MATEMATIKA BISNIS. OLEH: SRI NURMI LUBIS, S.Si GICI BUSSINESS SCHOOL BATAM

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "MATEMATIKA BISNIS. OLEH: SRI NURMI LUBIS, S.Si GICI BUSSINESS SCHOOL BATAM"

Transkripsi

1 MATEMATIKA BISNIS OLEH: SRI NURMI LUBIS, S.Si GICI BUSSINESS SCHOOL BATAM

2 BAB BARISAN DAN DERET A. BARISAN Barisa bilaga adalah susua bilaga yag diurutka meurut atura tertetu.betuk umum barisa bilaga a, a 2, a 3,,a. Setiap usur pada barisa bilaa disebut suku. Suku ke- dari suatu barisa ditulis dega simbol U ( merupaka bilaga asli ). Utuk suku pertama diyataka dega simbol a atau U. Berdasarka bayakya suku, barisa dapat dibedaka mejadi dua macam, yaitu :. Barisa berhigga, jika bayakya suku-suku tertetu jumlahya. 2. Barisa tak berhigga, jika bayakya suku-suku tak berhiga jumlahya.. Barisa Aritmetka. Barisa atitmetika adalah suatu barisa bilaga dimaa setiap dua suku beruruta memiliki selisih yag tetap yag disebut beda ( b ). Secara umum jika suku ke- suatu barisa arimetika adalah U, maka berlaku : b = U U Jika suku pertama dari barisa aritmetika ( U ) diotasika dega a da beda diotasika dega b, maka suku-suku pada barisa aritmetika tersebut dapat ditulis sebagai berikut : U = a U 2 = a + b U 3 = ( a + b ) + b = a + 2b U 4 = ( a + 2b ) + b = a + 3b. U = a + ( ).b Keteraga : U = Suku ke-, a = Suku pertama, b = Beda

3 2. Barisa Geometri Barisa geometri adalah suatu barisa bilaga yag setiap sukuya diperoleh dega cara megalika suku didepaya dega bilaga tetap yag disebut rasio yag diotasika dega r. Jika suatu barisa geometri U, U 2, U 3,, U maka rasio dapat dituliska : r = U /U - Apabila suku pertama barisa geometri diyataka dega otasi a, da rasio diyataka dega otasi r, maka : U = a U 2 = ar U 3 = arr = ( ar 2 ) U 4 = a ( r 2 ) r = ar 3 U = ar - Keteraga : U = Suku ke-, a = Suku pertama, r = rasio B. DERET Deret adalah barisa bilaga yag disusu urut sedemikia rupa secara teratur meurut atura tertetu. Barisa bilaga tersebut diamaka suku-suku dari deret tersebut. Deret kalau kita perhatika bayakya suku yag berjejer, dapat kita bedaka mejadi 2 (dua). Deret berhigga 2. Deret tak berhigga Deret berhigga adalah deret yag sama suku-sukuya mempuyai batas atau tertetu.

4 Sedagka deret tak berhigga adalah deret yag maa suku-sukuya tak terbatas atau tak tertetu. Sedagka deret tak berhigga adalah deret yag maa suku sukuya tak terbatas atau tak tertetu. Macam-macam Deret: Deret dapat dibagi atas 3 (tiga) bagia, yaitu:. Deret Arithmatika 2. Deret Geometri 3. Deret Harmois Deret Arithmatika Deret arithmatika adalah barisa bilaga yag pegurutaya dega mejumlahka atura tetap da disusu urut meurut suku-sukuya. Betuk umum Deret Arithmatika adalah sebagai berikut : Kalau kita perhatika maka dapatlah kita simpulka bahwa :. Deret arithmatika disebut aik, apabila jumlah suku-suku berikutya adalah bertambah besar karea beda (b) > 0 2. Deret arithmatika disebut turu, apabila jumlah suku-suku berikutya adalah meuru mejadi lebih kecil karea beda (b) < 0. Jumlah semua suku-suku deret arithmatika adalah dega mejumlahka semua suku-suku yag ada. Jumlah semua suku-sukuya, diberi otasi dega D. Cotoh soal. Deret : 0,8,6,4,2,, D0 Diketahui : a =0 b = 8-0 = -2 sehigga diperoleh : D = ½. {2a + (-) b} atau D = ½. {a + U } D 0 = ½. 0 {2.0 + (0-) -2} D 0 = 5 {20 + (9) -2}

5 D 0 = 5 (20-3) D 0 = 5 (2) D 0 = 0 Itu adalah merupaka cotoh soal dalam betuk kuatitatif, disampig ada soal kuatitatif kita juga megeal betuk cotoh soal dalam betuk kuatitatif. Dimaa cotoh soal kualitatif ii terlebih dahulu harus kita formulasika dalam betuk kuatitatif. Adapu betuk cotoh soal kualitatif adalah sebagai berikut : Soal : Harga sebuah barag di pasar besar teredah Rp. 6000,- Barag yag aka dibeli adalah sebayak jumlah keluarga dari pak Sopa yaitu sepuluh orag. Diperkiraka aka medapat perbedaa pembelia barag dega harga Rp. 4000,- Recaa pak Sopa, pembagia barag-barag ii adalah merupaka hadiah, yag aka dibagika berdasarka umur masig-masig keluargaya jika yag kecil medapat harga teredah da yag besar medapat harga tertiggi, berapakah yag tertua medapatka harga barag tersebut da berpakah jumlah keseluruha uag yag aka dikeluarka pak Sopa. Diketahui : Harga Rp. 6000,- adalah harga teredah da aka diberika kepada yag berumur teredah, ii adalah sama dega a (suku awal). Perbedaa harga barag adalah Rp. 4000,- ii adalah merupaka b (beda). Jumlah keluarga pak Sopa seluruhya adalah 0 orag ii adalah (bayak suku). Sehigga diperoleh : a = b = = 0 Dega diketahuiya a, b, da, maka dapat dicari pembagia yag terua da jumlah uag yag aka dikeluarka pak Sopa, dega memakai betuk rumus U da D yaitu : a. U = a + (-) b

6 U 0 = (0-) U 0 = (9) U 0 = U 0 = ] Jadi umurya yag tertua aka medapatka barag seharga Rp ,- b. D = ½ {2a + (-) b} D 0 = ½ 0 {2(6000) + (0-) 4.000} D 0 = 5 { (9) 4.000} D 0 = 5 { } D 0 = 5 {48.000} D 0 = Jadi jumlah uag keseluruhaya yag aka dikeluarka pak Sopa adalah sebesar Rp ,- Deret Geometri Deret geometri adalah barisa bilaga yag disusu urut sedemikia rupa, sehigga bilaga yag berikutya merupaka hasil peggada bilaga sebelumya. Betuk umum Deret Geometri adalah sebagai berikut : U = a suku awal U 2 = a. r suku awal dikali peggada U 3 = a. r 2 suku awal dikali peggada pagkat 2 U = a. r suku ke- adalah suku awal dikali peggada pagkat - Sehigga diperoleh suatu rumus U = a. r - dimaa : U = suku ke- a = suku awal r = rasio = bayak rumus, l = kostata

7 rasio atau r kita peroleh dari : r = u u 2 atau r = u u - Dari cotoh soal tersebut diatas dapat disimpulka bahwa peggada Deret Geometri selalu berilai positif atau lebih besar dari ol. Jumlah semua suku-suku deret geometri adalah dega mejumlahka semua suku-suku yag diketahui. Jumlah semua suku-sukuya diberi otasi dega D. D a r a ; jika r < atau D Dimaa : D a r l r = jumlah semua suku pertama = suku awal = rasio = bayak suku = kostata cotaoh soal. Deret :, 3, 9, 27,.., D 8 =? Diketahui : a = 3 r = = 3 r, jika r > r 3. Deret Harmois Deret harmois adalah deret yag kebalika suku-sukuya membetuk sebuah deret aritmatika atau dega kata lai deret harmois adalah deret dimaa peyebutya adalah merupaka deret aritmatika, sedagka sebagai pembilagya adalah agka kostata satu. Betuk umum Deret Harmois adalah : U = a

8 U 2 = a b U 3 = U = a 2b a ( ) b Dimaa : U = suku pertama U 2 = suku kedua U 3 = suku ketiga U = suku ke- a b = suku awal utuk deret aritmatika = beda utuk deret aritmatika = bayak suku Jumlah Semua Peyebut Suku-suku Deret Harmois Jumlah semua peyebut suku-suku deret harmois adalah dega mejumlahka semua peyebut suku-sukuya. Jumlah semua peyebut suku-sukuya siberi otasi D. Dega rumus: D = /2 {2a ( -) b} Dimaa : D = Jumlah suku pertama deret harmois a b = bayak suku = suku awal deret aritmatika = beda deret aritmatika cotoh soal :. Deret ¼, /7, /0,, D 0 =?

9 Diketahui : a = 4 b = 7-4 = 3 = 0 Sehigga diperoleh D = /2 {2a ( -) b} D 0 = D 0 = D 0 = /2(0){2(4) - (0 -) 3 5{8 5 (35) 27} D 0 = 75 Jadi jumlah peyebut suku-suku deret harmois adalah 75

10 BAB 2 MATEMATIKA KEUANGAN 2. Teori Nilai Uag adalah salah satu peerapa deret ukur (Geometri) yag palig kovesioal di bidag ekoomi. Pada prisipya teori ii adalah utuk meghitug buga uag, baik buga biasa, buga majemuk maupu utuk meghitug Auity. 2.2 Buga Tuggal Buga Tuggal adalah buga yag dikeluarka pada modal yag tiap tahuya, biasaya buga dihitug pada akhir tahu, yaitu per 3 Desember Betuk umum ilai uag yag aka datag F = P ( + i. ) F = ilai uag yag aka datag P = ilai uag sekarag i = tigkat buga = lamaya uag dibugaka (dalam tahua) Betuk Umum Nilai Uag sekarag dari buga biasa adalah : P = F i. 2.3 Buga Majemuk Buga majemuk adalah buga yag dihitug pada modal yag berubahubah (bertambah) tiap tahuya, bertambah meurut besarya tigkat buga yag berlaku. a. Betuk umum Nilai Uag yag aka datag dari buga majemuk adalah : F = P ( + i) Dimaa F P i = Nilai uag yag aka datag (future) = Nilai uag sekarag (preset) = Tigkat buga (iterest)

11 l = lamaya uag dibugaka (dalam tahua) = kostata Jika pembayara buga lebih dari satu kali dalam setahu melaika m kali, maka ilai masa datagya adalah: F P i m Keteraga: jika buga dibayarka tahua maka m = m jika buga dibayarka haria maka m = 365 jika buga dibayarka bulaa maka m = 2 jika buga dibayarka persemester maka m = 2 jika buga dibayarka perkuartal maka m = 4 jika buga dibayarka percatur wula maka m = 3 Secara umum ada 3 metode perhituga buga tabuga yaitu: berdasarka saldo teredah, saldo rata-rata da saldo haria. Beberapa bak meerapka jumlah hari dalam tahu 365 hari, amu ada pula yag meerapka jumlah hari buga 360 hari. 2.4 Auity adalah jumlah uag yag dibayarka atau yag diterima secara berturut-turut setiap periode pembayara atau peerimaa. Sifat-sifat Auity :. Jumlah pembayaraya sama setiap periodeya (Equal Paymet s). 2. Pajagya periode atara agsura sama (equal periode betwee paymets). 3. Pembayara pada akhir periode (edig paymets periods) Betuk umum ilai uag yag aka datag dari Auity adalah A = F Dimaa A = Auity i (l i) - F = Nilai uag yag aka datag

12 i l = tigkat buga = lamaya agsura = kostata 2.4 Utuk mecari ilai uag yag aka datag dari Auity dapat juga diperguaka rumus : F = A ( i) - i Betuk umum ilai uag sekarag dari Auity adalah : A = P i (l ) (l i) - A = Auity P i l = Nilai uag sekarag = tigkat buga = lamaya Auity (agsura) = kostata 2.5 Utuk mecari ilai uag sekarag dari Auity dapat juga diperguaka rumus : P = A (l i) i (l i)

13

BARISAN DAN DERET. Materi ke 1

BARISAN DAN DERET. Materi ke 1 BARISAN DAN DERET Materi ke 1 Pola Bilaga adalah? Susua bilaga yag disusu meurut atura tertetu. Cotoh : 1. Pola Bilaga Gajil 1, 3, 5,... 2. Pola Bilaga Geap 2, 4, 6,... PERHATIKAN SSNAN BILANGAN DI BAWAH

Lebih terperinci

MATEMATIKA EKONOMI 1 Deret. DOSEN Fitri Yulianti, SP, MSi.

MATEMATIKA EKONOMI 1 Deret. DOSEN Fitri Yulianti, SP, MSi. MATEMATIKA EKONOMI 1 Deret DOSEN Fitri Yuliati, SP, MSi. Deret Deret ialah ragkaia bilaga yag tersusu secara teratur da memeuhi kaidah-kaidah tertetu. Bilaga-bilaga yag merupaka usur da pembetuk sebuah

Lebih terperinci

i adalah indeks penjumlahan, 1 adalah batas bawah, dan n adalah batas atas.

i adalah indeks penjumlahan, 1 adalah batas bawah, dan n adalah batas atas. 4 D E R E T Kosep deret merupaka kosep matematika yag cukup populer da aplikatif khusuya dalam kasus-kasus yag meyagkut perkembaga da pertumbuha suatu gejala tertetu. Apabila perkembaga atau pertumbuha

Lebih terperinci

Barisan Aritmetika dan deret aritmetika

Barisan Aritmetika dan deret aritmetika BARISAN DAN DERET BILANGAN Peyusu: Atmii Dhoruri, MS Kode: Jejag: SMP T/P: / A. Kompetesi yag diharapka. Meetuka suku ke- barisa aritmatika da barisa geometri. Meetuka jumlah suku pertama deret aritmatika

Lebih terperinci

Projek. Contoh Menemukan Konsep Barisan dan Deret Geometri a. Barisan Geometri. Perhatikan barisan bilangan 2, 4, 8, 16,

Projek. Contoh Menemukan Konsep Barisan dan Deret Geometri a. Barisan Geometri. Perhatikan barisan bilangan 2, 4, 8, 16, Projek Himpulah miimal tiga masalah peerapa barisa da deret aritmatika dalam bidag fisika, tekologi iformasi, da masalah yata di sekitarmu. Ujilah berbagai kosep da atura barisa da deret aritmatika di

Lebih terperinci

III BAB BARISAN DAN DERET. Tujuan Pembelajaran. Pengantar

III BAB BARISAN DAN DERET. Tujuan Pembelajaran. Pengantar BAB III BARISAN DAN DERET Tujua Pembelajara Setelah mempelajari materi bab ii, Ada diharapka dapat:. meetuka suku ke- barisa da jumlah suku deret aritmetika da geometri,. meracag model matematika dari

Lebih terperinci

Manajemen Keuangan. Idik Sodikin,SE,MBA,MM KONSEP WAKTU UANG PADA MASALAH KEUANGAN. Modul ke: Fakultas EKONOMI DAN BISNIS. Program Studi Akuntansi

Manajemen Keuangan. Idik Sodikin,SE,MBA,MM KONSEP WAKTU UANG PADA MASALAH KEUANGAN. Modul ke: Fakultas EKONOMI DAN BISNIS. Program Studi Akuntansi Modul ke: 05 KONSEP WAKTU UANG PADA MASALAH KEUANGAN Fakultas EKONOMI DAN BISNIS Program Studi Akutasi Idik Sodiki,SE,MBA,MM Pedahulua Kosep ilai waktu dari uag (time value of moey) pada dasarya mejelaska

Lebih terperinci

LOGO MATEMATIKA BISNIS (Deret)

LOGO MATEMATIKA BISNIS (Deret) LOGO MATEMATIKA BISNIS (Deret) DOSEN FEBRIYANTO, SE., MM. www.febriyato79.wordpress.com 1 MATEMATIKA BISNIS Matematika Bisis memberika pemahama ilmu megeai kosep matematika dalam bidag bisis. Sehigga suatu

Lebih terperinci

DERET TAK HINGGA (INFITITE SERIES)

DERET TAK HINGGA (INFITITE SERIES) MATEMATIKA II DERET TAK HINGGA (INFITITE SERIES) sugegpb.lecture.ub.ac.id aada.lecture.ub.ac.id BARISAN Barisa merupaka kumpula suatu bilaga (atau betuk aljabar) yag disusu sehigga membetuk suku-suku yag

Lebih terperinci

theresiaveni.wordpress.com NAMA : KELAS :

theresiaveni.wordpress.com NAMA : KELAS : theresiaveiwordpresscom NAMA : KELAS : 1 theresiaveiwordpresscom BARISAN DAN DERET Barisa da deret dapat diguaka utuk memudahka peyelesaia perhituga, misalya buga bak, keaika produksi, da laba/rugi suatu

Lebih terperinci

Buku Padua Belajar Maajeme Keuaga Chapter 0 KONSEP NILAI WAKTU UANG. Pegertia. Nilai Uag meurut waktu, berarti uag hari ii lebih baik / berharga dari pada ilai uag dimasa medatag pada harga omial yag sama.

Lebih terperinci

I. DERET TAKHINGGA, DERET PANGKAT

I. DERET TAKHINGGA, DERET PANGKAT I. DERET TAKHINGGA, DERET PANGKAT. Pedahulua Pembahasa tetag deret takhigga sebagai betuk pejumlaha suku-suku takhigga memegag peraa petig dalam fisika. Pada bab ii aka dibahas megeai pegertia deret da

Lebih terperinci

CATATAN KULIAH #12&13 Bunga Majemuk

CATATAN KULIAH #12&13 Bunga Majemuk CATATAN KULIAH #12&13 Buga Majemuk 10.1 Pedahulua Pada pembahasa sebelumya diasumsika bahwa P atau ilai pokok pembayara tidak megalami perubaha dari awal higga akhir sehigga ilai buga selalu dihitug dari

Lebih terperinci

BAB II CICILAN DAN BUNGA MAJEMUK

BAB II CICILAN DAN BUNGA MAJEMUK BAB II CICILAN DAN BUNGA MAJEMUK 2.1. Buga Majemuk Ada sedikit perbedaa atara suku buga tuggal da suku buga majemuk. Pada suku buga tuggal, besarya buga B = Mp tidak perah digabugka dega modal M. Sebalikya

Lebih terperinci

Muniya Alteza

Muniya Alteza NILAI WAKTU UANG 1. Kosep dasar ilai waktu uag (time value of moey) 2. Nilai masa depa (future value) 3. Nilai sekarag (preset value) 4. Auitas (auity) 5. Perpetuitas (perpetuity) 6. Buga tahua efektif/

Lebih terperinci

ANUITAS. 9/19/2012 MK. Aktuaria Darmanto,S.Si.

ANUITAS. 9/19/2012 MK. Aktuaria Darmanto,S.Si. ANUITAS 9/19/2012 MK. Aktuaria Darmato,S.Si. 1 OVERVIEW Auitas adl suatu pembayara dalam jumlah tertetu, yag dilakuka setiap selag waktu da lama tertetu, secara berkelajuta. Suatu auitas yg pasti dilakuka

Lebih terperinci

Nilai Waktu dan Uang (Time Value of Money)

Nilai Waktu dan Uang (Time Value of Money) Nilai Waktu da Uag (Time Value of Moey) Kosep Dasar Jika ilai omialya sama, uag yag dimiliki saat ii lebih berharga daripada uag yag aka diterima di masa yag aka datag Lebih baik meerima Rp juta sekarag

Lebih terperinci

SOAL-SOAL. 1. UN A Jumlah n suku pertama deret aritmetika dinyatakan dengan S n n

SOAL-SOAL. 1. UN A Jumlah n suku pertama deret aritmetika dinyatakan dengan S n n Husei Tampomas, Barisa da Deret, 06 SOAL-SOAL. UN A 0 Jumlah suku pertama deret aritmetika diyataka dega S. Suku ke-0 A. B. C. 0 D. 8 E. 6. UN A, D7, da E8 0 Sebuah pabrik memproduksi barag jeis A pada

Lebih terperinci

SOAL-SOAL LATIHAN BARISAN DAN DERET ARITMETIKA DAN GEOMETRI UJIAN NASIONAL

SOAL-SOAL LATIHAN BARISAN DAN DERET ARITMETIKA DAN GEOMETRI UJIAN NASIONAL SOAL-SOAL LATIHAN BARISAN DAN DERET ARITMETIKA DAN GEOMETRI UJIAN NASIONAL Peserta didik memiliki kemampua memahami kosep pada topik barisa da deret aritmetika da geometri. Peserta didik memilki kemampua

Lebih terperinci

MATEMATIKA EKONOMI (Deret)

MATEMATIKA EKONOMI (Deret) LOGO MATEMATIKA EKONOMI (Deret) DOSEN FEBRIYANTO, SE., MM. www.febriyato79.wordpress.com MATEMATIKA EKONOMI Matematika Ekoomi memberika pemahama ilmu megeai kosep matematika dalam bidag bisis da ekoomi.

Lebih terperinci

SOAL-SOAL SPMB 2006 MATEMATIKA DASAR (MAT DAS) 63 n, maka jumlah n suku. D n n 2. f n log3 log 4 log5... log n, maka f 2...

SOAL-SOAL SPMB 2006 MATEMATIKA DASAR (MAT DAS) 63 n, maka jumlah n suku. D n n 2. f n log3 log 4 log5... log n, maka f 2... SOAL-SOAL SPMB 006 MATEMATIKA DASAR (MAT DAS). SPMB, MAT DAS, Regioal I, 006 Tiga bilaga membetuk suatu deret geometri aik. Jika jumlahya 6 da hasikaliya 6, maka rasio deretya adalah A. B. C. D. 4 E. 5.

Lebih terperinci

BARISAN DAN DERET. Bentuk deret Aritmatika: a, ( a + b ), ( a + 2b ) ( a + ( n 1 ) b a = suku pertama b = beda n = banyaknya suku.

BARISAN DAN DERET. Bentuk deret Aritmatika: a, ( a + b ), ( a + 2b ) ( a + ( n 1 ) b a = suku pertama b = beda n = banyaknya suku. BARISAN DAN DERET Bab 9 Deret Aritmatika (Deret Hitug) o o o Betuk deret Aritmatika: a, ( a + b ), ( a + b ) +...+ ( a + ( ) b a = suku pertama b = beda = bayakya suku Suku ke- : U = a + (-)b Jumlah suku

Lebih terperinci

PREDIKSI SOAL ULANGAN AKHIR SEMESTER GENAP KELAS IX SMP NEGERI 196 JAKARTA. Jawab : Nilai dari. Jawab :.3.3 = 27

PREDIKSI SOAL ULANGAN AKHIR SEMESTER GENAP KELAS IX SMP NEGERI 196 JAKARTA. Jawab : Nilai dari. Jawab :.3.3 = 27 PREDIKSI SOAL ULANGAN AKHIR SEMESTER GENAP KELAS IX SMP NEGERI 9 JAKARTA No. Idikator Soal Prediksi Soal Peserta didik dapat meyataka betuk pecaha aljabar yag pembilag da peyebutya berpagkat egatif mejadi

Lebih terperinci

Barisan, Deret, dan Notasi Sigma

Barisan, Deret, dan Notasi Sigma Barisa, Deret, da Notasi Sigma B A B 5 A. Barisa da Deret Aritmetika B. Barisa da Deret Geometri C. Notasi Sigma da Iduksi Matematika D. Aplikasi Barisa da Deret Sumber: http://jsa007.tripod.com Saat megedarai

Lebih terperinci

BAB 2 TINJAUAN TEORI

BAB 2 TINJAUAN TEORI BAB 2 TINJAUAN TEORI 2.1 ISTILAH KEENDUDUKAN 2.1.1 eduduk eduduk ialah orag atatu idividu yag tiggal atau meetap pada suatu daerah tertetu dalam jagka waktu yag lama. 2.1.2 ertumbuha eduduk ertumbuha peduduk

Lebih terperinci

BAB 2 : BUNGA, PERTUMBUHAN DAN PELURUHAN

BAB 2 : BUNGA, PERTUMBUHAN DAN PELURUHAN Jl. Raya Wagu Kel. Sidagsari Kta Bgr Telp. 0251-8242411, email: prhumasi@smkwikrama.et, website : www.smkwikrama.et BAB 2 : BUNGA, PERTUBUHAN DAN PELURUHAN PENGERTIAN BUNGA Buga adalah jasa dari simpaa

Lebih terperinci

MODUL MATEMATIKA SMA IPA Kelas 11

MODUL MATEMATIKA SMA IPA Kelas 11 SMA IPA Kelas BARISAN DAN DERET ARITMATIKA. Betuk umum: a, ( a b), ( a b) ( a b). Rumus suku ke- ( ) a ( ) b a : suku pertama b : beda. Jumlah suku pertama (S ) S ( a ) atau S (a ( ) b) Dega S dapat juga

Lebih terperinci

DERET Matematika Industri 1

DERET Matematika Industri 1 DERET TIP FP UB Pokok Bahasa Barisa Deret Deret aritmetik Deret geometrik Deret pagkat dari bilaga-bilaga asli Deret tak berhigga Nilai-ilai limit Deret koverge da deret diverge Uji kovergesi Deret secara

Lebih terperinci

-1- U n : suku ke-n barisan aritmetika a : suku pertama n : banyak suku b : beda/selisih

-1- U n : suku ke-n barisan aritmetika a : suku pertama n : banyak suku b : beda/selisih -- BARISAN DAN DERET PENGERTIAN BARISAN DAN DERET Bisa yaitu susua bilaga yag didapatka di pemetaa bilaga asli yag dihubugka dega tada,. Jika pada bisa tada, digati dega tada, maka disebut deret. Bisa

Lebih terperinci

Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1

Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1 Barisa Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 9/0/06 Matematika Barisa Tak Higga Secara sederhaa, barisa merupaka susua dari bilaga bilaga yag urutaya berdasarka bilaga

Lebih terperinci

BARISAN TAK HINGGA DAN DERET TAK HINGGA

BARISAN TAK HINGGA DAN DERET TAK HINGGA BARIAN TAK HINGGA DAN DERET TAK HINGGA Bajar/Barisa Tak Higga Barisa tak higga { } adalah suatu fugsi dari dimaa daerah domaiya adalah himpua bilaga bulat positif (bilaga asli). Cotoh: Bila.. maka fugsi

Lebih terperinci

Hendra Gunawan. 12 Februari 2014

Hendra Gunawan. 12 Februari 2014 MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2013/2014 12 Februari 2014 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 82 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg

Lebih terperinci

ARTIKEL. Menentukan rumus Jumlah Suatu Deret dengan Operator Beda. Markaban Maret 2015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN

ARTIKEL. Menentukan rumus Jumlah Suatu Deret dengan Operator Beda. Markaban Maret 2015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN ARTIKEL Meetuka rumus Jumlah Suatu Deret dega Operator Beda Markaba 191115198801005 Maret 015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN PUSAT PENGEMBANGAN DAN PEMBERDAYAAN PENDIDIK DAN TENAGA KEPENDIDIKAN

Lebih terperinci

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi 6. Pecacaha Lajut Relasi Rekuresi Relasi rekuresi utuk dereta {a } adalah persamaa yag meyataka a kedalam satu atau lebih suku sebelumya, yaitu a 0, a,, a -, utuk seluruh bilaga bulat, dega 0, dimaa 0

Lebih terperinci

Barisan Dan Deret Arimatika

Barisan Dan Deret Arimatika Barisa Da Deret Arimatika A. Barisa Aritmatika Niko etera memiliki sebuah peggaris ukura 0 cm. Ia megamati bilaga-bilaga pada peggarisya ii. Bilaga-bilaga tersebut beruruta 0, 1,, 3,, 0. etiap bilaga beruruta

Lebih terperinci

Definisi Integral Tentu

Definisi Integral Tentu Defiisi Itegral Tetu Bila kita megedarai kedaraa bermotor (sepeda motor atau mobil) selama 4 jam dega kecepata 50 km / jam, berapa jarak yag ditempuh? Tetu saja jawabya sagat mudah yaitu 50 x 4 = 200 km.

Lebih terperinci

Model Pertumbuhan BenefitAsuransi Jiwa Berjangka Menggunakan Deret Matematika

Model Pertumbuhan BenefitAsuransi Jiwa Berjangka Menggunakan Deret Matematika Prosidig Semirata FMIPA Uiversitas Lampug, 0 Model Pertumbuha BeefitAsurasi Jiwa Berjagka Megguaka Deret Matematika Edag Sri Kresawati Jurusa Matematika FMIPA Uiversitas Sriwijaya edagsrikresawati@yahoocoid

Lebih terperinci

BARISAN DAN DERET. 05/12/2016 Matematika Teknik 1 1

BARISAN DAN DERET. 05/12/2016 Matematika Teknik 1 1 BARISAN DAN DERET 05//06 Matematika Tekik BARISAN Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 05//06 Matematika Tekik Barisa Tak Higga Secara sederhaa, barisa merupaka

Lebih terperinci

UJIAN MASUK BERSAMA PERGURUAN TINGGI (UMB - PT) Mata Pelajara : Matematika Dasa Taggal : 06 Jui 009 Kode Soal : 0 0 www.olieschools.ame. Produksi beras propisi P tahu 990 adalah 00 ribu to da sampai tahu

Lebih terperinci

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa istilah, definisi serta konsep-konsep yang

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa istilah, definisi serta konsep-konsep yang II. LANDASAN TEORI Pada bab ii aka diberika beberapa istilah, defiisi serta kosep-kosep yag medukug dalam peelitia ii. 2.1 Kosep Dasar Teori Graf Berikut ii aka diberika kosep dasar teori graf yag bersumber

Lebih terperinci

UKURAN PEMUSATAN DATA

UKURAN PEMUSATAN DATA Malim Muhammad, M.Sc. UKURAN PEMUSATAN DATA J U R U S A N A G R O T E K N O L O G I F A K U L T A S P E R T A N I A N U N I V E R S I T A S M U H A M M A D I Y A H P U R W O K E R T O DEFINISI UKURAN PEMUSATAN

Lebih terperinci

BAB 12 BARISAN DAN DERET

BAB 12 BARISAN DAN DERET BAB 1 BARISAN DAN DERET TIPE 1: Jika dari barisa aritmetika diketahui suku ke-m adalah um u b. m Cotoh: Diketahui barisa aritmetika, suku ke-5 adalah 4 da suku ke-8 adalah 6. Tetuka beda barisa aritmetika

Lebih terperinci

b. Penyajian data kelompok Contoh: Berat badan 30 orang siswa tercatat sebagai berikut:

b. Penyajian data kelompok Contoh: Berat badan 30 orang siswa tercatat sebagai berikut: Statistik da Peluag A. Statistik Statistik adalah metode ilmiah yag mempelajari cara pegumpula, peyusua, pegolaha, da aalisis data, serta cara pegambila kesimpula berdasarka data-data tersebut. Data ialah

Lebih terperinci

Hendra Gunawan. 14 Februari 2014

Hendra Gunawan. 14 Februari 2014 MA20 MATEMATIKA 2A Hedra Guawa Semester II, 203/204 4 Februari 204 Sasara Kuliah Hari Ii 9. Barisa Tak Terhigga Memeriksa kekovergea suatu barisa da, bila mugki, meghitug limitya 9.2 Deret Tak Terhigga

Lebih terperinci

BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL)

BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) Setiap peelitia selalu berkeaa dega sekelompok data. Yag dimaksud kelompok disii adalah: Satu orag mempuyai sekelompok data, atau sekelompok orag mempuyai satu

Lebih terperinci

II. TINJAUAN PUSTAKA. Secara umum apabila a bilangan bulat dan b bilangan bulat positif, maka ada tepat = +, 0 <

II. TINJAUAN PUSTAKA. Secara umum apabila a bilangan bulat dan b bilangan bulat positif, maka ada tepat = +, 0 < II. TINJAUAN PUSTAKA 2.1 Keterbagia Secara umum apabila a bilaga bulat da b bilaga bulat positif, maka ada tepat satu bilaga bulat q da r sedemikia sehigga : = +, 0 < dalam hal ii b disebut hasil bagi

Lebih terperinci

terurut dari bilangan bulat, misalnya (7,2) (notasi lain 2

terurut dari bilangan bulat, misalnya (7,2) (notasi lain 2 Bab Bilaga kompleks BAB BILANGAN KOMPLEKS Defiisi Bilaga Kompleks Sebelum medefiisika bilaga kompleks, pembaca diigatka kembali pada permasalah dalam sistem bilaga yag telah dikeal sebelumya Yag pertama

Lebih terperinci

E-learning matematika, GRATIS 1

E-learning matematika, GRATIS 1 E-learig matematika, GRATIS Peyusu Editor : Teag Idriyai, S.P ; Taufiq Rahma, S.P : Drs. Keto Susato, M.Si. M.T. ; Istijab, S.H. M.Hum. Imam Idra Guawa, S.Si.. Pegertia Barisa da Deret Barisa bilaga adalah

Lebih terperinci

Sumber: Art & Gallery. 6. Menerapkan konsep barisan dan deret dalam pemecahan masalah

Sumber: Art & Gallery. 6. Menerapkan konsep barisan dan deret dalam pemecahan masalah Sumber: Art & Gallery Stadar Kompetesi 6. Meerapka kosep barisa da deret dalam pemecaha masalah Kompetesi Dasar 6. Megidetifikasi pola, barisa, da deret bilaga 6. Meerapka kosep barisa da deret aritmatika

Lebih terperinci

25/09/2010 KONSEP TIME VALUE OF MONEY

25/09/2010 KONSEP TIME VALUE OF MONEY Termiologi Buga da Suku Buga (i) KONSEP TIME VALUE OF MONEY DWI PURNOMO http//www.labsistemtmip.wordpress.com http//www.agroidustry.wordpress.com Buga (iterest) uag yag dibayarka/diterima atas pegguaa

Lebih terperinci

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang 5. DERET

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang 5. DERET Pertemua 7. BAHAN AJAR ANALISIS REAL Matematika STKIP Tuaku Tambusai Bagkiag 5. da kekovergeaya 5. DERET Diberika sebuah barisa a, dapat didefeisika barisa bilaga real S N dega S N := N a = a + a 2 +...

Lebih terperinci

BAB VI BARISAN TAK HINGGA DAN DERET TAK HINGGA

BAB VI BARISAN TAK HINGGA DAN DERET TAK HINGGA BAB VI BARIAN TAK HINGGA DAN DERET TAK HINGGA Bajar/Barisa Tak Higga Barisa tak higga { },,,,, adalah suatu fugsi dari dimaa daerah domaiya adalah himpua bilaga bulat positif (bilaga asli). Cotoh: Bila,,,..,

Lebih terperinci

2 BARISAN BILANGAN REAL

2 BARISAN BILANGAN REAL 2 BARISAN BILANGAN REAL Di sekolah meegah barisa diperkealka sebagai kumpula bilaga yag disusu meurut "pola" tertetu, misalya barisa aritmatika da barisa geometri. Biasaya barisa da deret merupaka satu

Lebih terperinci

Barisan dan Deret Bilangan

Barisan dan Deret Bilangan Bab 3 Barisa da Deret Bilaga Sumber: www.lombokgilis.com Setelah mempelajari bab ii, diharapka Ada dapat meerapka kosep barisa da deret dalam pemecaha masalah, yaitu megidetifi kasi pola, barisa, da deret

Lebih terperinci

PEMBAHASAN SALAH SATU PAKET SOAL UN MATEMATIKA SMA PROGRAM IPS TAHUN PELAJARAN 2012/2013

PEMBAHASAN SALAH SATU PAKET SOAL UN MATEMATIKA SMA PROGRAM IPS TAHUN PELAJARAN 2012/2013 http://asyikyabelajar.wordpress.com PEMBAHAAN ALAH ATU PAKET OAL UN MATEMATIKA MA PROGRAM IP TAHUN PELAJARAN 0/0. Igkara dari peryataa emua makhluk hidup memerluka air da oksige adalah... A. emua makhluk

Lebih terperinci

Barisan dan Deret Bilangan

Barisan dan Deret Bilangan Bab 3 Barisa da Deret Bilaga Sumber: www.lombokgilis.com Setelah mempelajari bab ii, diharapka Ada dapat meerapka kosep barisa da deret dalam pemecaha masalah, yaitu megidetifikasi pola, barisa, da deret

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2016/2017 3 Februari 2017 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg Batas

Lebih terperinci

SILABUS PEMBELAJARAN

SILABUS PEMBELAJARAN SILABUS PEMBELAJARAN Sekolah :... Kelas : IX (Sembila) Mata Pelajara : Matematika Semester : II (dua) BILANGAN Stadar : 5. Memahami sifat-sifat da betuk akar serta pegguaaya dalam pemecaha masalah sederhaa

Lebih terperinci

: XII (Dua Belas) Semua Program Studi. : Gisoesilo Abudi, S.Pd

: XII (Dua Belas) Semua Program Studi. : Gisoesilo Abudi, S.Pd R e f r e s h Program Diklat K e l a s M a t e r i Pegajar : M A T E M A T I K A : XII (Dua Belas) Semua Program Studi : S t a t i s t i k a : Gisoesilo Abudi, S.Pd Kajia Materi Peyampaia Data Diagram

Lebih terperinci

1 Persamaan rekursif linier non homogen koefisien konstan tingkat satu

1 Persamaan rekursif linier non homogen koefisien konstan tingkat satu Secara umum persamaa rekursif liier tigkat-k bisa dituliska dalam betuk: dega C 0 0. C 0 x + C 1 x 1 + C 2 x 2 + + C k x k = b, Jika b = 0 maka persamaa rekursif tersebut diamaka persamaa rekursif liier

Lebih terperinci

PEMBEKALAN OSN-2011 SMP STELA DUCE I YOGYAKARTA MATA PELAJARAN: MATEMATIKA Pemateri: Murdanu

PEMBEKALAN OSN-2011 SMP STELA DUCE I YOGYAKARTA MATA PELAJARAN: MATEMATIKA Pemateri: Murdanu Pemateri: Murdau 1 BAGIAN A 1. Carilah dua bilaga yag hasilkali da jumlahya berilai sama!. Carilah dua bilaga yag perbadiga da selisihya berilai sama! 3. Diketahui: ab = 84, bc = 76, ac = 161. Berapakah

Lebih terperinci

BAB III ANUITAS DENGAN BEBERAPA KALI PEMBAYARAN SETAHUN TERHADAP TABUNGAN PENDIDIKAN

BAB III ANUITAS DENGAN BEBERAPA KALI PEMBAYARAN SETAHUN TERHADAP TABUNGAN PENDIDIKAN BAB III ANUITAS DNGAN BBRAPA KALI PMBAYARAN STAHUN TRHADAP TABUNGAN PNDIDIKAN. Tabuga Pedidika Aak Tabuga erupaka salah satu produk yag ditawarka oleh bak utuk eyipa uag. Utuk epersiapka daa pedidika aak,

Lebih terperinci

ANUITAS DUE PADA STATUS HIDUP PERORANGAN BERDASARKAN FORMULA WOOLHOUSE

ANUITAS DUE PADA STATUS HIDUP PERORANGAN BERDASARKAN FORMULA WOOLHOUSE 2 ANUITAS DUE PADA STATUS HIDUP PERORANGAN BERDASARKAN FORMULA WOOLHOUSE Sri Purwati 1, Johaes Kho 2, Aziskha 2 1 Mahasiswa Program S1 Matematika FMIPA Uiversitas Riau email : srii_purwatii@yahoo.co.id

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret Program Perkuliaha Dasar Umum Sekolah Tiggi Tekologi Telkom Barisa da Deret Barisa Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) a Fugsi tersebut

Lebih terperinci

BARISAN DAN DERET. Nurdinintya Athari (NDT)

BARISAN DAN DERET. Nurdinintya Athari (NDT) BARISAN DAN DERET Nurdiitya Athari (NDT) BARISAN Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) = a Fugsi tersebut dikeal sebagai barisa bilaga

Lebih terperinci

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4 Program Studi : Tekik Iformatika Miggu ke : 4 INDUKSI MATEMATIKA Hampir semua rumus da hukum yag berlaku tidak tercipta dega begitu saja sehigga diraguka kebearaya. Biasaya, rumus-rumus dapat dibuktika

Lebih terperinci

Ekonomi Rekayasa Koreksi

Ekonomi Rekayasa Koreksi Ekoomi Rekayasa Koreksi Koreksi pembeara karea kesalaha tada kurug tidak tampil dalam rumus da perhituga Gambar 2.15Tigkat akurasi peratura 72 da 69 2.4.6 Peratura 113 Selai itu ada juga perhituga dega

Lebih terperinci

) didefinisikan sebagai persamaan yang dapat dinyatakan dalam bentuk: a x a x a x b... b adalah suatu urutan bilangan dari bilangan s1, s2,...

) didefinisikan sebagai persamaan yang dapat dinyatakan dalam bentuk: a x a x a x b... b adalah suatu urutan bilangan dari bilangan s1, s2,... SISEM PERSAMAAN LINIER DAN MARIKS. SISEM PERSAMAAN LINIER Secara umum, persamaa liier dega variabel ( x, x,..., x ) didefiisika sebagai persamaa yag dapat diyataka dalam betuk: a x a x a x b... dega a,

Lebih terperinci

Kalkulus Rekayasa Hayati DERET

Kalkulus Rekayasa Hayati DERET Kalkulus Rekayasa Hayati DERET 1 Isi Bab Pedahulua Barisa tak-higga Deret tak-higga Deret Positif : Uji kekovergea Deret Gati Tada Deret Pagkat Deret Taylor da Maclauri 2 Kompetesi Dasar Setelah megikuti

Lebih terperinci

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3 BAB XII. SUKU BANYAK A = a Pegertia: f(x) = a x + a x + a x + + a x +a adalah suku bayak (poliom) dega : - a, a, a,.,a, a, a 0 adalah koefisiekoefisie suku bayak yag merupaka kostata real dega a 0 - a

Lebih terperinci

Modul Kuliah statistika

Modul Kuliah statistika Modul Kuliah statistika Dose: Abdul Jamil, S.Kom., MM SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER MUHAMMADIYAH JAKARTA Bab 2 Populasi da Sampel 2.1 Populasi Populasi merupaka keseluruha pegamata

Lebih terperinci

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan REGRESI LINIER DAN KORELASI Variabel dibedaka dalam dua jeis dalam aalisis regresi: Variabel bebas atau variabel prediktor -> variabel yag mudah didapat atau tersedia. Dapat diyataka dega X 1, X,, X k

Lebih terperinci

Bab. Pola Bilangan, Barisan, dan Deret. A. Pola Bilangan B. Barisan Bilangan C. Deret Bilangan

Bab. Pola Bilangan, Barisan, dan Deret. A. Pola Bilangan B. Barisan Bilangan C. Deret Bilangan Bab Sumber: www.medeciepharmacie.uiv-fcomte.fr Pola Bilaga, Barisa, da Deret Pola bilaga, barisa, da deret merupaka materi baru yag aka kamu pelajari pada bab ii. Terdapat beberapa masalah yag peyelesaiaya

Lebih terperinci

BAB VIII KONSEP DASAR PROBABILITAS

BAB VIII KONSEP DASAR PROBABILITAS BAB VIII KONSEP DASAR PROBABILITAS 1.1. Pedahulua Dalam pertemua ii Ada aka mempelajari beberapa padaga tetag permutasi da kombiasi, fugsi da metode perhituga probabilitas, da meghitug probabilitas. Pada

Lebih terperinci

PERTEMUAN 3 CARA MEMBUAT TABEL DISTRIBUSI FREKUENSI UKURAN PEMUSATAN DATA

PERTEMUAN 3 CARA MEMBUAT TABEL DISTRIBUSI FREKUENSI UKURAN PEMUSATAN DATA PERTEMUAN 3 CARA MEMBUAT TABEL DISTRIBUSI FREKUENSI UKURAN PEMUSATAN DATA Cara Peyajia Data dega Tabel Distribusi Frekuesi Distribusi Frekuesi adalah data yag disusu dalam betuk kelompok baris berdasarka

Lebih terperinci

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X Pedugaa Selag: Metode Pivotal Lagkah-lagkahya 1. Adaika X1, X,..., X adalah cotoh acak dari populasi dega fugsi kepekata f( x; ), da parameter yag tidak diketahui ilaiya. Adaika T adalah peduga titik bagi..

Lebih terperinci

Barisan dan Deret. Modul 1 PENDAHULUAN

Barisan dan Deret. Modul 1 PENDAHULUAN Modul Barisa da Deret Reto Wika Tyasig Ada P PENDAHULUAN okok bahasa dalam modul ii terdiri atas dua kegiata belajar. Yag pertama tetag barisa, yag kedua tetag deret da cotoh-cotoh pemakaia deret. Pembahasa

Lebih terperinci

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n LIMIT 4.. FUNGSI LIMIT Defiisi 4.. A R Titik c R adalah titik limit dari A, jika utuk setiap δ > 0 ada palig sedikit satu titik di A, c sedemikia sehigga c < δ. Defiisi diatas dapat disimpulka dega cara

Lebih terperinci

Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Unand

Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Unand TEKIK SAMPLIG PCA SEDERHAA Hazmira Yozza Izzati Rahmi HG Jurusa Matematika FMIPA Uad Defiisi : Jika suatu cotoh berukura diambil dari suatu populasi berukura sedemikia rupa sehigga setiap kemugkia cotoh

Lebih terperinci

MANAJEMEN RISIKO INVESTASI

MANAJEMEN RISIKO INVESTASI MANAJEMEN RISIKO INVESTASI A. PENGERTIAN RISIKO Resiko adalah peyimpaga hasil yag diperoleh dari recaa hasil yag diharapka Besarya tigkat resiko yag dimasukka dalam peilaia ivestasi aka mempegaruhi besarya

Lebih terperinci

ANALISIS TABEL INPUT OUTPUT PROVINSI KEPULAUAN RIAU TAHUN Erie Sadewo

ANALISIS TABEL INPUT OUTPUT PROVINSI KEPULAUAN RIAU TAHUN Erie Sadewo ANALISIS TABEL INPUT OUTPUT PROVINSI KEPULAUAN RIAU TAHUN 2010 Erie Sadewo Kodisi Makro Ekoomi Kepulaua Riau Pola perekoomia suatu wilayah secara umum dapat diyataka meurut sisi peyediaa (supply), permitaa

Lebih terperinci

RESPONSI 2 STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 2015

RESPONSI 2 STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 2015 RESPONSI STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 015 A. PENYAJIAN DAN PERINGKASAN DATA 1. PENYAJIAN DATA a. Sebutka tekik peyajia data utuk data kualitatif! Diagram kueh, diagram batag, distribusi

Lebih terperinci

Aturan Pencacahan. Contoh: Berapa banyak kemungkinan jalur yang dapat dilalui dari Kota A ke Kota D?

Aturan Pencacahan. Contoh: Berapa banyak kemungkinan jalur yang dapat dilalui dari Kota A ke Kota D? Atura Pecacaha A. Atura Perkalia Jika terdapat k usur yag tersedia, dega: = bayak cara utuk meyusu usur pertama 2 = bayak cara utuk meyusu usur kedua setelah usur pertama tersusu 3 = bayak cara utuk meyusu

Lebih terperinci

MODUL MATEMATIKA. Barisan dan Deret UNIVERSITAS NEGERI MANADO

MODUL MATEMATIKA. Barisan dan Deret UNIVERSITAS NEGERI MANADO MODUL MATEMATIKA Barisa da Deret UNIVERSITAS NEGERI MANADO FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA 2007 KATA PENGANTAR Halo...!!! selamat jumpa dalam Modul Matematika SMA. Dalam

Lebih terperinci

MODUL MATEMATIKA SMA IPA Kelas 10

MODUL MATEMATIKA SMA IPA Kelas 10 SMA IPA Kelas 0 A. BARISAN DAN DERET ARITMATIKA. Betuk umum: a, ( a b), ( a b) ( a b). Rumus suku ke- (U ) U a ( ) b a : suku pertama b : beda. Jumlah suku pertama (S ) S ( a U ) atau S (a ( ) b) Dega

Lebih terperinci

Bab. Barisan dan Deret. Di unduh dari: (www.bukupaket.com) Sumber buku : (bse.kemdikbud.go.id)

Bab. Barisan dan Deret. Di unduh dari: (www.bukupaket.com) Sumber buku : (bse.kemdikbud.go.id) Bab IV Barisa da Deret 53 Tujua Pembelajara Setelah mempelajari bab ii, diharapka kalia dapat. mejelaska ciri barisa aritmetika da barisa geometri;. merumuska suku ke da jumlah suku deret aritmetika da

Lebih terperinci

Ukuran Pemusatan. Pertemuan 3. Median. Quartil. 17-Mar-17. Modus

Ukuran Pemusatan. Pertemuan 3. Median. Quartil. 17-Mar-17. Modus -Mar- Ukura Pemusata Pertemua STATISTIKA DESKRIPTIF Statistik deskripti adalah pegolaha data utuk tujua medeskripsika atau memberika gambara terhadap obyek yag diteliti dega megguaka sampel atau populasi.

Lebih terperinci

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya 5 BAB II LANDASAN TEORI Dalam tugas akhir ii aka dibahas megeai peaksira besarya koefisie korelasi atara dua variabel radom kotiu jika data yag teramati berupa data kategorik yag terbetuk dari kedua variabel

Lebih terperinci

Barisan ini adalah contoh dari barisan aritmatika U 1. ialah barisan aritmatika,jika: -U 2. =.= U n

Barisan ini adalah contoh dari barisan aritmatika U 1. ialah barisan aritmatika,jika: -U 2. =.= U n BARIAN DAN DERET A. BARIAN DAN DERET ARITMATIKA I. TJAN etelah mempelaji topik siswa dapat:. Meetuka suku ke suatu bisa itmatika. Meetuka rumus suku ke di bisa itmatika. Meetuka suku pertama da beda suatu

Lebih terperinci

Kompetisi Statistika Tingkat SMA

Kompetisi Statistika Tingkat SMA . Arya da Bombom melakuka tos koikoi yag seimbag yag mempuyai sisi, agka da gambar Arya melakuka tos terhadap 6 koi, sedagka Bombom melakuka tos terhadap koi, maka peluag Arya medapatka hasil tos muka

Lebih terperinci

BARISAN DAN DERET TAK BERHINGGA

BARISAN DAN DERET TAK BERHINGGA MATERI KULIAH a 1 Kalkulus Lajut BARISAN DAN DERET TAK BERHINGGA Sahid, MSc. FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA 010 BARISAN DAN DERET DI SMA: BARISAN & DERET ARITMETIKA

Lebih terperinci

(A.4) PENENTUAN CADANGAN DISESUAIKAN MELALUI METODE ILLINOIS PADA PRODUK ASURANSI DWIGUNA BERPASANGAN

(A.4) PENENTUAN CADANGAN DISESUAIKAN MELALUI METODE ILLINOIS PADA PRODUK ASURANSI DWIGUNA BERPASANGAN Prosidig Semiar Nasioal Statistika Uiversitas Padjadjara, 3 November 2 (A.4) PENENTUAN CADANGAN DSESUAKAN MELALU METODE LLNOS PADA PRODUK ASURANS DWGUNA BERPASANGAN Suhartii, Lieda Noviyati, Achmad Zabar

Lebih terperinci

BARISAN FIBONACCI DAN BILANGAN PHI

BARISAN FIBONACCI DAN BILANGAN PHI BARISAN FIBONACCI DAN BILANGAN PHI Fiboacci Matematikawa terbesar pada abad pertegaha adalah Leoardo dari Pisa, Italia (80 0). Ia lebih dikeal dega ama Fibo-acci. Artiya, aak Boaccio. Meara Pisa yag terkeal

Lebih terperinci

Soal-soal Latihan: jika Misalkan n adalah bilangan genap. Buktikan bahwa

Soal-soal Latihan: jika Misalkan n adalah bilangan genap. Buktikan bahwa Soal-soal Latiha:. Misalka kita aka meyusu kata-kata yag dibetuk dari huru-huru dalam kata SIMALAKAMA, jika a. huru S mucul setelah huru K (misalya, ALAMAKSIM). b. huru A mucul berdekata. c. tidak memuat

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Model Pertumbuha Betuk ugsi pertumbuha satu jeis spesies pada umumya megguaka otasi ugsi aalitik yag diyataka dalam satu persamaa. Secara umum ugsi pertumbuha meyataka hubuga

Lebih terperinci

SOAL DAN PEMBAHASAN TRY OUT MATEMATIKA SMP/MTS KABUPATEN LEMBATA TAHUN PELAJARAN 2014/2015

SOAL DAN PEMBAHASAN TRY OUT MATEMATIKA SMP/MTS KABUPATEN LEMBATA TAHUN PELAJARAN 2014/2015 SOAL DAN PEMBAHASAN TRY OUT MATEMATIKA SMP/MTS KABUPATEN LEMBATA TAHUN PELAJARAN 4/5 3. Hasil dari 3 : adalah... 4 4 A. B. C. 7 D. 5 3 3 3 5 3 : = : 4 4 4 4 3 4 5 = 4 3 5 = 6 55 = 8 = 5 = 3. Dalam try

Lebih terperinci

Himpunan. Himpunan 3/28/2012. Semesta Pembicaraan Semua mobil di Indonesia

Himpunan. Himpunan 3/28/2012. Semesta Pembicaraan Semua mobil di Indonesia Himpua Suatu himpua atau gugus adalah merupaka sekumpula obyek. Pada umumya aggota dari gugus tersebut memiliki suatu sifat yag sama. Suatu himpua bagia atau aak gugus merupaka sekumpula obyek yag aggotaya

Lebih terperinci

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3 SUKU BANYAK A Pegertia: f(x) x + a 1 x 1 + a 2 x 2 + + a 2 +a 1 adalah suku bayak (poliom) dega : - a, a 1, a 2,.,a 2, a 1, a 0 adalah koefisiekoefisie suku bayak yag merupaka kostata real dega a 0 - a

Lebih terperinci

BAB 6 NOTASI SIGMA, BARISAN DAN DERET

BAB 6 NOTASI SIGMA, BARISAN DAN DERET BAB 6 NOTASI SIGMA, BARISAN DAN DERET A RINGKASAN MATERI. Notasi Sigma Diberia suatu barisa bilaga, a, a,..., a. Lambag deret tersebut, yaitu: a = a + a +... + a a meyataa jumlah suu pertama barisa Sifat-sifat

Lebih terperinci

UKURAN PEMUSATAN UKURAN PENYEBARAN

UKURAN PEMUSATAN UKURAN PENYEBARAN UKURAN PEMUSATAN DATA TUNGGAL DATA KELOMPOK. MEAN / RATA-RATA. MODUS 3. MEDIAN 4. KUARTIL. MEAN / RATA-RATA. MODUS 3. MEDIAN 4. KUARTIL UKURAN PENYEBARAN JANGKAUAN HAMPARAN RAGAM / VARIANS SIMPANGAN BAKU

Lebih terperinci