Mean untuk Data Tunggal. Definisi. Jika suatu sampel berukuran n dengan anggota x1, x2, x3,, xn, maka mean sampel didefinisiskan : n Xi.

Save this PDF as:

Ukuran: px
Mulai penontonan dengan halaman:

Download "Mean untuk Data Tunggal. Definisi. Jika suatu sampel berukuran n dengan anggota x1, x2, x3,, xn, maka mean sampel didefinisiskan : n Xi."

Transkripsi

1 Mea utuk Data Tuggal Des. Jka suatu sampel berukura dega aggota x1, x, x3,, x, maka mea sampel ddesska : 1... N 1

2 Mea utuk Data Kelompok Des Mea dar data yag dkelompoka adalah : x x dega : x = ttk tegah pada kelas terval ke I I = rekues pada kelas terval ke-i = bayak data (sampel)

3 Cotoh Kelas Iterval x x ,5 49,5 59,5 69,5 79,5 89,5 99, , ,5 398 Jumlah Sehgga mea : 1 1 x 1 x = (5960) / 80 = 74,5

4 MODUS Modus pada umumya dguaka utuk meyataka kejada yag serg mucul. Sehgga ukura dalam keadaa tdak dsadar serg dpaka utuk meetuka rata-rata yag berasal dar data kualtat. Modus utuk Data Tuggal Utuk meetuka modus dar suatu data yatu dega cara mecar rekues palg bayak.

5 Modus utuk data kelompok Des : Data la yag berbetuk dapat dcar dega rumus sbb : dstrbus rekues, modus Mo L MO c( a a ) b D maa : LMo : batas bawah terval modus a : rek. kelas modus dkurag rekues terval kelas sebelumya. b : rek. kelas modus dkurag rekues terval berkutya. c : pajag terval.

6 Cotoh Kelas Iterval Dar tabel d atas kelas modusya adalah terval keempat, dega L M = 64,5 a= - 10 = 1 ; b = - 18 = 4 da c = 10 Sehgga : Mo a L MO c( ) = 64, (1)/(1+4) = 64,5 + 7,5 a b = 7

7 Meda Des Meda utuk data tuggal : Jka suatu data yag telah durutka dar yag kecl samapa terbesar dega otas (1), (), (3),, (), maka 1. Utuk sampel berukura gajl Medaya adalah data palg tegah atau Me = (( + 1)/).. Utuk sampel berukura geap. Medaya adalah rata-rata dar dua data tegah atau Me = ½ { ( /) + ((/)+1) }.

8 Dberkaka data la mahasswa utuk mata kulah statstka matematka I sbb : a) b) Tetuka medaya. Peyelesaa : a. Data durutka telebh dahulu mula dar yag terkecl sampa terbesar Jad meda utuk la statstka matematka I adalah 65. b. Data durutka telebh dahulu mula dar yag terkecl sampa terbesar Dua data dtegah Sehgga medaya adalah ( ) / = 60

9 Meda utuk Data Kelompok Des Sedagka utuk data yag dsajka dalam tabel rekues, maka meda dapat dcar sebaga berkut : ( / ) F Me L me c( ) D maa : Lme : batas bawah kelas meda F : jumlah rekues semua terval sebelum klas meda. c : pajag terval : rekues kelas meda

10 CONTOH : Kelas Iterval Dar kelas meda batas bawahya adalah 74,5 ; pajag teral : 10 : rekues kelas meda adalah 18 serta F = = 39 Sehgga : Me ( / ) F Lme c( ) = 74, ( )/18 = 74,5 + 0,556 = 75,056

11 Kuatl (N tl) Des : Kuatl (N-tl) merupaka sekumpula data yag dbag mejad (N-1) kelompok da utuk meetuka letak data, terlebh dahulu data durutka dar yag terkecl sampa yag terbesar. Sehgga : utuk N = 4 dsebut kuartl artya setelah data drutka, kemuda dbag dalam 3 kelompok ; N = 10 dsebut desl artya setelah data durutka, kemuda dbag dalam 9 kelompok N = 100 dsebut persetl artya setelah data durutka, kemuda dbag dalam 99 kelompok

12 Kuatl Utuk Data Tuggal Des Utuk meetuka letak data ke dar suatu kuatl dguaka rumus : Letak Ke = data ke ( 1) N Dega : I = letak ke = bayak data N = jes kuatl

13 Dberka data sampel sepert berkut Tetuka : Kuartl ke 1 (K1) Kuartl ke 3 (K3) Peyelesaa : Data durutka terlebh dahulu : berart = 1 da N = 4 a) Kuartl ke 1 adalah Letak (K1) = data ke (1(1+1)/4) = 3,5 Sehgga K1 = data ke- 3 + (1/4) (data ke-4 - data ke-3) = 35 + (1/4)(40-35) = 35 + (5/4) = 36,5 b) Kuartl ke 3 adalah Letak (K3) = data ke (3(1+1)/4) = 9,75 Sehgga K3 = data ke- 9 + (3/4)(data ke-10 - data ke-9) = 35 + (3/4)(60 55) = 58,75

14 Ukura Peympaga Ukura meujuka adaya peympaga (sebara/devas) tap observas data terhadap suatu harga tegah. Karea merupaka ukura pusat, maka peympaga yag terjad pada masg-masg data terhadap rata-rata adalah Peympaga utuk Data Tuggal Devas rata-rata Des : Devas rata-rata adalah harga rata-rata sebara tap observas data terhadap meaya. Adaka ada data la 1,,, dega mea, maka devas rata-rata adalah d.r 1 ( x 1 x )( x x ) ( x x )

15 Des : (1) Varas sampel dar sekumpula data : 1,,,.adalah S 1 ( 1 ) () Devas stadar (smpaga baku) dar sekumpula data : 1,,, adalah S.D = S 1 ( ) 1

16 Devas utuk Data Kelompok Des : Utuk sekumpula data : 1,,, yag telah dubah dalam tabel dstrbus rekues, maka (1) Devas rata-rataya adalah d.r 1

17 () Varas sampelya adalah S 1 ( 1 ) d maa : : 1,, 3,, : rekues : data ke- : mea data sampel

18 Theorema S 1 ( 1 ) 1 ( ( 1 1) )

S2 MP Oleh ; N. Setyaningsih

S2 MP Oleh ; N. Setyaningsih S2 MP Oleh ; N. Setyagsh MATERI PERTEMUAN 1-3 (1)Pedahulua pera statstka dalam peelta ; (2)Peyaja data : dalam betuk (a) tabel da (b) dagram; (3) ukura tedes setaral da ukura peympaga (4)dstrbus ormal

Lebih terperinci

UKURAN GEJALA PUSAT DAN UKURAN LETAK

UKURAN GEJALA PUSAT DAN UKURAN LETAK UKURAN GEJALA PUSAT DAN UKURAN LETAK MODUL 4 UKURAN GEJALA PUSAT DAN UKURAN LETAK. Pedahulua Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu persoala, bak megea sampel atau pu

Lebih terperinci

STATISTIKA DASAR. Oleh

STATISTIKA DASAR. Oleh STATISTIKA DASAR Oleh Suryo Gurto cara peyaja data - tabel - grak meghtug harga-harga petg : - ukura lokas - ukura sebara/peympaga apabla data mempuya observasya cukup bayak perlu dsusu secara sstematk

Lebih terperinci

b) Untuk data berfrekuensi fixi Data (Xi)

b) Untuk data berfrekuensi fixi Data (Xi) B. Meghtug ukura pemusata, ukura letak da ukura peyebara data serta peafsraya A. Ukura Pemusata Data Msalka kumpula data berkut meujukka hasl pegukura tgg bada dar orag sswa. 0 cm 30 cm 5 cm 5 cm 35 cm

Lebih terperinci

3/19/2012. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut

3/19/2012. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut 3/9/202 UKURAN GEJALA PUSAT DAN UKURAN LETAK Kaa Evta Dew, S.Pd., M.S. Ukura gejala pusat Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu hal, bak tu dar sampel ataupu populas

Lebih terperinci

4/1/2013. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut. Dengan: n = banyak data

4/1/2013. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut. Dengan: n = banyak data //203 UKURAN GEJALA PUSAT DAN UKURAN LETAK Kaa Evta Dew, S.Pd., M.S. Ukura gejala pusat Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu hal, bak tu dar sampel ataupu populas Ukura

Lebih terperinci

SUM BER BELA JAR Menerap kan aturan konsep statistika dalam pemecah an masalah INDIKATOR MATERI TUGAS

SUM BER BELA JAR Menerap kan aturan konsep statistika dalam pemecah an masalah INDIKATOR MATERI TUGAS C. Pembelajara 3 1. Slabus N o STANDA R KOMPE TENSI KOMPE TENSI DASAR INDIKATOR MATERI TUGAS BUKTI BELAJAR KON TEN INDIKA TOR WAK TU SUM BER BELA JAR Meerap ka atura kosep statstka dalam pemecah a masalah

Lebih terperinci

STATISTIKA A. Definisi Umum B. Tabel Distribusi Frekuensi

STATISTIKA A. Definisi Umum B. Tabel Distribusi Frekuensi STATISTIKA A. Des Umum. Pegerta statstk Statstk adalah kumpula akta yag berbetuk agka da dsusu dalam datar atau tabel yag meggambarka suatu persoala. Cotoh: statstk kurs dolar Amerka, statstk pertumbuha

Lebih terperinci

BAB 1 STATISTIKA RINGKASAN MATERI

BAB 1 STATISTIKA RINGKASAN MATERI BAB STATISTIKA A RINGKASAN MATERI. Pegerta Data adalah kumpula keteraga-keteraga atau catata-catata megea suatu kejada, dapat berupa blaga, smbol, sat atau kategor. Masg-masg keteraga dar data dsebut datum.

Lebih terperinci

UKURAN PEMUSATAN & PENYEBARAN

UKURAN PEMUSATAN & PENYEBARAN UKURAN PEMUSATAN & PENYEBARAN RATA - RATA UKURAN PEMUSATAN MEDIAN MODUS Rata rata htug (mea) Merupaka hasl bag dar sejumlah skr dega bayakya respde Utuk Data Tdak Berkelmpk x Dmaa : = la samapa x = la

Lebih terperinci

BAB III UKURAN PEMUSATAN DATA

BAB III UKURAN PEMUSATAN DATA BAB III UKURAN PEMUSATAN DATA A. Ukura Gejala Pusat Ukura pemusata adalah suatu ukura yag meujukka d maa suatu data memusat atau suatu kumpula pegamata memusat (megelompok). Ukura pemusata data adalah

Lebih terperinci

STATISTIKA. A. Tabel Langkah untuk mengelompokkan data ke dalam tabel distribusi frekuensi data berkelompok/berinterval: a. Rentang/Jangkauan (J)

STATISTIKA. A. Tabel Langkah untuk mengelompokkan data ke dalam tabel distribusi frekuensi data berkelompok/berinterval: a. Rentang/Jangkauan (J) STATISTIKA A. Tabel Lagkah utuk megelompokka data ke dalam tabel dstrbus frekues data berkelompok/berterval: a. Retag/Jagkaua (J) J X maks X m b. Bayak kelas (k) Megguaka atura Sturgess, yatu k,. log c.

Lebih terperinci

* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES

* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES * PENYAJIAN DATA Secara umum, ada dua cara peyaja data, yatu : 1. Tabel atau daftar. Grafk atau dagram Macam-macam daftar yag dkeal : a. Daftar bars kolom b. Daftar kotges c. Daftar dstrbus frekues Sedagka

Lebih terperinci

STATISTIK. Ukuran Gejala Pusat Ukuran Letak Ukuran Simpangan, Dispersi dan Variasi Momen, Kemiringan, dan Kurtosis

STATISTIK. Ukuran Gejala Pusat Ukuran Letak Ukuran Simpangan, Dispersi dan Variasi Momen, Kemiringan, dan Kurtosis STATISTIK Ukura Gejala Pusat Ukura Letak Ukura Smpaga, Dspers da Varas Mome, Kemrga, da Kurtoss Notas Varabel dyataka dega huruf besar Nla dar varabel dyataka dega huruf kecl basaya dtuls Tmes New Roma

Lebih terperinci

STATISTIKA: UKURAN PEMUSATAN. Tujuan Pembelajaran

STATISTIKA: UKURAN PEMUSATAN. Tujuan Pembelajaran Kurkulum 013/006 matematka K e l a s XI STATISTIKA: UKURAN PEMUSATAN Tujua Pembelajara Setelah mempelajar mater, kamu dharapka memlk kemampua berkut. 1. Dapat meetuka rata-rata data tuggal da data berkelompok..

Lebih terperinci

Tabel Distribusi Frekuensi

Tabel Distribusi Frekuensi Tabel Dstrbus Frekues Tabel dstrbus frekues adalah susua data meurut kelas-kelas terval tertetu atau meurut kategor tertetu dalam sebuah daftar. Dar dstrbus frekues, dapat dperoleh keteraga atau gambara

Lebih terperinci

TATAP MUKA III UKURAN PEMUSATAN DATA (MEAN, MEDIAN DAN MODUS) Fitri Yulianti, SP. Msi.

TATAP MUKA III UKURAN PEMUSATAN DATA (MEAN, MEDIAN DAN MODUS) Fitri Yulianti, SP. Msi. TATAP MUKA III UKURAN PEMUSATAN DATA (MEAN, MEDIAN DAN MODUS) Ftr Yulat, SP. Ms. UKURAN DATA Ukura data Ukura Pemusata data Ukura letak data Ukura peyebara data Mea Meda Jagkaua Meda Kuartl Jagkaua atar

Lebih terperinci

2.2.3 Ukuran Dispersi

2.2.3 Ukuran Dispersi 3 Ukura Dspers Yag aka dbahas ds adalah smpaga baku da varas karea dua ukura dspers yag palg serg dguaka Hubuga atara smpaga baku dega varas adalah Varas = Kuadrat dar Smpaga baku otas yag umum dguaka

Lebih terperinci

Ukuran Pemusatan Data. Arum Handini P., M.Sc Ayundyah K., M.Si.

Ukuran Pemusatan Data. Arum Handini P., M.Sc Ayundyah K., M.Si. Ukura Pemusata Data Arum Had P., M.Sc Ayudyah K., M.S. Notas utuk Populas da Sampel Notas: Mea (rata-rata) Sample x Populas μ Varas s 2 σ 2 Smpaga baku s σ Ukura Pemusata Data 1. Mea (rata-rata) 2. Meda

Lebih terperinci

UKURAN GEJALA PUSAT (UGP)

UKURAN GEJALA PUSAT (UGP) UKURAN GEJALA PUSAT (UGP) Pegerta: Rata-rata (average) alah suatu la yag mewakl suatu kelompok data. Nla dsebut juga ukura gejala pusat karea pada umumya mempuya kecederuga terletak d tegah-tegah da memusat

Lebih terperinci

BAB 1 STATISTIKA. Gambar 1.1

BAB 1 STATISTIKA. Gambar 1.1 STANDAR KOMPETENSI: BAB 1 STATISTIKA Megguaka atura statstka, kadah pecacaha, da sat-sat peluag dalam pemecaha masalah. Kompetes Dasar 1. Membaca data dalam betuk tabel da dagram batag, gars, lgkara, da

Lebih terperinci

Pada saat upacara bendera, kita sering memperhatikan teman-teman kita.

Pada saat upacara bendera, kita sering memperhatikan teman-teman kita. Bab Ukura Data Pada saat upacara bedera, kta serg memperhatka tema-tema kta. Terkadag tapa sadar kta membadgka tgg redah sswa dalam upacara tersebut. Ada yag tggya 170 cm, 165 cm, 150 cm atau bahka 140

Lebih terperinci

47 Soal dengan Pembahasan, 46 Soal Latihan

47 Soal dengan Pembahasan, 46 Soal Latihan Galer Soal 7 Soal dega Pembahasa, Soal Latha Dragkum Oleh: ag Wbowo, S.Pd Jauar 0 MatkZoe s Seres Emal : matkzoe@gmal.com log : www.matkzoe.wordpress.com HP : 0 97 97 Hak pta Dldug Udag-udag. Dlarag megkutp

Lebih terperinci

Statistika. Menyajikan Data dalam Bentuk Diagram ;

Statistika. Menyajikan Data dalam Bentuk Diagram ; Statstka Meyajka Data dalam Betuk Dagram ; Meyajka Data dalam Betuk Tabel Dstrbus Frekues ; Meghtug Ukura Pemusata, Ukura Letak, da Ukura ; Peyebara Data Kalau kamu ke kator keluraha, kator pajak, kator

Lebih terperinci

9/22/2009. Materi 2. Outline. Graphical Techniques. Penyajian Data. Numerical Techniques

9/22/2009. Materi 2. Outline. Graphical Techniques. Penyajian Data. Numerical Techniques Mater Outle Graphcal Techques Peyaja Data Numercal Techques Tekk Grafk (Graphcal Techques) Secara vsual, grafs merupaka gambar-gambar yag meujukka data berupa agka yag basaya dbuat berdasarka tabel yag

Lebih terperinci

100% r n. besarnya %. n. h t t p : / / m a t e m a t r i c k. b l o g s p o t. c o m =. 400

100% r n. besarnya %. n. h t t p : / / m a t e m a t r i c k. b l o g s p o t. c o m =. 400 h t t p : / / m a t e m a t r c k. b l o g p o t. c o m Meetuka uur-uur pada dagram lgkara atau batag Rgkaa Mater : Uur uur pada dagram lgkara yag pokok haya hal :. Meetuka bear baga dalam lgkara ( dapat

Lebih terperinci

UKURAN PEMUSATAN DAN LETAK DATA

UKURAN PEMUSATAN DAN LETAK DATA UKURAN PEMUSATAN DAN LETAK DATA PENDAHULUAN Suatu harga yag dapat dpaka utuk mewakl sekumpula data. Harga rata-rata merupaka suatu la sektar maa blaga-blaga la tersebar. Harga rata-rata serg damaka measure

Lebih terperinci

Notasi Sigma. Fadjar Shadiq, M.App.Sc &

Notasi Sigma. Fadjar Shadiq, M.App.Sc & Notas Sgma Fadjar Shadq, M.App.Sc (fadjar_pg@yahoo.com & www.fadjarpg.wordpress.com Notas sgma memag jarag djumpa dalam kehdupa sehar-har, tetap otas tersebut aka bayak djumpa pada baga matematka yag la,

Lebih terperinci

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS Se, 19 Desember 016 100 met [ Boleh membuka buku Tdak boleh memaka komputer ] SOAL 1 [SO A-3, BOBOT NILAI 40%] Hasl pegukura sampel d beberapa sekolah da

Lebih terperinci

titik tengah kelas ke i k = banyaknya kelas

titik tengah kelas ke i k = banyaknya kelas STATISTIKA Bab 0 UKURAN PEMUSATAN DAN PENYEBARAN. Mea X. a. Data Tuggal... 3 b. Data Kelompo ( dstrbus frewes) f. f. f.... f. 3 3 f f f... f = f. f 3 Ket : tt tegah elas e = bayaya elas f frewes elas e

Lebih terperinci

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS Tgg tekaa [m] UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS Se, 11 Desember 017 100 met [ Boleh membuka buku Tdak boleh memaka komputer ] SOAL 1 [SO A-3, BOBOT NILAI 50%] Sebuah PDAM melakuka pegukura

Lebih terperinci

STATISTIKA Matematika Kelas XI MIA

STATISTIKA Matematika Kelas XI MIA STATISTIKA Matematka Kelas XI MIA 90 0 70 0 50 40 30 0 0 1st Qtr d Qtr 3rd Qtr 4th Qtr East West North Dsusu oleh : Markus Yuarto, S.S Tahu Pelajara 01 017 SMA Sata Agela Jl. Merdeka No. 4 Badug PENGANTAR

Lebih terperinci

PENDAHULUAN. Tabel nilai statistika Nilai Jumlah Mahasiswa A 5 B 9 C 25 D 3 E

PENDAHULUAN. Tabel nilai statistika Nilai Jumlah Mahasiswa A 5 B 9 C 25 D 3 E 1 PENDAHULUAN 1.1. Pegerta statstk da statstka Statstk adalah kumpula data, blaga maupu o blaga yag dsusu dalam table da atau dagram yag melukska suatu persoala Tabel la statstka Nla Jumlah Mahasswa A

Lebih terperinci

STATISTIKA. Penulis Dra. Th. Widyantini, M.Si. Layouter: Titik Sutanti, S.Pd.Si., M.Ed.

STATISTIKA. Penulis Dra. Th. Widyantini, M.Si. Layouter: Titik Sutanti, S.Pd.Si., M.Ed. STATISTIKA Peuls Dra. Th. Wdyat, M.S. Layouter: Ttk Sutat, S.Pd.S., M.Ed. PUSAT PENGEMBANGAN DAN PENBERDAYAAN PENDIDIK DAN TENAGA KEPENDIDIKAN MATEMATIKA KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN 015 Daftar

Lebih terperinci

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai BAB LANDASAN TEORI. Kosep Dasar Aalss Regres Aalss regres regressso aalyss merupaka suatu tekk utuk membagu persamaa da megguaka persamaa tersebut utuk membuat perkraa predcto. Dega demka, aalss regres

Lebih terperinci

BAB 6 PRINSIP INKLUSI DAN EKSKLUSI

BAB 6 PRINSIP INKLUSI DAN EKSKLUSI BB 6 PRINSIP INKLUSI DN EKSKLUSI Pada baga aka ddskuska topk berkutya yatu eumeras yag damaka Prsp Iklus da Eksklus. Kosep dalam bab merupaka perluasa de dalam Dagram Ve beserta oepras rsa da gabuga, amu

Lebih terperinci

Ukuran Pusat, Letak, dan Penyimpangan Data

Ukuran Pusat, Letak, dan Penyimpangan Data Uura Pusat, Leta, da Peympaga Data Dsusu oleh Putraj Hedawat, S.S., M.Pd., M.Sc. Dr. Scolasta Mara, M.S.. Uura Pemusata Data Data yag telah dumpula dapat dpresetasa dalam betu tabel da gra yag bertujua

Lebih terperinci

BAB III INTEGRAL RIEMANN-STIELTJES. satu pendekatan untuk membentuk proses titik. Berkaitan dengan masalah

BAB III INTEGRAL RIEMANN-STIELTJES. satu pendekatan untuk membentuk proses titik. Berkaitan dengan masalah BAB III INEGRAL RIEMANN-SIELJES. Pedahulua Pada Bab, telah dsggug bahwa ukura meghtug merupaka salah satu pedekata utuk membetuk proses ttk. Berkata dega masalah perhtuga, ada hal meark yag perlu amat,

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu.

BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu. BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa yag varabel bebasya ( berpagkat palg tgg satu. Utuk regres ler sederhaa, regres ler haya melbatka dua varabel ( da. Persamaa regresya dapat dtulska

Lebih terperinci

8. MENGANALISIS HASIL EVALUASI

8. MENGANALISIS HASIL EVALUASI 8. MENGANALISIS HASIL EVALUASI Tujua : Mampu megaalsa tgkat kesukara hasl evaluas utuk megkatka hasl proses pembelajara Kegata megaals hasl evaluas merupaka upaya utuk memperbak programprogram pembelajara

Lebih terperinci

BAB 2. Tinjauan Teoritis

BAB 2. Tinjauan Teoritis BAB Tjaua Teorts.1 Regres Lear Sederhaa Regres lear adalah alat statstk yag dperguaka utuk megetahu pegaruh atara satu atau beberapa varabel terhadap satu buah varabel. Varabel yag mempegaruh serg dsebut

Lebih terperinci

ALGORITMA MENENTUKAN HIMPUNAN TERBESAR DARI SUATU MATRIKS INTERVAL DALAM ALJABAR MAX-PLUS

ALGORITMA MENENTUKAN HIMPUNAN TERBESAR DARI SUATU MATRIKS INTERVAL DALAM ALJABAR MAX-PLUS LGORITM MENENTUKN HIMPUNN TERBESR DRI SUTU MTRIKS INTERVL DLM LJBR MX-PLUS Rata Novtasar Program Stud Matematka FMIP UNDIP JlProfSoedarto SH Semarag 575 bstract Ths research dscussed about how to obtaed

Lebih terperinci

Bab 1. Statistika. A. Penyajian Data B. Penyajian Data Statistik C. Penyajian Data Ukuran menjadi Data Statistik Deskriptif

Bab 1. Statistika. A. Penyajian Data B. Penyajian Data Statistik C. Penyajian Data Ukuran menjadi Data Statistik Deskriptif Bab Statstka Sumber: farm.statc.flckr.com Setelah mempelajar bab, Ada harus mampu melakuka pegolaha, peyaja da peafsra data dega cara membaca da meyajka data dalam betuk tabel da dagram batag, gars, lgkara,

Lebih terperinci

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu BAB II LADASA TEORI Dalam pegambla sampel dar suatu populas, dperluka suatu tekk pegambla sampel yag tepat sesua dega keadaa populas tersebut. Sehgga sampel yag dperoleh adalah sampel yag dapat mewakl

Lebih terperinci

8. 1 Mengidentifikasi pengertian statistik, statistika, populasi, dan sampel

8. 1 Mengidentifikasi pengertian statistik, statistika, populasi, dan sampel Sumber : Art ad Gallery Stadar Kompetes 8. Meerapka atura kosep statstk dalam pemecaha masalah Kompetes Dasar 8. Megdetfkas pegerta statstk, statstka, populas, da sampel 8. Meyajka data dalam betuk tabel

Lebih terperinci

STATISTIKA SMA (Bag.1)

STATISTIKA SMA (Bag.1) SMA - STATISTIKA SMA (Bag. A. DATA TUNGGAL. Ukura Pemusata : Terdapat ilai statistika yag dapat dimiliki oleh sekumpula data yag diperoleh yaitu : a. Rata-rata Rata-rata jumlah seluruh data bayakya data

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa merupaka baga regres yag mecakup hubuga ler satu peubah acak tak bebas dega satu peubah bebas. Hubuga ler da dar satu populas dsebut gars regres

Lebih terperinci

MATEMATIKA INTEGRAL RIEMANN

MATEMATIKA INTEGRAL RIEMANN MATEMATIKA KELAS XII IPA - KURIKULUM GABUNGAN Ses NGAN INTEGRAL RIEMANN A. NOTASI SIGMA a. Defs Notas Sgma Sgma (Σ) adalah otas matematka megguaka smbol yag mewakl pejumlaha da beberapa suku yag memlk

Lebih terperinci

Created by Simpo PDF Creator Pro (unregistered version)

Created by Simpo PDF Creator Pro (unregistered version) Created by Smpo PDF Creator Pro (uregstered verso) http://www.smpopdf.com Statst Bss : BAB V. UKURA PEYEBARA DATA.1 Peyebara Uura peyebara data adalah uura statst yag meggambara bagamaa berpecarya data

Lebih terperinci

Bab I Pendahuluan & Statistika Deskriptif

Bab I Pendahuluan & Statistika Deskriptif Bab I Pedahulua & Statstka Deskrptf Pegerta Statstka Dstrbus Frekues Cetral Tedecy Measure of Dsperso Pegerta Statstka Statstk (statstc) vs statstka (statstcs) Statstk: agka-agka Statstka: pegguaa data

Lebih terperinci

BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP

BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP Msal dguaka kode ler C[, k, d] dega matrks pembagu G da matrks cek partas H. Sebuah blok formas x = x 1 x 2 x k, x = 0 atau 1, yag aka dkrm terlebh

Lebih terperinci

PERTEMUAN 3 CARA MEMBUAT TABEL DISTRIBUSI FREKUENSI UKURAN PEMUSATAN DATA

PERTEMUAN 3 CARA MEMBUAT TABEL DISTRIBUSI FREKUENSI UKURAN PEMUSATAN DATA PERTEMUAN 3 CARA MEMBUAT TABEL DISTRIBUSI FREKUENSI UKURAN PEMUSATAN DATA Cara Peyajia Data dega Tabel Distribusi Frekuesi Distribusi Frekuesi adalah data yag disusu dalam betuk kelompok baris berdasarka

Lebih terperinci

BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI

BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI 9.1. Dstrbus Kotu Dstrbus memlk sfat kotu dmaa data yag damat berjala secara kesambuga da tdak terputus. Maksudya adalah bahwa data yag damat tersebut tergatug

Lebih terperinci

BAB 2 LANDASAN TEORI. Istilah regresi pertama kali diperkenalkan oleh Francis Galton. Menurut Galton,

BAB 2 LANDASAN TEORI. Istilah regresi pertama kali diperkenalkan oleh Francis Galton. Menurut Galton, BAB LANDASAN TEORI Pegerta Regres Istlah regres pertama kal dperkealka oleh Fracs Galto Meurut Galto, aalss regres berkeaa dega stud ketergatuga dar suatu varabel yag dsebut varabel tak bebas (depedet

Lebih terperinci

STATISTIKA: UKURAN PENYEBARAN DATA. Tujuan Pembelajaran

STATISTIKA: UKURAN PENYEBARAN DATA. Tujuan Pembelajaran KTSP & K-3 matemata K e l a s XI STATISTIKA: UKURAN PENYEBARAN DATA Tujua Pembelajara Setelah mempelajar mater, amu dharapa meml emampua berut.. Memaham defs uura peyebara data da jes-jesya.. Dapat meetua

Lebih terperinci

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten BAB III METODE PENELITIAN 3. Tempat da Waktu Peelta 3.. Tempat Tempat peelta dlaksaaka d SMP Neger 4 Tlamuta Kabupate Boalemo pada sswa kelas VIII. 3.. Waktu Peelta dlaksaaka dalam waktu 3 bula yatu dar

Lebih terperinci

9. SOAL-SOAL STATISTIKA

9. SOAL-SOAL STATISTIKA 9. SOAL-SOAL STATISTIKA UN00SMK. Dagram lgara d bawah meyaja jes estrauruler d suatu SMK yag dut oleh 500 orag sswa. Baya sswa yag tda megut estrauruler Pasbra adalah.. A. 00 sswa Olah B. 50 sswa Pasbra

Lebih terperinci

9. SOAL-SOAL STATISTIKA

9. SOAL-SOAL STATISTIKA 9. SOAL-SOAL STATISTIKA UN00SMK. Dagram lgara d bawah meyaja jes estrauruler d suatu SMK yag dut oleh 500 orag sswa. Baya sswa yag tda megut estrauruler Pasbra adalah.. A. 00 sswa Olah B. 50 sswa Pasbra

Lebih terperinci

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM 1 Megetahu perhtuga persamaa regres ler Meggambarka persamaa regres ler ke dalam dagram pecar TEORI PENUNJANG Persamaa Regres adalah persamaa matematka

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1 Pedahulua Sebelum membahas megea prosedur peguja hpotess, terlebh dahulu aka djelaska beberapa teor da metode yag meujag utuk mempermudah pembahasa. Adapu teor da metode tersebut

Lebih terperinci

Uji Statistika yangb digunakan dikaitan dengan jenis data

Uji Statistika yangb digunakan dikaitan dengan jenis data Uj Statstka yagb dguaka dkata dega jes data Jes Data omal Ordal Iterval da Raso Uj Statstka Koefse Kotges Rak Spearma Kedall Tau Korelas Parsal Kedall Tau Koefse Kokordas Kedall W Pearso Korelas Gada Korelas

Lebih terperinci

UKURAN DASAR DATA STATISTIK

UKURAN DASAR DATA STATISTIK UKURAN DASAR DATA STATISTIK UKURAN PUSAT Apa yag dapat ta smpula secara gamblag da cepat dar data yag dsodora berut : Tabel 1 Sampel Data Karyawa peserta Jamsoste Nama Sex Status Kerja Gaj/Bl Umur NATUL

Lebih terperinci

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu KORELASI 1 D dua kta tdak dapat hdup sedr, tetap memerluka hubuga dega orag la. Hubuga tu pada umumya dlakuka dega maksud tertetu sepert medapat kergaa pajak, memperoleh kredt, memjam uag, serta mta pertologa/batua

Lebih terperinci

HAND OUT STATISTIKA DASAR (MT308) Oleh : Dewi Rachmatin, S.Si., M.Si.

HAND OUT STATISTIKA DASAR (MT308) Oleh : Dewi Rachmatin, S.Si., M.Si. HAND OUT STATISTIKA DASAR (MT308) Oleh : Dew Rachmat, S.S., M.S. JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS PENDIDIKAN MATEMATIKA DAN IPA UNIVERSITAS PENDIDIKAN INDONESIA 008 Idettas Mata Kulah. Nama Mata

Lebih terperinci

BAB 2 LANDASAN TEORI. Analisis regresi adalah suatu proses memperkirakan secara sistematis tentang apa yang paling

BAB 2 LANDASAN TEORI. Analisis regresi adalah suatu proses memperkirakan secara sistematis tentang apa yang paling BAB LANDASAN TEORI Kosep Dasar Aalss Regres Aalss regres adalah suatu proses memperkraka secara sstemats tetag apa yag palg mugk terjad dmasa yag aka datag berdasarka formas yag sekarag dmlk agar memperkecl

Lebih terperinci

BAB 5. ANALISIS REGRESI DAN KORELASI

BAB 5. ANALISIS REGRESI DAN KORELASI BAB 5. ANALISIS REGRESI DAN KORELASI Tujua utama aalss regres adalah mecar ada tdakya hubuga ler atara dua varabel: Varabel bebas (X), yatu varabel yag mempegaruh Varabel terkat (Y), yatu varabel yag dpegaruh

Lebih terperinci

Integrasi 1. Metode Integral Reimann Metode Integral Trapezoida Metode Integral Simpson. Integrasi 1

Integrasi 1. Metode Integral Reimann Metode Integral Trapezoida Metode Integral Simpson. Integrasi 1 Itegras Metode Itegral Rema Metode Itegral Trapezoda Metode Itegral Smpso Itegras Permasalaa Itegras Pertuga tegral adala pertuga dasar yag dguaka dalam kalkulus, dalam bayak keperlua. Itegral secara det

Lebih terperinci

Statistika Deskriptif

Statistika Deskriptif Statstka Deskrptf Statstka Deskrptf Statstka deskrptf (descrptve statstcs) berkata dega peerapa metode statstk utuk megumpulka, megolah, meyajka, da megaalss data kuattatf secara deskrptf. Statstka Deskrptf

Lebih terperinci

BAB IV HASIL PENELITIAN. Hasil penelitian ini berdasarkan data yang diperoleh dari kegiatan penelitian

BAB IV HASIL PENELITIAN. Hasil penelitian ini berdasarkan data yang diperoleh dari kegiatan penelitian BAB IV HASIL PENELITIAN Hasl peelta berdasarka data yag dperole dar kegata peelta yag tela dlaksaaka ole peelt d MTs Salafya II Radublatug Blora pada kelas VIII A tau ajara 1 11. Data asl peelta tersebut

Lebih terperinci

KALKULUS LANJUT. Pertemuan ke-4. Reny Rian Marliana, S.Si.,M.Stat.

KALKULUS LANJUT. Pertemuan ke-4. Reny Rian Marliana, S.Si.,M.Stat. KALKULUS LANJUT Pertemua ke-4 Rey Ra Marlaa, S.S.,M.Stat. Plot Mater Notas Jumlah & Sgma Itegral Tetu Jumlah Rema Pedahulua Luas Notas Jumlah & Sgma Purcell, et all. (page 226,2003): Sebuah fugs yag daerah

Lebih terperinci

TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM. Sudarno Jurusan Matematika FMIPA UNDIP

TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM. Sudarno Jurusan Matematika FMIPA UNDIP JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 11-19, Aprl 004, ISSN : 1410-8518 TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM Sudaro Jurusa Matematka FMIPA UNDIP Abstrak Sstem yag dbetuk

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel

BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel BAB I PENDAHULUAN 1.1 Statstka Deskrptf da Statstka Iferesal Dewasa d berbaga bdag lmu da kehdupa utuk memaham/megetahu sesuatu dperluka dat Sebaga cotoh utuk megetahu berapa bayak rakyat Idoesa yag memerluka

Lebih terperinci

Ruang Banach. Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA

Ruang Banach. Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA Ruag Baach Sumaag Muhtar Gozal UNIVERSITAS PENDIDIKAN INDONESIA Satu kose etg d kulah Aalss ugsoal adalah teor ruag Baach. Pada baga aka drevu defs, cotoh-cotoh, serta sfat-sfat etg ruag Baach. Kta aka

Lebih terperinci

Regresi & Korelasi Linier Sederhana. Gagasan perhitungan ditetapkan oleh Sir Francis Galton ( )

Regresi & Korelasi Linier Sederhana. Gagasan perhitungan ditetapkan oleh Sir Francis Galton ( ) Regres & Korelas Ler Sederhaa 1. Pedahulua Gagasa perhtuga dtetapka oleh Sr Fracs Galto (18-1911) Persamaa regres :Persamaa matematk yag memugkka peramala la suatu peubah takbebas (depedet varable) dar

Lebih terperinci

BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL)

BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) Setiap peelitia selalu berkeaa dega sekelompok data. Yag dimaksud kelompok disii adalah: Satu orag mempuyai sekelompok data, atau sekelompok orag mempuyai satu

Lebih terperinci

III. METODE PENELITIAN. yang hidup dan berguna bagi masyarakat, maupun bagi peneliti sendiri

III. METODE PENELITIAN. yang hidup dan berguna bagi masyarakat, maupun bagi peneliti sendiri III. METODE PEELITIA A. Metodolog Peelta Metodolog peelta adalah cara yag dlakuka secara sstemats megkut atura-atura, recaaka oleh para peeltutuk memecahka permasalaha yag hdup da bergua bag masyarakat,

Lebih terperinci

SOLUSI TUGAS I HIMPUNAN

SOLUSI TUGAS I HIMPUNAN Program Stud S1 Tekk Iformatka Fakultas Iformatka, Telkom Uversty SOLUSI TUGAS I HIMPUNAN Matematka Dskrt (MUG2A3) Halama 1 dar 6 Soal 1 Tetukalah eleme-eleme dar hmpua berkut! 2 x x adalah blaga real

Lebih terperinci

UKURAN PEMUSATAN UKURAN PENYEBARAN

UKURAN PEMUSATAN UKURAN PENYEBARAN UKURAN PEMUSATAN DATA TUNGGAL DATA KELOMPOK. MEAN / RATA-RATA. MODUS 3. MEDIAN 4. KUARTIL. MEAN / RATA-RATA. MODUS 3. MEDIAN 4. KUARTIL UKURAN PENYEBARAN JANGKAUAN HAMPARAN RAGAM / VARIANS SIMPANGAN BAKU

Lebih terperinci

BAB 2 : BUNGA, PERTUMBUHAN DAN PELURUHAN

BAB 2 : BUNGA, PERTUMBUHAN DAN PELURUHAN Jl. Raya Wagu Kel. Sdagsar Kota Bogor Telp. 0251-8242411, emal: prohumas@smkwkrama.et, webste : www.smkwkrama.et BAB 2 : BUNGA, PERTUBUHAN DAN PELURUHAN PENGERTIAN BUNGA Buga adalah jasa dar smpaa atau

Lebih terperinci

SIFAT-SIFAT LANJUT FUNGSI TERBATAS

SIFAT-SIFAT LANJUT FUNGSI TERBATAS Bulet Ilmah Mat. Stat. da Terapaya (Bmaster) Volume 03, No. 2(204), hal 35 42. SIFAT-SIFAT LANJUT FUNGSI TERBATAS Suhard, Helm, Yudar INTISARI Fugs terbatas merupaka fugs yag memlk batas atas da batas

Lebih terperinci

Ukuran Pemusatan. Pertemuan 3. Median. Quartil. 17-Mar-17. Modus

Ukuran Pemusatan. Pertemuan 3. Median. Quartil. 17-Mar-17. Modus -Mar- Ukura Pemusata Pertemua STATISTIKA DESKRIPTIF Statistik deskripti adalah pegolaha data utuk tujua medeskripsika atau memberika gambara terhadap obyek yag diteliti dega megguaka sampel atau populasi.

Lebih terperinci

BAB III PERSAMAAN PANAS DIMENSI SATU

BAB III PERSAMAAN PANAS DIMENSI SATU BAB III PERSAMAAN PANAS DIMENSI SAU Pada baga sebelumya, kta telah membahas peerapa metoda Ruge-Kutta orde 4 utuk meyelesaka masalah la awal dar persamaa dferesal basa orde. Pada bab, kta aka melakuka

Lebih terperinci

INTERVAL KEPERCAYAAN UNTUK PERBEDAAN KOEFISIEN VARIASI DARI DISTRIBUSI LOGNORMAL I. Pebriyani 1*, Bustami 2, S. Sugiarto 2

INTERVAL KEPERCAYAAN UNTUK PERBEDAAN KOEFISIEN VARIASI DARI DISTRIBUSI LOGNORMAL I. Pebriyani 1*, Bustami 2, S. Sugiarto 2 INTERVAL KEPERCAAAN UNTUK PERBEDAAN KOEFIIEN VARIAI DARI DITRIBUI LOGNORMAL I. Pebrya * Bustam. ugarto Mahasswa Program Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu Pegetahua Alam Uverstas

Lebih terperinci

1. Ruang Sampel dan Peristiwa

1. Ruang Sampel dan Peristiwa . Ruag Sampel da Perstwa. Ruag Sampel Defs Ruag sampel (Sample Space), S : totaltas semua hasl yag mugk dar sebuah percobaa. Ttk sampel atau outcome : eleme dar tap sel. Perstwa/kejada (Evet) : kumpula

Lebih terperinci

Statistik Industri. Pengertian

Statistik Industri. Pengertian Statstk Idustr Pertemua ke- Pegerta Ilmu megumpulka, megolah, mergkas, meya jka da terpretas data utuk dasar pegambla keputusa Pegelompoka Deskrpt: Statstka yag megguaka data pada suatu kelompok utuk mejelaska

Lebih terperinci

11/10/2010 REGRESI LINEAR SEDERHANA DAN KORELASI TUJUAN

11/10/2010 REGRESI LINEAR SEDERHANA DAN KORELASI TUJUAN // REGRESI LINEAR SEDERHANA DAN KORELASI. Model Regres Lear. Peaksr Kuadrat Terkecl 3. Predks Nla Respos 4. Iferes Utuk Parameter-parameter Regres 5. Kecocoka Model Regres 6. Korelas Utrwe Mukhayar MA

Lebih terperinci

IV. UKURAN SIMPANGAN, DISPERSI & VARIASI

IV. UKURAN SIMPANGAN, DISPERSI & VARIASI IV. UKURAN SIMPANGAN, DISPERSI & VARIASI Pendahuluan o Ukuran dspers atau ukuran varas, yang menggambarkan derajat bagamana berpencarnya data kuanttatf, dntaranya: rentang, rentang antar kuartl, smpangan

Lebih terperinci

STATISTIKA. Contoh : hasil ulangan Matematika 5 siswa sbb: Pengertian Statistika dan Statistik:

STATISTIKA. Contoh : hasil ulangan Matematika 5 siswa sbb: Pengertian Statistika dan Statistik: STATISTIKA Pegerta Statsta da Statst: Statsta adalah lmu pegetahua yag membahas metode-metode lmah tetag ara-ara pegumpula data, pegolaha, pegaalsa da peara esmpula. Statst adalah umpula data, blaga ataupu

Lebih terperinci

PENDAHULUAN. Gambar (a) diagram lingkaran (b) diagram balok

PENDAHULUAN. Gambar (a) diagram lingkaran (b) diagram balok PENDAHULUAN.. PENGERTIAN STATISTIK DAN STATISTIKA Statstk adalah kumpula data, blaga maupu o blaga yag dsusu dalam table da atau dagram yag melukska suatu persoala. Cotoh tabel da dagram statstk dapat

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. melakukan smash sebelum dan sesudah latihan power otot lengan adalah sebagai

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. melakukan smash sebelum dan sesudah latihan power otot lengan adalah sebagai BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4. Deskrps Peelta Berdasarka hasl peelta, d peroleh data megea kemempua sswa melakuka smash sebelum da sesudah latha power otot lega adalah sebaga berkut : Tabel.

Lebih terperinci

WAKTU PERGANTIAN ALAT BERAT JENIS WHEEL LOADER DENGAN METODE LEAST COST

WAKTU PERGANTIAN ALAT BERAT JENIS WHEEL LOADER DENGAN METODE LEAST COST Koferes Nasoal Tekk Spl 3 (KoNTekS 3) Jakarta, 6 7 Me 009 WAKTU PERGANTIAN ALAT BERAT JENIS WHEEL LOADER DENGAN METODE LEAST COST Maksum Taubrata Program Stud Tekk Spl, Uverstas Krste Maraatha Badug Jl.

Lebih terperinci

Bab II Teori Pendukung

Bab II Teori Pendukung Bab II Teor Pedukug.. asar Statstka Utuk keperlua peaksra outstadg clams lablty, pegetahua dalam statstka mead hal yag petg. asar statstka yag dguaka dalam tess atara la :. strbus ormal Sebuah peubah acak

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 1 Pegerta Regres Istlah regres pertama kal dperkealka oleh Fracs Galto Meurut Galto, aalss regres berkeaa dega stud ketergatuga dar suatu varabel yag dsebut tak bebas depedet varable,

Lebih terperinci

I adalah himpunan kotak terbatas dan tertutup yang berisi lebih dari satu

I adalah himpunan kotak terbatas dan tertutup yang berisi lebih dari satu METODE FUNGS QUAS-FED SATU ARAMETER UNTUK MENYEESAKAN MASAAH ROGRAM NTEGER TAK NEAR Ra Hardyat (M4) ABSTRAK Dalam kehdupa sehar-har serg djumpa masalah optmas yag membutuhka hasl teger Masalah tersebut

Lebih terperinci

IMPLEMENTASI DAN KOMPARASI ATURAN SEGIEMPAT UNTUK PENYELESAIAN INTEGRAL DENGAN BATAS MENGGUNAKAN MATLAB

IMPLEMENTASI DAN KOMPARASI ATURAN SEGIEMPAT UNTUK PENYELESAIAN INTEGRAL DENGAN BATAS MENGGUNAKAN MATLAB Semar Nasoal Tekolog 007 (SNT 007) ISSN : 978 9777 IMPLEMENTASI DAN KOMPARASI ATURAN SEGIEMPAT UNTUK PENYELESAIAN INTEGRAL DENGAN BATAS MENGGUNAKAN MATLAB Krsawat STMIK AMIKOM Yogyakarta e-mal : krsa@amkom.ac.d

Lebih terperinci

ISBN : (No. jil lengkap) ISBN : Harga Eceran Tertinggi: Rp8.558,-

ISBN : (No. jil lengkap) ISBN : Harga Eceran Tertinggi: Rp8.558,- ISBN : 978-979-068-858- (No. jl legkap) ISBN : 978-979-068-86- PUSAT PERBUKUAN Departeme Peddka Nasoal Harga Ecera Tertgg: Rp8.558,- Khazaah Matematka utuk Kelas XI SMA da MA Program Bahasa Rosha Ar Y.

Lebih terperinci

MENAKSIR PROPORSI CALON PEMIMPIN DARI KELOMPOK MINORITAS. Anneke Iswani A **

MENAKSIR PROPORSI CALON PEMIMPIN DARI KELOMPOK MINORITAS. Anneke Iswani A ** MENAKSIR PROPORSI CALON PEMIMPIN DARI KELOMPOK MINORITAS Aeke Iswa A ** Abstrak Apaba berhadapa dega data has meghtug yag berupa frekues, kemuda dtetuka varabe bebas da tak bebas yag berupa propors, maka

Lebih terperinci

Statistika Deskriptif Ukuran Pemusatan dan Ukuran Penyebaran

Statistika Deskriptif Ukuran Pemusatan dan Ukuran Penyebaran Statistika Deskriptif Ukura Pemusata da Ukura Peyebara Ukura Pemusata Data Rata-rata Hitug Rata-rata hitug data tuggal: = x 1 + x 2 + x 3 + + x atau =. (1 : rata-rata hitug data tuggal (baca x-bar : bayakya

Lebih terperinci

BAB III ISI. x 2. 2πσ

BAB III ISI. x 2. 2πσ BAB III ISI 4. Keadata Normal Multvarat da Sfat-sfatya Keadata ormal multvarat meruaka geeralsas dar keadata ormal uvarat utuk dmes. f ( x) [( x )/ ] / = e x π x = ( x )( ) ( x ). < < (-) (-) Betuk (-)

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI. Defes Aalss Korelas da Regres a Aalss Korelas adalah metode statstka yag dguaka utuk meetuka kuatya atau derajat huuga lear atara dua varael atau leh. Semak yata huuga ler gars lurus,

Lebih terperinci