Mata Kuliah: Statistik Inferensial

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Mata Kuliah: Statistik Inferensial"

Transkripsi

1 STATISTIK INFERENSIAL Prof. Dr. H. Almadi Syahza, SE., MP PROGRAM STUDI PENDIDIKAN EKONOMI FKIP UNIVERSITAS RIAU DISTRIBUSI SAMPLING 2 Bagia I Statitik Iduktif Metode da Ditribui Samplig Pegertia Populai da Sampel Teori Pedugaa Statitik Metode Pearika Sampel Pegujia Hipotea Sampel Bear Kealaha Pearika Sampel Pegujia Hipotea Sampel Kecil Ditribui Sampel Rata-rata da Propori Aalii Regrei da Korelai Liear Aalii Regrei da Korelai Bergada Ditribui Sampel Seliih Rata-rata da Propori Faktor Koreki utuk Populai Terbata Fugi, Variabel, da Maalah dalam Aalii Regrei Dalil Bata Tegah 3

2 HUBUNGAN SAMPEL DAN POPULASI Populai Sampel 4 Sampel probabilita Merupaka uatu ampel yag dipilih edemikia rupa dari populai ehigga maig-maig aggota populai memiliki probabilita atau peluag yag ama utuk dijadika ampel. Sampel oprobabilita Merupaka uatu ampel yag dipilih edemikia rupa dari populai ehigga etiap aggota tidak memiliki probabilita atau peluag yag ama utuk dijadika ampel. 5 Bagia I Statitik Iduktif Metode da Ditribui Samplig Pegertia Populai da Sampel Teori Pedugaa Statitik Metode Pearika Sampel Pegujia Hipotea Sampel Bear Kealaha Pearika Sampel Pegujia Hipotea Sampel Kecil Ditribui Sampel Rata-rata da Propori Aalii Regrei da Korelai Liear Aalii Regrei da Korelai Bergada Ditribui Sampel Seliih Rata-rata da Propori Faktor Koreki utuk Populai Terbata Fugi, Variabel, da Maalah dalam Aalii Regrei Dalil Bata Tegah 6 2

3 METODE PENARIKAN SAMPEL Metode Pearika Sampel Sampel Probabilita (Probability Samplig) Sampel Noprobabilita (Noprobability Samplig).Pearika ampel acak ederhaa (imple radom amplig) 2. Pearika ampel acak tertruktur (tratified radom amplig) 3. Pearika ampel cluter (cluter amplig).pearika ampel itemati (ytematic amplig) 2. Pearika ampel kuota (kuota amplig) 3. Pearika ampel purpoive (purpoive amplig) 4. Pearika ecara awbol (bola alju) 7 Pearika Sampel Acak Sederhaa Merupaka pegambila ampel dari populai ecara acak tapa memperhatika trata yag ada dalam populai da etiap aggota populai memiliki keempata yag ama utuk dijadika ampel. 8 Dua cara ampel acak ederhaa:. Sitem Kocoka Sitem ampel acak ederhaa dega cara ama item aria. 2. Megguaka tabel acak Memilih ampel dega megguaka uatu tabel. Dalam pegguaaya ditetuka terlebih dahulu titik awal (tartig poit). 9 3

4 Pearika ampel acak tertruktur: Pearika ampel acak tertruktur dilakuka dega membagi aggota populai dalam beberapa ub kelompok yag diebut trata, lalu uatu ampel dipilih dari maig-maig tratum. 0 PROSES STRATIFIKASI Populai tidak bertrata Populai tertrata CONTOH MENENTUKAN JUMLAH SAMPEL SETIAP STRATUM Stratum Kelompok Jumlah Peretae Jumlah ampel aggota dari total per tratum Bulat (0,2 x 0) 2 Kotak (0,29 x 0) 3 Segitiga (0,50 x 0) Jumlah Total

5 CONTOH MENENTUKAN JUMLAH SAMPEL SETIAP STRATUM Stratum Kelompok Jumlah Peretae Jumlah ampel aggota dari total per tratum Bulat 4 0 (0,04 x 0) 2 Kotak 3 3 (0,3 x 0) 3 Segitiga (0,83 x 0) Jumlah Total CONTOH MEMILIH PERUSAHAAN DI BEJ Startum Kelompok Jumlah Peretae Jumlah Sampel Aggota dari Total per Stratum Bak (0,50 x 5) Aurai da pembiayaa (0,34 x 5) Efek 8 6 2(0,6 x 5) Jumlah Total SKEMA CLUSTER Populai Sampel Tertruktur Sampel Cluter 5 5

6 Pearika Sampel Sitemati Pearika dikataka ampel itemati apabila etiap uur atau aggota dalam populai diuu dega cara tertetu-secara alfabeti, dari bear kecil atau ebalikya-kemudia dipilih titik awal ecara acak lalu etiap aggota ke K dari populai dipilih ebagai ampel 6 Bagia I Statitik Iduktif Metode da Ditribui Samplig Pegertia Populai da Sampel Teori Pedugaa Statitik Metode Pearika Sampel Pegujia Hipotea Sampel Bear Kealaha Pearika Sampel Pegujia Hipotea Sampel Kecil Ditribui Sampel Rata-rata da Propori Aalii Regrei da Korelai Liier Aalii Regrei da Korelai Bergada Ditribui Sampel Seliih Rata-rata da Propori Faktor Koreki utuk Populai Terbata Fugi, Variabel, da Maalah dalam Aalii Regrei Dalil Bata Tegah 7 Kealaha pearika ampel Merupaka perbedaa atara ilai tatitik ampel dega ilai parameter dari populai. 8 6

7 Bagia I Statitik Iduktif Metode da Ditribui Samplig Pegertia Populai da Sampel Teori Pedugaa Statitik Metode Pearika Sampel Pegujia Hipotea Sampel Bear Kealaha Pearika Sampel Pegujia Hipotea Sampel Kecil Aalii Regrei da Korelai Liier Aalii Regrei da Korelai Bergada Ditribui Sampel Rata-rata da Propori Ditribui Sampel Seliih Rata-rata da Propori Faktor Koreki utuk Populai Terbata Fugi, Variabel, da Maalah dalam Aalii Regrei Dalil Bata Tegah 9 Ditribui ampel: Ditribui ampel dari rata-rata hitug ampel adalah uatu ditribui probabilita yag terdiri dari eluruh kemugkia rata-rata hitug ampel dari uatu ukura ampel tertetu yag dipilih dari populai, da probabilita terjadiya dihubugka dega etiap rata-rata hitug ampel. 20 CONTOH MENGHITUNG RETURN ON ASSET Bak Retu O Aet % Bak Bukopi 2 Bak BCA 4 Citi Bak 6 Bak Jabar 4 Bak Tugu 4 a. Nilai rata-rata populai µ = X/N = = 20/5 = 4 5 b. Nilai rata-rata populai da ampel apabila diambil ampel 2 dari 5 bak ) Kombiai N C = N!/! (N - )! = 5!/2!(5-2)! = 0 2 7

8 CONTOH MENGHITUNG RETURN ON ASSET 2) Perhituga rata-rata dari etiap ampel Bak Kombiai Retu O Aet % Rata-rata Hitug x Bukopi-BCA (6/2)= 3 Bukopi-Citibak (8/2)= 4 Bukopi-Bak Jabar (6/2)= 3 Bukopi-Bak Tugu 2+ 4 (6/2)= 3 BCA-Citibak (0/2)= 5 BCA-Bak Jabar (8/2)= 4 BCA-Bak Tugu (8/2)= 4 Citi Bak-Bak Jabar (0/2)= 5 Citi Bak-Bak Tugu (0/2)= 5 Bak Jabar-Bak Tugu (8/2)= 4 3) Nilai rata-rata ampel C X = X N X = = 40/0 = CONTOH MENGHITUNG RETURN ON ASSET c. Nilai rata-rata populai Nilai Frekuei Probabilita Nilai Frekuei Probabilita X Ditribui probabilita dalam betuk poligo 0,7 0,5 0,6 0,5 0,4 0,4 0,3 0,3 0,2 0, ,2 0,

9 CONTOH MENGHITUNG RETURN ON ASSET Stadar deviai ampel = ( X x ) 2 N C X (X - X) ( X - X) X = 40 µ x = 40/0 = 4 ( X - X) 2 = 6,0 σ x = /C N ( X -µ x ) 2 = 6/0 = 0,77 25 HUBUNGAN STANDAR DEVIASI SAMPEL DAN POPULASI Hubuga atara σ x da σ utuk populai terbata = σ N N Hubuga atara σ x da σ utuk populai yag tidak terbata = σ 26 DISTRIBUSI SAMPLING PROPORSI Nilai rata-rata propori Pp = Stadar deviai ampel propori p = p P C ( ) 2 p Stadar deviai propori N N C ( ) P P N p = N 27 9

10 Bagia I Statitik Iduktif Metode da Ditribui Samplig Pegertia Populai da Sampel Teori Pedugaa Statitik Metode Pearika Sampel Pegujia Hipotea Sampel Bear Kealaha Pearika Sampel Pegujia Hipotea Sampel Kecil Ditribui Sampel Rata-rata da Propori Aalii Regrei da Korelai Liear Aalii Regrei da Korelai Bergada Ditribui Sampel Seliih Rata-rata da Propori Faktor Koreki utuk Populai Terbata Fugi, Variabel, da Maalah dalam Aalii Regrei Dalil Bata Tegah 28 SKEMA SELISIH POPULASI ATAU SAMPEL Populai µ,σ Sampel berukura X,S x Apakah X,X = µ, 2 µ 2 Populai 2 µ 2,σ 2 Sampel 2 berukura X 2,Sx 2 29 X x x = X 2 X = µ µ 2 Ditribui eliih rata-rata P p p = Pp 2 Pp2 = p p2 Ditribui eliih propori 30 0

11 DISTRIBUSI SAMPEL SELISIH RATA-RATA DAN PROPORSI Nilai rata-rata ditribui ampel eliih rata-rata x x 2 xx x2 = x x2 = µ µ 2 Nilai Stadar deviai ditribui ampel eliih rata-rata x x x x 2 x x 2 = x + x 2 = + 2 Sedagka ilai Z utuk ditribui ampel eliih rata-rata Z = ( X X 2 ) ( µ µ 2 ) x x 2 3 SELISIH DISTRIBUSI RATA-RATA DAN POPULASI Nilai rata-rata ditribui ampel eliih propori Pp p2 P = P P = p p p p2 p p2 Nilai Stadar deviai ditribui ampel eliih rata-rata 2 2 P( 2 S p p = Sp 2 + Sp2 = 2 P) P2( P) + 2 σ p p2 Sedagka ilai Z utuk ditribui ampel eliih rata-rata Z = ( p p2) ( P P2 S p p2 ) 32 Bagia I Statitik Iduktif Metode da Ditribui Samplig Pegertia Populai da Sampel Teori Pedugaa Statitik Metode Pearika Sampel Pegujia Hipotea Sampel Bear Kealaha Pearika Sampel Pegujia Hipotea Sampel Kecil Ditribui Sampel Rata-rata da Propori Aalii Regrei da Korelai Liier Aalii Regrei da Korelai Bergada Koep Daar Peramaa Simulta Ditribui Sampel Seliih Rata-rata da Propori Faktor Koreki utuk Populai Terbata Dalil Bata Tegah 33

12 FAKTOR KOREKSI Peyeuaia tadar deviai utuk rata-rata hitug adalah: x = σ N N Peyeuaia tadar deviai utuk propori adalah: p = P( P) x N 34 Bagia I Statitik Iduktif Metode da Ditribui Samplig Pegertia Populai da Sampel Teori Pedugaa Statitik Metode Pearika Sampel Pegujia Hipotea Sampel Bear Kealaha Pearika Sampel Pegujia Hipotea Sampel Kecil Ditribui Sampel Rata-rata da Propori Aalii Regrei da Korelai Liier Aalii Regrei da Korelai Bergada Ditribui Sampel Seliih Rata-rata da Propori Faktor Koreki utuk Populai Terbata Fugi, Variabel, da Maalah dalam Aalii Regrei Dalil Bata Tegah 35 SAMPEL SAMA DENGAN POPULASI, VARIAN SAMPEL σ 2 /N Ditribui ampel: Utuk populai dega rata-rata µ da varia σ 2, rata-rata hitug ditribui ampel dari eluruh kemugkia kombiai ampel berukura yag diperoleh dari populai aka medekati ditribui ormal, di maa rata-rata hitug ditribui ampel ama dega rata-rata hitug populai varia ditribui ampel ama dega σ 2 /. ( X µ) da 36 2

INTERVAL KEPERCAYAAN

INTERVAL KEPERCAYAAN INTERVAL KEPERCAYAAN Tujua utama diambil ebuah ampel dari ebuah populai adalah utuk memperoleh iformai megeai parameter populai.. Ada cara meetuka parameter populai yaitu peakira da pegujia hipotei. Peakira

Lebih terperinci

PENDUGAAN PARAMETER. Ledhyane Ika Harlyan

PENDUGAAN PARAMETER. Ledhyane Ika Harlyan PENDUGAAN PARAMETER Ledhyae Ika Harlya Jurua Pemafaata Sumberdaya Perikaa da Kelauta Uiverita Brawijaya 03 Statitik Ifereia Mecakup emua metode yag diguaka dalam pearika keimpula atau geeraliai megeai

Lebih terperinci

Pendugaan Parameter. Selang Kepercayaan = Konfidensi Interval = Confidence Interval

Pendugaan Parameter. Selang Kepercayaan = Konfidensi Interval = Confidence Interval Pedugaa Parameter. Pedahulua Pedugaa Parameter Popoulai dilakuka dega megguaka ilai Statitik Sampel Mial :. x diguaka ebagai peduga bagi. diguaka ebagai peduga bagi 3. p atau p diguaka ebagai peduga bagi

Lebih terperinci

Pedahulua Pedugaa Parameter Pedugaa Parameter Populai dilakuka dega megguaka ilai Statitik Sampel, Mial :. x diguaka ebagai peduga bagi µ. diguaka ebagai peduga bagi σ 3. p atau p$ diguaka ebagai peduga

Lebih terperinci

Metode Statistika Pertemuan IX-X

Metode Statistika Pertemuan IX-X /7/0 Metode Statitika Pertemua IX-X Statitika Ifereia: Pedugaa Parameter Populai : Parameter Cotoh : Statitik Statitik merupaka PENDUGA bagi parameter populai Pegetahua megeai ditribui amplig PENDUGA TAK

Lebih terperinci

Tetapi apabila n < 5% N maka digunakan :

Tetapi apabila n < 5% N maka digunakan : Jei- jei pedugaa Iterval:. Pedugaa Parameter dega ampel bear (>30) a. Pedugaa terhadap parameter rata-rata Diketahui; z Maka; Z Z Tetapi apabila tadard deviai populai tidak diketahui, maka diguaka tadar

Lebih terperinci

PENDUGAAN PARAMETER METSTAT ANIK DJURAIDAH

PENDUGAAN PARAMETER METSTAT ANIK DJURAIDAH PENDUGAAN PARAMETER METSTAT ANIK DJURAIDAH PENDUGAAN PARAMETER Populai : Parameter Sampel : Statitik Statitik merupaka PENDUGA bagi parameter populai Pegetahua megeai ebara cotoh PENDUGA TAK BIAS DAN MEMPUNYAI

Lebih terperinci

Pendugaan Parameter. Selang Kepercayaan = Konfidensi Interval = Confidence Interval

Pendugaan Parameter. Selang Kepercayaan = Konfidensi Interval = Confidence Interval Pedugaa Parameter Pedahulua Pedugaa Parameter Populai dilakuka dega megguaka ilai Statitik Sampel Mial :. x diguaka ebagai peduga bagi. diguaka ebagai peduga bagi 3. p atau p diguaka ebagai peduga bagi

Lebih terperinci

Pendugaan Parameter 1

Pendugaan Parameter 1 Topik Bahaa: Pedugaa Parameter 1 (Selag Pedugaa, Pedugaa Selag 1 Rata-Rata) Pertemua ke II 1 Ilutrai Statitika Ifereia : Mecakup emua metode yag diguaka utuk pearika keimpula atau geeraliai megeai populai

Lebih terperinci

A.Interval Konfidensi pada Selisih Rata-rata

A.Interval Konfidensi pada Selisih Rata-rata A.Iterval Kofidei pada Seliih Rata-rata. Bila kita mempuyai da maig-maig adalah mea ample acak beba berukura da yag diambil dari populai dega ragam da diketahui, maka elag kepercayaa 00-% bagi - adalah

Lebih terperinci

Pengujian Hipotesis untuk selisih dua nilai tengah populasi

Pengujian Hipotesis untuk selisih dua nilai tengah populasi Pegujia Hipotei utuk eliih dua ilai tegah populai Hipotei Hipotei atu arah: H 0 : - 0 v H : - < 0 H 0 : - 0 v H : - > 0 Hipotei dua arah: H 0 : - = 0 v H : - 0 Statitik uji z h ( ( ) ) 0 Formula klik diketahui

Lebih terperinci

III. METODE PENELITIAN. Populasi penelitian ini yaitu seluruh siswa kelas X SMA Negeri 2 Bandar

III. METODE PENELITIAN. Populasi penelitian ini yaitu seluruh siswa kelas X SMA Negeri 2 Bandar 7 III. METDE PENELITIAN A. Populai Peelitia Populai peelitia ii yaitu eluruh iwa kela MA Negeri Badar Lampug dega ampel kela, pada emeter geap Tahu Pelajara 0/0. B. ampel Peelitia Tekik pegambila ampel

Lebih terperinci

SOAL PELATIHAN 1. File_Imamgun_Statistik Inferensial

SOAL PELATIHAN 1. File_Imamgun_Statistik Inferensial SOAL PELATIHAN. Jelaka pegertia hipotei?. Seorag peeliti biaaya tertarik meguji atu hipotei dari eam alteratif hipotei. Sebutka eam alteratif hipotei terebut? 3. Apa yag dimakud dega pegujia hipotei? 4.

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN A. Tujua Peelitia Berdaarka rumua maalah pada BAB I, peelitia kuatitatif ii bertujua utuk megetahui efektivita metode pembelajara dicovery dega megguaka Papa Tempel egi Empat

Lebih terperinci

MINGGU KE XII PENDUGAAN INTERVAL

MINGGU KE XII PENDUGAAN INTERVAL MINGGU KE XII PENDUGAAN INTERVAL Tujua Itrukioal Umum :. Mahaiwa mampu memahami apa yag dimakud dega pedugaa iterval. Mahaiwa mampu memahami pedugaa iterval utuk ample bear da utuk ample kecil 3. Mahaiwa

Lebih terperinci

Pendugaan. Parameter HAZMIRA YOZZA IZZATI RAHMI HG JURUSAN MATEMATIKA FMIPA UNIV. ANDALAS LOGO

Pendugaan. Parameter HAZMIRA YOZZA IZZATI RAHMI HG JURUSAN MATEMATIKA FMIPA UNIV. ANDALAS LOGO Pedugaa Parameter HAZMIRA YOZZA JURUSAN MATEMATIKA FMIPA UNIV. ANDALAS LOGO Kompetei meyebutka klp ifereia tatitika & ruag ligkupya mejelaka metode pedugaa klaik da yarat-yarat peduga yag baik pada pedugaa

Lebih terperinci

II. LANDASAN TEORI. Sampling adalah proses pengambilan atau memilih n buah elemen dari populasi yang

II. LANDASAN TEORI. Sampling adalah proses pengambilan atau memilih n buah elemen dari populasi yang II. LANDASAN TEORI Defiisi 2.1 Samplig Samplig adalah proses pegambila atau memilih buah eleme dari populasi yag berukura N (Lohr, 1999). Dalam melakuka samplig, terdapat teori dasar yag disebut teori

Lebih terperinci

STATISTICS. Confidence Intervals (Rentang Keyakinan) Confidence Intervals (1)

STATISTICS. Confidence Intervals (Rentang Keyakinan) Confidence Intervals (1) STATISTICS Cofidece Iterval (Retag Keyakia) Cofidece Iterval () Etimai Parameter Ditribui abilita memiliki ejumlah parameter. Parameter-parameter tb umumya tak diketahui. Nilai parameter terebut diperkiraka

Lebih terperinci

DISTRIBUSI SAMPLING. Oleh : Dewi Rachmatin

DISTRIBUSI SAMPLING. Oleh : Dewi Rachmatin DISTRIBUSI SAMPLING Oleh : Dewi Rachmati Distribusi Rata-rata Misalka sebuah populasi berukura higga N dega parameter rata-rata µ da simpaga baku. Dari populasi ii diambil sampel acak berukura, jika tapa

Lebih terperinci

A. Interval Konfidensi untuk Mean

A. Interval Konfidensi untuk Mean ESTIMASI INTERVAL A. Iterval Kofidei utuk Mea Defiii Jika ˆ merupaka etimator utuk parameter da P ˆ ˆ, maka ˆ ˆ diebut Dimaa iterval kofidei(-)00% utuk. :- koefiie kofidei ˆ, ˆ bata iterval tigkat kealaha

Lebih terperinci

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi.

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi. Distribusi Samplig (Distribusi Pearika Sampel). Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

BAB III ANALISIS PEMODELAN ANTRIAN HAULER PENGANGKUTAN OVERBURDEN PADA JALAN 7F

BAB III ANALISIS PEMODELAN ANTRIAN HAULER PENGANGKUTAN OVERBURDEN PADA JALAN 7F BAB III AALISIS EMODELA ATRIA HAULER EGAGKUTA OVERBURDE ADA JALA 7F 3.. edahulua ada Bab II telah dijelaka beberapa teori yag diguaka utuk melakuka aalii yag tepat dalam memecahka maalah yag ada. ada bab

Lebih terperinci

x = μ...? 2 2 s = σ...? x x s = σ...?

x = μ...? 2 2 s = σ...? x x s = σ...? Pedugaa Parameter x 2 sx s = μ...? 2 = σ x...? = σ...? Peduga Parameter Peduga titik yaitu parameter populasi p diduga dega suatu besara statistik, misal: rata-rata, proporsi, ragam, dll Peduga Selag (Iterval)

Lebih terperinci

BAB III METODE PENELITIAN. dengan kemampuan berpikir kreatif dengan menggunakan dua model

BAB III METODE PENELITIAN. dengan kemampuan berpikir kreatif dengan menggunakan dua model 3 BAB III METODE PENELITIAN A. Jei Peelitia Tujua peelitia ii yaki membadigka kemampua berpikir kriti dega kemampua berpikir kreatif dega megguaka dua model pembelajara yaitu model pembelajara berbai maalah

Lebih terperinci

1. Ilustrasi. Materi 2 Pendugaan Parameter

1. Ilustrasi. Materi 2 Pendugaan Parameter Materi Pedugaa Parameter. Ilutrai Ifereia Statitika : Mecaku emua metode yag diguaka utuk earika keimula atau geeraliai megeai oulai dega melakuka egambila amel (amlig) Etimai / Pedugaa Parameter Yaitu

Lebih terperinci

Pendugaan Parameter. Selang Kepercayaan dengan Distribusi z (Tabel hal 175) Nilai α dan Selang kepercayaan yang lazim digunakan antara lain:

Pendugaan Parameter. Selang Kepercayaan dengan Distribusi z (Tabel hal 175) Nilai α dan Selang kepercayaan yang lazim digunakan antara lain: Peahulua Peugaa Parameter Peugaa Parameter Populai ilakuka ega megguaka ilai Statitik Sampel, Mial :. x iguaka ebagai peuga bagi µ. iguaka ebagai peuga bagi σ 3. p atau p$ iguaka ebagai peuga bagi π Peugaa

Lebih terperinci

Diagram Kendali Simpangan Baku Eksak untuk Proses Berdistribusi Normal dengan Parameter σ Diketahui

Diagram Kendali Simpangan Baku Eksak untuk Proses Berdistribusi Normal dengan Parameter σ Diketahui Statitika, Vol. No., 5 6 Mei Diagram Kedali Simpaga Baku Ekak utuk Proe Berditribui Normal dega Parameter Diketahui Aceg Komarudi Mutaqi, Suwada Program Studi Statitika Fakulta MIPA Uiverita Ilam Badug,

Lebih terperinci

BAB IV DESKRIPSI ANALISIS DATA

BAB IV DESKRIPSI ANALISIS DATA BAB IV DESKRIPSI ANALISIS DATA A. Dekripi Data Peelitia ii megguaka peelitia ekperime, ubyek peelitiaya dibedaka mejadi dua kela, yaitu kela kotrol da kela ekperime. Kela kotrol pada peelitia ii merupaka

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN A. Tujua Peelitia Peelitia ii bertujua utuk megetahui apakah terdapat perbedaa hasil belajar atara pegguaa model pembelajara Jigsaw dega pegguaa model pembelajara Picture ad Picture

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN A III METODOLOGI PENELITIAN A. Jei da Deai Peelitia. Jei Peelitia Jei peelitia ii adalah peelitia ekperime. Metode peelitia ekperime merupaka metode peelitia yag diguaka utuk mecari treatmet (perlakua)

Lebih terperinci

--Fisheries Data Analysis-- Perbandingan ragam. By. Ledhyane Ika Harlyan. Faculty of Fisheries and Marine Science Brawijaya University

--Fisheries Data Analysis-- Perbandingan ragam. By. Ledhyane Ika Harlyan. Faculty of Fisheries and Marine Science Brawijaya University --Fiherie Data Aalyi-- Perbadiga ragam By. Ledhyae Ika Harlya Faculty of Fiherie ad Marie Sciece Brawijaya Uiverity Tujua Itrukioal Khuu Mahaiwa dapat megguaka aalii tatitika ederhaa dega berfoku ukura

Lebih terperinci

ESTIMASI. Jika parameter populasi disimbolkan dengan θ maka θ yang tidak diketahui harganya ditaksir oleh harga

ESTIMASI. Jika parameter populasi disimbolkan dengan θ maka θ yang tidak diketahui harganya ditaksir oleh harga ESTIMASI Salah atu aek utuk mearik keimula megeai uatu oulai dega memakai amel yag diambil dari oulai terebut megguaka etimai (eakira) Jika arameter oulai diimbolka dega θ maka θ yag tidak diketahui hargaya

Lebih terperinci

Metode Statistika Pertemuan XI-XII

Metode Statistika Pertemuan XI-XII /4/0 Metode Statitika Pertemua XI-XII Statitika Ifereia: Pegujia Hipotei Populai : = 0 Butuh pembuktia berdaarka cotoh!!! Apa yag diperluka? > 0? Maa yag bear? Sampel : 5 Ok, itu adalah pegujia hipotei,

Lebih terperinci

Pengertian Estimasi Titik. Estimasi (Pendugaan) Estimasi (Pendugaan) Estimasi (Pendugaan) Populasi dan Sampel. Mean Proporsi

Pengertian Estimasi Titik. Estimasi (Pendugaan) Estimasi (Pendugaan) Estimasi (Pendugaan) Populasi dan Sampel. Mean Proporsi Chapter 6 Studet Lecture Notes 6-1 Hal-1 Hal-2 Estimasi (Pedugaa) Estimasi (Pedugaa) TOPIK Pegertia Estimasi Estimasi titik Nilai rata-rata populasi Nilai proporsi populasi Estimasi Iterval Estimasi iterval

Lebih terperinci

INFERENSI STATISTIK Inferensi statistik mencakup semua metode yang digunakan dalam penarikan kesimpulan atau generalisasi mengenai populasi.

INFERENSI STATISTIK Inferensi statistik mencakup semua metode yang digunakan dalam penarikan kesimpulan atau generalisasi mengenai populasi. INFERENSI STATISTIK Iferei tatitik mecakup emua metode yag diguaka dalam pearika keimpula atau geeraliai megeai populai. Iferei Statitik Pedugaa Parameter Pegujia Hipotei PENDUGAAN PARAMETER Pedugaa parameter

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN A. Jei Peelitia Metode peelitia yag diguaka dalam kripi ii adalah metode peelitia kuatitatif ekperime yag berdeai pottet-oly cotrol deig, karea tujua dalam peelitia ii utuk mecari

Lebih terperinci

Jurusan Matematika Universitas Riau, Riau 1 Kampus Binawidya Pekanbaru 28293, Indonesia Jurusan Matematika Universitas Riau, Riau 2 ABSTRACT

Jurusan Matematika Universitas Riau, Riau 1 Kampus Binawidya Pekanbaru 28293, Indonesia Jurusan Matematika Universitas Riau, Riau 2 ABSTRACT Proidig emirata05 bidag MIPA BK-PT Barat Uiverita Tajugpura Potiaak PEAKIR RAIO DA PRODUK EKPOEIAL YAG EFIIE UTUK VARIAI POPULAI PADA AMPLIG ACAK EDERHAA EXPOETIAL RATIO AD PRODUCT ETIMATIO FOR POPULATIO

Lebih terperinci

Bab II Landasan Teori

Bab II Landasan Teori Bab II adaa eori Bab ii meyajika kajia item da teori-teori yag aka medaari da diguaka dalam mecari betuk model tereduki. Beberapa hal yag aka dikaji dalam bab ii adalah item PV da beberapa teori daar yag

Lebih terperinci

A. PENGERTIAN DISPERSI

A. PENGERTIAN DISPERSI UKURAN DISPERSI A. PENGERTIAN DISPERSI Ukura diperi atau ukura variai atau ukura peyimpaga adalah ukura yag meyataka eberapa jauh peyimpaga ilai-ilai data dari ilaiilai puatya atau ukura yag meyataka eberapa

Lebih terperinci

Yang biasa dinamakan test komposit lawan komposit. c. Hipotesis mengandung pengertian minimum. Perumusan H 0 dan H 1 berbentuk :

Yang biasa dinamakan test komposit lawan komposit. c. Hipotesis mengandung pengertian minimum. Perumusan H 0 dan H 1 berbentuk : PARAMETER PENGJIAN HIPOTESIS MODL PARAMETER PENGJIAN HIPOTESIS. Pedahulua Kalau yag sedag ditest atau diuji itu parameter θ dalam hal ii pegguaaya ati bias rata-rata µ prprsi p, simpaga baku σ da lai-lai,

Lebih terperinci

Statistika. Besaran Statistik

Statistika. Besaran Statistik Statitika Beara Statitik Itiarto Statitical Meaure Commo tatitical meaure Meaure of cetral tedecy Mea Mode Media Meaure of variability Rage Variace Stadard deviatio Meaure of a idividual i a populatio

Lebih terperinci

PENAKSIR RASIO UNTUK VARIANSI POPULASI MENGGUNAKAN KUARTIL DARI KARAKTER TAMBAHAN PADA SAMPLING ACAK SEDERHANA

PENAKSIR RASIO UNTUK VARIANSI POPULASI MENGGUNAKAN KUARTIL DARI KARAKTER TAMBAHAN PADA SAMPLING ACAK SEDERHANA PEAKIR RAIO UTUK VARIAI POPULAI MEGGUAKA KUARTIL DARI KARAKTER TAMBAHA PADA AMPLIG ACAK EDERHAA Ari Elvita *, Arima Ada, Hapoa irait Mahaiwa Program Matematika Doe Jurua Matematika Fakulta Matematika da

Lebih terperinci

Mata Kuliah: Statistik Inferensial

Mata Kuliah: Statistik Inferensial PENGUJIAN HIPOTESIS SAMPEL KECIL Prof. Dr. H. Almasdi Syahza, SE., MP Email: asyahza@yahoo.co.id DEFINISI Pegertia Sampel Kecil Sampel kecil yag jumlah sampel kurag dari 30, maka ilai stadar deviasi (s)

Lebih terperinci

Bab6 PENAKSIRAN PARAMETER

Bab6 PENAKSIRAN PARAMETER Bab6 PENAKSIRAN PARAMETER MENAKSIR RATARATA μ Mialka kita memuyai ebuah oulai berukura N dega ratarata µ da imaga baku σ Dari oulai ii arameter ratarata µ aka ditakir Utuk keerlua ii,ambil ebuah amel acak

Lebih terperinci

Distribusi Sampling merupakan distribusi teoritis (distribusi kemungkinan) dari semua hasil sampel yang mungkin, dengan ukuran sampel yang tetap N,

Distribusi Sampling merupakan distribusi teoritis (distribusi kemungkinan) dari semua hasil sampel yang mungkin, dengan ukuran sampel yang tetap N, DISTRIBUSI SAMLING opulasi da Sampel opulasi : totalitas dari semua objek/ idividu yg memiliki karakteristik tertetu, jelas da legkap yag aka diteliti Sampel : bagia dari populasi yag diambil melalui cara-cara

Lebih terperinci

BAB II ESTIMASI STATISTIK 2.1 Pengertian Estimasi a. Estimasi merupakan suatu metode dimana kita dapat memperkirakan nilai Populasi dengan memakai

BAB II ESTIMASI STATISTIK 2.1 Pengertian Estimasi a. Estimasi merupakan suatu metode dimana kita dapat memperkirakan nilai Populasi dengan memakai 3 BAB II ESTIMASI STATISTIK. Pegertia Etimai a. Etimai merupaka uatu metode dimaa kita dapat memperkiraka ilai Populai dega memakai ilai ampel. b. Etimai merupaka kegiata pearika keimpula tatitik yag berawal

Lebih terperinci

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika Wed 6/0/3 ETIMAI (PENDUGAAN TATITIK) Ir. Tito Adi Dewato tatistika Deskriptif Iferesi Estimasi Uji Hipotesis Titik Retag Estimasi da Uji Hipotesis Dilakuka setelah peelitia dalam tahap pegambila suatu

Lebih terperinci

Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Unand

Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Unand TEKIK SAMPLIG PCA SEDERHAA Hazmira Yozza Izzati Rahmi HG Jurusa Matematika FMIPA Uad Defiisi : Jika suatu cotoh berukura diambil dari suatu populasi berukura sedemikia rupa sehigga setiap kemugkia cotoh

Lebih terperinci

Metode Statistika STK211/ 3(2-3)

Metode Statistika STK211/ 3(2-3) Metode Statistika STK211/ 3(2-3) Pertemua VI Sebara Pearika Cotoh Septia Rahardiatoro - STK IPB 1 Sebara Pearika Cotoh Megidetifikasi sebara suatu fugsi dari cotoh ketika diambil dari suatu populasi X

Lebih terperinci

Pendugaan Parameter. Debrina Puspita Andriani /

Pendugaan Parameter. Debrina Puspita Andriani    / Pedugaa Parameter 7 Debria Puspita Adriai E-mail : debria.ub@gmail.com / debria@ub.ac.id Outlie Pedahulua Pedugaa Titik Pedugaa Iterval Pedugaa Parameter: Kasus Sampel Rataa Populasi Pedugaa Parameter:

Lebih terperinci

Statistika 2. Pendugaan Parameter. 1. Ilustrasi. Topik Bahasan: Oleh : Edi M. Pribadi, SP., MSc.

Statistika 2. Pendugaan Parameter. 1. Ilustrasi. Topik Bahasan: Oleh : Edi M. Pribadi, SP., MSc. Statitika Toik Bahaa: Pedugaa Parameter Oleh : Edi M Pribadi, SP, MSc E-mail: edi_m@taffguadarmaacid edi_m@ymailcom Ilutrai Statitika Ifereia : Mecaku emua metode yag diguaka utuk earika keimula atau geeraliai

Lebih terperinci

BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan

BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan BAB III METODE PENELITAN. Tempat Da Waktu Peelitia Peelitia dilakuka di SMP Negeri Batudaa Kab. Gorotalo dega subject Peelitia adalah siswa kelas VIII. Pemiliha SMP Negeri Batudaa Kab. Gorotalo. Adapu

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Lokasi da objek peelitia Lokasi peelitia dalam skripsi ii adalah area Kecamata Pademaga, alasa dalam pemiliha lokasi ii karea peulis bertempat tiggal di lokasi tersebut sehigga

Lebih terperinci

Distribusi Sampling (Distribusi Penarikan Sampel)

Distribusi Sampling (Distribusi Penarikan Sampel) Distribusi Samplig (Distribusi Pearika Sampel) 1. Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan REGRESI LINIER DAN KORELASI Variabel dibedaka dalam dua jeis dalam aalisis regresi: Variabel bebas atau variabel prediktor -> variabel yag mudah didapat atau tersedia. Dapat diyataka dega X 1, X,, X k

Lebih terperinci

II. LANDASAN TEORI. dihitung. Nilai setiap statistik sampel akan bervariasi antar sampel.

II. LANDASAN TEORI. dihitung. Nilai setiap statistik sampel akan bervariasi antar sampel. II. LANDASAN TEORI Defiisi 2.1 Distribusi Samplig Distribusi samplig adalah distribusi probibilitas dari suatu statistik. Distribusi tergatug dari ukura populasi, ukura sampel da metode memilih sampel.

Lebih terperinci

DISTRIBUSI SAMPLING (Distribusi Penarikan Sampel)

DISTRIBUSI SAMPLING (Distribusi Penarikan Sampel) DISTRIBUSI SAMPLING (Distribusi Pearika Sampel) I. PENDAHULUAN Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

Selang Kepercayaan dari Parameter Distribusi Log-Normal Menggunakan Metode Bootstrap Persentil

Selang Kepercayaan dari Parameter Distribusi Log-Normal Menggunakan Metode Bootstrap Persentil Statitika, Vol. 8 No. 1, 13 17 Mei 008 Selag Kepercayaa dari Parameter Ditribui Log-Normal Megguaka Metode Boottrap Peretil Akhmad Fauzy Jurua Statitika FMIPA Uiverita Ilam Idoeia Yogyakarta Abtract I

Lebih terperinci

Pendugaan Parameter: Kasus Dua sampel saling bebas. Selisih rataan dua populasi

Pendugaan Parameter: Kasus Dua sampel saling bebas. Selisih rataan dua populasi Pedugaa Parameter: Kau Dua amel alig beba Seliih rataa dua oulai - x x.96 x x.96 x x - SAMPLING ERROR Dugaa Selag bagi µ - µ ( x x z ( x x z Formula klik diketahui ama & Syarat : & Tidak ama Formula klik

Lebih terperinci

III BAHAN DAN METODE PENELITIAN. Ternak yang digunakan dalam penelitian ini adalah kuda berjumlah 25

III BAHAN DAN METODE PENELITIAN. Ternak yang digunakan dalam penelitian ini adalah kuda berjumlah 25 18 III BAHAN DAN METODE PENELITIAN 3.1 Baha Peelitia 3.1.1 Objek Peelitia Terak yag diguaka dalam peelitia ii adalah kuda berjumlah 25 ekor terdiri dari 5 jata da 20 betia dega umur berkisar atara 10 15

Lebih terperinci

BAB 6: ESTIMASI PARAMETER (2)

BAB 6: ESTIMASI PARAMETER (2) Bab 6: Estimasi Parameter () BAB 6: ESTIMASI PARAMETER (). ESTIMASI PROPORSI POPULASI Proporsi merupaka perbadiga atara terjadiya suatu peristiwa dega semua kemugkiaa peritiwa yag bisa terjadi. Besara

Lebih terperinci

BAB VII DISTRIBUSI SAMPLING DAN DESKRIPSI DATA

BAB VII DISTRIBUSI SAMPLING DAN DESKRIPSI DATA BAB VII DITRIBUI AMPLING DAN DEKRIPI DATA 7. Distribusi amplig (samplig distributio) amplig distributio adalah distribusi probabilitas dari suatu statistik. amplig distributio tergatug dari ukura populasi,

Lebih terperinci

TINJAUAN PUSTAKA Pengertian

TINJAUAN PUSTAKA Pengertian TINJAUAN PUSTAKA Pegertia Racaga peelitia kasus-kotrol di bidag epidemiologi didefiisika sebagai racaga epidemiologi yag mempelajari hubuga atara faktor peelitia dega peyakit, dega cara membadigka kelompok

Lebih terperinci

Nama: Analisis Statistika (STK511) SKS : 3 (2-2) Referensi:

Nama: Analisis Statistika (STK511) SKS : 3 (2-2) Referensi: Nama: Aalii Statitika (STK5 SKS : 3 (- Referei:. Mattjik, A.A da I M Sumertajaya. 00. Peracaga Percobaa dega Aplikai SAS da Miitab, Jilid I. IPB Pre. Bogor.. Motgomery, D.C. 99. Deig ad Aalyi of Eperimet,

Lebih terperinci

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto Tue 0/04/3 ETIMAI (PENDUGAAN TATITIK) Ir. Tito Adi Dewato Estimasi : salah satu cara megemukaka peryataa iduktif (meyataka karakteristik populasi dega meggu aka karakteristik yag didapat dari cuplika).

Lebih terperinci

Teori Penaksiran. Oleh : Dadang Juandi

Teori Penaksiran. Oleh : Dadang Juandi Teori Peakira Oleh : Dadag Juadi Pedahulua Ada metode iferei : metode klaik da metode Baye dalam meakir arameter oulai Dalam metode klaik iferei didaarka ada iformai yag dieroleh melalui amel acak Dalam

Lebih terperinci

JENIS PENDUGAAN STATISTIK

JENIS PENDUGAAN STATISTIK ENDUGAAN STATISTIK ENDAHULUAN Kosep pedugaa statistik diperluka utuk membuat dugaa dari gambara populasi. ada pedugaa statistik dibutuhka pegambila sampel utuk diaalisis (statistik sampel) yag ati diguaka

Lebih terperinci

PENDAHULUAN. Statistika penyajian DATA untuk memperoleh INFORMASI penafsiran DATA. Data (bentuk tunggal : Datum ) : ukuran suatu nilai

PENDAHULUAN. Statistika penyajian DATA untuk memperoleh INFORMASI penafsiran DATA. Data (bentuk tunggal : Datum ) : ukuran suatu nilai 1. Pegertia Statistika PENDAHULUAN Statistika berhubuga dega peyajia da peafsira kejadia yag bersifat peluag dalam suatu peyelidika terecaa atau peelitia ilmiah. Statistika peyajia DATA utuk memperoleh

Lebih terperinci

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak:

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak: PENGUJIAN HIPOTESIS A. Lagkah-lagkah pegujia hipotesis Hipotesis adalah asumsi atau dugaa megeai sesuatu. Jika hipotesis tersebut tetag ilai-ilai parameter maka hipotesis itu disebut hipotesis statistik.

Lebih terperinci

Fisika Statistik. Jumlah SKS : 3. Oleh : Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Mulawarman

Fisika Statistik. Jumlah SKS : 3. Oleh : Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Mulawarman Fiika Statitik Jumlah SKS : 3 Oleh : Rahmawati M, S.Si., M.Si. Jurua Fiika Fakulta Matematika da Ilmu Pegetahua Alam Uiverita Mulawarma Pertemua 2 da 3 Pedahulua (Termodiamika) 2. Statitik Maxwell-Boltzma.

Lebih terperinci

Statistika dibagi menjadi dua, yaitu: 1. Statistika Deskriftif 2. Statistik Inferensial Penarikan kesimpulan dapat dilakukan dengan dua cara, yaitu:

Statistika dibagi menjadi dua, yaitu: 1. Statistika Deskriftif 2. Statistik Inferensial Penarikan kesimpulan dapat dilakukan dengan dua cara, yaitu: Peaksira Parameter Statistika dibagi mejadi dua yaitu:. Statistika Deskriftif 2. Statistik Iferesial Pearika kesimpula dapat dilakuka dega dua cara yaitu:. Peaksira Parameter 2. Pegujia Hipotesis Peaksira

Lebih terperinci

BAB II LANDASAN TEORI. Pada bab ini akan dibahas dasar-dasar teori yang akan digunakan

BAB II LANDASAN TEORI. Pada bab ini akan dibahas dasar-dasar teori yang akan digunakan BAB II LANDASAN TEORI Pada bab ii aka dibaa daar-daar teori yag aka diguaka dalam peulia kripi ii, yaitu megeai metode peakira maximum likeliood, metode peakira oit maximum likeliood da fier iformatio..1

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3. Deain Penelitian yaitu: Pengertian deain penelitian menurut chuman dalam Nazir (999 : 99), Deain penelitian adalah emua proe yang diperlukan dalam perencanaan dan pelakanaan

Lebih terperinci

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL BAB VIII MASAAH ESTIMASI SAT DAN DA SAMPE 8.1 Statistik iferesial Statistik iferesial suatu metode megambil kesimpula dari suatu populasi. Ada dua pedekata yag diguaka dalam statistik iferesial. Pertama,

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN A. Jei Peelitia Peelitia ii merupaka peelitia ekperime. Peelitia ekperime yaitu peelitia yag egaja membagkitka timbulya uatu kejadia atau keadaa, kemudia diteliti bagaimaa akibatya

Lebih terperinci

Distribusi Pendekatan (Limiting Distributions)

Distribusi Pendekatan (Limiting Distributions) Distribusi Pedekata (Limitig Distributios) Ada 3 tekik utuk meetuka distribusi pedekata: 1. Tekik Fugsi Distribusi Cotoh 2. Tekik Fugsi Pembagkit Mome Cotoh 3. Tekik Teorema Limit Pusat Cotoh Fitriai Agustia,

Lebih terperinci

9 Departemen Statistika FMIPA IPB

9 Departemen Statistika FMIPA IPB Supleme Resposi Pertemua ANALISIS DATA KATEGORIK (STK351 9 Departeme Statistika FMIPA IPB Pokok Bahasa Sub Pokok Bahasa Referesi Waktu Pegatar Aalisis utuk Data Respo Kategorik Data respo kategorik Sebara

Lebih terperinci

STATISTIK PERTEMUAN VIII

STATISTIK PERTEMUAN VIII STATISTIK PERTEMUAN VIII Pegertia Estimasi Merupaka bagia dari statistik iferesi Estimasi = pedugaa, atau meaksir harga parameter populasi dega harga-harga statistik sampelya. Misal : suatu populasi yag

Lebih terperinci

BAB 6. Penggunaan SPSS dalam STATISTIK INFERENSI

BAB 6. Penggunaan SPSS dalam STATISTIK INFERENSI 54 Modul Statitika TI oleh Hartatik,M.Si BAB 6 Pegguaa SPSS dalam STATISTIK INFERENSI Tujua : a. Mahaiwa mampu melakuka uji beda mea dua ample b. Mahaiwa mampu melakuka uji beda propori c. Mahaiwa mampu

Lebih terperinci

BAB III METODE PENELITIAN. Penelitian ini merupakan jenis penelitian deskriptif-kuantitatif, karena

BAB III METODE PENELITIAN. Penelitian ini merupakan jenis penelitian deskriptif-kuantitatif, karena 7 BAB III METODE PENELITIAN A. Jeis Peelitia Peelitia ii merupaka jeis peelitia deskriptif-kuatitatif, karea melalui peelitia ii dapat dideskripsika fakta-fakta yag berupa kemampua siswa kelas VIII SMP

Lebih terperinci

REGRESI LINIER GANDA

REGRESI LINIER GANDA REGRESI LINIER GANDA Secara umum, data hasil pegamata Y bisa terjadi karea akibat variabelvariabel bebas,,, k. Aka ditetuka hubuga atara Y da,,, k sehigga didapat regresi Y atas,,, k amu masih meujukka

Lebih terperinci

Materi Kuliah: Statistik Inferensial

Materi Kuliah: Statistik Inferensial TEORI PENDUGAAN STATISTIK Prof. Dr. Almasdi Syahza, SE., MP Email: asyahza@yahoo.co.id 1 Teori Statistik Pengujian Hipotesa Besar Pengujian Hipotesa Kecil Memilih Ukuran Teori Statistik Pengujian Hipotesa

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN 9 III. METODE PENELITIAN A. Lokasi da Objek Peelitia Peelitia ii dilakuka di RPH Tejo Petak 10i, BKPH Parug Pajag KPH Bogor, Perum Perhutai Uit III Jawa Barat da Bate. Objek peelitia adalah waktu kerja

Lebih terperinci

Teori Penaksiran. Oleh : Dewi Rachmatin

Teori Penaksiran. Oleh : Dewi Rachmatin Teori Peakira Oleh : Dewi Rachmati Pedahulua Ada metode iferei : metode klaik da metode Baye dalam meakir arameter oulai Dalam metode klaik iferei didaarka ada iformai yag dieroleh melalui amel acak Dalam

Lebih terperinci

1200 (0,535) (0,465) (1200 1).0,05 + (0,535) (0,465)

1200 (0,535) (0,465) (1200 1).0,05 + (0,535) (0,465) = DATA DAN METODE PENELITIAN Data Peelitia Data yag diguaka dalam peelitia ii adalah data primer hasil yag diperoleh melalui peyebara kuisioer da metode wawacara sebagai data pelegkap. Pegumpula data dilaksaaka

Lebih terperinci

BAB V ANALISA PEMECAHAN MASALAH

BAB V ANALISA PEMECAHAN MASALAH 89 BAB V ANALISA PEMECAHAN MASALAH Dalam upaya mearik kesimpula da megambil keputusa, diperluka asumsi-asumsi da perkiraa-perkiraa. Secara umum hipotesis statistik merupaka peryataa megeai distribusi probabilitas

Lebih terperinci

A. Pengertian Hipotesis

A. Pengertian Hipotesis PENGUJIAN HIPOTESIS A. Pegertia Hipotesis Hipotesis statistik adalah suatu peryataa atau dugaa megeai satu atau lebih populasi Ada macam hipotesis:. Hipotesis ol (H 0 ), adalah suatu hipotesis dega harapa

Lebih terperinci

IV METODE PENELITIAN 4.1 Lokasi dan waktu 4.2. Jenis dan Sumber Data 4.3 Metode Pengumpulan Data

IV METODE PENELITIAN 4.1 Lokasi dan waktu 4.2. Jenis dan Sumber Data 4.3 Metode Pengumpulan Data IV METODE PENELITIAN 4.1 Lokasi da waktu Peelitia ii dilakuka di PD Pacet Segar milik Alm Bapak H. Mastur Fuad yag beralamat di Jala Raya Ciherag o 48 Kecamata Cipaas, Kabupate Ciajur, Propisi Jawa Barat.

Lebih terperinci

Bab I Dasar Teori. Inferensi Statistik

Bab I Dasar Teori. Inferensi Statistik Bab I Daar Teori Iferei Statitik Iferei tatitik adalah pegambila keimpula tetag parameter populai berdaarka aalia pada ampel. Beberapa hal yag perlu diketahui berhubuga dega iferei tatitik yaitu etimai

Lebih terperinci

Sampling Process and Sampling Distribution Inference : Point and Interval Estimates. Pertemuan 2

Sampling Process and Sampling Distribution Inference : Point and Interval Estimates. Pertemuan 2 Samplig Process ad Samplig Distributio Iferece : Poit ad Iterval Estimates Pertemua 1 CAKUPAN MATERI: Pemahama tetag Samplig Sampel Acak Sederhaa (Simple Radom Samplig SRS) Estimasi Titik (Poit Estimatio)

Lebih terperinci

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi Distribusi Samplig (Distribusi Pearika Sampel) 1. Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

MA 2081 STATISTIKA DASAR SEMESTER I 2012/2013 KK STATISTIKA, FMIPA ITB

MA 2081 STATISTIKA DASAR SEMESTER I 2012/2013 KK STATISTIKA, FMIPA ITB MA 081 STATISTIKA DASAR SEMESTER I 01/013 KK STATISTIKA, FMIPA ITB UJIAN RE-EVALUASI Jum at, 1 Deember 01, 13.30 15.30 WIB (10 MENIT) Kela 01. Pengajar: Utriweni Mukhaiyar, Kela 0. Pengajar: Sumanto Winotoharjo

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Metode Peelitia Peelitia ii megguaka metode peelitia Korelasioal. Peelitia korelasioaal yaitu suatu metode yag meggambarka secara sistematis da obyektif tetag hubuga atara

Lebih terperinci

Statistika Inferensial

Statistika Inferensial Cofidece Iterval Ara Fariza Statistika Iferesial Populasi Sampel Simpulka (estimasi) tetag parameter Medapatka statistik Estimasi: estimasi titik, estimasi iterval, uji hipotesa 2 1 Proses Estimasi Populasi

Lebih terperinci

SEBARAN t dan SEBARAN F

SEBARAN t dan SEBARAN F SEBARAN t da SEBARAN F 1 Tabel uji t disebut juga tabel t studet. Sebara t pertama kali diperkealka oleh W.S. Gosset pada tahu 1908. Saat itu, Gosset bekerja pada perusahaa bir Irladia yag melarag peerbita

Lebih terperinci

BAB III METODE PENELITIAN Penelitian ini dilakukan di kelas X SMA Muhammadiyah 1 Pekanbaru. semester ganjil tahun ajaran 2013/2014.

BAB III METODE PENELITIAN Penelitian ini dilakukan di kelas X SMA Muhammadiyah 1 Pekanbaru. semester ganjil tahun ajaran 2013/2014. BAB III METODE PENELITIAN A. Waktu da Tempat Peelitia Peelitia dilaksaaka dari bula Agustus-September 03.Peelitia ii dilakuka di kelas X SMA Muhammadiyah Pekabaru semester gajil tahu ajara 03/04. B. Subjek

Lebih terperinci

BAB II METODOLOGI PENELITIAN. kualitatif. Kerangka acuan dalam penelitian ini adalah metode penelitian

BAB II METODOLOGI PENELITIAN. kualitatif. Kerangka acuan dalam penelitian ini adalah metode penelitian BAB II METODOLOGI PEELITIA 2.1. Betuk Peelitia Betuk peelitia dapat megacu pada peelitia kuatitatif atau kualitatif. Keragka acua dalam peelitia ii adalah metode peelitia kuatitatif yag aka megguaka baik

Lebih terperinci

STATISTIKA NON PARAMETRIK

STATISTIKA NON PARAMETRIK . PENDAHULUAN STATISTIKA NON PARAMETRIK Kelebiha Uji No Parametrik: - Perhituga sederhaa da cepat - Data dapat berupa data kualitatif (Nomial atau Ordial) - Distribusi data tidak harus Normal Kelemaha

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Didalam melakuka kegiata suatu alat atau mesi yag bekerja, kita megeal adaya waktu hidup atau life time. Waktu hidup adalah lamaya waktu hidup suatu kompoe atau uit pada

Lebih terperinci

BAB III METODE PENELITIAN. Penelitian ini dilaksanakan di kelas XI MIA SMA Negeri 1 Kampar,

BAB III METODE PENELITIAN. Penelitian ini dilaksanakan di kelas XI MIA SMA Negeri 1 Kampar, 45 BAB III METODE PENELITIAN A. Tempat da Waktu Peelitia Peelitia ii dilaksaaka di kelas I MIA MA Negeri Kampar, pada bula April-Mei 05 semester geap Tahu Ajara 04/05 B. ubjek da Objek Peelitia ubjek dalam

Lebih terperinci