LANDASAN TEORI. Secara umum, himpunan kejadian A i ; i I dikatakan saling bebas jika: Ruang Contoh, Kejadian, dan Peluang

Ukuran: px
Mulai penontonan dengan halaman:

Download "LANDASAN TEORI. Secara umum, himpunan kejadian A i ; i I dikatakan saling bebas jika: Ruang Contoh, Kejadian, dan Peluang"

Transkripsi

1 2 LANDASAN TEORI Ruag Cotoh, Kejadia, da Peluag Percobaa acak adalah suatu percobaa yag dapat diulag dalam kodisi yag sama, yag hasilya tidak dapat diprediksi secara tepat tetapi dapat diketahui semua kemugkia hasil yag mucul. Defiisi 1 (Ruag cotoh) Ruag cotoh adalah himpua semua hasil yag mugki dari suatu percobaa acak, da diotasika dega Ω. Defiisi 2 (Kejadia) Kejadia adalah suatu himpua bagia dari ruag cotoh Ω. Defiisi 3 (Kejadia lepas) Kejadia A da B disebut salig lepas jika irisa dari keduaya adalah himpua kosog. Defiisi 4 (Meda-σ) Meda-σ adalah suatu himpua F yag aggotaya terdiri atas himpua bagia ruag cotoh Ω, yag memeuhi syarat berikut: i) F. i=1 ii) Jika A 1, A 2, F, maka A i F. iii) Jika A F, maka A c F. Defiisi 5 (Ukura peluag) Ukura peluag P pada (, F) adalah fugsi P F 0,1 yag memeuhi: i) P = 0, P Ω = 1. ii) Jika A 1, A 2, adalah himpua lepas yag merupaka aggota dari F, yaitu: A i A j =, utuk setiap i, j dega i j, maka P i=1 A i = i=1 P A i. Pasaga Ω, F, P disebut ruag peluag. Defiisi 6 (Kejadia salig bebas) Kejadia A da B dikataka salig bebas jika: P A B = P A P B. Secara umum, himpua kejadia A i ; i I dikataka salig bebas jika: P( i J A i ) = i J P(A i ) utuk setiap himpua bagia J dari I. Peubah Acak da Fugsi Sebara Defiisi 7 (Peubah acak) Misalka Ω adalah ruag cotoh dari suatu percobaa acak. Fugsi Χ yag terdefiisi pada Ω yag memetaka setiap usur ω Ω ke satu da haya satu bilaga real X ω = disebut peubah acak. Ruag dari Χ adalah himpua bagia bilaga real A = { = Χ(ω), ω Ω}. Peubah acak diotasika dega huruf kapital, misalka X, Y, Z. Sedagka ilai peubah acak diotasika dega huruf kecil seperti, y, z. Setiap peubah acak memiliki fugsi sebara. Defiisi 8 (Fugsi sebara) Misalka Χ adalah peubah acak dega ruag A. Misalka kejadia A = (, ] A, maka peluag dari kejadia A adalah P X = F X. Fugsi F X disebut fugsi sebara dari peubah acak X. Defiisi 9 (Peubah acak diskret) Peubah acak Χ dikataka diskret jika semua himpua ilai dari peubah acak tersebut merupaka himpua tercacah. Defiisi 10 (Fugsi massa peluag) Fugsi massa peluag dari peubah acak diskret X adalah fugsi p R [0,1] yag diberika oleh p X = P X =. Defiisi 11 (Peubah acak kotiu) Peubah acak X dikataka kotiu jika ada fugsi f X sehigga fugsi sebara F X dapat diyataka sebagai

2 3 F X = f X (u) du R, dega f X R 0, adalah fugsi yag teritegralka lokal. Fugsi f X disebut fugsi kepekata peluag bagi peubah acak X. Defiisi 12 (Peubah acak Poisso) Suatu peubah acak X disebut peubah acak Poisso dega parameter λ, λ > 0 jika fugsi massa peluagya diberika oleh λk λ p X k = e utuk k = 0,1, Lema 1 (Jumlah peubah acak Poisso) Misalka X da Y adalah peubah acak yag salig bebas da memiliki sebara Poisso dega parameter berturut-turut λ 1 da λ 2. Maka X + Y memiliki sebara Poisso dega parameter λ 1 + λ 2. (Taylor & Karli 1984) Bukti: lihat Taylor & Karli Mome, Nilai Harapa, da Ragam Defiisi 13 (Nilai harapa) 1. Jika X adalah peubah acak diskret dega fugsi massa peluag p X, maka ilai harapa dari X diotasika dega E X adalah E X = p X asalka jumlah di atas koverge mutlak. 2. Jika X adalah peubah acak kotiu dega fugsi kepekata peluag f X, maka ilai harapa dari X adalah E X = f X ()d asalka itegral di atas koverge mutlak. Defiisi 14 (Ragam) Misalka X adalah peubah acak diskret dega fugsi massa peluag p X () da ilai harapa E X. Ragam dari X diotasika dega Var(X) atau σ 2 X adalah σ 2 X = E(X E X ) 2 = E X 2 p X. Defiisi 15 (Fugsi pembagkit mome) Misalka X adalah peubah acak sehigga utuk > 0, ilai harapa dari e tx terdefiisi pada < t <. Fugsi pembagkit mome dari X diyataka M t = E e tx, utuk < t <. Defiisi 16 (Fugsi idikator) Misalka A adalah suatu kejadia. Fugsi idikator dari A adalah suatu fugsi I A Ω 0,1, yag diberika oleh: I A (ω) = 1, jika ω A. 0, jika ω A. Nilai harapa dari fugsi idikator adalah sebagai berikut: Ε I A = 1. P A + 0. P A c = P A. Kekovergea Peubah Acak Terdapat beberapa cara utuk megiterpretasika peryataa kekovergea barisa peubah acak, X X utuk. Defiisi 17 (Koverge dalam peluag) Misalka X 1, X 2, adalah barisa peubah acak pada suatu ruag peluag Ω, F, P. Barisa peubah acak X dikataka koverge p dalam peluag ke X, diotasika X X, jika utuk setiap ε > 0 berlaku P X X > ε 0, utuk. Lema 2 (Sifat kekovergea dalam peluag) Misalka X koverge dalam peluag ke X da Y koverge dalam peluag ke Y maka X Y koverge dalam peluag ke XY, diotasika dega p X Y XY. Bukti: lihat Hogg et al Defiisi 18 (Koverge dalam sebara) Misalka X 1, X 2,, X adalah peubah acak pada suatu ruag peluag Ω, F, P. Suatu barisa peubah acak X dikataka koverge dalam sebara ke peubah acak X, ditulis d X X, utuk, jika P(X ) P X utuk, utuk

3 4 semua titik dimaa fugsi sebara F X = P(X ) adalah kotiu. Peduga da Sifat-Sifatya Defiisi 19 (Statistik) Statistik adalah suatu fugsi dari satu atau lebih peubah acak yag tidak tergatug pada satu atau beberapa parameter yag ilaiya tidak diketahui. Defiisi 20 (Peduga) Misalka X 1, X 2,, X adalah cotoh acak. Suatu statistik U(X 1, X 2,, X ) yag diguaka utuk meduga fugsi parameter g(θ) dilambagka dega g θ, disebut peduga bagi g(θ). Bilamaa ilai X 1 = 1, X 2 = 2,, X =, maka ilai U( 1, 2,, ) disebut sebagai dugaa (estimate) bagi g(θ). Defiisi 21 (Peduga tak bias) (i) Suatu peduga yag ilai harapaya sama dega parameter g θ, yaitu E U X 1, X 2,, X = g(θ) disebut peduga tak bias bagi g(θ). (ii) Jika lim E U X 1, X 2,, X = g(θ) maka U(X 1, X 2,, X ) disebut peduga tak bias asimtotik bagi g(θ). Defiisi 22 (Peduga kosiste) Suatu peduga yag koverge dalam peluag ke parameter g(θ) disebut peduga kosiste bagi g(θ). Defiisi 23 (MSE suatu peduga) Mea Square Error (MSE) dari suatu peduga W utuk parameter θ adalah fugsi dari θ yag didefiisika oleh E θ (W θ) 2. Dega kata lai MSE adalah ilai harapa kuadrat dari selisih atara peduga W da parameter θ, yag dapat dihitug sebagai berikut: E θ W θ 2 = Var W + E θ W θ 2 = Var W + (bias(θ )) 2 dega bias U = EU g θ. (Casella & Berger 1990) Proses Stokastik Defiisi 24 (Proses stokastik) Proses stokastik X = X t, t T adalah suatu himpua dari peubah acak yag memetaka suatu ruag cotoh Ω ke suatu ruag state. Jadi utuk setiap t pada himpua ideks T, X(t) adalah suatu peubah acak. Kita serig megiterpretasika t sebagai waktu da X t sebagai state (keadaa) dari proses pada waktu t. Suatu proses stokastik X disebut proses stokastik dega waktu diskret jika himpua ideks T adalah himpua tercacah. Sedagka suatu proses stokastik X disebut proses stokastik dega waktu kotiu jika T adalah suatu iterval. Defiisi 25 (Ikreme bebas) Suatu proses stokatik dega waktu kotiu {X t, t T disebut memiliki ikreme bebas jika utuk semua t 0 < t 1 < < t, peubah acak X t 1 X t 0, X t 2 X t 1,, X t X t 1 adalah bebas. Dega kata lai, suatu proses stokastik dega waktu kotiu X disebut memiliki ikreme bebas jika proses berubahya ilai pada iterval waktu yag tidak tumpag tidih (tidak overlap) adalah bebas. Defiisi 26 (Ikreme stasioer) Suatu proses stokastik dega waktu kotiu X = {X t, t T} disebut memiliki ikreme stasioer jika X t + s X(t) memiliki sebara yag sama utuk semua ilai t. Dega kata lai, suatu proses stokastik dega waktu kotiu X disebut memiliki ikreme stasioer jika sebara (distribusi) dari perubaha ilai atara sembarag dua titik haya tergatug pada jarak atara kedua titik tersebut da tidak tergatug dari lokasi titik-titik tersebut.

4 5 Proses Poisso Salah satu betuk khusus dari proses stokastik dega waktu kotiu adalah proses Poisso. Pada proses ii, kecuali diyataka secara khusus, diaggap bahwa himpua ideks T adalah iterval bilaga real tak egatif yaitu 0,. Defiisi 27 (Proses pecacaha) Suatu proses stokastik N t, t 0 disebut proses pecacaha jika N(t) meyataka bayakya kejadia yag telah terjadi sampai waktu t. Dari defiisi tersebut, maka suatu proses pecacaha N(t) harus memeuhi syarat-syarat berikut: i) N(t) 0 utuk semua t 0,. ii) Nilai N(t) adalah iteger. iii) Jika s < t maka N s N t, s, t 0,. iv) Utuk s < t maka N t N(s) sama dega bayakya kejadia yag terjadi pada iterval s, t. Defiisi 28 (Proses Poisso) Suatu proses pecacaha N t, t 0 disebut proses Poisso dega laju λ, λ > 0, jika dipeuhi tiga syarat berikut: i) N 0 = 0. ii) Proses tersebut memiliki ikreme bebas. iii) Bayakya kejadia pada sembarag iterval waktu dega pajag t memiliki sebara (distribusi) Poisso dega ilai harapa λt. Jadi utuk semua t, s > 0, P N t + s N s = k = e λt (λt) k, k = 0,1, Dari syarat (iii) dapat dilihat bahwa proses Poisso memiliki ikreme stasioer. Dari syarat ii juga dapat diperoleh bahwa E N t = λt. Defiisi 29 (Itesitas lokal) Itesitas lokal dari suatu proses Poisso tak homoge X dega fugsi itesitas λ pada titik sεr adalah λ s, yaitu ilai fugsi λ di s. (Cressie 1993) Defiisi 30 (Fugsi periodik) Suatu fugsi λ disebut periodik jika berlaku λ s + kτ = λ(s) utuk semua s R da k Z. Kostata terkecil τ yag memeuhi persamaa di atas disebut periode fugsi λ tersebut. (Browder 1996) Defiisi 31 (Proses Poisso periodik) Proses Poisso periodik adalah suatu proses Poisso tak homoge yag fugsi itesitasya adalah fugsi periodik. (Magku 2001) Defiisi 32 (Itesitas global) Misalka N 0, adalah proses Poisso pada iterval 0,. Itesitas global θ dari proses Poisso ii didefiisika sebagai lim jika limit di atas ada. EN 0, (Cressie 1993) Lema 3 (Eksistesi itesitas global) Jika N [0, ] adalah proses Poisso periodik dega fugsi itesitas λ, maka EN 0, lim pada Defiisi 32 ada da ilaiya sama dega θ = 1 τ Bukti: lihat Lampira 1. τ λ s ds. 0 Beberapa Defiisi da Lema Tekis Defiisi 33 (Fugsi teritegralka lokal) Fugsi itesitas λ disebut teritegralka lokal jika utuk sembarag himpua Borel terbatas B kita peroleh μ B = B λ(s)ds <. (Dudley 1989) Defiisi 34 (O(. ) da o(. )) Simbol-simbol O(. ) da o(. ) merupaka cara utuk membadigka besarya dua fugsi u() da v() dega meuju suatu limit L. i) Notasi u = O v, L, meyataka bahwa L. u() v() terbatas, utuk

5 6 ii) Notasi meyataka L. u = o v, L, bahwa u() v() 0, utuk (Serflig 1980) Defiisi 35 (Titik Lebesque) Kita kataka s adalah titik Lebesque dari λ jika berlaku 1 lim λ s + λ(s) d = 0. 2 (Wheede & Zygmud 1977) Lema 4 (Teorema deret Taylor) Deret Taylor dari fugsi f di a (atau di sekitar a atau berpusat di a) memeuhi persamaa ( ) f ( a) f ( ) a! 0 a (1) (2) f ( a) 1 f 2 f ( a) a a... 1! 2! (Stewart 1999) Lema 5 (Formula Youg dari Teorema Taylor) Misalka g memiliki turua ke- yag berhigga pada suatu titik, maka k g k g y g y o y, k 1 utuk y. (Serflig 1980) Bukti: lihat Serflig Lema 6 (Teorema Limit Pusat) Misalka X 1, X 2,., X adalah barisa peubah acak bebas dari suatu sebara yag masig-masig memiliki ilai harapa μ da ragam tak ol σ 2. Jika 1 X i μ Y = σ maka Y koverge ke sebara ormal baku, D diotasika Y Normal(0,1) utuk. Bukti: lihat Lampira 2.

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 3 BAB II TINJAUAN PUSTAKA.1 Ruag Cotoh, Kejadia da Peluag Defiisi.1 (Ruag cotoh da kejadia) Suatu percobaa yag dapat diulag dalam kodisi yag sama, yag hasilya tidak bisa diprediksi secara tepat tetapi

Lebih terperinci

Beberapa Definisi Ruang Contoh Kejadian dan Peluang Definisi L.1 (Ruang contoh dan kejadian) . Definisi L.2 (Kejadian lepas )

Beberapa Definisi Ruang Contoh Kejadian dan Peluang Definisi L.1 (Ruang contoh dan kejadian) .   Definisi L.2 (Kejadian lepas ) 33 LAMPIRAN 34 35 Beberapa Defiisi Ruag Cooh Kejadia da Peluag Suau percobaa yag dapa diulag dalam kodisi yag sama, yag hasilya idak dapa diprediksi dega epa eapi kia bisa megeahui semua kemugkia hasil

Lebih terperinci

PENDUGAAN KOMPONEN PERIODIK FUNGSI INTENSITAS BERBENTUK FUNGSI PERIODIK KALI TREN KUADRATIK SUATU PROSES POISSON NON-HOMOGEN PEPI RAMDANI

PENDUGAAN KOMPONEN PERIODIK FUNGSI INTENSITAS BERBENTUK FUNGSI PERIODIK KALI TREN KUADRATIK SUATU PROSES POISSON NON-HOMOGEN PEPI RAMDANI PENDUGAAN KOMPONEN PERIODIK FUNGSI INTENSITAS BERBENTUK FUNGSI PERIODIK KALI TREN KUADRATIK SUATU PROSES POISSON NON-HOMOGEN PEPI RAMDANI DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

Lebih terperinci

BAB III PERUMUSAN PENDUGA DAN SIFAT SIFAT STATISTIKNYA

BAB III PERUMUSAN PENDUGA DAN SIFAT SIFAT STATISTIKNYA BAB III PERUMUSAN PENDUGA DAN SIFAT SIFAT STATISTIKNYA 3. Perumusa Peduga Misalka N adala proses Poisso o omoge pada iterval [, dega fugsi itesitas yag tidak diketaui. Fugsi ii diasumsika teritegralka

Lebih terperinci

Distribusi Pendekatan (Limiting Distributions)

Distribusi Pendekatan (Limiting Distributions) Distribusi Pedekata (Limitig Distributios) Ada 3 tekik utuk meetuka distribusi pedekata: 1. Tekik Fugsi Distribusi Cotoh 2. Tekik Fugsi Pembagkit Mome Cotoh 3. Tekik Teorema Limit Pusat Cotoh Fitriai Agustia,

Lebih terperinci

PENDUGAAN FUNGSI INTENSITAS GLOBAL DARI PROSES POISSON PERIODIK DENGAN TREN LINEAR WALIDATUSH SHOLIHAH G

PENDUGAAN FUNGSI INTENSITAS GLOBAL DARI PROSES POISSON PERIODIK DENGAN TREN LINEAR WALIDATUSH SHOLIHAH G PENDUGAAN FUNGSI INTENSITAS GLOBAL DARI PROSES POISSON PERIODIK DENGAN TREN LINEAR WALIDATUSH SHOLIHAH G54338 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUN ALAM INSTITUT PERTANIAN BOGOR

Lebih terperinci

II. LANDASAN TEORI. 2. P bersifat aditif tak hingga, yaitu jika dengan. 2.1 Ruang Contoh, Kejadian dan Peluang

II. LANDASAN TEORI. 2. P bersifat aditif tak hingga, yaitu jika dengan. 2.1 Ruang Contoh, Kejadian dan Peluang II. LANDASAN TEORI 2.1 Ruang Contoh, Kejadian dan Peluang Dalam suatu percobaan sering kali diperlukan pengulangan yang dilakukan dalam kondisi yang sama. Semua kemungkinan hasil yang akan muncul akan

Lebih terperinci

SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK FUNGSI INTENSITAS BERBENTUK FUNGSI PERIODIK KALI TREN KUADRATIK PADA PROSES POISSON NON HOMOGEN CASMAN

SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK FUNGSI INTENSITAS BERBENTUK FUNGSI PERIODIK KALI TREN KUADRATIK PADA PROSES POISSON NON HOMOGEN CASMAN SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK FUNGSI INTENSITAS BERBENTUK FUNGSI PERIODIK KALI TREN KUADRATIK PADA PROSES POISSON NON HOMOGEN CASMAN SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 0

Lebih terperinci

BAB II LANDASAN TEORI. Pada bagian ini akan dibahas tentang teori-teori dasar yang. digunakan untuk dalam mengestimasi parameter model.

BAB II LANDASAN TEORI. Pada bagian ini akan dibahas tentang teori-teori dasar yang. digunakan untuk dalam mengestimasi parameter model. BAB II LANDASAN TEORI Pada bagia ii aka dibahas tetag teori-teori dasar yag diguaka utuk dalam megestimasi parameter model.. MATRIKS DAN VEKTOR Defiisi : Trace dari matriks bujur sagkar A a adalah pejumlaha

Lebih terperinci

BAB III RUANG HAUSDORFF. Pada bab ini akan dibahas mengenai ruang Hausdorff, kekompakan pada

BAB III RUANG HAUSDORFF. Pada bab ini akan dibahas mengenai ruang Hausdorff, kekompakan pada 8 BAB III RUANG HAUSDORFF Pada bab ii aka dibahas megeai ruag Hausdorff, kekompaka pada ruag Hausdorff da ruag regular legkap. Pembahasa diawali dega medefiisika Ruag Hausdorff da beberapa sifatya kemudia

Lebih terperinci

KEKONSISTENAN PENDUGA KOMPONEN PERIODIK FUNGSI INTENSITAS BERBENTUK PERKALIAN FUNGSI PERIODIK DENGAN TREN KUADRATIK PADA PROSES POISSON NON HOMOGEN

KEKONSISTENAN PENDUGA KOMPONEN PERIODIK FUNGSI INTENSITAS BERBENTUK PERKALIAN FUNGSI PERIODIK DENGAN TREN KUADRATIK PADA PROSES POISSON NON HOMOGEN EONSISTENAN PENDUGA OMPONEN PERIODI FUNGSI INTENSITAS BERBENTU PERALIAN FUNGSI PERIODI DENGAN TREN UADRATI PADA PROSES POISSON NON HOMOGEN TASLIM SEOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 0 PERNYATAAN

Lebih terperinci

LANDASAN TEORI. Pada bab ini akan diberikan beberapa konsep dasar (pengertian) yang akan digunakan dalam. pembahasan penelitian. 2.

LANDASAN TEORI. Pada bab ini akan diberikan beberapa konsep dasar (pengertian) yang akan digunakan dalam. pembahasan penelitian. 2. II. LANDASAN TEORI Pada bab ii aka diberika beberapa kosep dasar (pegertia) yag aka diguaka dalam pembahasa peelitia 2.1 Ruag Vektor Defiisi 3.1.1 (Darmawijaya, 2007) Diketahui (V, +) grup komutatif da

Lebih terperinci

SIFAT-SIFAT STATISTIKA PENDUGA TURUNAN PERTAMA DAN TURUNAN KEDUA FUNGSI INTENSITAS PROSES POISSON PERIODIK RATNA GALUH NIKEN PRAMARANI

SIFAT-SIFAT STATISTIKA PENDUGA TURUNAN PERTAMA DAN TURUNAN KEDUA FUNGSI INTENSITAS PROSES POISSON PERIODIK RATNA GALUH NIKEN PRAMARANI SIFAT-SIFAT STATISTIKA PENDUGA TURUNAN PERTAMA DAN TURUNAN KEDUA FUNGSI INTENSITAS PROSES POISSON PERIODIK RATNA GALUH NIKEN PRAMARANI DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM

Lebih terperinci

Statistika Matematika. Soal dan Pembahasan. M. Samy Baladram

Statistika Matematika. Soal dan Pembahasan. M. Samy Baladram Statistika Matematika Soal da embahasa M Samy Baladram Bab 4 Ubiasedess, Cosistecy, ad Limitig istributios Ubiasedess, Cosistecy, ad Limitig istributios 41 Ekspektasi Fugsi Key oits Ṫeorema 411 Jika T

Lebih terperinci

TINJAUAN PUSTAKA. 2.1 Ruang Vektor. Definisi (Darmawijaya, 2007) Diketahui (V, +) grup komutatif dan (F,,. ) lapangan dengan elemen identitas

TINJAUAN PUSTAKA. 2.1 Ruang Vektor. Definisi (Darmawijaya, 2007) Diketahui (V, +) grup komutatif dan (F,,. ) lapangan dengan elemen identitas II. TINJAUAN PUSTAKA 2.1 Ruag Vektor Defiisi 2.1.1 (Darmawijaya, 2007) Diketahui (V, +) grup komutatif da (F,,. ) lapaga dega eleme idetitas 1. V disebut ruag vektor (vector space) atas F jika ada operasi

Lebih terperinci

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang 5. DERET

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang 5. DERET Pertemua 7. BAHAN AJAR ANALISIS REAL Matematika STKIP Tuaku Tambusai Bagkiag 5. da kekovergeaya 5. DERET Diberika sebuah barisa a, dapat didefeisika barisa bilaga real S N dega S N := N a = a + a 2 +...

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2016/2017 3 Februari 2017 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg Batas

Lebih terperinci

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya 5 BAB II LANDASAN TEORI Dalam tugas akhir ii aka dibahas megeai peaksira besarya koefisie korelasi atara dua variabel radom kotiu jika data yag teramati berupa data kategorik yag terbetuk dari kedua variabel

Lebih terperinci

II LANDASAN TEORI. 2.1 Ruang Contoh, Kejadian dan Peluang. 2.2 Peubah Acak dan Fungsi Sebaran

II LANDASAN TEORI. 2.1 Ruang Contoh, Kejadian dan Peluang. 2.2 Peubah Acak dan Fungsi Sebaran II LANDASAN TEORI 2.1 Ruang Contoh, Kejadian dan Peluang Dalam suatu percobaan sering kali diperlukan pengulangan yang dilakukan dalam kondisi yang sama. Semua kemungkinan hasil yang akan muncul akan diketahui

Lebih terperinci

II LANDASAN TEORI. Sebuah bilangan kompleks dapat dinyatakan dalam bentuk. z = x jy. (2.4)

II LANDASAN TEORI. Sebuah bilangan kompleks dapat dinyatakan dalam bentuk. z = x jy. (2.4) 3 II LANDASAN TEORI 2.1 Peubah Kompleks da Fugsi Kompleks Sebuah bilaga kompleks dapat diyataka dalam betuk z = x + jy, (2.1) dega x da y adalah bilaga-bilaga real da j = 1. Bilaga x disebut bagia real

Lebih terperinci

BARISAN TAK HINGGA DAN DERET TAK HINGGA

BARISAN TAK HINGGA DAN DERET TAK HINGGA BARIAN TAK HINGGA DAN DERET TAK HINGGA Bajar/Barisa Tak Higga Barisa tak higga { } adalah suatu fugsi dari dimaa daerah domaiya adalah himpua bilaga bulat positif (bilaga asli). Cotoh: Bila.. maka fugsi

Lebih terperinci

Distribusi Sampel, Likelihood dan Penaksir

Distribusi Sampel, Likelihood dan Penaksir BAB 1 Distribusi Sampel, Likelihood da Peaksir 1.1 Sampel Acak Misalka X 1, X 2,..., X sampel acak berukura (radom sample of size ). Fugsi peluag -variat ya adalah f X1,X 2,,X (x 1, x 2,..., x ) = f Xi

Lebih terperinci

PENDUGAAN FUNGSI SEBARAN DAN FUNGSI KEPEKATAN PELUANG WAKTU TUNGGU PROSES POISSON PERIODIK NADIROH

PENDUGAAN FUNGSI SEBARAN DAN FUNGSI KEPEKATAN PELUANG WAKTU TUNGGU PROSES POISSON PERIODIK NADIROH PENDUGAAN FUNGSI SEBARAN DAN FUNGSI KEPEKATAN PELUANG WAKTU TUNGGU PROSES POISSON PERIODIK NADIROH DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 0 ABSTRAK

Lebih terperinci

KELUARGA EKSPONENSIAL Untuk Memenuhi Tugas Mata Kuliah Statistika Inferensial Dosen Pengampu: Nendra Mursetya Somasih Dwipa, M.Pd

KELUARGA EKSPONENSIAL Untuk Memenuhi Tugas Mata Kuliah Statistika Inferensial Dosen Pengampu: Nendra Mursetya Somasih Dwipa, M.Pd KELUARGA EKSPONENSIAL Utuk Memeuhi Tugas Mata Kuliah Statistika Iferesial Dose Pegampu: Nedra Mursetya Somasih Dwipa, M.Pd Disusu Oleh : V A4 Kelompok. Nuuk Rohaigsih (444009). Rochayati (444000) 3. Siam

Lebih terperinci

Hendra Gunawan. 12 Februari 2014

Hendra Gunawan. 12 Februari 2014 MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2013/2014 12 Februari 2014 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 82 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang. Universitas Sumatera Utara

BAB I PENDAHULUAN. 1.1 Latar Belakang. Universitas Sumatera Utara BAB I PENDAHULUAN 1.1 Latar Belakag Salah satu pera da fugsi statistik dalam ilmu pegetahua adalah sebagai. alat aalisis da iterpretasi data kuatitatif ilmu pegetahua, sehigga didapatka suatu kesimpula

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret Program Perkuliaha Dasar Umum Sekolah Tiggi Tekologi Telkom Barisa da Deret Barisa Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) a Fugsi tersebut

Lebih terperinci

Lampiran 1. Beberapa Definisi dan Lema Teknis

Lampiran 1. Beberapa Definisi dan Lema Teknis Lampiran 1. Beberapa Definisi dan Lema Teknis Ruang Contoh, Kejadian dan Peluang Suatu percobaan yang dapat diulang dalam kondisi yang sama, yang hasilnya tidak dapat diprediksi dengan tepat tetapi kita

Lebih terperinci

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa istilah, definisi serta konsep-konsep yang

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa istilah, definisi serta konsep-konsep yang II. LANDASAN TEORI Pada bab ii aka diberika beberapa istilah, defiisi serta kosep-kosep yag medukug dalam peelitia ii. 2.1 Kosep Dasar Teori Graf Berikut ii aka diberika kosep dasar teori graf yag bersumber

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN JURAL MATEMATKA DA KOMPUTER Vol. 6. o., 77-85, Agustus 003, SS : 40-858 DSTRBUS WAKTU BERHET PADA PROSES PEMBAHARUA Sudaro Jurusa Matematika FMPA UDP Abstrak Dalam proses stokhastik yag maa kejadia dapat

Lebih terperinci

Statistika dibagi menjadi dua, yaitu: 1. Statistika Deskriftif 2. Statistik Inferensial Penarikan kesimpulan dapat dilakukan dengan dua cara, yaitu:

Statistika dibagi menjadi dua, yaitu: 1. Statistika Deskriftif 2. Statistik Inferensial Penarikan kesimpulan dapat dilakukan dengan dua cara, yaitu: Peaksira Parameter Statistika dibagi mejadi dua yaitu:. Statistika Deskriftif 2. Statistik Iferesial Pearika kesimpula dapat dilakuka dega dua cara yaitu:. Peaksira Parameter 2. Pegujia Hipotesis Peaksira

Lebih terperinci

BARISAN DAN DERET. Nurdinintya Athari (NDT)

BARISAN DAN DERET. Nurdinintya Athari (NDT) BARISAN DAN DERET Nurdiitya Athari (NDT) BARISAN Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) = a Fugsi tersebut dikeal sebagai barisa bilaga

Lebih terperinci

HALAMAN Dengan definisi limit barisan buktikan limit berikut ini : = 0. a. lim PENYELESAIAN : jadi terbukti bahwa lim = 0 = 5. b.

HALAMAN Dengan definisi limit barisan buktikan limit berikut ini : = 0. a. lim PENYELESAIAN : jadi terbukti bahwa lim = 0 = 5. b. Didowload dari ririez.blog.us.ac.id HALAMAN 36 37 5. Dega defiisi limit barisa buktika limit berikut ii : a. lim = 0 lim 1 2 + 3 = 0 > 0 h 1 = 2 + 3 0 = 1 2 + 3 1 2 1 2 1 2 < jadi terbukti bahwa lim =

Lebih terperinci

HUBUNGAN ANTARA KONVERGEN HAMPIR PASTI, KONVERGEN DALAM PELUANG, DAN KONVERGEN DALAM SEBARAN

HUBUNGAN ANTARA KONVERGEN HAMPIR PASTI, KONVERGEN DALAM PELUANG, DAN KONVERGEN DALAM SEBARAN Jural Matematika UNAND Vol. 2 No. 2 Hal. 0 6 ISSN : 2303 290 c Jurusa Matematika FMIPA UNAND HUBUNGAN ANTARA KONVERGEN HAMPIR PASTI, KONVERGEN DALAM PELUANG, DAN KONVERGEN DALAM SEBARAN VIRA AGUSTA, DODI

Lebih terperinci

Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1

Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1 Barisa Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 9/0/06 Matematika Barisa Tak Higga Secara sederhaa, barisa merupaka susua dari bilaga bilaga yag urutaya berdasarka bilaga

Lebih terperinci

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X Pedugaa Selag: Metode Pivotal Lagkah-lagkahya 1. Adaika X1, X,..., X adalah cotoh acak dari populasi dega fugsi kepekata f( x; ), da parameter yag tidak diketahui ilaiya. Adaika T adalah peduga titik bagi..

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Model Pertumbuha Betuk ugsi pertumbuha satu jeis spesies pada umumya megguaka otasi ugsi aalitik yag diyataka dalam satu persamaa. Secara umum ugsi pertumbuha meyataka hubuga

Lebih terperinci

Kalkulus Rekayasa Hayati DERET

Kalkulus Rekayasa Hayati DERET Kalkulus Rekayasa Hayati DERET 1 Isi Bab Pedahulua Barisa tak-higga Deret tak-higga Deret Positif : Uji kekovergea Deret Gati Tada Deret Pagkat Deret Taylor da Maclauri 2 Kompetesi Dasar Setelah megikuti

Lebih terperinci

II. TINJAUAN PUSTAKA. Secara umum apabila a bilangan bulat dan b bilangan bulat positif, maka ada tepat = +, 0 <

II. TINJAUAN PUSTAKA. Secara umum apabila a bilangan bulat dan b bilangan bulat positif, maka ada tepat = +, 0 < II. TINJAUAN PUSTAKA 2.1 Keterbagia Secara umum apabila a bilaga bulat da b bilaga bulat positif, maka ada tepat satu bilaga bulat q da r sedemikia sehigga : = +, 0 < dalam hal ii b disebut hasil bagi

Lebih terperinci

PENDUGAAN KOMPONEN PERIODIK FUNGSI INTENSITAS BERBENTUK FUNGSI PERIODIK KALI TREN LINEAR SUATU PROSES POISSON NON-HOMOGEN PENDAHULUAN

PENDUGAAN KOMPONEN PERIODIK FUNGSI INTENSITAS BERBENTUK FUNGSI PERIODIK KALI TREN LINEAR SUATU PROSES POISSON NON-HOMOGEN PENDAHULUAN PENDUGAAN KOMPONEN PERIODIK FUNGSI INTENSITAS BERBENTUK FUNGSI PERIODIK KALI TREN LINEAR SUATU PROSES POISSON NON-HOMOGEN W. ISMAYULIA, I W. MANGKU, SISWANDI Abstrat I tis mausript, estimatio of te periodi

Lebih terperinci

2 BARISAN BILANGAN REAL

2 BARISAN BILANGAN REAL 2 BARISAN BILANGAN REAL Di sekolah meegah barisa diperkealka sebagai kumpula bilaga yag disusu meurut "pola" tertetu, misalya barisa aritmatika da barisa geometri. Biasaya barisa da deret merupaka satu

Lebih terperinci

REPRESENTASI KANONIK UNTUK FUNGSI KARAKTERISTIK DARI SEBARAN TERBAGI TAK HINGGA

REPRESENTASI KANONIK UNTUK FUNGSI KARAKTERISTIK DARI SEBARAN TERBAGI TAK HINGGA Jural Matematika UNAND Vol. 3 No. Hal. 7 34 ISSN : 33 9 c Jurusa Matematika FMIPA UNAND REPRESENTASI KANONIK UNTUK FUNGSI KARAKTERISTIK DARI SEBARAN TERBAGI TAK HINGGA EKA RAHMI KAHAR, DODI DEVIANTO Program

Lebih terperinci

Secara umum, suatu barisan dapat dinyatakan sebagai susunan terurut dari bilangan-bilangan real:

Secara umum, suatu barisan dapat dinyatakan sebagai susunan terurut dari bilangan-bilangan real: BARISAN TAK HINGGA Secara umum, suatu barisa dapat diyataka sebagai susua terurut dari bilaga-bilaga real: u 1, u 2, u 3, Barisa tak higga merupaka suatu fugsi dega domai berupa himpua bilaga bulat positif

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Proses Poisson Periodik Definisi 2.1 (Proses stokastik) Proses stokastik X = {X(t), t T } adalah suatu himpunan dari peubah acak yang memetakan suatu ruang contoh Ω ke suatu

Lebih terperinci

Fungsi. Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B.

Fungsi. Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B. Fugsi Misalka A da B himpua. Relasi bier f dari A ke B merupaka suatu fugsi jika setiap eleme di dalam A dihubugka dega tepat satu eleme di dalam B. Jika f adalah fugsi dari A ke B kita meuliska f : A

Lebih terperinci

MATEMATIKA DISKRIT FUNGSI

MATEMATIKA DISKRIT FUNGSI 1 MATEMATIKA DISKRIT FUNGSI Fugsi Misalka A da B himpua. Relasi bier f dari A ke B merupaka suatu fugsi jika setiap eleme di dalam A dihubugka dega tepat satu eleme di dalam B. Jika f adalah fugsi dari

Lebih terperinci

I. PENDAHULUAN II. LANDASAN TEORI

I. PENDAHULUAN II. LANDASAN TEORI I PENDAHULUAN 1 Latar belakag Model pertumbuha Solow-Swa (the Solow-Swa growth model) atau disebut juga model eoklasik (the eo-classical model) pertama kali dikembagka pada tahu 195 oleh Robert Solow da

Lebih terperinci

b. Penyajian data kelompok Contoh: Berat badan 30 orang siswa tercatat sebagai berikut:

b. Penyajian data kelompok Contoh: Berat badan 30 orang siswa tercatat sebagai berikut: Statistik da Peluag A. Statistik Statistik adalah metode ilmiah yag mempelajari cara pegumpula, peyusua, pegolaha, da aalisis data, serta cara pegambila kesimpula berdasarka data-data tersebut. Data ialah

Lebih terperinci

Bab 2. Sistem Bilangan Real Aksioma Bilangan Real Misalkan adalah himpunan bilangan real, P himpunan bilangan positif dan fungsi + dan.

Bab 2. Sistem Bilangan Real Aksioma Bilangan Real Misalkan adalah himpunan bilangan real, P himpunan bilangan positif dan fungsi + dan. Bab Sistem Bilaga Real.. Aksioma Bilaga Real Misalka adalah himpua bilaga real, P himpua bilaga positif da fugsi + da. dari ke da asumsika memeuhi aksioma-aksioma berikut: Aksioma Lapaga Utuk semua bilaga

Lebih terperinci

TINJAUAN PUSTAKA Pengertian

TINJAUAN PUSTAKA Pengertian TINJAUAN PUSTAKA Pegertia Racaga peelitia kasus-kotrol di bidag epidemiologi didefiisika sebagai racaga epidemiologi yag mempelajari hubuga atara faktor peelitia dega peyakit, dega cara membadigka kelompok

Lebih terperinci

BARISAN DAN DERET. 05/12/2016 Matematika Teknik 1 1

BARISAN DAN DERET. 05/12/2016 Matematika Teknik 1 1 BARISAN DAN DERET 05//06 Matematika Tekik BARISAN Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 05//06 Matematika Tekik Barisa Tak Higga Secara sederhaa, barisa merupaka

Lebih terperinci

BAB VI BARISAN TAK HINGGA DAN DERET TAK HINGGA

BAB VI BARISAN TAK HINGGA DAN DERET TAK HINGGA BAB VI BARIAN TAK HINGGA DAN DERET TAK HINGGA Bajar/Barisa Tak Higga Barisa tak higga { },,,,, adalah suatu fugsi dari dimaa daerah domaiya adalah himpua bilaga bulat positif (bilaga asli). Cotoh: Bila,,,..,

Lebih terperinci

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n LIMIT 4.. FUNGSI LIMIT Defiisi 4.. A R Titik c R adalah titik limit dari A, jika utuk setiap δ > 0 ada palig sedikit satu titik di A, c sedemikia sehigga c < δ. Defiisi diatas dapat disimpulka dega cara

Lebih terperinci

- Yadi Nurhayadi - M O D U L S T A T I S T I K A BAB 2 DISTRIBUSI FREKUENSI

- Yadi Nurhayadi - M O D U L S T A T I S T I K A BAB 2 DISTRIBUSI FREKUENSI - Yadi Nurhayadi - M O D U L S T A T I S T I K A BAB DISTRIBUSI FREKUENSI A. Review Pelajara SMA A. Pegumpula Data. Peelitia lapaga (Pegamata Lagsug). Wawacara (Iterview). Agket (Kuisioer) 4. Berdasarka

Lebih terperinci

TUGAS ANALISIS REAL LANJUT. a b < a + A. b + B < A B.

TUGAS ANALISIS REAL LANJUT. a b < a + A. b + B < A B. TUGAS ANALISIS REAL LANJUT NOVEMBER 207 () (a) Jika b > 0, B > 0, da a b < A, buktika ab < ba. Kemudia buktika B a b < a + A b + B < A B. (b) Buktika [ 2 (a + b)] 2 2 (a2 + b 2 ). Kemudia tujukka bahwa

Lebih terperinci

PERTEMUAN 13. VEKTOR dalam R 3

PERTEMUAN 13. VEKTOR dalam R 3 PERTEMUAN VEKTOR dalam R Pegertia Ruag Vektor Defiisi R Jika adalah sebuah bilaga bulat positif, maka tupel - - terorde (ordered--tuple) adalah sebuah uruta bilaga riil ( a ),a,..., a. Semua tupel - -terorde

Lebih terperinci

oleh hasil kali Jika dan keduanya fungsi yang dapat didiferensialkan, maka

oleh hasil kali Jika dan keduanya fungsi yang dapat didiferensialkan, maka Itegral etu Jika fugsi kotiu yag didefiisika utuk, kita bagi selag mejadi selag bagia berlebar sama Misalka berupa titik ujug selag bagia ii da pilih titik sampel di dalam selag bagia ii, sehigga terletak

Lebih terperinci

Hendra Gunawan. 14 Februari 2014

Hendra Gunawan. 14 Februari 2014 MA20 MATEMATIKA 2A Hedra Guawa Semester II, 203/204 4 Februari 204 Sasara Kuliah Hari Ii 9. Barisa Tak Terhigga Memeriksa kekovergea suatu barisa da, bila mugki, meghitug limitya 9.2 Deret Tak Terhigga

Lebih terperinci

9 Departemen Statistika FMIPA IPB

9 Departemen Statistika FMIPA IPB Supleme Resposi Pertemua ANALISIS DATA KATEGORIK (STK351 9 Departeme Statistika FMIPA IPB Pokok Bahasa Sub Pokok Bahasa Referesi Waktu Pegatar Aalisis utuk Data Respo Kategorik Data respo kategorik Sebara

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Distribusi Ekspoesial Fugsi ekspoesial adalah salah satu fugsi yag palig petig dalam matematika. Biasaya, fugsi ii ditulis dega otasi exp(x) atau e x, di maa e adalah basis logaritma

Lebih terperinci

Fungsi. Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B.

Fungsi. Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B. Fugsi Misalka A da B himpua. Relasi bier f dari A ke B merupaka suatu fugsi jika setiap eleme di dalam A dihubugka dega tepat satu eleme di dalam B. Jika f adalah fugsi dari A ke B kita meuliska f : A

Lebih terperinci

DISTRIBUSI KHUSUS YANG DIKENAL

DISTRIBUSI KHUSUS YANG DIKENAL 0 DISTRIBUSI KHUSUS YANG DIKENAL Kita sudah membahas fugsi peluag atau fugsi desitas, baik defiisiya maupu sifatya. Fugsi peluag atau fugsi desitas ii merupaka ciri dari sebuah distribusi, artiya fugsi

Lebih terperinci

B a b 1 I s y a r a t

B a b 1 I s y a r a t 34 TKE 315 ISYARAT DAN SISTEM B a b 1 I s y a r a t (bagia 3) Idah Susilawati, S.T., M.Eg. Program Studi Tekik Elektro Fakultas Tekik da Ilmu Komputer Uiversitas Mercu Buaa Yogyakarta 29 35 1.5.2. Isyarat

Lebih terperinci

BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP. Permasalahan dalam tugas akhir ini dibatasi hanya pada penaksiran

BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP. Permasalahan dalam tugas akhir ini dibatasi hanya pada penaksiran BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP Permasalaha dalam tugas akhir ii dibatasi haya pada peaksira besarya koefisie korelasi polychoric da tidak dilakuka peguia terhadap koefisie korelasi

Lebih terperinci

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI Utuk lebih memahami megeai etropi, pada bab ii aka diberika perhituga etropi utuk beberapa distribusi diskrit da kotiu. 3. Distribusi Diskrit Pada sub bab ii dibahas

Lebih terperinci

BAB II TEORI DASAR. Definisi Grup G disebut grup komutatif atau grup abel jika berlaku hukum

BAB II TEORI DASAR. Definisi Grup G disebut grup komutatif atau grup abel jika berlaku hukum BAB II TEORI DASAR 2.1 Aljabar Liier Defiisi 2. 1. 1 Grup Himpua tak kosog G disebut grup (G, ) jika pada G terdefiisi operasi, sedemikia rupa sehigga berlaku : a. Jika a, b eleme dari G, maka a b eleme

Lebih terperinci

1 n MODUL 5. Peubah Acak Diskret Khusus

1 n MODUL 5. Peubah Acak Diskret Khusus ODUL 5 Peubah Acak Diskret Khusus Terdapat beberapa peubah acak diskret khusus yag serig mucul dalam aplikasi. Peubah Acak Seragam ( Uiform) Bila X suatu peubah acak diskret dimaa setiap eleme dari X mempuyai

Lebih terperinci

mempunyai sebaran yang mendekati sebaran normal. Dalam hal ini adalah PKM (penduga kemungkinan maksimum) bagi, ˆ ˆ adalah simpangan baku dari.

mempunyai sebaran yang mendekati sebaran normal. Dalam hal ini adalah PKM (penduga kemungkinan maksimum) bagi, ˆ ˆ adalah simpangan baku dari. Selag Kepercayaa Cotoh Besar Jika ukura cotoh (sample size) besar, maka meurut Teorema Limit Pusat, bayak statistik megikuti/mempuyai sebara yag medekati ormal (dapat diaggap ormal). Artiya jika adalah

Lebih terperinci

PEMBUKTIAN TEOREMA HUKUM LEMAH BILANGAN BESAR DENGAN MENGGUNAKAN FUNGSI KARAKTERISTIK

PEMBUKTIAN TEOREMA HUKUM LEMAH BILANGAN BESAR DENGAN MENGGUNAKAN FUNGSI KARAKTERISTIK Jural Matematika UNAND Vol. 2 No. 2 Hal. 71 75 ISSN : 2303 2910 c Jurusa Matematika FMIPA UNAND PEMBUKTIAN TEOREMA HUKUM LEMAH BILANGAN BESAR DENGAN MENGGUNAKAN FUNGSI KARAKTERISTIK SUCI SARI WAHYUNI,

Lebih terperinci

Fungsi Kompleks. (Pertemuan XXVII - XXX) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

Fungsi Kompleks. (Pertemuan XXVII - XXX) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya TKS 4007 Matematika III Fugsi Kompleks (Pertemua XXVII - XXX) Dr. AZ Jurusa Tekik Sipil Fakultas Tekik Uiversitas Brawijaya Pedahulua Persamaa x + 1 = 0 tidak memiliki akar dalam himpua bilaga real. Pertayaaya,

Lebih terperinci

KEKONSISTENAN PENDUGA FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT MUKTI RAHAYU G

KEKONSISTENAN PENDUGA FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT MUKTI RAHAYU G KEKONSISTENAN PENDUGA FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT MUKTI RAHAYU G540409 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR

Lebih terperinci

Modul Kuliah statistika

Modul Kuliah statistika Modul Kuliah statistika Dose: Abdul Jamil, S.Kom., MM SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER MUHAMMADIYAH JAKARTA Bab 2 Populasi da Sampel 2.1 Populasi Populasi merupaka keseluruha pegamata

Lebih terperinci

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi 6. Pecacaha Lajut Relasi Rekuresi Relasi rekuresi utuk dereta {a } adalah persamaa yag meyataka a kedalam satu atau lebih suku sebelumya, yaitu a 0, a,, a -, utuk seluruh bilaga bulat, dega 0, dimaa 0

Lebih terperinci

,n N. Jelas barisan ini terbatas pada dengan batas M =: 1, dan. barisan ini kovergen ke 0.

,n N. Jelas barisan ini terbatas pada dengan batas M =: 1, dan. barisan ini kovergen ke 0. PROGRAM STUDI PENDIDIKAN MATEMATIKA FKIP UNMUH PONOROGO SOAL UJIAN TENGAH SEMESTER GENAP TA 03/04 Mata Ujia : Aalisis Real Tipe Soal : REGULER Dose : Dr. Jula HERNADI Waktu : 90 meit Hari, Taggal : Selasa,

Lebih terperinci

( x) LANDASAN TEORI. ω Ω ke satu dan hanya satu bilangan real X( ω ) disebut peubah acak. Ρ = Ρ. Ruang Contoh, Kejadian dan Peluang

( x) LANDASAN TEORI. ω Ω ke satu dan hanya satu bilangan real X( ω ) disebut peubah acak. Ρ = Ρ. Ruang Contoh, Kejadian dan Peluang LANDASAN TEORI Ruang Contoh Kejadian dan Peluang Suatu percobaan yang dapat diulang dalam ondisi yang sama yang hasilnya tida dapat dipredisi secara tepat tetapi ita dapat mengetahui semua emunginan hasil

Lebih terperinci

Definisi Integral Tentu

Definisi Integral Tentu Defiisi Itegral Tetu Bila kita megedarai kedaraa bermotor (sepeda motor atau mobil) selama 4 jam dega kecepata 50 km / jam, berapa jarak yag ditempuh? Tetu saja jawabya sagat mudah yaitu 50 x 4 = 200 km.

Lebih terperinci

I. DERET TAKHINGGA, DERET PANGKAT

I. DERET TAKHINGGA, DERET PANGKAT I. DERET TAKHINGGA, DERET PANGKAT. Pedahulua Pembahasa tetag deret takhigga sebagai betuk pejumlaha suku-suku takhigga memegag peraa petig dalam fisika. Pada bab ii aka dibahas megeai pegertia deret da

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 71-76, Agustus 2003, ISSN :

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 71-76, Agustus 2003, ISSN : JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 71-76, Agustus 2003, ISSN : 1410-8518 SYARAT CUKUP AGAR SUATU FUNGSI TERINTEGRAL HENSTOCK MUTLAK DI DALAM RUANG METRIK KOMPAK LOKAL Mauharawati Jurusa Matematika

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Didalam melakuka kegiata suatu alat atau mesi yag bekerja, kita megeal adaya waktu hidup atau life time. Waktu hidup adalah lamaya waktu hidup suatu kompoe atau uit pada

Lebih terperinci

MINGGU KE-12 TEOREMA LIMIT PUSAT DAN TERAPANNYA

MINGGU KE-12 TEOREMA LIMIT PUSAT DAN TERAPANNYA MINGGU KE-12 TEOREMA LIMIT PUSAT DAN TERAPANNYA TEOREMA LIMIT PUSAT DAN TERAPANNYA Telah dikeal bahwa X 1, X 2...X sampel radom dari distribusi ormal dega mea µ da variasi σ 2, maka x µ σ/ atau xi µ σ

Lebih terperinci

PENDAHULUAN LANDASAN TEORI

PENDAHULUAN LANDASAN TEORI 1 PENDAHULUAN Latar Belakang Dalam kehidupan sehari-hari, banyak permasalahan yang dapat dimodelkan dengan proses stokastik. Proses stokastik dapat dibedakan menjadi dua yaitu proses stokastik dengan waktu

Lebih terperinci

Sebaran Penarikan Contoh. Dept Statistika FMIPA IPB

Sebaran Penarikan Contoh. Dept Statistika FMIPA IPB Sebara Pearika Cotoh Dept Statistika FMIPA IPB Statistik: karakteristik umerik yag diperoleh dari data cotoh Dari sebuah populasi dapat diperoleh bayak cotoh acak. Dari setiap cotoh acak, dapat dihitug

Lebih terperinci

Supriyadi Wibowo Jurusan Matematika F MIPA UNS

Supriyadi Wibowo Jurusan Matematika F MIPA UNS Prosidig Semiar Nasioal Peelitia, Pedidika da Peerapa MIPA akultas MIPA, Uiversitas Negeri Yogyakarta, 16 Mei 29 HUBUNGAN ANTARA ORDER DERIVATI- DARI UNGSI f : DENGAN DIMENSI-γ DARI HIMPUNAN RAKTAL Supriyadi

Lebih terperinci

Peubah Acak. Peubah Acak Diskrit dan Distribusi Peluang. Peubah Acak. Peubah Acak

Peubah Acak. Peubah Acak Diskrit dan Distribusi Peluang. Peubah Acak. Peubah Acak Peubah Acak Peubah Acak Diskrit da Distribusi Peluag Peubah Acak (Radom Variable): Sebuah keluara umerik yag merupaka hasil dari percobaa (eksperime) Utuk setiap aggota dari ruag sampel percobaa, peubah

Lebih terperinci

ISIAN SINGKAT! 1. Diberikan hasil kali digit digit dari n harus sama dengan 25

ISIAN SINGKAT! 1. Diberikan hasil kali digit digit dari n harus sama dengan 25 head office : Kompleks Sawaga Permai Blok A5 No.1A, Sawaga, Depok 16511 Telp.01-951 1160. cotact perso : 0-878787-1-8585 / 081-8691-10 Bidag Studi Kode Berkas Waktu : Matematika : MA-L01 (solusi) : 90

Lebih terperinci

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan REGRESI LINIER DAN KORELASI Variabel dibedaka dalam dua jeis dalam aalisis regresi: Variabel bebas atau variabel prediktor -> variabel yag mudah didapat atau tersedia. Dapat diyataka dega X 1, X,, X k

Lebih terperinci

PENDUGA KEPEKATAN KERNEL BAGI FUNGSI KEPEKATAN PELUANG GAMMA. Oleh: MERYALDI G

PENDUGA KEPEKATAN KERNEL BAGI FUNGSI KEPEKATAN PELUANG GAMMA. Oleh: MERYALDI G PENDUGA KEPEKATAN KERNEL BAGI FUNGSI KEPEKATAN PELUANG GAMMA Oleh: MERYALDI G5400 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR 006 PENDUGA KEPEKATAN KERNEL

Lebih terperinci

CATATAN KULIAH Pertemuan I: Pengenalan Matematika Ekonomi dan Bisnis

CATATAN KULIAH Pertemuan I: Pengenalan Matematika Ekonomi dan Bisnis CATATAN KULIAH Pertemua I: Pegeala Matematika Ekoomi da Bisis A. Sifat-sifat Matematika Ekoomi 1. Perbedaa Matematika vs. Nomamatematika Ekoomi Keutuga pedekata matematika dalam ilmu ekoomi Ketepata (Precise),

Lebih terperinci

BAB VIII KONSEP DASAR PROBABILITAS

BAB VIII KONSEP DASAR PROBABILITAS BAB VIII KONSEP DASAR PROBABILITAS 1.1. Pedahulua Dalam pertemua ii Ada aka mempelajari beberapa padaga tetag permutasi da kombiasi, fugsi da metode perhituga probabilitas, da meghitug probabilitas. Pada

Lebih terperinci

Himpunan. Himpunan 3/28/2012. Semesta Pembicaraan Semua mobil di Indonesia

Himpunan. Himpunan 3/28/2012. Semesta Pembicaraan Semua mobil di Indonesia Himpua Suatu himpua atau gugus adalah merupaka sekumpula obyek. Pada umumya aggota dari gugus tersebut memiliki suatu sifat yag sama. Suatu himpua bagia atau aak gugus merupaka sekumpula obyek yag aggotaya

Lebih terperinci

Pengantar Statistika Matematika II

Pengantar Statistika Matematika II Pegatar Statistika Matematika II Metode Evaluasi Atia Ahdika, S.Si., M.Si. Prodi Statistika FMIPA Uiversitas Islam Idoesia April 11, 2017 atiaahdika.com Pegguaa metode estimasi yag berbeda dapat meghasilka

Lebih terperinci

Modul 1. (Pertemuan 1 s/d 3) Deret Takhingga

Modul 1. (Pertemuan 1 s/d 3) Deret Takhingga Modul. (Pertemua s/d ) Deret Takhigga. Deret Tidak Terhigga. Pembicaraa kita sekarag deret pada umumya. Deret yag bayakya suku tak terbatas disebut deret tak higga, otasi : Masalah pokok pada deret tak

Lebih terperinci

Deret Fourier. Modul 1 PENDAHULUAN

Deret Fourier. Modul 1 PENDAHULUAN Modul Deret Fourier Prof. Dr. Bambag Soedijoo P PENDAHULUAN ada modul ii dibahas masalah ekspasi deret Fourier Sius osius utuk suatu fugsi periodik ataupu yag diaggap periodik, da dibahas pula trasformasi

Lebih terperinci

Distribusi Sampel & Statistitik Terurut

Distribusi Sampel & Statistitik Terurut Distribusi Sampel & Statistitik Terurut Sampel Acak, Rataa sampel, X-bar, Variasi sampel, S, Teorema Limit Pusat, Distribusi t,, F Statistik Terurut MA 3181 Teori Peluag 11 November 014 Utriwei Mukhaiyar

Lebih terperinci

BAB IV SEBARAN ASIMTOTIK PENDUGA DENGAN MENGGUNAKAN KERNEL SERAGAM. ) menyatakan banyaknya kejadian pada interval [ 0, n ] dan h

BAB IV SEBARAN ASIMTOTIK PENDUGA DENGAN MENGGUNAKAN KERNEL SERAGAM. ) menyatakan banyaknya kejadian pada interval [ 0, n ] dan h BAB IV SEBARAN ASIMTOTIK PENDUGA DENGAN MENGGUNAKAN KERNEL SERAGAM 4.1 Peduga dega Kerel Seragam Pada bab ii diguaka peduga dega kerel eragam. Hal ii karea aya belum berail memperole ebara aimtotik dari

Lebih terperinci

Gambar 1. Partisi P dari empat persegi panjang R = [a, b] x [c, d] adalah dua himpunan i i

Gambar 1. Partisi P dari empat persegi panjang R = [a, b] x [c, d] adalah dua himpunan i i INTEGAL LIPAT. Itegral Lipat Dua dalam Koordiat Kartesius Pada bagia ii, dipelajari itegral lipat dua dalam. Misalka diketahui dua iterval tertutup [a, b] da [c, d]. Hasil kali kartesius dari kedua iterval

Lebih terperinci

Lampiran A. Beberapa Definisi dan Lema Teknis

Lampiran A. Beberapa Definisi dan Lema Teknis LAMPIRAN 33 Lampiran A. Beberapa Definisi dan Lema Teknis Ruang Contoh, Kejadian dan Peluang Definisi A.1 (Ruang contoh dan kejadian) Suatu percobaan yang dapat diulang dalam kondisi yang sama, yang hasilnya

Lebih terperinci

Selang Kepercayaan (Confidence Interval) Pengantar Penduga titik (point estimator) telah dibahas pada kuliah-kuliah sebelumnya. Walau statistikawan

Selang Kepercayaan (Confidence Interval) Pengantar Penduga titik (point estimator) telah dibahas pada kuliah-kuliah sebelumnya. Walau statistikawan Selag Kepercayaa (Cofidece Iterval) Pegatar Peduga titik (poit estimator) telah dibahas pada kuliah-kuliah sebelumya. Walau statistikawa telah berusaha memperoleh peduga titik yag baik, amu hampir bisa

Lebih terperinci

Matematika Terapan Dosen : Zaid Romegar Mair, ST., M.Cs Pertemuan 3

Matematika Terapan Dosen : Zaid Romegar Mair, ST., M.Cs Pertemuan 3 Matematika Terapa Dose : Zaid Romegar Mair ST. M.Cs Pertemua 3 PROGRAM STUDI TEKNIK INFORMATIKA Jl. Koloel Wahid Udi Lk. I Kel. Kayuara Sekayu 30711 web:www.polsky.ac.id mail: polsky@polsky.ac.id Tel.

Lebih terperinci

Metode Statistika STK211/ 3(2-3)

Metode Statistika STK211/ 3(2-3) Metode Statistika STK211/ 3(2-3) Pertemua VI Sebara Pearika Cotoh Septia Rahardiatoro - STK IPB 1 Sebara Pearika Cotoh Megidetifikasi sebara suatu fugsi dari cotoh ketika diambil dari suatu populasi X

Lebih terperinci