BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI"

Transkripsi

1 BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI 9.1. Dstrbus Kotu Dstrbus memlk sfat kotu dmaa data yag damat berjala secara kesambuga da tdak terputus. Maksudya adalah bahwa data yag damat tersebut tergatug waktu, sepert kedataga pelagga, lama atra, varas lama pemesaa pelagga yag berduaras mggua. Data yag berdstrbus kotu basaya dalam betuk pecaha sepert waktu kedataga pelagga atau asabah d sebuah bak, msalya orag pertama datag pukul kemuda masuk ke pelayaa pukul da pelagga selesa dlaya oleh server pukul msalya juga data pegamata yag meyataka jumlah permtaa pasr d sebuah galaga tap mggu 2.3 sampa 5.5 truk. Pegolaha data berdstrbus kotu tersebut dapat dlakuka dega megguaka beberapa cara, dataraya adalah dstrbus ormal, dstrbus ekspoesal, dstrbus gamma, dstrbus beta, da mash bayak lag. Utuk meduga perlaku data apakah data tersebut berdstrbus kotu atau buka (dstrbus dskret) maka dalam hal aka dbahas dstrbus ormal da ekspoesal saja karea yag serg dguaka dalam kehdupa sehar-har. a. Peguja Kolmogorov-Smrov Normal Peguja bertujua melhat tgkat kesesuaa atara fugs dstrbus hasl pegamata dega fugs dstrbus teortk tertetu dega meetapka suatu ttk yag meggambarka perbedaa maksmum keduaya. 1. Statstk Uj T Htug = Maks F(x) S(x) Dmaa : F(x) : fugs dstrbus kumulatf dar suatu dstrbus ormal S(x) : fugs dstrbus kumulatf dar suatu dstrbus pegamata 2. Krtera Peolaka Pemodela &Smulas : Pegguaa statstk dalam smulas 54

2 Jka la T Htug W 1- maka H 0 dtolak (tabel yag dguaka Kolmogorov- Smrov) Lagkah peguja : a. Meetapka hpotess awal da hpotess tadga. Hpotess : H 0 : data megkut dstrbus ormal H 1 : data tdak megkut dstrbus ormal b. Meghtug statstk uj Utuk meetuka harga F(x) maka la X yag meyataka la rata-rata dtetuka dega cara : X 1 x.* f dmaa X = = rata-rata Dtetuka la probabltas utuk masg-masg x, dar ormal : Z = Dmaa : X X : la tegah dar kelas pada dstrbus frekues : rata-rata ( X ) : smpaga baku (SD) Utuk mecar F(x) megguaka tabel dstrbus ormal sesua la Z yag ddapat, da S(x) dperoleh dar frekues kumulatf masg-masg la x dbag dega jumlah sampel. c. Meetapka (taraf sgfkas) d. Meetuka daerah peolaka e. Membuat kesmpula f. Membuat terpretas dar kesmpula Cotoh : Stud kasus produks sarug Betel Terbag tahu 2015 PT. ASEANTEX, pedekata yag dguaka utuk meduga apakah data hasl pegamata tersebut berdtrbus ormal atau tdak. Pemodela &Smulas : Pegguaa statstk dalam smulas 55

3 b. Dstrbus Ekspoesal Bayak masalah smulas membutuhka pemecaha dega megguaka dstrbus ekspoesal, khususya masalah-masalah yag melbatka suatu reteta kedataga da keperga sepert smulas atra pada bak, pembayara d supermaket, arport da la-la. Peguja Kolmogorov-Smrov Ekspoesal Peguja bertujua melhat tgkat kesesuaa atara fugs dstrbus hasl pegamata dega fugs dstrbus teortk tertetu dega meetapka suatu ttk yag meggambarka perbedaa maksmum keduaya. 1. Statstk Uj Dmaa : T Htug = Maks F(x) S(x) F(x) : fugs dstrbus kumulatf dar suatu dstrbus ekspoesal S(x) : fugs dstrbus kumulatf dar suatu dstrbus pegamata 2. Krtera Peolaka Jka la T Htug W 1- maka H 0 dtolak (tabel yag dguaka Kolmogorov- Smrov) Lagkah peguja : a. Meetapka hpotess awal da hpotess tadga. Hpotess : b. Meghtug statstk uj H 0 : data megkut dstrbus ekspoesal H 1 : data tdak megkut dstrbus ekspoesal Utuk meetuka harga F(x) maka la X ( ) yag meyataka la ratarata dtetuka dega cara : X 1 x.* f dmaa X = = rata-rata Dtetuka la probabltas utuk masg-masg x, dar ekspoesal : F( x) 1 e x S(x) dperoleh dar frekues kumulatf masg-masg la x dbag dega jumlah sampel. Pemodela &Smulas : Pegguaa statstk dalam smulas 56

4 c. Meetapka (taraf sgfkas) d. Meetuka daerah peolaka e. Membuat kesmpula f. Membuat terpretas dar kesmpula Cotoh : Stud kasus produks sarug Betel Terbag tahu 2015 PT. ASEANTEX, pedekata yag dguaka utuk meduga apakah data hasl pegamata tersebut berdtrbus ekspoesal atau tdak Dstrbus Dskrt Dstrbus dskrt dguaka utuk pedekata terhadap data yag bertpe buka pecaha (sepert data yag tdak tergatug oleh waktu). Dstrbus dberlakuka pada data yag past da sfatya bulat, sepert jumlah kedaraa bermotor yag masuk ruag parkr d suatu tempat pada jam setap har se, atau kedataga asabah suatu bak pada waktu jam tahu 2010 dll, jad tdak ada la yag sfatya pecaha. Dalam buku Pegatar Statstk oleh Pasarbu mejelaska bahwa Dstrbus Posso mempuya sample space yag terdr dar blaga-blaga asl dar 0 sampa dega (tak terhgga). Uj Keselarasa Pearso s Uj keselarasa Pearso dguaka utuk meguj seberapa tepatkah frekues yag teramat (observed frequeces, f o ) cocok atau sesua dega frekues yag dharapka (expected frequeces, f e ). Utuk uj keselarasa ada dua hal yag petg, yatu : a. Frekues yag dharapka sama (f o = f e ) b. Frekues yag dharapka tdak sama (f o f e ) Lagkah-lagkah utuk melakuka peguja : 1. Meetuka hpotess Hpotess yag dsusu adalah hpotess ol (H 0 ) da hpotess alteratf (H 1 ). H 0 meyataka bahwa tdak ada perbedaa atara frekues observas dega frekues harapa da H 1 meyataka bahwa ada perbedaa atara frekues observas dega frekues harapa. H 0 : f o = f e H 1 : f o f e Pemodela &Smulas : Pegguaa statstk dalam smulas 57

5 2. Meghtug la statstk uj f e (E) dhtug dega terlebh dahulu meghtug P(X = x), dmaa P(X=x) adalah probabltas dar dstrbus teorts yag dtetuka pada hpotess awal. Bayakya parameter pada dstrbus posso adalah satu, yatu µ yag meyataka la ratarata. Utuk mecar P(X=x) dguaka rumus : P(X = x) = e x! x Kemuda utuk mecar frekues harapa (f e atau E) dguaka rumus: E = P(X = x) * Dmaa : P(X = x) : probabltas e : 2.71 = = X : rata-rata x : la tegah atau bayakya kejada E : Frekues ekspektas : jumlah sampel 3. Meetuka taraf yata da la krts Taraf yata adalah daya toleras terhadap kemugka kesalaha (basaya 1-10%, utuk bdag yag krts 1-5%). Dstrbus ch-kuadrat memerluka derajad bebas df = k, la adalah kategor atau sampel da k adalah varabel. Setelah ddapat df da taraf yata maka dapat dcar la krts Ch-kuadrat dega megguaka tabel Ch-kuadrat. 4. Uj statstk ch-kuadrat Hpotess yag duj adalah kesesuaa atara la harapa dega yag teramat. Dmaa : X h 2 x k 2 2 ( O E ) h 1 E = Statstk uj ch-kuadrat O = frekues observas (f o ) E = frekues ekspektas (f e ) K = bayakya kategor pada dsrbus frekues Pemodela &Smulas : Pegguaa statstk dalam smulas 58

6 5. Meetuka daerah keputusa (peolaka) H 0 dterma jka la ch-kuadrat hasl perhtuga sama atau lebh kecl dar la chkuadrat krts da sebalkya H 0 dtolak (H 1 dterma)jka ch-kuadrat lebh besar dar ch-kuadratkrts. 6. Meetuka keputusa (krtera peolaka) Cotoh : Stud kasus produks sarug Betel Terbag tahu 2015 PT. ASEANTEX, data hasl pegamata yag ddapat juga dapat dkategorka sebaga data dskrt. Dar perlaku data yag d atas berart dstrbus Posso dapat dguaka apakah data hasl pegamata tersebut berdtrbus Posso atau buka. Peyelesaa : 1. Buat kelas yag terbetuk mejad uruta omor dar suatu kejada yag memlk frekues. 2. Tetuka (masukka) la O (frekues) yag telah dbuat dar kelas pada saatpembuata dstrbus frekues. 3. Buat X, dar satu (1) sebayak kelas yag terbetuk 4. Kalka X da O 5. Car la P(X=x) dega rumus posso 6. Car la E, jka la E yag dhtug medapatka agka lebh kecl atau sama dega 5 maka tambahka la tersebut dega la yag terdekat, kemuda proses perhtuga dulag. Tetap jka terdapat 3 agka yag lebh kecl dar lma (5) da ketka djumlahka mash lebh kecl dar 5, maka tambah lag dega yag terdekat (atas atau bawahya) utuk medapatka la lebh besar dar Car la Ch-square Jka E seluruhya lebh besar dar 5 maka peguja Goodess of Ft Pearso dapat dlakuka dega membadgkaya dega jumlah dar Ch-Square (htug). 8. Badgka la Ch-Square (htug) dega Ch-Square (tabel) Pemodela &Smulas : Pegguaa statstk dalam smulas 59

* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES

* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES * PENYAJIAN DATA Secara umum, ada dua cara peyaja data, yatu : 1. Tabel atau daftar. Grafk atau dagram Macam-macam daftar yag dkeal : a. Daftar bars kolom b. Daftar kotges c. Daftar dstrbus frekues Sedagka

Lebih terperinci

BAB 2 LANDASAN TEORI. Istilah regresi pertama kali diperkenalkan oleh Francis Galton. Menurut Galton,

BAB 2 LANDASAN TEORI. Istilah regresi pertama kali diperkenalkan oleh Francis Galton. Menurut Galton, BAB LANDASAN TEORI Pegerta Regres Istlah regres pertama kal dperkealka oleh Fracs Galto Meurut Galto, aalss regres berkeaa dega stud ketergatuga dar suatu varabel yag dsebut varabel tak bebas (depedet

Lebih terperinci

Uji Statistika yangb digunakan dikaitan dengan jenis data

Uji Statistika yangb digunakan dikaitan dengan jenis data Uj Statstka yagb dguaka dkata dega jes data Jes Data omal Ordal Iterval da Raso Uj Statstka Koefse Kotges Rak Spearma Kedall Tau Korelas Parsal Kedall Tau Koefse Kokordas Kedall W Pearso Korelas Gada Korelas

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu.

BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu. BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa yag varabel bebasya ( berpagkat palg tgg satu. Utuk regres ler sederhaa, regres ler haya melbatka dua varabel ( da. Persamaa regresya dapat dtulska

Lebih terperinci

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai BAB LANDASAN TEORI. Kosep Dasar Aalss Regres Aalss regres regressso aalyss merupaka suatu tekk utuk membagu persamaa da megguaka persamaa tersebut utuk membuat perkraa predcto. Dega demka, aalss regres

Lebih terperinci

BAB 2. Tinjauan Teoritis

BAB 2. Tinjauan Teoritis BAB Tjaua Teorts.1 Regres Lear Sederhaa Regres lear adalah alat statstk yag dperguaka utuk megetahu pegaruh atara satu atau beberapa varabel terhadap satu buah varabel. Varabel yag mempegaruh serg dsebut

Lebih terperinci

UKURAN GEJALA PUSAT DAN UKURAN LETAK

UKURAN GEJALA PUSAT DAN UKURAN LETAK UKURAN GEJALA PUSAT DAN UKURAN LETAK MODUL 4 UKURAN GEJALA PUSAT DAN UKURAN LETAK. Pedahulua Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu persoala, bak megea sampel atau pu

Lebih terperinci

LANGKAH-LANGKAH UJI HIPOTESIS DENGAN 2 (Untuk Data Nominal)

LANGKAH-LANGKAH UJI HIPOTESIS DENGAN 2 (Untuk Data Nominal) LANGKAH-LANGKAH UJI HIPOTESIS DENGAN (Utuk Data Nomal). Merumuska hpotess (termasuk rumusa hpotess statstk). Data hasl peelta duat dalam etuk tael slag (tael frekues oservas) 3. Meetuka krtera uj atau

Lebih terperinci

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS Se, 19 Desember 016 100 met [ Boleh membuka buku Tdak boleh memaka komputer ] SOAL 1 [SO A-3, BOBOT NILAI 40%] Hasl pegukura sampel d beberapa sekolah da

Lebih terperinci

III. METODE PENELITIAN. yang hidup dan berguna bagi masyarakat, maupun bagi peneliti sendiri

III. METODE PENELITIAN. yang hidup dan berguna bagi masyarakat, maupun bagi peneliti sendiri III. METODE PEELITIA A. Metodolog Peelta Metodolog peelta adalah cara yag dlakuka secara sstemats megkut atura-atura, recaaka oleh para peeltutuk memecahka permasalaha yag hdup da bergua bag masyarakat,

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa merupaka baga regres yag mecakup hubuga ler satu peubah acak tak bebas dega satu peubah bebas. Hubuga ler da dar satu populas dsebut gars regres

Lebih terperinci

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS Tgg tekaa [m] UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS Se, 11 Desember 017 100 met [ Boleh membuka buku Tdak boleh memaka komputer ] SOAL 1 [SO A-3, BOBOT NILAI 50%] Sebuah PDAM melakuka pegukura

Lebih terperinci

BAB 5. ANALISIS REGRESI DAN KORELASI

BAB 5. ANALISIS REGRESI DAN KORELASI BAB 5. ANALISIS REGRESI DAN KORELASI Tujua utama aalss regres adalah mecar ada tdakya hubuga ler atara dua varabel: Varabel bebas (X), yatu varabel yag mempegaruh Varabel terkat (Y), yatu varabel yag dpegaruh

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1 Pedahulua Sebelum membahas megea prosedur peguja hpotess, terlebh dahulu aka djelaska beberapa teor da metode yag meujag utuk mempermudah pembahasa. Adapu teor da metode tersebut

Lebih terperinci

2.2.3 Ukuran Dispersi

2.2.3 Ukuran Dispersi 3 Ukura Dspers Yag aka dbahas ds adalah smpaga baku da varas karea dua ukura dspers yag palg serg dguaka Hubuga atara smpaga baku dega varas adalah Varas = Kuadrat dar Smpaga baku otas yag umum dguaka

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. melakukan smash sebelum dan sesudah latihan power otot lengan adalah sebagai

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. melakukan smash sebelum dan sesudah latihan power otot lengan adalah sebagai BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4. Deskrps Peelta Berdasarka hasl peelta, d peroleh data megea kemempua sswa melakuka smash sebelum da sesudah latha power otot lega adalah sebaga berkut : Tabel.

Lebih terperinci

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten BAB III METODE PENELITIAN 3. Tempat da Waktu Peelta 3.. Tempat Tempat peelta dlaksaaka d SMP Neger 4 Tlamuta Kabupate Boalemo pada sswa kelas VIII. 3.. Waktu Peelta dlaksaaka dalam waktu 3 bula yatu dar

Lebih terperinci

8. MENGANALISIS HASIL EVALUASI

8. MENGANALISIS HASIL EVALUASI 8. MENGANALISIS HASIL EVALUASI Tujua : Mampu megaalsa tgkat kesukara hasl evaluas utuk megkatka hasl proses pembelajara Kegata megaals hasl evaluas merupaka upaya utuk memperbak programprogram pembelajara

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 1 Pegerta Regres Istlah regres pertama kal dperkealka oleh Fracs Galto Meurut Galto, aalss regres berkeaa dega stud ketergatuga dar suatu varabel yag dsebut tak bebas depedet varable,

Lebih terperinci

4/1/2013. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut. Dengan: n = banyak data

4/1/2013. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut. Dengan: n = banyak data //203 UKURAN GEJALA PUSAT DAN UKURAN LETAK Kaa Evta Dew, S.Pd., M.S. Ukura gejala pusat Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu hal, bak tu dar sampel ataupu populas Ukura

Lebih terperinci

S2 MP Oleh ; N. Setyaningsih

S2 MP Oleh ; N. Setyaningsih S2 MP Oleh ; N. Setyagsh MATERI PERTEMUAN 1-3 (1)Pedahulua pera statstka dalam peelta ; (2)Peyaja data : dalam betuk (a) tabel da (b) dagram; (3) ukura tedes setaral da ukura peympaga (4)dstrbus ormal

Lebih terperinci

BAB 4 HASIL DAN PEMBAHASAN

BAB 4 HASIL DAN PEMBAHASAN 56 BAB 4 HASIL DAN PEMBAHASAN 4. Ekstraks Hasl Pegumpula Data 4.. Data Kedataga Customer pada J.CO Douts ad Coffee Mal Tama Aggrek Data kedataga jumlah pelagga pada J.CO Douts ad Coffee Mal Tama Aggrek

Lebih terperinci

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM 1 Megetahu perhtuga persamaa regres ler Meggambarka persamaa regres ler ke dalam dagram pecar TEORI PENUNJANG Persamaa Regres adalah persamaa matematka

Lebih terperinci

STATISTIK. Ukuran Gejala Pusat Ukuran Letak Ukuran Simpangan, Dispersi dan Variasi Momen, Kemiringan, dan Kurtosis

STATISTIK. Ukuran Gejala Pusat Ukuran Letak Ukuran Simpangan, Dispersi dan Variasi Momen, Kemiringan, dan Kurtosis STATISTIK Ukura Gejala Pusat Ukura Letak Ukura Smpaga, Dspers da Varas Mome, Kemrga, da Kurtoss Notas Varabel dyataka dega huruf besar Nla dar varabel dyataka dega huruf kecl basaya dtuls Tmes New Roma

Lebih terperinci

3/19/2012. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut

3/19/2012. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut 3/9/202 UKURAN GEJALA PUSAT DAN UKURAN LETAK Kaa Evta Dew, S.Pd., M.S. Ukura gejala pusat Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu hal, bak tu dar sampel ataupu populas

Lebih terperinci

BAB III INTEGRAL RIEMANN-STIELTJES. satu pendekatan untuk membentuk proses titik. Berkaitan dengan masalah

BAB III INTEGRAL RIEMANN-STIELTJES. satu pendekatan untuk membentuk proses titik. Berkaitan dengan masalah BAB III INEGRAL RIEMANN-SIELJES. Pedahulua Pada Bab, telah dsggug bahwa ukura meghtug merupaka salah satu pedekata utuk membetuk proses ttk. Berkata dega masalah perhtuga, ada hal meark yag perlu amat,

Lebih terperinci

SUM BER BELA JAR Menerap kan aturan konsep statistika dalam pemecah an masalah INDIKATOR MATERI TUGAS

SUM BER BELA JAR Menerap kan aturan konsep statistika dalam pemecah an masalah INDIKATOR MATERI TUGAS C. Pembelajara 3 1. Slabus N o STANDA R KOMPE TENSI KOMPE TENSI DASAR INDIKATOR MATERI TUGAS BUKTI BELAJAR KON TEN INDIKA TOR WAK TU SUM BER BELA JAR Meerap ka atura kosep statstka dalam pemecah a masalah

Lebih terperinci

Mean untuk Data Tunggal. Definisi. Jika suatu sampel berukuran n dengan anggota x1, x2, x3,, xn, maka mean sampel didefinisiskan : n Xi.

Mean untuk Data Tunggal. Definisi. Jika suatu sampel berukuran n dengan anggota x1, x2, x3,, xn, maka mean sampel didefinisiskan : n Xi. Mea utuk Data Tuggal Des. Jka suatu sampel berukura dega aggota x1, x, x3,, x, maka mea sampel ddesska : 1... N 1 Mea utuk Data Kelompok Des Mea dar data yag dkelompoka adalah : x x 1 1 1 dega : x = ttk

Lebih terperinci

ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas:

ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas: ANALISIS REGRESI Pedahulua Aalss regres berkata dega stud megea ketergatuga satu peubah (peubah terkat) terhadap satu atau lebh peubah laya (peubah pejelas). Jka Y dumpamaka sebaga peubah terkat da X1,X,...,X

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. Statistik merupakan cara cara tertentu yang digunakan dalam mengumpulkan,

BAB 2 TINJAUAN TEORITIS. Statistik merupakan cara cara tertentu yang digunakan dalam mengumpulkan, BAB TINJAUAN TEORITIS 1 Kosep Dasar Statstka Statstk merupaka cara cara tertetu yag dguaka dalam megumpulka, meyusu atau megatur, meyajka, megaalsa da member terpretas terhadap sekumpula data, sehgga kumpula

Lebih terperinci

3 Departemen Statistika FMIPA IPB

3 Departemen Statistika FMIPA IPB Supleme Respos Pertemua ANALISIS DATA KATEGORIK (STK51) Departeme Statstka FMIPA IPB Pokok Bahasa Sub Pokok Bahasa Referes Waktu U potess Tga Cotoh atau Lebh U Kruskal-Walls (aalss ragam satu-arah berdasarka

Lebih terperinci

BAB III UKURAN PEMUSATAN DATA

BAB III UKURAN PEMUSATAN DATA BAB III UKURAN PEMUSATAN DATA A. Ukura Gejala Pusat Ukura pemusata adalah suatu ukura yag meujukka d maa suatu data memusat atau suatu kumpula pegamata memusat (megelompok). Ukura pemusata data adalah

Lebih terperinci

BAB 6 PRINSIP INKLUSI DAN EKSKLUSI

BAB 6 PRINSIP INKLUSI DAN EKSKLUSI BB 6 PRINSIP INKLUSI DN EKSKLUSI Pada baga aka ddskuska topk berkutya yatu eumeras yag damaka Prsp Iklus da Eksklus. Kosep dalam bab merupaka perluasa de dalam Dagram Ve beserta oepras rsa da gabuga, amu

Lebih terperinci

STATISTIKA: UKURAN PEMUSATAN. Tujuan Pembelajaran

STATISTIKA: UKURAN PEMUSATAN. Tujuan Pembelajaran Kurkulum 013/006 matematka K e l a s XI STATISTIKA: UKURAN PEMUSATAN Tujua Pembelajara Setelah mempelajar mater, kamu dharapka memlk kemampua berkut. 1. Dapat meetuka rata-rata data tuggal da data berkelompok..

Lebih terperinci

UKURAN GEJALA PUSAT (UGP)

UKURAN GEJALA PUSAT (UGP) UKURAN GEJALA PUSAT (UGP) Pegerta: Rata-rata (average) alah suatu la yag mewakl suatu kelompok data. Nla dsebut juga ukura gejala pusat karea pada umumya mempuya kecederuga terletak d tegah-tegah da memusat

Lebih terperinci

BAB 1 STATISTIKA RINGKASAN MATERI

BAB 1 STATISTIKA RINGKASAN MATERI BAB STATISTIKA A RINGKASAN MATERI. Pegerta Data adalah kumpula keteraga-keteraga atau catata-catata megea suatu kejada, dapat berupa blaga, smbol, sat atau kategor. Masg-masg keteraga dar data dsebut datum.

Lebih terperinci

11/10/2010 REGRESI LINEAR SEDERHANA DAN KORELASI TUJUAN

11/10/2010 REGRESI LINEAR SEDERHANA DAN KORELASI TUJUAN // REGRESI LINEAR SEDERHANA DAN KORELASI. Model Regres Lear. Peaksr Kuadrat Terkecl 3. Predks Nla Respos 4. Iferes Utuk Parameter-parameter Regres 5. Kecocoka Model Regres 6. Korelas Utrwe Mukhayar MA

Lebih terperinci

BAB 2 LANDASAN TEORI. Analisis regresi adalah suatu proses memperkirakan secara sistematis tentang apa yang paling

BAB 2 LANDASAN TEORI. Analisis regresi adalah suatu proses memperkirakan secara sistematis tentang apa yang paling BAB LANDASAN TEORI Kosep Dasar Aalss Regres Aalss regres adalah suatu proses memperkraka secara sstemats tetag apa yag palg mugk terjad dmasa yag aka datag berdasarka formas yag sekarag dmlk agar memperkecl

Lebih terperinci

BAB III PERSAMAAN PANAS DIMENSI SATU

BAB III PERSAMAAN PANAS DIMENSI SATU BAB III PERSAMAAN PANAS DIMENSI SAU Pada baga sebelumya, kta telah membahas peerapa metoda Ruge-Kutta orde 4 utuk meyelesaka masalah la awal dar persamaa dferesal basa orde. Pada bab, kta aka melakuka

Lebih terperinci

BAB 3 METODOLOGI PEMECAHAN MASALAH

BAB 3 METODOLOGI PEMECAHAN MASALAH BAB 3 METODOLOGI PEMECAHAN MASALAH 3. Metode Pemecaha Masalah Metodolog peelta merupaka tahap-tahap dalam suatu peelta yag harus dtetapka atau dlakuka terlebh dahulu sebelum melakuka pecara solus masalah

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel

BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel BAB I PENDAHULUAN 1.1 Statstka Deskrptf da Statstka Iferesal Dewasa d berbaga bdag lmu da kehdupa utuk memaham/megetahu sesuatu dperluka dat Sebaga cotoh utuk megetahu berapa bayak rakyat Idoesa yag memerluka

Lebih terperinci

STATISTIKA A. Definisi Umum B. Tabel Distribusi Frekuensi

STATISTIKA A. Definisi Umum B. Tabel Distribusi Frekuensi STATISTIKA A. Des Umum. Pegerta statstk Statstk adalah kumpula akta yag berbetuk agka da dsusu dalam datar atau tabel yag meggambarka suatu persoala. Cotoh: statstk kurs dolar Amerka, statstk pertumbuha

Lebih terperinci

STATISTIKA. A. Tabel Langkah untuk mengelompokkan data ke dalam tabel distribusi frekuensi data berkelompok/berinterval: a. Rentang/Jangkauan (J)

STATISTIKA. A. Tabel Langkah untuk mengelompokkan data ke dalam tabel distribusi frekuensi data berkelompok/berinterval: a. Rentang/Jangkauan (J) STATISTIKA A. Tabel Lagkah utuk megelompokka data ke dalam tabel dstrbus frekues data berkelompok/berterval: a. Retag/Jagkaua (J) J X maks X m b. Bayak kelas (k) Megguaka atura Sturgess, yatu k,. log c.

Lebih terperinci

BAB V ANALISIS HIDROLOGI

BAB V ANALISIS HIDROLOGI ANALISIS HIDROLOGI 64 BAB V ANALISIS HIDROLOGI 5.. Tjaua Umum Utuk meetuka debt recaa, dapat dguaka beberapa metode atau cara. Metode yag dguaka sagat tergatug dar data yag terseda, data data tersebut

Lebih terperinci

KALKULUS LANJUT. Pertemuan ke-4. Reny Rian Marliana, S.Si.,M.Stat.

KALKULUS LANJUT. Pertemuan ke-4. Reny Rian Marliana, S.Si.,M.Stat. KALKULUS LANJUT Pertemua ke-4 Rey Ra Marlaa, S.S.,M.Stat. Plot Mater Notas Jumlah & Sgma Itegral Tetu Jumlah Rema Pedahulua Luas Notas Jumlah & Sgma Purcell, et all. (page 226,2003): Sebuah fugs yag daerah

Lebih terperinci

BAB II TINJAUAN TEORITIS. Statistik merupakan cara cara tertentu yang digunakan dalam mengumpulkan,

BAB II TINJAUAN TEORITIS. Statistik merupakan cara cara tertentu yang digunakan dalam mengumpulkan, BAB II TINJAUAN TEORITIS.1 Kosep Dasar Statstka Statstk merupaka cara cara tertetu yag dguaka dalam megumpulka, meyusu atau megatur, meyajka, megaalsa da member terpretas terhadap sekumpula data, sehgga

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. regresi berkenaan dengan studi ketergantungan antara dua atau lebih variabel yaitu

BAB 2 TINJAUAN TEORITIS. regresi berkenaan dengan studi ketergantungan antara dua atau lebih variabel yaitu BAB TINJAUAN TEORITIS. Pegerta Aalsa Regres Istlah regres pertama kal dperkealka oleh Fracs Galto. Meurutya, aalss regres berkeaa dega stud ketergatuga atara dua atau lebh varabel yatu varabel yag meeragka

Lebih terperinci

NPV DAN IRR IR. ASEP TOTO KARTAMAN, MENG

NPV DAN IRR IR. ASEP TOTO KARTAMAN, MENG DAN IRR IR. ASEP TOTO KARTAMAN, MENG SEMESTER PENDEK SEMESTER TAHUN AKADEMIK 03-04 Prod Tekk Idustr Fakultas Tekk Uverstas Pasuda Badug 04 PERHITUNGAN KELAYAKAN INVESTASI. Net Preset Value () merupaka

Lebih terperinci

ANALISIS DATA STATISTIK. Adi Setiawan

ANALISIS DATA STATISTIK. Adi Setiawan ANALISIS DATA STATISTIK Ad Setawa Peerbt Tsara Grafka Salatga 017 Katalog Dalam Terbta 519.5 ADI Ad Setawa a Aalss data statstk/ Ad Setawa. -- Salatga : Tsara Grafka, 017. v, 5 p. ; 5 cm. ISBN 978-60-9493-5-8

Lebih terperinci

BAB 2 LANDASAN TEORI. disebut dengan bermacam-macam istilah: variabel penjelas, variabel

BAB 2 LANDASAN TEORI. disebut dengan bermacam-macam istilah: variabel penjelas, variabel BAB LANDASAN TEORI.1 Pegerta Regres Regres dalam statstka adalah salah satu metode utuk meetuka tgkat pegaruh suatu varabel terhadap varabel yag la. Varabel yag pertama dsebut dega bermacam-macam stlah:

Lebih terperinci

BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL. Masalah regresi invers dengan bentuk linear dapat dijumpai dalam

BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL. Masalah regresi invers dengan bentuk linear dapat dijumpai dalam BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL 3. Pegerta Masalah regres vers dega betuk lear dapat djumpa dalam berbaga bdag kehdupa, dataraya dalam bdag ekoom, kesehata, fska, kma

Lebih terperinci

b) Untuk data berfrekuensi fixi Data (Xi)

b) Untuk data berfrekuensi fixi Data (Xi) B. Meghtug ukura pemusata, ukura letak da ukura peyebara data serta peafsraya A. Ukura Pemusata Data Msalka kumpula data berkut meujukka hasl pegukura tgg bada dar orag sswa. 0 cm 30 cm 5 cm 5 cm 35 cm

Lebih terperinci

Jawablah pertanyaan berikut dengan ringkas dan jelas menggunakan bolpoin. Total nilai 100. A. ISIAN SINGKAT (Poin 20) 2

Jawablah pertanyaan berikut dengan ringkas dan jelas menggunakan bolpoin. Total nilai 100. A. ISIAN SINGKAT (Poin 20) 2 M 81 STTISTIK DSR SEMESTER II 11/1 KK STTISTIK, FMIP IT SOLUSI UJIN TENGH SEMESTER (UTS) Sabtu, 1 Me 1, Pukul 9. 1.4 WI (1 met) Kelas 1. Pegajar: Udjaa S. Pasarbu/Rr. Kura Novta Sar, Kelas. Pegajar: Utrwe

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI. Defes Aalss Korelas da Regres a Aalss Korelas adalah metode statstka yag dguaka utuk meetuka kuatya atau derajat huuga lear atara dua varael atau leh. Semak yata huuga ler gars lurus,

Lebih terperinci

STATISTIKA DASAR. Oleh

STATISTIKA DASAR. Oleh STATISTIKA DASAR Oleh Suryo Gurto cara peyaja data - tabel - grak meghtug harga-harga petg : - ukura lokas - ukura sebara/peympaga apabla data mempuya observasya cukup bayak perlu dsusu secara sstematk

Lebih terperinci

TINJAUAN PUSTAKA Evaluasi Pengajaran

TINJAUAN PUSTAKA Evaluasi Pengajaran TINJAUAN PUSTAKA Evaluas Pegajara Evaluas adalah suatu proses merecaaka, memperoleh da meyedaka formas yag sagat dperluka utuk membuat alteratf- alteratf keputusa. Dalam hubuga dega kegata pegajara evaluas

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Sampa saat, model Regres da model Aalss Varas telah dpadag sebaga dua hal ag tdak berkata. Meskpu merupaka pedekata ag umum dalam meeragka kedua cara pada taraf permulaa,

Lebih terperinci

Penarikan Contoh Acak Sederhana (Simple Random Sampling)

Penarikan Contoh Acak Sederhana (Simple Random Sampling) Pearka Cotoh Acak Sederhaa (Smple Radom Samplg) Defs Jka sebuah cotoh berukura dambl dar suatu populas sedemka rupa sehgga setap cotoh berukura ag mugk memlk peluag sama utuk terambl, maka prosedur tu

Lebih terperinci

Regresi Linier Sederhana Definisi Pengaruh

Regresi Linier Sederhana Definisi Pengaruh Regres Ler Sederhaa Dah Idra Baga Bostatstka da Kepeduduka Fakultas Kesehata Masyarakat Uverstas Arlagga Defs Pegaruh Jka terdapat varabel, msalka da yag data-dataya dplot sepert gambar dbawah 3 Defs Pegaruh

Lebih terperinci

ANALISIS INDEKS DISTURBANCES STORM TIME DENGAN KOMPONEN H GEOMAGNET

ANALISIS INDEKS DISTURBANCES STORM TIME DENGAN KOMPONEN H GEOMAGNET Prosdg Semar Nasoal Peelta, Peddka da Peerapa MIPA Fakultas MIPA, Uverstas Neger Yogyakarta, 6 Me 9 ANALISIS INDEKS DISTURBANCES STORM TIME DENGAN KOMPONEN H GEOMAGNET Sty Rachyay Pusat Pemafaata Sas Atarksa,

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN A. Jes Peelta Dalam pelta peelt megguaka racaga eksperme. Eksperme adalah observas dbawah kods buata (artfcal codto), dmaa kods tersebut dbuat da d atur oleh s peelt. Dega

Lebih terperinci

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu KORELASI 1 D dua kta tdak dapat hdup sedr, tetap memerluka hubuga dega orag la. Hubuga tu pada umumya dlakuka dega maksud tertetu sepert medapat kergaa pajak, memperoleh kredt, memjam uag, serta mta pertologa/batua

Lebih terperinci

BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP

BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP Msal dguaka kode ler C[, k, d] dega matrks pembagu G da matrks cek partas H. Sebuah blok formas x = x 1 x 2 x k, x = 0 atau 1, yag aka dkrm terlebh

Lebih terperinci

PRAKTIKUM 5 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel

PRAKTIKUM 5 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel Praktkum 5 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel PRAKTIKUM 5 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel Tujua : Mempelajar metode Secat dega modfkas tabel utuk peelesaa

Lebih terperinci

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu BAB II LADASA TEORI Dalam pegambla sampel dar suatu populas, dperluka suatu tekk pegambla sampel yag tepat sesua dega keadaa populas tersebut. Sehgga sampel yag dperoleh adalah sampel yag dapat mewakl

Lebih terperinci

REGRESI LINIER SEDERHANA

REGRESI LINIER SEDERHANA MODUL REGRESI LINIER SEDERHANA Dsusu oleh : I MADE YULIARA Jurusa Fska Fakultas Matematka Da Ilmu Pegetahua Alam Uverstas Udayaa Tahu 016 Kata Pegatar Puj syukur saya ucapka ke hadapa Tuha Yag Maha Kuasa

Lebih terperinci

PRAKTIKUM 7 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel

PRAKTIKUM 7 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel Praktkum 7 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel PRAKTIKUM 7 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel Tujua : Mempelajar metode Secat dega modfkas tabel utuk peelesaa

Lebih terperinci

Pada saat upacara bendera, kita sering memperhatikan teman-teman kita.

Pada saat upacara bendera, kita sering memperhatikan teman-teman kita. Bab Ukura Data Pada saat upacara bedera, kta serg memperhatka tema-tema kta. Terkadag tapa sadar kta membadgka tgg redah sswa dalam upacara tersebut. Ada yag tggya 170 cm, 165 cm, 150 cm atau bahka 140

Lebih terperinci

III. METODE PENELITIAN. komparatif. Dalam penelitian ini, desain yang digunakan adalah pre test-post

III. METODE PENELITIAN. komparatif. Dalam penelitian ini, desain yang digunakan adalah pre test-post III. METODE PENELITIAN A. Metode Peelta Metode yag dguaka dalam peelta adalah metode eksperme komparatf. Dalam peelta, desa yag dguaka adalah pre test-post test desg (desa tes awal-tes akhr) sepert tabel

Lebih terperinci

X a, TINJAUAN PUSTAKA

X a, TINJAUAN PUSTAKA PENELITIAN SEBELUMNYA Statstka Deskrptf TINJAUAN PUSTAKA TINJAUAN STATISTIKA Uj Idepedes Uj depedes dguak utuk megetahu adaya hubuga atara dua varabel (Agrest, 1990). H 0 : tdak ada hubuga atara varabel

Lebih terperinci

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD Eka Mer Krst ), Arsma Ada ), Sgt Sugarto ) ekamer_tross@ymal.com ) Mahasswa Program S Matematka FMIPA-UR

Lebih terperinci

TEKNIK SAMPLING. Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Universitas Andalas

TEKNIK SAMPLING. Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Universitas Andalas TEKNIK SAMPLING Hazmra Yozza Izzat Rahm HG Jurusa Matematka FMIPA Uverstas Adalas Defs Suatu cotoh gerombol adalah suatu cotoh acak sederhaa dmaa setap ut pearka cotoh adalah kelompok atau gerombol dar

Lebih terperinci

III. METODE PENELITIAN. Populasi dalam penelitian ini adalah seluruh siswa kelas VII semester ganjil SMP

III. METODE PENELITIAN. Populasi dalam penelitian ini adalah seluruh siswa kelas VII semester ganjil SMP III. METODE PENELITIAN A. Popula da Sampel Popula dalam peelta adalah eluruh wa kela VII emeter gajl SMP Ba Mulya Badar Lampug Tahu Pelajara 0/0 dega jumlah wa ebayak 03 wa yag terbag dalam 3 kela. Sampel

Lebih terperinci

Tabel Distribusi Frekuensi

Tabel Distribusi Frekuensi Tabel Dstrbus Frekues Tabel dstrbus frekues adalah susua data meurut kelas-kelas terval tertetu atau meurut kategor tertetu dalam sebuah daftar. Dar dstrbus frekues, dapat dperoleh keteraga atau gambara

Lebih terperinci

PENDAHULUAN Metode numerik merupakan suatu teknik atau cara untuk menganalisa dan menyelesaikan masalah masalah di dalam bidang rekayasa teknik dan

PENDAHULUAN Metode numerik merupakan suatu teknik atau cara untuk menganalisa dan menyelesaikan masalah masalah di dalam bidang rekayasa teknik dan Aalsa Numerk Baha Matrkulas PENDAHULUAN Metode umerk merupaka suatu tekk atau cara utuk megaalsa da meyelesaka masalah masalah d dalam bdag rekayasa tekk da sa dega megguaka operas perhtuga matematk Masalah-masalah

Lebih terperinci

BAB 4 PENGUMPULAN, PENGOLAHAN DAN ANALISIS DATA

BAB 4 PENGUMPULAN, PENGOLAHAN DAN ANALISIS DATA 97 BAB 4 PENGUMPULAN, PENGOLAHAN DAN ANALISIS 4. Hasl da Pegumpula Data 4.. Peetua L Krts DATA Berdasarka hasl peelta da observas dlapaga secara lagsug pada lata produks PT. Fajar It Plasdo yag meghaslka

Lebih terperinci

BAB IV HASIL PENELITIAN. Hasil penelitian ini berdasarkan data yang diperoleh dari kegiatan penelitian

BAB IV HASIL PENELITIAN. Hasil penelitian ini berdasarkan data yang diperoleh dari kegiatan penelitian BAB IV HASIL PENELITIAN Hasl peelta berdasarka data yag dperole dar kegata peelta yag tela dlaksaaka ole peelt d MTs Salafya II Radublatug Blora pada kelas VIII A tau ajara 1 11. Data asl peelta tersebut

Lebih terperinci

1. Ruang Sampel dan Peristiwa

1. Ruang Sampel dan Peristiwa . Ruag Sampel da Perstwa. Ruag Sampel Defs Ruag sampel (Sample Space), S : totaltas semua hasl yag mugk dar sebuah percobaa. Ttk sampel atau outcome : eleme dar tap sel. Perstwa/kejada (Evet) : kumpula

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah BAB 1 PENDAHULUAN 1.1 Latar Belakag Masalah Regres merupaka suatu metode statstka yag dguaka utuk meyeldk pola hubuga atara dua atau lebh varabel.betuk atau pola hubuga varabelvarabel tersebut dapat ddetfkas

Lebih terperinci

TATAP MUKA III UKURAN PEMUSATAN DATA (MEAN, MEDIAN DAN MODUS) Fitri Yulianti, SP. Msi.

TATAP MUKA III UKURAN PEMUSATAN DATA (MEAN, MEDIAN DAN MODUS) Fitri Yulianti, SP. Msi. TATAP MUKA III UKURAN PEMUSATAN DATA (MEAN, MEDIAN DAN MODUS) Ftr Yulat, SP. Ms. UKURAN DATA Ukura data Ukura Pemusata data Ukura letak data Ukura peyebara data Mea Meda Jagkaua Meda Kuartl Jagkaua atar

Lebih terperinci

XI. ANALISIS REGRESI KORELASI

XI. ANALISIS REGRESI KORELASI I ANALISIS REGRESI KORELASI Aalss regres mempelajar betuk hubuga atara satu atau lebh peubah bebas dega satu peubah tak bebas dalam peelta peubah bebas basaya peubah yag dtetuka oelh peelt secara bebas

Lebih terperinci

Uji Modifikasi Peringkat Bertanda Wilcoxon Untuk Masalah Dua Sampel Berpasangan 1 Wili Solidayah 2 Siti Sunendiari 3 Lisnur Wachidah

Uji Modifikasi Peringkat Bertanda Wilcoxon Untuk Masalah Dua Sampel Berpasangan 1 Wili Solidayah 2 Siti Sunendiari 3 Lisnur Wachidah Prosdg Statstka ISSN 40-45 Uj Modfkas Pergkat Bertada Wlcoxo Utuk Masalah Dua Sampel Berpasaga 1 Wl Soldayah St Suedar 3 Lsur Wachdah 1, Statstka, Fakultas MIPA, Uverstas Islam Badug, Jl. Tamasar No. 1

Lebih terperinci

PENGUJIAN HIPOTESIS PROSEDUR UMUM PROSEDUR UMUM PROSEDUR UMUM. Langkah 1 : tentukan hipotesis 0 (H 0 ) dan anti hipotesis (H 1 )

PENGUJIAN HIPOTESIS PROSEDUR UMUM PROSEDUR UMUM PROSEDUR UMUM. Langkah 1 : tentukan hipotesis 0 (H 0 ) dan anti hipotesis (H 1 ) PENGUJIAN HIPOTESIS PROSEDUR UMUM Lagkah : tetuka hpote 0 (H 0 ) da at hpote (H ) malya: H 0 : µ 00 H : µ 00 atau H : µ > 00 atau H : µ < 00 PROSEDUR UMUM Lagkah : tetuka je dtrbu yag cocok: bla > 30 da

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Propinsi Gorontalo tahun pelajaran 2012/2013.

BAB III METODOLOGI PENELITIAN. Propinsi Gorontalo tahun pelajaran 2012/2013. BAB III METODOLOGI PENELITIAN 3.. Tempat da Waktu Peelta Peelta dlaksaaka d SMP Neger 3 Gorotalo kota Gorotalo Props Gorotalo tahu pelajara 0/03. D SMP Neger 3 Gorotalo memlk 6 romboga belajar yag terdr

Lebih terperinci

PRINSIP INKLUSI- EKSKLUSI INCLUSION- EXCLUSION PRINCIPLE

PRINSIP INKLUSI- EKSKLUSI INCLUSION- EXCLUSION PRINCIPLE RISI IKLUSI- EKSKLUSI ICLUSIO- EXCLUSIO RICILE rsp Iklus-Eksklus Ada berapa aggota dalam gabuga dua hmpua hgga? A A = A A - A A Cotoh Ada berapa blaga bulat postf lebh kecl atau sama dega 00 yag habs dbag

Lebih terperinci

BAB III ISI. x 2. 2πσ

BAB III ISI. x 2. 2πσ BAB III ISI 4. Keadata Normal Multvarat da Sfat-sfatya Keadata ormal multvarat meruaka geeralsas dar keadata ormal uvarat utuk dmes. f ( x) [( x )/ ] / = e x π x = ( x )( ) ( x ). < < (-) (-) Betuk (-)

Lebih terperinci

BAB 1 ERROR PERHITUNGAN NUMERIK

BAB 1 ERROR PERHITUNGAN NUMERIK BAB ERROR PERHITUNGAN NUMERIK A. Tujua a. Memaham galat da hampra b. Mampu meghtug galat da hampra c. Mampu membuat program utuk meelesaka perhtuga galat da hampra dega Matlab B. Peragkat da Mater a. Software

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di SMP Negeri 15 di kota Gorontalo

BAB III METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di SMP Negeri 15 di kota Gorontalo BAB III METODOLOGI PENELITIAN 3. Tempat Da Waktu Peelta 3.. Tempat peelta Peelta dlaksaaka d SMP Neger 5 d kota Gorotalo 3.. Waktu peelta Peelta dlaksaaka sejak bula oktober hgga bula desember, yag melput

Lebih terperinci

k N 1 = s X Dimana : = Jumlah pengamatan yang seharusnya dilakukan.

k N 1 = s X Dimana : = Jumlah pengamatan yang seharusnya dilakukan. Uj Kecukupa da keseragama Data Uj kecukupa data dguaka utuk meetuka bahwa jumlah sampel data yag dambl telah cukup utuk proses veres ataupu pegolaha sata pada proses selajutya. Dalam uj aka dguaka persamaa

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Dalam pemodela program ler, semua parameter yag dguaka dalam model dasumska dapat dketahu secara past. Parameter-parameter terdr dar koefse batasa ( ) a, la kuattas batasa

Lebih terperinci

KAJIAN BEBERAPA UJI KENORMALAN ABSTRACT

KAJIAN BEBERAPA UJI KENORMALAN ABSTRACT KAJIAN BEBERAPA UJI KENORMALAN St Karomah, Sgt Nugroho da Fachr Fasal Alum Jurusa Matematka, Fakultas MIPA, Uverstas Begkulu Dose Jurusa Matematka, Fakultas MIPA, Uverstas Begkulu ABSTRACT Ths research

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini dilaksanakan di SMAN 1 Terusan Nunyai. Populasi dalam penelitian

III. METODE PENELITIAN. Penelitian ini dilaksanakan di SMAN 1 Terusan Nunyai. Populasi dalam penelitian 3 III. METODE PENELITIAN A. Populas da Sampel Peelta dlaksaaka d SMAN Teusa Nuya. Populas dalam peelta adalah seluuh sswa kelas X SMAN Teusa Nuya semeste geap tahu pelajaa / yag bejumlah lma kelas. Kemampua

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Pada Bab I sudah dijelaskan bahwa tujuan penelitian ini adalah untuk

BAB II TINJAUAN PUSTAKA. Pada Bab I sudah dijelaskan bahwa tujuan penelitian ini adalah untuk BAB II TINJAUAN PUSTAKA 2.1 Pedahulua Pada Bab I sudah djelaska bahwa tujua peelta adalah utuk memperoleh ekspektas bayakya kompoe lstrk motor yag aka medapatka peggata berdasarka kebjaka Reewg Free Replacemet

Lebih terperinci

Ukuran Pemusatan Data. Arum Handini P., M.Sc Ayundyah K., M.Si.

Ukuran Pemusatan Data. Arum Handini P., M.Sc Ayundyah K., M.Si. Ukura Pemusata Data Arum Had P., M.Sc Ayudyah K., M.S. Notas utuk Populas da Sampel Notas: Mea (rata-rata) Sample x Populas μ Varas s 2 σ 2 Smpaga baku s σ Ukura Pemusata Data 1. Mea (rata-rata) 2. Meda

Lebih terperinci

UKURAN PEMUSATAN & PENYEBARAN

UKURAN PEMUSATAN & PENYEBARAN UKURAN PEMUSATAN & PENYEBARAN RATA - RATA UKURAN PEMUSATAN MEDIAN MODUS Rata rata htug (mea) Merupaka hasl bag dar sejumlah skr dega bayakya respde Utuk Data Tdak Berkelmpk x Dmaa : = la samapa x = la

Lebih terperinci

III. METODOLOGI PENELITIAN. Menurut Arikunto (1991 : 3) penelitian eksperimendalah suatu penelitian yang

III. METODOLOGI PENELITIAN. Menurut Arikunto (1991 : 3) penelitian eksperimendalah suatu penelitian yang 37 III. METODOLOGI PENELITIAN A. Metode Peelta Metode peelta merupaka suatu cara tertetu yag dguaka utuk meelt suatu permasalaha sehgga medapatka hasl atau tujua yag dgka. Meurut Arkuto (1991 : 3) peelta

Lebih terperinci

BAB II TINJAUAN PUSTAKA. dua sampel berpasangan akan menggunakan statistik uji T 2 -Hotelling. Untuk itu,

BAB II TINJAUAN PUSTAKA. dua sampel berpasangan akan menggunakan statistik uji T 2 -Hotelling. Untuk itu, BAB II TINJAUAN PUSTAKA. Pedahulua Dalam bab aka dbahas tetag uj t utuk meguj sebuah parameter rata-rata da selsh dua parameter rata-rata dua sampel berpasaga dbawah asums populas berdstrbus ormal. Pada

Lebih terperinci

MINGGU KE-10 HUBUNGAN ANTAR KONVERGENSI

MINGGU KE-10 HUBUNGAN ANTAR KONVERGENSI MINGGU KE-0 HUBUNGAN ANTAR KONVERGENSI Hubuga atar koverges Hrark atar koverges dyataka dalam teorema berkut. Teorema Msalka X da X, X, X 3,... adalah varabel radom yag ddefska pada ruag probabltas yag

Lebih terperinci

IMPLEMENTASI DAN KOMPARASI ATURAN SEGIEMPAT UNTUK PENYELESAIAN INTEGRAL DENGAN BATAS MENGGUNAKAN MATLAB

IMPLEMENTASI DAN KOMPARASI ATURAN SEGIEMPAT UNTUK PENYELESAIAN INTEGRAL DENGAN BATAS MENGGUNAKAN MATLAB Semar Nasoal Tekolog 007 (SNT 007) ISSN : 978 9777 IMPLEMENTASI DAN KOMPARASI ATURAN SEGIEMPAT UNTUK PENYELESAIAN INTEGRAL DENGAN BATAS MENGGUNAKAN MATLAB Krsawat STMIK AMIKOM Yogyakarta e-mal : krsa@amkom.ac.d

Lebih terperinci

Diagram Kontrol Atribut untuk Memantau Loyalitas Pelanggan

Diagram Kontrol Atribut untuk Memantau Loyalitas Pelanggan Prosdg Statstka ISSN: 460-646 Dagram Kotrol Atrbut utuk Mematau Loyaltas Pelagga 1 Ata Puspta, Suwada, 3 Sulad 1,,3 Prod Statstka, Fakultas Matematka da Ilmu Pegetahua Alam, Uverstas Islam Badug, Jl. Raggamalela

Lebih terperinci