN 1.1 Latar Belakag Masalah Regres merupaka suatu metode statstka yag dguaka utuk meyeldk pola hubuga atara dua atau lebh varabel.betuk atau pola hubuga varabelvarabel tersebut dapat ddetfkas
BAB 2 LANDASAN TEORI. Universitas Sumatera Utara
BAB 2 LANDASAN TEORI 2.1 Pengertan Analsa Regres Dalam kehdupan sehar-har, serng kta jumpa hubungan antara satu varabel terhadap satu atau lebh varabel yang lan. Sebaga contoh, besarnya pendapatan seseorang
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI Bab aka mejelaska megea ladasa teor yag dpaka oleh peuls dalam peelta. Bab dbag mejad beberapa baga, yag masg masg aka mejelaska Prcpal Compoet Aalyss (PCA), Egeface, Klusterg K-Meas,
TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM. Sudarno Jurusan Matematika FMIPA UNDIP
JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 11-19, Aprl 004, ISSN : 1410-8518 TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM Sudaro Jurusa Matematka FMIPA UNDIP Abstrak Sstem yag dbetuk
NORM VEKTOR DAN NORM MATRIKS
NORM VEKTOR DN NORM MTRIK umaag Muhtar Gozal UNIVERIT PENDIDIKN INDONEI. Pedahulua Jka kta membcaraka topk ruag vektor maka cotoh sederhaa yag dapat kta ambl adalah ruag Eucld R. D ruag kta medefska pajag
BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP
BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP Msal dguaka kode ler C[, k, d] dega matrks pembagu G da matrks cek partas H. Sebuah blok formas x = x 1 x 2 x k, x = 0 atau 1, yag aka dkrm terlebh
Penarikan Contoh Acak Sederhana (Simple Random Sampling)
Pearka Cotoh Acak Sederhaa (Smple Radom Samplg) Defs Jka sebuah cotoh berukura dambl dar suatu populas sedemka rupa sehgga setap cotoh berukura ag mugk memlk peluag sama utuk terambl, maka prosedur tu
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA. Peahulua Dalam bab aka membahas megea teor-teor tetag statstka oparametrk, korelas parsal tau Keall a korelas parsal meurut Ebuh GU a Oeka ICA.. Statstka Noparametrk Istlah oparametrk
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB PENDAHULUAN. Latar Belaag Metode aalss yag telah dbcaraa hgga saat adalah aalss terhadap data megea sebuah araterst atau atrbut da megea sebuah varabel dsrt atau otu. Tetap, sebagamaa dsadar, baya
REGRESI NONPARAMETRIK SPLINE UNTUK DATA BERAT BADAN BALITA MENURUT UMUR DI KABUPATEN BOJONEGORO TAHUN 2010
REGRESI NONPARAMETRIK SPLINE UNTUK DATA BERAT BADAN BALITA MENURUT UMUR DI KABUPATEN BOJONEGORO TAUN Mahasswa Yulda Federka 9 5 6 Dose Pembmbg Ir. Mutah Salamah,M.Kes da Jerry Dw T.P.,S.S,M.S ABSTRAK Pertumbuha
Penarikan Contoh Gerombol (Cluster Sampling) Departemen Statistika FMIPA IPB
Pearka Cotoh Gerombol (Cluster Samplg) Departeme Statstka FMIPA IPB Radom samplg (Revew) Smple radom samplg Stratfed radom samplg Rato, regresso, ad dfferece estmato Systematc radom samplg Cluster radom