Bab 5: Discrete Fourier Transform dan FFT

Ukuran: px
Mulai penontonan dengan halaman:

Download "Bab 5: Discrete Fourier Transform dan FFT"

Transkripsi

1 BAB 5 Dicrt Fourir Traform da FFT Bab 5: Dicrt Fourir Traform da FFT Dicrt Fourir Traform DFT. Dfiii Tuua Blaar Prta dapat mdfiiia DFT, da mghitugya. Utu mlaua aalii frui dari iyal watu dirit maa prlu mdapata rprtai domai frui dari iyal yag biaaya diyataa dalam domai watu. DFT diguaa utu mlaua aalia frui dari iyal watu dirit. Po it DFT dimaa, - da, - DFT dihitug mgguaa pramaa : higga dimaa Ivr DFT IDFT mghitug mbali rprtai iyal watu dirit dari iyal yag diyataa dalam domai frui ω. dimaa aar dari uity Tuua Blaar Prta dapat mmadag DFT bagai traformai liir da pralia matri trhadap vtor. DFT da IDFT dapat uga dipadag bagai traformai liir atara da, adi V-

2 BAB 5 Dicrt Fourir Traform da FFT V- dimaa da maig-maig adalah vtor dga buah lm M M Jia diyataa matri [ ] i i w maa, poit DFT dapat diyataa dalam btu daga IDFT dapat dihitug ia trdapat ivr dari. it bila Cotoh: Hitug poit DFT dari iyal igat 6. Hubuga DFT dga Sptrum Tuua Blaar 3 Prta dapat mghubuga DFT dga drt Fourir utu iyal priodi. Miala p adalah iyal priodi dga prioda, maa dapat diyataa Igat 9 6 3

3 BAB 5 Dicrt Fourir Traform da FFT V-3 p C di maa p C bila ambil p utu, - atu prioda maa C yag tida lai adalah. Tuua Blaar Prta dapat mghubuga DFT dga ptrum dari iyal apriodi. Bila l p l p priodi dga priod l l l [ ] p l FT l / ω bila othrwi p ˆ maa [ ] ˆ / DFT FT ω adi ˆ p haya bila fiit duratio L maa ˆ higga IDFT {}

4 BAB 5 Dicrt Fourir Traform da FFT.3 Hubuga DFT Dga Traformai z Tuua Blaar 5 Prta dapat mghubuga DFT dga traformai z dari iyal Lagrag itrpolator. z z bila durai maa z z z z ω ω z ω z Lagrag Itrpolatio ω / Sifat DFT Tuua Blaar 6 Prta mgrti da dapat mmafaata ifat liir, priodi da imtri irular. Sifat liir : Jia da -DFT -DFT maa utu barag otata a da a ral atau ompl a. a. -DFT a. a. Sifat priodi : Jia -DFT maa utu mua utu mua Sifat imtri irular V-

5 BAB 5 Dicrt Fourir Traform da FFT 3 Filtr Mgguaa DFT Tuua Blaar 7 Prta dapat mlaua filtrig liir dga DFT, da mmbadigaya dga ovolui. ω h Hω y Yω ω Hω YωHωω Aumia FIR da Fiit duratio Lt :, < da L durai L h, < da M durai M Yω Hω ω durai : L M- Bila Yω diampl maa amplig haru L M - IDFT agar y y maa Y Y,, - ω ω Y H, zro paddig IDFT Y y,..., L M Cotoh : FIR : h {,, 3} {,,, } Cari output dga mgguaa DFT da IDFT L, M 3 6 Pilih 8 agar uai dga FFT H 7 8 V-5

6 BAB 5 Dicrt Fourir Traform da FFT H 3, 7 h 8 3,...,7 8 8,,...,7 IDFT H 6 H 3 H H 3 3 H H 5 3 H 6 H 7 3 Y H Y 36 Y Y Y Y Y Y6 - Y y 7 Y 8,,,7 y {,, 9,, 8, 3,, } zropad aibat 8 poit aa lbih uar dari ovolui ttapi aa mgutuga bila M > -3 aliaig tradi bila < M L - Tuua Blaar 8 V-6

7 BAB 5 Dicrt Fourir Traform da FFT Prta dapat mlaua filtrig liir dga DFT, utu iyal yag paag, mlalui mtoda ovrlap-av da ovrlap-add. Utu mlaua filtrig iyal paag dapat dilaua dga cara Bloc-by-Bloc - Ovrlap-av mthod - Ovrlap-odd mthod Aumi FIR durai M Blo durai L Aumi L >> M Mtoda ovrlap-av L M - poit DFT da IDFT M- L w Data Old w DFT Utu blo -m Yˆ H M M M,, L-, - IDFT h Zro Paddig yˆ m { yˆ m, yˆ m,..., yˆ m M, yˆ m M- poit L hail ovolui datag dari old data buag M,..., yˆ } H Utu blo m - ambil M- poit trahir di blo m utu diguaa bagai old data pada bagia briut - ulagi {,,,,, L-} Ovrlap-add Mthod DFT m Fat Fourir Traform FFT Tuua Blaar 9 Prta mgrti op FFT da buttrfly. Kbutuha alulai DFT co i V-7

8 BAB 5 Dicrt Fourir Traform da FFT ara r I bia brilai ompl, maa R I. R r co. I R i I i I co prlu valuai trigoomtric fuctio ral multiplicatio - ral additio umlah idig addrig oprator Srig dibut O Guaa fata : imtri utu ma omputai Fat algorithm trdia utu r, r, r v di maa {r } prim Tuua Blaar Prta dapat mlaa FFT Radi- dimai dalam watu. Radi- FFT] - Kau huu r r r r r v - R radi- FFT v Dcimatio i Tim FFT. f,,..., f bagi quc f da f diprolh mlalui dimai f, f F F V-8

9 BAB 5 Dicrt Fourir Traform da FFT.,,, - v m m amu /, maa m f m m m odd m f m m m m m F F,,... di maa F : / poit DFT dari f m F : / poit DFT dari f m Kara F da F priodi, dga prioda /, F / F da F / F Juga, maa F F, /- F F, /- Bila G F G F G G poit DFT G G Lauta f V V f f poit poit f F V f poit V f poit V V poit V-9

10 BAB 5 Dicrt Fourir Traform da FFT F F F V V poit V V poit V V poit di maa v V / DFT poit Olog i i Ilutrai utu 8 ampl V f {, } V f {, } V f {, 5} V f 3 {3, 7} Tuua Blaar Prta dapat mlaa FFT Radi- dimai dalam frui. V-

Respon Frekuensi pada FIR Filter. Oleh:Tri Budi Sanrtoso ITS

Respon Frekuensi pada FIR Filter. Oleh:Tri Budi Sanrtoso ITS Rpo Frui pada FIR Filtr Olh:Tri Budi Sartoo Lab Siyal,, EEPIS-ITS ITS 1 Rpo iuoida pada itm FIR Suatu itm FIR diyataa: y[ ] b x[ ] h[ ] x[ ] 0 0 (1 Siyal iput cara umum mrupaa btu ompl dirit x[ ] x[ A

Lebih terperinci

ANALISIS CEPSTRUM SINYAL SUARA

ANALISIS CEPSTRUM SINYAL SUARA MAKALAH ANALII CEPTRUM INYAL UARA Disusu Ol: NENI ARYANI L2F 300 543 JURUAN TEKNIK ELEKTRO FAKULTA TEKNIK UNIVERITA DIPONEGORO E M A R A N G 2 0 0 2 DAFTAR II JUDUL... 1 ABTRAK... 1 1. Pdaulua.... 1 2.

Lebih terperinci

Bab 6: Analisa Spektrum

Bab 6: Analisa Spektrum BAB Aalisa Spetrum Bab : Aalisa Spetrum Aalisa Spetrum Dega DFT Tujua Belajar Peserta dapat meghubuga DFT dega spetrum dari sial hasil samplig sial watu otiue. -poit DFT dari sial x adalah Xω ag diealuasi

Lebih terperinci

b. peluang terjadinya peristiwa yang diperhatikan mendekati nol (p 0). c. perkalian n.p =, sehingga p = /n.

b. peluang terjadinya peristiwa yang diperhatikan mendekati nol (p 0). c. perkalian n.p =, sehingga p = /n. 0 DISTRIBUSI POISSO Distribusi Poisso ii diprolh dari distribusi biomial, apabila dalam distribusi biomial brlau syarat-syarat sbagai briut: a. baya pgulaga sprimya sagat bsar ( ). b. pluag trjadiya pristiwa

Lebih terperinci

Penggunaan Transformasi z

Penggunaan Transformasi z Pegguaa Trasformasi pada Aalisa Respo Freuesi Sistem FIR Oleh: Tri Budi Satoso E-mail:tribudi@eepis-its.eduits.edu Lab Siyal,, EEPIS-ITS ITS /3/6 osep pemiira domais of represetatio Domai- discrete time:

Lebih terperinci

Bab 5 Sinyal dan Sistem Waktu Diskrit. Oleh: Tri Budi Santoso Laboratorium Sinyal, EEPIS-ITS

Bab 5 Sinyal dan Sistem Waktu Diskrit. Oleh: Tri Budi Santoso Laboratorium Sinyal, EEPIS-ITS Bab 5 Siyal da Sistem Watu Disrit Oleh: Tri Budi Satoso Laboratorium Siyal, EEPIS-ITS Materi: Represetasi matemati pada siyal watu disrit, domai watu da freuesi pada suatu siyal watu disrit, trasformasi

Lebih terperinci

BAB II LANDASAN TEORI. gamma, fungsi likelihood, dan uji rasio likelihood. Misalkan dilakukan percobaan acak dengan ruang sampel C.

BAB II LANDASAN TEORI. gamma, fungsi likelihood, dan uji rasio likelihood. Misalkan dilakukan percobaan acak dengan ruang sampel C. BAB II LANDASAN TEORI Pada bab ii aa dibahas teori teori yag meduug metode upper level set sca statistics, atara lai peubah aca, distribusi gamma, fugsi gamma, fugsi lielihood, da uji rasio lielihood.

Lebih terperinci

Transformasi Fourier Waktu Diskrit

Transformasi Fourier Waktu Diskrit Praktikum Isyarat da Sistm Topik 5 Trasformasi ourir Waktu Diskrit Tuua Mahasiswa dapat mtuka da mgguaka trasformasi ourir waktu diskrit dalam aalisa suatu sistm LTI Mahasiswa dapat mgguaka MATLAB sbagai

Lebih terperinci

Gambar 3.1Single Channel Multiple Phase

Gambar 3.1Single Channel Multiple Phase BAB III MODEL ANTRIAN PADA PEMBUATAN SIM C. Sigle Chael Multiple Phase Sistem atria sigle chael multiple phase merupaa sistem atria dimaa pelagga yag tiba, dapat memasui sistem dega megatri di tempat yag

Lebih terperinci

Bab 7: Beberapa Topik Lanjut

Bab 7: Beberapa Topik Lanjut A 7 brapa opi Lau ab 7: brapa opi Lau Rprai Low Pa dari Sial adpa Moiai : uua laar Pra dapa laua aplig ial badpa ara ffii, lalui i LP rpraio dari ial P. Aalog P A Miala adalah bad-pa igal, aa dapa dibu

Lebih terperinci

JURNAL TEKNOLOGI TECHNOSCIENTIA ISSN: Vol. 5 No. 1 Agustus 2012

JURNAL TEKNOLOGI TECHNOSCIENTIA ISSN: Vol. 5 No. 1 Agustus 2012 JUNL TKNOLOGI TCHNOSCINTI ISSN: 979-845 Vol. 5 No. gutu PNPN PNMPTN NILI IGN INFINIT SISTM SINGUL P PNYLSIN PSMN POLINOMIL MTIKS NTUK [ ] X + Y U) Kri Suryowati Yudi Styawa Jurua Matmatia Ititut Sai da

Lebih terperinci

Transformasi Laplace 8/3/2013. Analisis Rangkaian Listrik Di Kawasan s. Pengantar. Isi. Transformasi Laplace

Transformasi Laplace 8/3/2013. Analisis Rangkaian Listrik Di Kawasan s. Pengantar. Isi. Transformasi Laplace Sudarya Sudirham alii agaia iri Di awaa Pgaar ia lah mliha bahwa aalii di awaa far lbih drhaa dibadiga dga aalii di awaa wau ara ida mlibaa ramaa difrial mlaia ramaa-ramaa alabar biaa. a ai aalii rbu rbaa

Lebih terperinci

Representasi sinyal dalam impuls

Representasi sinyal dalam impuls Represetasi siyal dalam impuls Represetasi siyal dalam impuls adalah siyal yag diyataa sebagai fugsi dari impuls atau sebagai umpula dari impuls-impuls. Sembarag siyal disret dapat diyataa sebagai pejumlaha

Lebih terperinci

Aplikasi Metode Matrix Cascade Pada Perhitungan Koefisien Pantul Gelombang Suara Bawah Air Untuk Dasar Laut Miring

Aplikasi Metode Matrix Cascade Pada Perhitungan Koefisien Pantul Gelombang Suara Bawah Air Untuk Dasar Laut Miring Apliasi tod atri Cascad Pada Prhituga Kofisi Patul Glombag Suara Bawah Air Utu Dasar aut irig Day Friyadi da Irsa Somatri Brodjogoro Program Studi Ti Klauta, Istitut Tologi Badug (Email : dayf899@gmail.com)

Lebih terperinci

Transformasi Laplace. Analisis Rangkaian Listrik Di Kawasan s 7/23/2013. Pengantar. Isi

Transformasi Laplace. Analisis Rangkaian Listrik Di Kawasan s 7/23/2013. Pengantar. Isi 7 Sudaryao Sudirham alii agaia iri Di awaa Pgaar ia lah mliha bahwa aalii di awaa faor lbih drhaa dibadiga dga aalii di awaa wau ara ida mlibaa ramaa difrial mlaia ramaa-ramaa alabar biaa. a ai aalii rbu

Lebih terperinci

SISTEM PENGOLAHAN ISYARAT. Kuliah 6 Transformasi Fourier Diskret

SISTEM PENGOLAHAN ISYARAT. Kuliah 6 Transformasi Fourier Diskret TKE 43 SISTEM PEGOLAHA ISYARAT Kuliah 6 Tafomai Foui Dik Idah Suilawai, S.T., M.Eg. Pogam Sudi Tkik Elko Fakula Tkik da Ilmu Komu Uivia Mcu Buaa Yogyakaa 9 KULIAH 6 SISTEM PEGOLAHA ISYARAT TRASFORMASI

Lebih terperinci

Bab 16 Integral di Ruang-n

Bab 16 Integral di Ruang-n Catata Kuliah MA3 Kalulus Elemeter II Oi Neswa,Ph.D., Departeme Matematia-ITB Bab 6 Itegral di uag- Itegral Gada atas persegi pajag Itegral Berulag Itegral Gada atas Daerah sebarag Itegral Gada Koordiat

Lebih terperinci

x x x1 x x,..., 2 x, 1

x x x1 x x,..., 2 x, 1 0.4 Variasi Kaoi amel Da Korelasi Kaoi amel amel aca dari observasi ada masig-masig variabel dari ( + q) variabel (), () daat digabuga edalam (( + q) ) data matris,,..., dimaa (0-5) Adau vetor rata-rata

Lebih terperinci

MOMEN AKUMULASI DARI SUATU ANUITAS AWAL DENGAN TINGKAT BUNGA ACAK

MOMEN AKUMULASI DARI SUATU ANUITAS AWAL DENGAN TINGKAT BUNGA ACAK MOMEN KUMULSI DRI SUTU NUITS WL DENGN TINGKT BUNG CK ri Fatmawati *, Johae Kho, ziha Mahaiwa Proram S Matematia Doe JuruaMatematia Faulta Matematia da Ilmu Peetahua lam Uiverita Riau Kampu Bia Widya 89

Lebih terperinci

FUNGSI RASIONAL DAN EKSPANSI FRAKSI PARSIAL (EFP)

FUNGSI RASIONAL DAN EKSPANSI FRAKSI PARSIAL (EFP) UNGSI RASIONAL DAN EKSPANSI RAKSI PARSIAL (EP) Ap Namuokhma Juua Tkik Elko Uivia Jdal Achmad Yai Mach EL Siyal da Sim Tuua Blaa : mgahui buk poliomial aau pamaa uku bayak dalam vaiabl mghiug aka-aka poliomial

Lebih terperinci

BAB V RANDOM VARIATE GENERATOR (PEMBANGKIT RANDOM VARIATE)

BAB V RANDOM VARIATE GENERATOR (PEMBANGKIT RANDOM VARIATE) BAB V RANDOM VARIATE GENERATOR (PEMBANGKIT RANDOM VARIATE) 5.1. Pembagit Radom Variate Disrit Suatu Radom Variate diartia sebagai ilai suatu radom variate yag mempuyai distribusi tertetu. Utu megambil

Lebih terperinci

BAB III TAKSIRAN PROPORSI POPULASI JIKA TERJADI NONRESPON. Dalam bab ini akan dibahas penaksiran proporsi populasi jika terjadi

BAB III TAKSIRAN PROPORSI POPULASI JIKA TERJADI NONRESPON. Dalam bab ini akan dibahas penaksiran proporsi populasi jika terjadi BAB III TAKSIRA PROPORSI POPULASI JIKA TERJADI ORESPO Dalam bab ii aa dibaas peasira proporsi populasi jia terjadi orespo da dilaua allba sebaya t ali. Selai itu, juga aa dibaas peetua uura sampel yag

Lebih terperinci

KOMPUTASI DAN DINAMIKA FLUIDA

KOMPUTASI DAN DINAMIKA FLUIDA KOMPUTASI DAN DINAMIKA FLUIDA TUGAS Olh RIRIN SISPIYATI NIM : 006003 Program Studi Matmatia INSTITUT TEKNOLOGI BANDUNG 009 Ercis 40 Ta as initial spctrum a bloc function nonzro for ½. Animat th initial

Lebih terperinci

METODE PENGUKURAN FERTILITAS

METODE PENGUKURAN FERTILITAS Diisi Pua Aa Kotiu Pua aa iataa otiu jia F P apat ugsi sara ( ( iyataa sagai ( ( F u u R ga : R aala ugsi yag tritgrala. Fugsi isut ugsi pata pluag ari. [Gritt a Stirzar 199] Nilai Harapa Diisi Nilai Harapa

Lebih terperinci

BAB 1 HAMPIRAN TAYLOR DAN ANALISIS GALAT

BAB 1 HAMPIRAN TAYLOR DAN ANALISIS GALAT Catata Kuliah EL Aalisis Numrik BAB HAMPIRAN TAYLOR DAN ANALISIS GALAT. Pgatar Mtod Numrik Ktika kita mylsaika prsamaa-prsamaa matmatika di maa torma-tormaya masih dapat ditrapka, solusi aalitik atau solusi

Lebih terperinci

BAB 2 SOLUSI NUMERIK PERSAMAAN

BAB 2 SOLUSI NUMERIK PERSAMAAN BAB SOLUSI NUMERIK PERSAMAAN Dalam sais da rkayasa, kita srigkali harus mcari akar solusi dari prsamaa f 0. Jika f mrupaka fugsi poliomial liar atau kuadratis, solusi ksakya mudah utuk didapatka kara rumusya

Lebih terperinci

MODUL BARISAN DAN DERET

MODUL BARISAN DAN DERET MODUL BARISAN DAN DERET SEMESTER 2 Muhammad Zaial Abidi Persoal Blog http://meetabied.wordpress.com BAB I. PENDAHULUAN A. Desripsi Dalam modul ii, ada aa mempelajari pola bilaga, barisa, da deret diidetifiasi

Lebih terperinci

InfinityJurnal Ilmiah Program Studi Matematika STKIP Siliwangi Bandung, Vol 1, No.2, September 2012

InfinityJurnal Ilmiah Program Studi Matematika STKIP Siliwangi Bandung, Vol 1, No.2, September 2012 IfiityJual Ilmiah Pogam Studi Matematia STKIP Siliwagi Badug, Vol, No., Septembe HIMPUNAN KOMPAK PADA RUANG METRIK Oleh : Cee Kustiawa Juusa Pedidia Matematia FPMIPA Uivesitas Pedidia Idoesia eeustiawa@yahoo.om

Lebih terperinci

Anova (analysis of varian)

Anova (analysis of varian) ova (aalysis of varia) Ui hipotesis perbedaa ilai rata-rata dari atau lebih elompo idepede Cotoh: daah perbedaa berat bayi lahir dari eluarga E tiggi dega E sedag atau E redah sumsi Ui ova: 1. ube diambil

Lebih terperinci

Jurnal MIPA 37 (1): (2014) Jurnal MIPA.

Jurnal MIPA 37 (1): (2014) Jurnal MIPA. Jural MIP 37 (1): 79-91 (014) Jural MIP http://oural.us.ac.id/u/id.php/jm ESENSI NILI DN EKTOR EIGEN DRI SUTU OPERTOR PD RUNG HILBERT KLSIK Wurato Jurusa Matmatia, FMIP, Uivrsitas Ngri Smarag, Idosia Ifo

Lebih terperinci

BAB 2 LANDASAN TEORI. lebar pita sinyal tersebut. Pada kebanyakan aplikasi, termasuk kamera digital video dan

BAB 2 LANDASAN TEORI. lebar pita sinyal tersebut. Pada kebanyakan aplikasi, termasuk kamera digital video dan BAB LADASA TEORI Teorema Shao-yquist meyataa agar tida ada iformasi yag hilag etia pecuplia siyal, maa ecepata pecuplia harus miimal dua ali dari lebar pita siyal tersebut. Pada ebayaa apliasi, termasu

Lebih terperinci

SIFAT SIFAT TRANSFORMASI LINEAR DARI R KE R

SIFAT SIFAT TRANSFORMASI LINEAR DARI R KE R SIF SIF RNSFORMSI LINER m DRI R KE R Diuu utuk memeuhi uga Mata Kuliah ljabar Liear Doe Pegampu : Dr. Suroo, M. Pd Diuu oleh : Kelompok. ge Chritie rii ( 84.55 ). dik Setyo Nugroho ( 84.65 ). Beti Lutvi

Lebih terperinci

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka oi eswa (fmipa-itb) Deret Positif Deret (ta berhigga) adalah ugapa berbetu a + a + a 3 + a 4 + dega a i disebut suu. Pejumlaha ii berbeda dega pejumlaha dua, tiga, atau berhigga bilaga. Maa, ita perlu

Lebih terperinci

BAB 6 NOTASI SIGMA, BARISAN DAN DERET

BAB 6 NOTASI SIGMA, BARISAN DAN DERET BAB 6 NOTASI SIGMA, BARISAN DAN DERET A RINGKASAN MATERI. Notasi Sigma Diberia suatu barisa bilaga, a, a,..., a. Lambag deret tersebut, yaitu: a = a + a +... + a a meyataa jumlah suu pertama barisa Sifat-sifat

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang Masalah

BAB I PENDAHULUAN. A. Latar Belakang Masalah BAB I PENDAHULUAN A. Latar Belakag Masalah Struktur alabar adalah suatu himpua yag di dalamya didefiisika suatu operasi bier yag memeuhi aksioma-aksioma tertetu. Gelaggag ( Rig ) merupaka suatu struktur

Lebih terperinci

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka oi eswa (fmipa-itb) Deret Positif Deret (ta berhigga) adalah ugapa berbetu a + a + a 3 + a 4 + dega a i disebut suu. Pejumlaha ii berbeda dega pejumlaha dua, tiga, atau berhigga bilaga. Maa, ita perlu

Lebih terperinci

4.3 Sampling dari distribusi normal dan estimasi likelihood maksimum

4.3 Sampling dari distribusi normal dan estimasi likelihood maksimum Hardwiyao Uomo 060545 4.3 Samlig dari disribusi ormal da simasi liklihood maksimum Liklihood ormal mulivaria Kia asumsika vkor,,..., dga mrrsasika saml acak dari oulasi ormal mulivaria dga raa-raa µ da

Lebih terperinci

MACAM-MACAM TEKNIK MEMBILANG

MACAM-MACAM TEKNIK MEMBILANG 0 MACAM-MACAM TEKNIK MEMBILANG ATURAN PERKALIAN Beriut ii diberia sebuah dalil tetag peetua baya susua yag palig sederhaa dalam suatu permasalaha yag beraita dega peluag. Dalil 2.1: ATURAN PERKALIAN SECARA

Lebih terperinci

BARISAN DAN DERET. U n = suku ke-n Contoh: Barisan bilangan asli, bilangan genap, bilangan ganjil, dan lain-lain.

BARISAN DAN DERET. U n = suku ke-n Contoh: Barisan bilangan asli, bilangan genap, bilangan ganjil, dan lain-lain. BARIAN DAN DERET A. Barisa Barisa adalah uruta bilaga yag memilii atura tertetu. etiap bilaga pada barisa disebut suu barisa yag dipisaha dega lambag, (oma). Betu umum barisa:,, 3, 4,, dega: = suu pertama

Lebih terperinci

Mengkaji Perbedaan Diagonalisasi Matriks Atas Field dan Matriks Atas Ring Komutatif

Mengkaji Perbedaan Diagonalisasi Matriks Atas Field dan Matriks Atas Ring Komutatif Megaji Perbedaa Diagoalisasi Matris Atas Field da Matris Atas Rig Komutatif Teorema : Jia A adalah matris x maa eryataa eryataa beriut eivale satu sama lai : a A daat didiagoalisasi b A memuyai vetor eige

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakag Dalam keadaa dimaa meghadapi persoala program liier yag besar, maka aka berusaha utuk mecari peyelesaia optimal dega megguaka algoritma komputasi, seperti algoritma

Lebih terperinci

PENGOLAHAN SINYAL DIGITAL. Modul 5. Sistem Waktu Diskret dan Aplikasi TZ

PENGOLAHAN SINYAL DIGITAL. Modul 5. Sistem Waktu Diskret dan Aplikasi TZ PENGOLHN SINL DIGITL Modul 5. Sistem Watu Disret da pliasi TZ Cotet Overview Sistem Watu Disrit Sstem Properties Shift Ivariace, Kausalitas, Stabilitas diaita dega TZ Trasformasi sistem dari persamaa differece

Lebih terperinci

1) Leptokurtik Merupakan distribusi yang memiliki puncak relatif tinggi

1) Leptokurtik Merupakan distribusi yang memiliki puncak relatif tinggi Statisti Desriptif Keruciga atau Kurtosis Pegertia Kurtosis Peguura urtosis (peruciga) sebuah distribusi teoritis adaalaya diamaam peguura eses (excess) dari sebuah distribusi Sebearya urtosis bisa diaggap

Lebih terperinci

INTEGRAL FOURIER. DISUSUN OLEH : Kelompok III (Tiga)

INTEGRAL FOURIER. DISUSUN OLEH : Kelompok III (Tiga) INTEGRA FOURIER DISUSUN OEH : Klompok III (Tiga). Maruah (7 6). Yusi Oktavia (7 45 ) 3. Widya Elvi AS (7 45) 4. Azar Saarudi (7 454) 5. Irmaati (7 455) Mata Kuliah Dos Pgasuh Klas : Matmatika ajuta : Fadli,

Lebih terperinci

Institut Teknologi Sepuluh Nopember Surabaya. Karakteristik Sistem Orde Tinggi

Institut Teknologi Sepuluh Nopember Surabaya. Karakteristik Sistem Orde Tinggi Iiu Teologi Sepuluh Nopember Surabaya Karaerii Siem Orde Tiggi Maeri Cooh Soal Rigaa Laiha Aeme Maeri Cooh Soal Siem Orde Tiga Siem Orde Tiggi Rigaa Laiha Aeme Maeri Cooh Soal Rigaa Laiha Aeme Pada bagia

Lebih terperinci

Peluang Suatu Kejadian, Kaidah Penjumlahan, Peluang Bersyarat, Kaidah Perkalian dan Kaidah Baiyes

Peluang Suatu Kejadian, Kaidah Penjumlahan, Peluang Bersyarat, Kaidah Perkalian dan Kaidah Baiyes eluag uatu Kejadia, Kaidah ejumlaha, eluag ersyarat, Kaidah eralia da Kaidah aiyes.eluag uatu Kejadia Defiisi : eluag suatu ejadia adalah jumlah peluag semua titi otoh dalam. Dega demiia : 0 (), ( ) =

Lebih terperinci

METODE NEWTON-STEFFENSEN DENGAN ORDE KEKONVERGENAN TIGA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR

METODE NEWTON-STEFFENSEN DENGAN ORDE KEKONVERGENAN TIGA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR METDE NEWTN-STEFFENSEN DENGN RDE KEKNVERGENN TIG UNTUK MENYELESIKN PERSMN NNLINER Fitiai, Joha Kho, Supiadi Puta Mahaiwa Pogam Studi S Matmatika FMIP Uivita Riau Do JuuaMatmatika FMIP Uivita Riau Fakulta

Lebih terperinci

EFEKTIVITAS PEMBELAJARAN MATEMATIKA DENGAN MODEL QUANTUM TEACHING (QT) DITINJAU DARI KREATIVITAS BELAJAR SISWA KELAS VIII SMP N 2 TURI

EFEKTIVITAS PEMBELAJARAN MATEMATIKA DENGAN MODEL QUANTUM TEACHING (QT) DITINJAU DARI KREATIVITAS BELAJAR SISWA KELAS VIII SMP N 2 TURI EFEKTIVITAS PEMBELAJARAN MATEMATIKA DENGAN MODEL QUANTUM TEACING (QT) DITINJAU DARI KREATIVITAS BELAJAR SISWA KELAS VIII SMP N TURI Moita Dwiyai ), Ni Wahyu Utami ) Faultas Kgurua da Ilmu Pdidia Uivrsitas

Lebih terperinci

SISTEM LINIER. Oleh : Kholistianingsih, S.T., M.Eng. lts 1

SISTEM LINIER. Oleh : Kholistianingsih, S.T., M.Eng. lts 1 SISTEM LINIER Oleh : Kholistiaigsih, S.T., M.Eg. lts 1 2 Isyarat Waktu Diskrit di kawasa waktu. 2.1 Represetasi Isyarat Waktu Diskrit 2.2 Klasifikasi Rutu 2.3 Rutu rutu Dasar 2.4 Operasi di kawasa waktu

Lebih terperinci

Pendugaan Parameter 1

Pendugaan Parameter 1 Topik Bahaa: Pedugaa Parameter 1 (Selag Pedugaa, Pedugaa Selag 1 Rata-Rata) Pertemua ke II 1 Ilutrai Statitika Ifereia : Mecakup emua metode yag diguaka utuk pearika keimpula atau geeraliai megeai populai

Lebih terperinci

MENGUJI KEMAKNAAN SAMPEL TUNGGAL

MENGUJI KEMAKNAAN SAMPEL TUNGGAL MENGUJI KEMAKNAAN SAMPEL TUNGGAL 1.1 Uji Biomial 1. Uji esesuaia Chi Kuadrat 1.3 Uji Kesesuaia K-S 1.4 Uji Ideedesi Chi Kuadrat 1.5 Uji Pasti Fisher UJI BINOMIAL Meruaa uji roorsi dalam suatu oulasi Poulasi

Lebih terperinci

Mata Kuliah: Statistik Inferensial

Mata Kuliah: Statistik Inferensial STATISTIK INFERENSIAL Prof. Dr. H. Almadi Syahza, SE., MP Email: ayahza@yahoo.co.id PROGRAM STUDI PENDIDIKAN EKONOMI FKIP UNIVERSITAS RIAU DISTRIBUSI SAMPLING 2 Bagia I Statitik Iduktif Metode da Ditribui

Lebih terperinci

Perluasan Uji Kruskal Wallis untuk Data Multivariat

Perluasan Uji Kruskal Wallis untuk Data Multivariat Statistia, Vol. No., Mei Perluasa Uji Krusal Wallis utu Data Multivariat TETI SOFIA YANTI Program Studi Statistia, Uiversitas Islam Badug, Jl. Purawarma No. Badug. E-mail: buitet@yahoo.com ABSTAK Adaia

Lebih terperinci

MATEMATIKA BISNIS. OLEH: SRI NURMI LUBIS, S.Si GICI BUSSINESS SCHOOL BATAM

MATEMATIKA BISNIS. OLEH: SRI NURMI LUBIS, S.Si GICI BUSSINESS SCHOOL BATAM MATEMATIKA BISNIS OLEH: SRI NURMI LUBIS, S.Si GICI BUSSINESS SCHOOL BATAM BAB BARISAN DAN DERET A. BARISAN Barisa bilaga adalah susua bilaga yag diurutka meurut atura tertetu.betuk umum barisa bilaga a,

Lebih terperinci

ESTIMASI. Jika parameter populasi disimbolkan dengan θ maka θ yang tidak diketahui harganya ditaksir oleh harga

ESTIMASI. Jika parameter populasi disimbolkan dengan θ maka θ yang tidak diketahui harganya ditaksir oleh harga ESTIMASI Salah atu aek utuk mearik keimula megeai uatu oulai dega memakai amel yag diambil dari oulai terebut megguaka etimai (eakira) Jika arameter oulai diimbolka dega θ maka θ yag tidak diketahui hargaya

Lebih terperinci

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto Tue 0/04/3 ETIMAI (PENDUGAAN TATITIK) Ir. Tito Adi Dewato Estimasi : salah satu cara megemukaka peryataa iduktif (meyataka karakteristik populasi dega meggu aka karakteristik yag didapat dari cuplika).

Lebih terperinci

BAB IV DESKRIPSI ANALISIS DATA

BAB IV DESKRIPSI ANALISIS DATA BAB IV DESKRIPSI ANALISIS DATA A. Dekripi Data Peelitia ii megguaka peelitia ekperime, ubyek peelitiaya dibedaka mejadi dua kela, yaitu kela kotrol da kela ekperime. Kela kotrol pada peelitia ii merupaka

Lebih terperinci

BAHAN AJAR DIKLAT GURU MATEMATIKA

BAHAN AJAR DIKLAT GURU MATEMATIKA BAHAN AJAR DIKLAT GURU MATEMATIKA DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN 005 DAFTAR ISI Kata Pegatar.. i Daftar Isi...

Lebih terperinci

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika Wed 6/0/3 ETIMAI (PENDUGAAN TATITIK) Ir. Tito Adi Dewato tatistika Deskriptif Iferesi Estimasi Uji Hipotesis Titik Retag Estimasi da Uji Hipotesis Dilakuka setelah peelitia dalam tahap pegambila suatu

Lebih terperinci

Aproksimasi Terbaik dalam Ruang Metrik Konveks

Aproksimasi Terbaik dalam Ruang Metrik Konveks Aprosimasi Terbai dalam Ruag etri Koves Oleh : Suharsoo S Jurusa atematia FIPA Uiversitas Lampug Abstra asalah esistesi da etuggala aprosimasi terbai suatu titi dalam ruag berorm telah dipelajari oleh

Lebih terperinci

STATISTIKA SMA (Bag.1)

STATISTIKA SMA (Bag.1) SMA - STATISTIKA SMA (Bag. A. DATA TUNGGAL. Ukura Pemusata : Terdapat ilai statistika yag dapat dimiliki oleh sekumpula data yag diperoleh yaitu : a. Rata-rata Rata-rata jumlah seluruh data bayakya data

Lebih terperinci

TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL HENSTOCK- KURZWEIL SERENTAK DAN FUNGSI BERSIFAT LOCALLY SMALL RIEMANN SUMS (LSRS) DARI RUANG EUCLIDE

TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL HENSTOCK- KURZWEIL SERENTAK DAN FUNGSI BERSIFAT LOCALLY SMALL RIEMANN SUMS (LSRS) DARI RUANG EUCLIDE Teorema Keovergea Fugsi Teritegral Hestoc(Aiswita) TORMA KKONVRGNAN FUNGSI TRINTGRAL HNSTOCK- KURZWIL SRNTAK DAN FUNGSI BRSIFAT LOCALLY SMALL RIMANN SUMS (LSRS) DARI RUANG UCLID K RUANG BARISAN Aiswita,

Lebih terperinci

Sistem Bilangan Kompleks (Bagian Ketiga)

Sistem Bilangan Kompleks (Bagian Ketiga) Sistem Bilaga Kompleks (Bagia Ketiga) Supama Jurusa Matematika, FMIPA UGM Yogyakarta 55281, INDONESIA Email:maspomo@yahoo.com, supama@ugm.ac.id (Pertemua Miggu III) Outlie 1 Akar Bilaga Kompleks 2 Akar

Lebih terperinci

Jurnal MIPA 38 (1) (2015): Jurnal MIPA.

Jurnal MIPA 38 (1) (2015): Jurnal MIPA. Jural MIPA 38 () (5): 68-78 Jural MIPA http://ouraluesacid/u/idephp/jm APROKSIMASI ANUIAS HIDUP MENGGUNAKAN KOMBINASI EKSPONENSIAL LJ Siay S Gurito Guardi 3 Jurusa Matematia FMIPA Uiversitas Pattimura

Lebih terperinci

B a b 1 I s y a r a t

B a b 1 I s y a r a t 34 TKE 315 ISYARAT DAN SISTEM B a b 1 I s y a r a t (bagia 3) Idah Susilawati, S.T., M.Eg. Program Studi Tekik Elektro Fakultas Tekik da Ilmu Komputer Uiversitas Mercu Buaa Yogyakarta 29 35 1.5.2. Isyarat

Lebih terperinci

PERBANDINGAN ANTARA TAPIS KALMAN DAN TAPIS EKSPONENSIAL PADA SENSOR ACCELEROMETER DAN SENSOR GYROSCOPE

PERBANDINGAN ANTARA TAPIS KALMAN DAN TAPIS EKSPONENSIAL PADA SENSOR ACCELEROMETER DAN SENSOR GYROSCOPE Sminar Naional nologi Informai & Komuniai rapan 20 (Smanti 20) ISBN 979-26-0255-0 PERBANDINGAN ANARA APIS KALMAN DAN APIS EKSPONENSIAL PADA SENSOR ACCELEROMEER DAN SENSOR GYROSCOPE Wahudi dan Wahu Widada

Lebih terperinci

BAB 2. Teori Pendukung Lingkungan. Misalkan z. adalah suatu titik pada bidang dan r adalah bilangan nyata. positif. Lingkungan r bagi z

BAB 2. Teori Pendukung Lingkungan. Misalkan z. adalah suatu titik pada bidang dan r adalah bilangan nyata. positif. Lingkungan r bagi z BAB Toi Pdukug.. Ligkuga Misalka z adalah suatu titik pada bidag da adalah bilaga yata positi. Ligkuga bagi z -ighbohood o z didiisika sbagai sluuh titik z pada bidag, sdmikia shigga z z < ; ditulis z,.

Lebih terperinci

3. Integral (3) (Integral Tentu)

3. Integral (3) (Integral Tentu) Darublic www.darublic.com. Itegral () (Itegral Tetu).. Luas Sebagai Suatu Itegral. Itegral Tetu Itegral tetu meruaa itegral ag batas-batas itegrasia jelas. Kose dasar dari itegral tertetu adalah luas bidag

Lebih terperinci

Pengujian Hipotesis untuk selisih dua nilai tengah populasi

Pengujian Hipotesis untuk selisih dua nilai tengah populasi Pegujia Hipotei utuk eliih dua ilai tegah populai Hipotei Hipotei atu arah: H 0 : - 0 v H : - < 0 H 0 : - 0 v H : - > 0 Hipotei dua arah: H 0 : - = 0 v H : - 0 Statitik uji z h ( ( ) ) 0 Formula klik diketahui

Lebih terperinci

I PENDAHULUAN II LANDASAN TEORI. mandiri jika tidak mengandung t secara eksplisit di dalamnya. (Kreyszig, 1983)

I PENDAHULUAN II LANDASAN TEORI. mandiri jika tidak mengandung t secara eksplisit di dalamnya. (Kreyszig, 1983) I PENDAHULUAN Latar Belaag Permasalaha ebiaa pemaea ia yag memberia eutuga masimum da berelauta (tida teradi epuaha dari populasi ia yag dipae) adalah hal yag sagat petig bagi idustri periaa Para ilmuwa

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN JURAL MATEMATKA DA KOMPUTER Vol. 6. o., 77-85, Agustus 003, SS : 40-858 DSTRBUS WAKTU BERHET PADA PROSES PEMBAHARUA Sudaro Jurusa Matematika FMPA UDP Abstrak Dalam proses stokhastik yag maa kejadia dapat

Lebih terperinci

Barisan Dan Deret Arimatika

Barisan Dan Deret Arimatika Barisa Da Deret Arimatika A. Barisa Aritmatika Niko etera memiliki sebuah peggaris ukura 0 cm. Ia megamati bilaga-bilaga pada peggarisya ii. Bilaga-bilaga tersebut beruruta 0, 1,, 3,, 0. etiap bilaga beruruta

Lebih terperinci

Distribution of the Difference of Two Independent Poisson Random Variables and Its Application to the Literate Population Data

Distribution of the Difference of Two Independent Poisson Random Variables and Its Application to the Literate Population Data Esata: Jural Imu-Ilmu MIA p. ISSN: 4-47. ISSN: 5-64 Distributio of th Diffrc of Two Idpdt oisso Radom Variabls ad Its Applicatio to th Litrat opulatio Data Atia Ahdia rogram Studi Statistia Uivrsitas Islam

Lebih terperinci

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP STATISTICS Haug N. Prasetyo Week 11 PENDAHULUAN Regresi da korelasi diguaka utuk megetahui hubuga dua atau lebih kejadia (variabel) yag dapat diukur secara matematis. Ada dua hal yag diukur atau diaalisis,

Lebih terperinci

C (z m) = C + C (z m) + C (z m) +...

C (z m) = C + C (z m) + C (z m) +... 4.. DERET PANGKAT Deret pagkat dari (x-m) merupaka deret tak higga yag betuk umumya adalah : i= i i C (z m) = C + C (z m) + C (z m) +... ( 4- ) C, C,... = kostata disebut koefisie deret m = kostata disebut

Lebih terperinci

HIMPUNAN RENTANGAN DAN BEBAS LINIER. di V. Vektor w dikatakan sebagai kombinasi linier dari vektor-vektor v, 1

HIMPUNAN RENTANGAN DAN BEBAS LINIER. di V. Vektor w dikatakan sebagai kombinasi linier dari vektor-vektor v, 1 HIMPUNAN RENTANGAN DAN BEBA LINIER HIMPUNAN RENTANGAN Defs (Kombas Ler) Msala V suatu ruag etor atas feld F. w etor d V, da, 1, juga etoretor d V. Vetor w dataa sebaga ombas ler dar etor-etor, 1, ja w

Lebih terperinci

PEMBAHASAN SOAL OSN MATEMATIKA SMP TINGKAT PROPINSI 2011 OLEH :SAIFUL ARIF, S.Pd (SMP NEGERI 2 MALANG)

PEMBAHASAN SOAL OSN MATEMATIKA SMP TINGKAT PROPINSI 2011 OLEH :SAIFUL ARIF, S.Pd (SMP NEGERI 2 MALANG) PEMBAHASAN SOAL OLIMPIADE SAINS NASIONAL SMP A. ISIAN SINGKAT SELEKSI TINGKAT PROPINSI TAHUN 011 BIDANG STUDI MATEMATIKA WAKTU : 150 MENIT 1. Jia x adalah jumlah 99 bilaga gajil terecil yag lebih besar

Lebih terperinci

STUDI PEMODELAN PERAMBATAN GELOMBANG SURJA PETIR PADA SALURAN TRANSMISI 150 KV MENGGUNAKAN METODE MULTI- CONDUCTOR TRANSMISSION LINE

STUDI PEMODELAN PERAMBATAN GELOMBANG SURJA PETIR PADA SALURAN TRANSMISI 150 KV MENGGUNAKAN METODE MULTI- CONDUCTOR TRANSMISSION LINE STUDI PEMODELAN PERAMBATAN GELOMBANG SURJA PETIR PADA SALURAN TRANSMISI 50 K MENGGUNAKAN METODE MULTI- CONDUCTOR TRANSMISSION LINE Kade Ad Dw Purwaa 2205 00 038 dose pembmbg :. Ir. Syarffudd M M.Eg. 2.

Lebih terperinci

Analisa Frekuensi Sinyal dan Sistem

Analisa Frekuensi Sinyal dan Sistem Alis Frusi Siyl d Sistm Alisis frusi siyl wtu otiu Alisis frusi siyl wtu disrit Sift-sift trsformsi Fourir Domi frusi sistm LT Sistm LT sbgi filtr Pristiw Disprsi Alisis Frusi wto 67 Fruhofr 787 Kirhoff

Lebih terperinci

OLEH: DESTRIYANTI TRI BUDIARTI YULLIA HESTIANA IRWAN SEPTEMBER GUNAWAN

OLEH: DESTRIYANTI TRI BUDIARTI YULLIA HESTIANA IRWAN SEPTEMBER GUNAWAN OLEH: DESTRIYANTI 7 58 TRI BUDIARTI 7 YULLIA HESTIANA 7 5 IRWAN SEPTEBER 7 46 GUNAWAN 7 KELAS : 6. L ATA KULIAH : ATEATIKA LANJUTAN DOSEN PENGASUH : FADLI, S.Si FAKULTAS KEGURUAN DAN ILU PENDIDIKAN UNIVERSITAS

Lebih terperinci

Inferensia dan Perbandingan Vektor Nilai Tengah

Inferensia dan Perbandingan Vektor Nilai Tengah Iferesia da Perbadiga Vektor Nilai egah Perbadiga Kasus Peubah uggal da Peubah Gada Peduga titik arameter ilai tegah Peduga selag ilai tegah Peguia hioteis ilai tegah satu oulasi Peguia beda ilai tegah

Lebih terperinci

METODE NUMERIK TKM4104. Kuliah ke-2 DERET TAYLOR DAN ANALISIS GALAT

METODE NUMERIK TKM4104. Kuliah ke-2 DERET TAYLOR DAN ANALISIS GALAT METODE NUMERIK TKM4104 Kuliah ke- DERET TAYLOR DAN ANALISIS GALAT DERET TAYLOR o Deret Taylor adalah alat yag utama utuk meuruka suatu metode umerik. o Deret Taylor bergua utuk meghampiri ugsi ke dalam

Lebih terperinci

Selang Kepercayaan (Confidence Interval) Pengantar Penduga titik (point estimator) telah dibahas pada kuliah-kuliah sebelumnya. Walau statistikawan

Selang Kepercayaan (Confidence Interval) Pengantar Penduga titik (point estimator) telah dibahas pada kuliah-kuliah sebelumnya. Walau statistikawan Selag Kepercayaa (Cofidece Iterval) Pegatar Peduga titik (poit estimator) telah dibahas pada kuliah-kuliah sebelumya. Walau statistikawa telah berusaha memperoleh peduga titik yag baik, amu hampir bisa

Lebih terperinci

HALAMAN Dengan definisi limit barisan buktikan limit berikut ini : = 0. a. lim PENYELESAIAN : jadi terbukti bahwa lim = 0 = 5. b.

HALAMAN Dengan definisi limit barisan buktikan limit berikut ini : = 0. a. lim PENYELESAIAN : jadi terbukti bahwa lim = 0 = 5. b. Didowload dari ririez.blog.us.ac.id HALAMAN 36 37 5. Dega defiisi limit barisa buktika limit berikut ii : a. lim = 0 lim 1 2 + 3 = 0 > 0 h 1 = 2 + 3 0 = 1 2 + 3 1 2 1 2 1 2 < jadi terbukti bahwa lim =

Lebih terperinci

APLIKASI TRANSFORMASI LAPLACE PADA PERSAMAAN KONSENTRASI OKSIGEN TERLARUT

APLIKASI TRANSFORMASI LAPLACE PADA PERSAMAAN KONSENTRASI OKSIGEN TERLARUT APIKASI RANSFORMASI APAE PADA PERSAMAAN KONSENRASI OKSIGEN ERARU II YUIASUI da WIDOWAI ABSRAK Pramaa oig rlaru uu rai buuha oig ord prama dimbaga uu rai ord / da muliord. Oig rlaru mrupaa alah au paramr

Lebih terperinci

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X Pedugaa Selag: Metode Pivotal Lagkah-lagkahya 1. Adaika X1, X,..., X adalah cotoh acak dari populasi dega fugsi kepekata f( x; ), da parameter yag tidak diketahui ilaiya. Adaika T adalah peduga titik bagi..

Lebih terperinci

Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya PENS. Probability and Random Process. Topik 10. Regresi

Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya PENS. Probability and Random Process. Topik 10. Regresi Program Pasca Sarjaa Terapa Politekik Elektroika Negeri Surabaya Probability ad Radom Process Topik 10. Regresi Prima Kristalia Jui 015 1 Outlie 1. Kosep Regresi Sederhaa. Persamaa Regresi Sederhaa 3.

Lebih terperinci

IV. METODE PENELITIAN

IV. METODE PENELITIAN IV. METODE PENELITIAN 4.1 Lokasi da Waktu peelitia Peelitia dilakuka pada budidaya jamur tiram putih yag dimiliki oleh usaha Yayasa Paguyuba Ikhlas yag berada di Jl. Thamri No 1 Desa Cibeig, Kecamata Pamijaha,

Lebih terperinci

Dasar Sistem Pengaturan - Transformasi Laplace. Transformasi Laplace bilateral atau dua sisi dari sinyal bernilai riil x(t) didefinisikan sebagai :

Dasar Sistem Pengaturan - Transformasi Laplace. Transformasi Laplace bilateral atau dua sisi dari sinyal bernilai riil x(t) didefinisikan sebagai : Defiisi Trasformasi Laplace Trasformasi Laplace Bilateral Trasformasi Laplace bilateral atau dua sisi dari siyal berilai riil x(t) didefiisika sebagai : X B x(t)e Operasi trasformasi Laplace bilateral

Lebih terperinci

4/15/2009. Arti investasi : a. Hasil penjualan. b. Biaya c. Ekspektasi dan kepercayaan.

4/15/2009. Arti investasi : a. Hasil penjualan. b. Biaya c. Ekspektasi dan kepercayaan. Arti ivestasi : a. Hasil pejuala. b. Biaya c. Ekspektasi da kepercayaa. Ivestasi : peigkata barag modal berujud Kekuata Ekoomi Utama; Hasil pegembalia ivestasi yag dipegaruhi oleh struktur ekoomi, biaya

Lebih terperinci

Pertemuan Ke-11. Teknik Analisis Komparasi (t-test)_m. Jainuri, M.Pd

Pertemuan Ke-11. Teknik Analisis Komparasi (t-test)_m. Jainuri, M.Pd Pertemua Ke- Komparasi berasal dari kata compariso (Eg) yag mempuyai arti perbadiga atau pembadiga. Tekik aalisis komparasi yaitu salah satu tekik aalisis kuatitatif yag diguaka utuk meguji hipotesis tetag

Lebih terperinci

Penerapan Algoritma Dijkstra dalam Pemilihan Trayek Bus Transjakarta

Penerapan Algoritma Dijkstra dalam Pemilihan Trayek Bus Transjakarta Peerapa Algoritma Dijstra dalam Pemiliha Traye Bus Trasjaarta Muhammad Yafi 504 Program Studi Tei Iformatia Seolah Tei Eletro da Iformatia Istitut Teologi Badug, Jl. Gaesha 0 Badug 40, Idoesia 504@std.stei.itb.ac.id

Lebih terperinci

--Fisheries Data Analysis-- Perbandingan ragam. By. Ledhyane Ika Harlyan. Faculty of Fisheries and Marine Science Brawijaya University

--Fisheries Data Analysis-- Perbandingan ragam. By. Ledhyane Ika Harlyan. Faculty of Fisheries and Marine Science Brawijaya University --Fiherie Data Aalyi-- Perbadiga ragam By. Ledhyae Ika Harlya Faculty of Fiherie ad Marie Sciece Brawijaya Uiverity Tujua Itrukioal Khuu Mahaiwa dapat megguaka aalii tatitika ederhaa dega berfoku ukura

Lebih terperinci

Persamaan Non-Linear

Persamaan Non-Linear Persamaa No-Liear Peyelesaia persamaa o-liear adalah meghitug akar suatu persamaa o-liear dega satu variabel,, atau secara umum dituliska : = 0 Cotoh: 2 5. 5 4 9 2 0 2 5 5 4 9 2 2. 2 0 2 5. e 0 Metode

Lebih terperinci

PENDUGAAN PARAMETER. Ledhyane Ika Harlyan

PENDUGAAN PARAMETER. Ledhyane Ika Harlyan PENDUGAAN PARAMETER Ledhyae Ika Harlya Jurua Pemafaata Sumberdaya Perikaa da Kelauta Uiverita Brawijaya 03 Statitik Ifereia Mecakup emua metode yag diguaka dalam pearika keimpula atau geeraliai megeai

Lebih terperinci

ANALISIS REGRESI. Untuk mengetahui bentuk linear atau nonlinear dapat dilakukan dengan membuat scatterplot seperti berikut : Gambar.

ANALISIS REGRESI. Untuk mengetahui bentuk linear atau nonlinear dapat dilakukan dengan membuat scatterplot seperti berikut : Gambar. ANALISIS REGRESI Berdasara betu eleara data, model regres dapat dlasfasa mead dua macam yatu lear da o-lear. Ja pola data lear maa dguaa pemodela lear. Begtu uga sebalya apabla pola data tda lear maa dguaa

Lebih terperinci

CATATAN KULIAH Pertemuan I: Pengenalan Matematika Ekonomi dan Bisnis

CATATAN KULIAH Pertemuan I: Pengenalan Matematika Ekonomi dan Bisnis CATATAN KULIAH Pertemua I: Pegeala Matematika Ekoomi da Bisis A. Sifat-sifat Matematika Ekoomi 1. Perbedaa Matematika vs. Nomamatematika Ekoomi Keutuga pedekata matematika dalam ilmu ekoomi Ketepata (Precise),

Lebih terperinci

INTERVAL KEPERCAYAAN

INTERVAL KEPERCAYAAN INTERVAL KEPERCAYAAN Tujua utama diambil ebuah ampel dari ebuah populai adalah utuk memperoleh iformai megeai parameter populai.. Ada cara meetuka parameter populai yaitu peakira da pegujia hipotei. Peakira

Lebih terperinci

BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP. Permasalahan dalam tugas akhir ini dibatasi hanya pada penaksiran

BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP. Permasalahan dalam tugas akhir ini dibatasi hanya pada penaksiran BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP Permasalaha dalam tugas akhir ii dibatasi haya pada peaksira besarya koefisie korelasi polychoric da tidak dilakuka peguia terhadap koefisie korelasi

Lebih terperinci

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 5

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 5 Mata Kuliah : Matematia Disrit Program Studi : Tei Iformatia Miggu e : 5 KOMBINATORIAL PENDAHULUAN Persoala ombiatori bua merupaa persoala baru dalam ehidupa yata. Baya persoala ombiatori sederhaa telah

Lebih terperinci