PENGOLAHAN SINYAL DIGITAL. Modul 5. Sistem Waktu Diskret dan Aplikasi TZ

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "PENGOLAHAN SINYAL DIGITAL. Modul 5. Sistem Waktu Diskret dan Aplikasi TZ"

Transkripsi

1 PENGOLHN SINL DIGITL Modul 5. Sistem Watu Disret da pliasi TZ

2 Cotet Overview Sistem Watu Disrit Sstem Properties Shift Ivariace, Kausalitas, Stabilitas diaita dega TZ Trasformasi sistem dari persamaa differece e respo impuls da sebalia Realisasi Sistem dg adder miimal da dela miimal Mecari Respo Stead State Strutur : asade, paralel

3 Fugsi Sistem dari Sistem LTI * X H X H h H h Respo impuls Fugsi sistem Persamaa beda dari sistem LTI : 0 b a M N M N X b a 0

4 M N X b a 0 M N b X a 0 ] [ 0 H a b X N M Fugsi sistem rasioal

5 0 H a b X N M Hal husus I : a = 0, N M M M M b b H 0 0 ll-ero sstem Hal husus II : b = 0, M 0 o N o N o a a b a b H ll-pole sstem Pole-Zero sstem

6 Tetua fugsi sistem da respo impuls sistem LTI : Jawab: X X H u h Cotoh :

7 Tetua respo impuls dari suatu sistem LTI Liear Time Ivariat ag diataa oleh persamaa beda : Jawab: 9,5 4,5 X X 9,5 4,5 X 9,5 4,5 X H 9,5 4,5 Cotoh :

8 9,5 4,5 H 9,5 4,5 H 0,5 5 H 0,5 5 H ] 0,5 [5 u h

9 Cotoh : Tetua output dari suatu sistem LTI Liear Time Ivariat ag diataa oleh persamaa beda : 4,5 9,5 0 0 Jawab: da medapat iput = - u s 4,5X 9,5 X X4,5 9,5

10 X u 9,5 4,5 X 9,5 4,5 9,5 4,5 9,5 4,5 9,5 4,5 9,5 4,5

11 9,5 4,5 9,5 4,5 9,5 4, , , D

12 , ,5 4,5 D 0 6 9,5 5 4,5 D 6 4,5,5 6,5 6,5 ] 6,5 [ u s

13 Jawab: Tetua ero-state respose dari suatu sistem LTI ag medapat iput = u da diataa oleh persamaa beda : X X X 6 5 X Cotoh 4:

14 ] [ u s

15 Cotoh 5: Tetua output dari suatu sistem LTI Liear Time Ivariat ag diataa oleh persamaa beda : 4,5 9,5,5 7,5 dega iput = 0 Jawab: i [ [ ] ] 0

16 7 0,5 7 0, ,5 6,5 6,5 7 0,5 4 6,5 4 6,5 i 4 6,5

17 Jawab: Tetua output dari suatu sistem LTI ag medapat iput = u da diataa oleh persamaa beda : ] [ ] [ 5 ] [ ] [ 6 X X X ] [5 4 4 ] 6 [ X Cotoh 6:

18 ] [5 4 4 ] 6 [ X 5 ] 6 [

19

20 ]u 4 4 [

21 Desripsi Iput-Output Espresi matemati : Hubuga atara iput da output = iput masua, esitasi = output eluara, respo = Trasformasi operator Sistem dipadag sebagai blac bo

22 T [ ] T

23 laia 0,, Tetua respo dari sistem-sistem beriut terhadap iput : c b a Cotoh 7:

24 Jawab : 0,,,, 0,,,,0, a Sistem idetitas b 0 0 0,,,, 0,,,,0,

25 c 0 0, 0,, 5,,,,,, 5 0,,, 0,,,,0,,, 0,

26 umulator tida haa tergatug pada iput tapi juga pada respo sistem sebeluma - iitial coditio odisi awal - = 0 sistem relas

27 Tetua respo dari aumulator dega iput = u bila : 0 a - = 0 sistem relas b - = Jawab : 0 Cotoh :

28 a 0 b

29 Represetasi Diagram Blo Pejumlah adder Pegali dega ostata costat muliplier Pegali sial sigal multiplier Eleme tuda uit dela elemet

30 dder : + = + Costat multiplier : a = a

31 Sigal multiplier : = Uit dela elemet : - = = +

32 Cotoh 9: Buat diagram blo dari sistem watu disrit dimaa : 4 Jawab : blac bo - 0, ,5-0,5

33 4 [ ] 4 blac bo - + 0, ,5

34 Klasifiasi Sistem Sistem stati da diami Time-ivariat & time-variat sstem Sistem liier da sistem oliier Sistem ausal da sistem oausal Sistem stabil da sistim ta stabil

35 Sistem Stati memorless : Output pada setiap saat haa tergatug iput pada saat ag sama Tida tergatug iput pada saat ag lalu atau saat ag aa datag a b T[, ]

36 Sistem Diami : Outputa selai tergatug pada iput saat ag sama juga tergatug iput pada saat ag lalu atau saat ag aa datag 0 0 Memori terbatas Memori terbatas Memori ta terbatas

37 Sistem Time-Ivariat shift-ivariat : Hubuga atara iput da output tida tergatug pada watu T[ ] T[ ] Umuma :, T[ ],, Time-ivariat Time-variat

38 Tetua apaah sistem-sistem di bawah ii time-ivariat atau time-variat + = Differetiator a ] [, ] [ T T Jawab :, Time-ivariat Cotoh 0:

39 Jawab : = Time multiplier b ] [, ] [ T T, Time-variat

40 Jawab : c ] [ ] [, ] [ T T Time-variat T = - Folder,

41 Jawab : d ] cos[ cos ] [, cos ] [ T T o o o Time-variat, cos o = cos o Modulator

42 Sistem Liier : Prisip superposisi berlau a + T a T[ a a ]

43 T a T a + a T[ ] a T[ ] Liier

44 Tetua apaah sistem-sistem di bawah ii liier atau oliier B d c b a Cotoh :

45 Sistem Kausal : Outputa haa tergatug pada iput searag da iput ag lalu, -, -,.. Outputa tida tergatug pada iput ag lalu +, +,.. F[,,, ]

46 Tetua ausalitas dari sistem-sistem di bawah ii : 4 g f e d a c b a a, b da c ausal d, e da f oausal g ausal Cotoh :

47 Sistem Stabil : Setiap iput ag terbatas bouded iput aa meghasila output ag terbatas bouded output BIBO M M

48 Cotoh : Tetua estabila dari sistem di bawah ii 0 bila medapat iput = C, < C < Jawab : 0 C C C C 4 Tida stabil

49 Hubuga tar Sistem Sistem-sistem ecil dapat digabuga mejadi sistem ag lebih besar Hubuga seri da paralel T T T [ ] T [ ] T T [ ] T c TT Tc [ ]

50 Umuma : T T TT Sistem liier da time-ivariat : T T TT

51 Hubuga paralel : T + T T [ ] T[ ] T p T T T T [ ] Tp[ ]

Sinyal dan Sistem Waktu Diskrit ET 3005 Pengolahan Sinyal Waktu Diskrit EL 5155 Pengolahan Sinyal Waktu Diskrit

Sinyal dan Sistem Waktu Diskrit ET 3005 Pengolahan Sinyal Waktu Diskrit EL 5155 Pengolahan Sinyal Waktu Diskrit Siyal da Sistem Watu Disrit ET 35 Pegolaha Siyal Watu Disrit EL 5155 Pegolaha Siyal Watu Disrit Effria Yati Hamid 1 2 Siyal da Sistem Watu Disrit 2.1 Siyal Watu Disrit 2.1.1 Pegertia Siyal Watu Disrit

Lebih terperinci

Representasi sinyal dalam impuls

Representasi sinyal dalam impuls Represetasi siyal dalam impuls Represetasi siyal dalam impuls adalah siyal yag diyataa sebagai fugsi dari impuls atau sebagai umpula dari impuls-impuls. Sembarag siyal disret dapat diyataa sebagai pejumlaha

Lebih terperinci

III Sistem LTI Waktu Diskrit Sistem LTI Operasi Konvolusi Watak sistem LTI Stabilitas sistem LTI Kausalitas sistem LTI

III Sistem LTI Waktu Diskrit Sistem LTI Operasi Konvolusi Watak sistem LTI Stabilitas sistem LTI Kausalitas sistem LTI III Sistem LTI Waktu Diskrit Sistem LTI Operasi Kovolusi Watak sistem LTI Stabilitas sistem LTI Kausalitas sistem LTI lts 1 III.1 Sistem LTI Sistem LTI Liear Time Ivariat Liear Tak-ubah-Waktu Liear Shift

Lebih terperinci

Bab 6: Analisa Spektrum

Bab 6: Analisa Spektrum BAB Aalisa Spetrum Bab : Aalisa Spetrum Aalisa Spetrum Dega DFT Tujua Belajar Peserta dapat meghubuga DFT dega spetrum dari sial hasil samplig sial watu otiue. -poit DFT dari sial x adalah Xω ag diealuasi

Lebih terperinci

Penggunaan Transformasi z

Penggunaan Transformasi z Pegguaa Trasformasi pada Aalisa Respo Freuesi Sistem FIR Oleh: Tri Budi Satoso E-mail:tribudi@eepis-its.eduits.edu Lab Siyal,, EEPIS-ITS ITS /3/6 osep pemiira domais of represetatio Domai- discrete time:

Lebih terperinci

Kuliah 9 Filter Digital

Kuliah 9 Filter Digital TEKNIK PENGOLAHAN ISYARAT DIGITAL Kuliah 9 Filter Digital Idah Susilawati, S.T.,.Eg. Progra Studi Tei Eletro Progra Studi Tei Iforatia Faultas Tei da Ilu Koputer Uiversitas ercu Buaa Yogaarta 9 Kuliah

Lebih terperinci

MAKALAH TEOREMA BINOMIAL

MAKALAH TEOREMA BINOMIAL MAKALAH TEOREMA BINOMIAL Disusu utu memeuhi tugas mata uliah Matematia Disrit Dose Pegampu : Dr. Isaii Rosyida, S.Si, M.Si Rombel B Kelompo 2 1. Wihdati Martalya (0401516006) 2. Betha Kuria S. (0401516012)

Lebih terperinci

Gambar 3.1Single Channel Multiple Phase

Gambar 3.1Single Channel Multiple Phase BAB III MODEL ANTRIAN PADA PEMBUATAN SIM C. Sigle Chael Multiple Phase Sistem atria sigle chael multiple phase merupaa sistem atria dimaa pelagga yag tiba, dapat memasui sistem dega megatri di tempat yag

Lebih terperinci

MODUL BARISAN DAN DERET

MODUL BARISAN DAN DERET MODUL BARISAN DAN DERET SEMESTER 2 Muhammad Zaial Abidi Persoal Blog http://meetabied.wordpress.com BAB I. PENDAHULUAN A. Desripsi Dalam modul ii, ada aa mempelajari pola bilaga, barisa, da deret diidetifiasi

Lebih terperinci

Bab 5 Sinyal dan Sistem Waktu Diskrit. Oleh: Tri Budi Santoso Laboratorium Sinyal, EEPIS-ITS

Bab 5 Sinyal dan Sistem Waktu Diskrit. Oleh: Tri Budi Santoso Laboratorium Sinyal, EEPIS-ITS Bab 5 Siyal da Sistem Watu Disrit Oleh: Tri Budi Satoso Laboratorium Siyal, EEPIS-ITS Materi: Represetasi matemati pada siyal watu disrit, domai watu da freuesi pada suatu siyal watu disrit, trasformasi

Lebih terperinci

MODUL 1.03 DINAMIKA PROSES. Oleh : Ir. Tatang Kusmara, M.Eng

MODUL 1.03 DINAMIKA PROSES. Oleh : Ir. Tatang Kusmara, M.Eng MODUL 1.03 DINMIK PROSES Ole : Ir. Tatag Kusmara, M.Eg LBORTORIUM OPERSI TEKNIK KIMI JURUSN TEKNIK KIMI UNIVERSITS SULTN GENG TIRTYS CILEGON BNTEN 2008 2 Modul 1.03 DINMIK PROSES I. Pedaulua Dalam bidag

Lebih terperinci

Bab 7 Penyelesaian Persamaan Differensial

Bab 7 Penyelesaian Persamaan Differensial Bab 7 Peelesaia Persamaa Differesial Persamaa differesial merupaka persamaa ag meghubugka suatu besara dega perubahaa. Persamaa differesial diataka sebagai persamaa ag megadug suatu besara da differesiala

Lebih terperinci

Mengkaji Perbedaan Diagonalisasi Matriks Atas Field dan Matriks Atas Ring Komutatif

Mengkaji Perbedaan Diagonalisasi Matriks Atas Field dan Matriks Atas Ring Komutatif Megaji Perbedaa Diagoalisasi Matris Atas Field da Matris Atas Rig Komutatif Teorema : Jia A adalah matris x maa eryataa eryataa beriut eivale satu sama lai : a A daat didiagoalisasi b A memuyai vetor eige

Lebih terperinci

Probabilitas dan Statistika Korelasi dan Regresi. Adam Hendra Brata

Probabilitas dan Statistika Korelasi dan Regresi. Adam Hendra Brata Probabilitas da Statistika da Adam Hedra Brata Dua Peubah Acak dua perubah acah X da Y dega rata-rata da diberika oleh rumus : E(XY) - - - Sifat Sifat Sifat kovariasi utuk X da Y diskrit : f(, ) f(, )

Lebih terperinci

Sifat-sifat Fungsi Karakteristik dari Sebaran Geometrik

Sifat-sifat Fungsi Karakteristik dari Sebaran Geometrik Sifat-sifat Fugsi Karateristi dari Sebara Geometri Dodi Deviato Jurusa Matematia, Faultas MIPA, Uiversitas Adalas Kamus Limau Mais, Padag 563, Sumatera Barat, Idoesia Abstra Fugsi arateristi dari suatu

Lebih terperinci

x x x1 x x,..., 2 x, 1

x x x1 x x,..., 2 x, 1 0.4 Variasi Kaoi amel Da Korelasi Kaoi amel amel aca dari observasi ada masig-masig variabel dari ( + q) variabel (), () daat digabuga edalam (( + q) ) data matris,,..., dimaa (0-5) Adau vetor rata-rata

Lebih terperinci

Anova (analysis of varian)

Anova (analysis of varian) ova (aalysis of varia) Ui hipotesis perbedaa ilai rata-rata dari atau lebih elompo idepede Cotoh: daah perbedaa berat bayi lahir dari eluarga E tiggi dega E sedag atau E redah sumsi Ui ova: 1. ube diambil

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, , Agustus 2003, ISSN : METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, , Agustus 2003, ISSN : METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT Vol. 6. No., 97-09, Agustus 003, ISSN : 40-858 METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT Robertus Heri Jurusa Matematika FMIPA UNDIP Abstrak Tulisa ii membahas peetua persamaa ruag

Lebih terperinci

5. KARAKTERISTIK RESPON

5. KARAKTERISTIK RESPON 5. ARATERISTI RESPON Adalah ciri-ciri khusus perilaku diamik (spesifikasi performasi) Taggapa (respo) output sistem yag mucul akibat diberikaya suatu siyal masuka tertetu yag khas betukya (disebut sebagai

Lebih terperinci

SISTEM LINIER. Oleh : Kholistianingsih, S.T., M.Eng. lts 1

SISTEM LINIER. Oleh : Kholistianingsih, S.T., M.Eng. lts 1 SISTEM LINIER Oleh : Kholistiaigsih, S.T., M.Eg. lts 1 2 Isyarat Waktu Diskrit di kawasa waktu. 2.1 Represetasi Isyarat Waktu Diskrit 2.2 Klasifikasi Rutu 2.3 Rutu rutu Dasar 2.4 Operasi di kawasa waktu

Lebih terperinci

BAB 2 LANDASAN TEORI. lebar pita sinyal tersebut. Pada kebanyakan aplikasi, termasuk kamera digital video dan

BAB 2 LANDASAN TEORI. lebar pita sinyal tersebut. Pada kebanyakan aplikasi, termasuk kamera digital video dan BAB LADASA TEORI Teorema Shao-yquist meyataa agar tida ada iformasi yag hilag etia pecuplia siyal, maa ecepata pecuplia harus miimal dua ali dari lebar pita siyal tersebut. Pada ebayaa apliasi, termasu

Lebih terperinci

BAB II LANDASAN TEORI. gamma, fungsi likelihood, dan uji rasio likelihood. Misalkan dilakukan percobaan acak dengan ruang sampel C.

BAB II LANDASAN TEORI. gamma, fungsi likelihood, dan uji rasio likelihood. Misalkan dilakukan percobaan acak dengan ruang sampel C. BAB II LANDASAN TEORI Pada bab ii aa dibahas teori teori yag meduug metode upper level set sca statistics, atara lai peubah aca, distribusi gamma, fugsi gamma, fugsi lielihood, da uji rasio lielihood.

Lebih terperinci

MEKANIKA TANAH DASAR DASAR DISTRIBUSI TEGANGAN DALAM TANAH

MEKANIKA TANAH DASAR DASAR DISTRIBUSI TEGANGAN DALAM TANAH MEKANIKA TANAH DASAR DASAR DISTRIBUSI TEGANGAN DALAM TANAH UNIVERSITAS PEMBANGUNAN JAYA Jl. Boulevard Bitaro Sektor 7, Bitaro Jaa Tagerag Selata 154 PENDAHULUAN Megapa mempelajari kekuata taah? Keamaa

Lebih terperinci

PEMBAHASAN SOAL OSN MATEMATIKA SMP TINGKAT PROPINSI 2011 OLEH :SAIFUL ARIF, S.Pd (SMP NEGERI 2 MALANG)

PEMBAHASAN SOAL OSN MATEMATIKA SMP TINGKAT PROPINSI 2011 OLEH :SAIFUL ARIF, S.Pd (SMP NEGERI 2 MALANG) PEMBAHASAN SOAL OLIMPIADE SAINS NASIONAL SMP A. ISIAN SINGKAT SELEKSI TINGKAT PROPINSI TAHUN 011 BIDANG STUDI MATEMATIKA WAKTU : 150 MENIT 1. Jia x adalah jumlah 99 bilaga gajil terecil yag lebih besar

Lebih terperinci

BAB III TAKSIRAN PROPORSI POPULASI JIKA TERJADI NONRESPON. Dalam bab ini akan dibahas penaksiran proporsi populasi jika terjadi

BAB III TAKSIRAN PROPORSI POPULASI JIKA TERJADI NONRESPON. Dalam bab ini akan dibahas penaksiran proporsi populasi jika terjadi BAB III TAKSIRA PROPORSI POPULASI JIKA TERJADI ORESPO Dalam bab ii aa dibaas peasira proporsi populasi jia terjadi orespo da dilaua allba sebaya t ali. Selai itu, juga aa dibaas peetua uura sampel yag

Lebih terperinci

3. Integral (3) (Integral Tentu)

3. Integral (3) (Integral Tentu) Darublic www.darublic.com. Itegral () (Itegral Tetu).. Luas Sebagai Suatu Itegral. Itegral Tetu Itegral tetu meruaa itegral ag batas-batas itegrasia jelas. Kose dasar dari itegral tertetu adalah luas bidag

Lebih terperinci

Aji Wiratama, Yuni Yulida, Thresye Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat Jl. Jend. A. Yani km 36 Banjarbaru

Aji Wiratama, Yuni Yulida, Thresye Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat Jl. Jend. A. Yani km 36 Banjarbaru Jural Matematika Muri da Terapa εpsilo Vol.8 No.2 (24) Hal. 39-45 APLIKASI METODE DEKOMPOSISI ADOMIAN UNTUK MENENTUKAN FORMULA TRANSFORMASI LAPLACE Aji Wiratama, Yui Yulida, Thresye Program Studi Matematika

Lebih terperinci

PERTEMUAN 13. VEKTOR dalam R 3

PERTEMUAN 13. VEKTOR dalam R 3 PERTEMUAN VEKTOR dalam R Pegertia Ruag Vektor Defiisi R Jika adalah sebuah bilaga bulat positif, maka tupel - - terorde (ordered--tuple) adalah sebuah uruta bilaga riil ( a ),a,..., a. Semua tupel - -terorde

Lebih terperinci

RUANG BARISAN MUSIELAK-ORLICZ. Oleh: Encum Sumiaty dan Yedi Kurniadi

RUANG BARISAN MUSIELAK-ORLICZ. Oleh: Encum Sumiaty dan Yedi Kurniadi RUANG BARISAN USIELAK-ORLICZ Oleh: Ecu Suiat da Yedi Kuriadi Disapaia pada Seiar Nasioal ateatia ada taggal 8 Deseber 2008, di Jurusa edidia ateatia FIA UI JURUSAN ENDIDIKAN ATEATIKA FAKULTAS ENDIDIKAN

Lebih terperinci

DSP Application Research Centre, Electrical Engineering Dept. SOLUSI UAS 5 JUNI 2000 TA 1999 / 2000

DSP Application Research Centre, Electrical Engineering Dept. SOLUSI UAS 5 JUNI 2000 TA 1999 / 2000 DSP Applicatio Research Cetre, Electrical Egieerig Dept. SOLUSI UAS 5 JUNI TA 999 /. Sistem Liier ega fugsi trasfer : ( s + H ( s ( s + 4( s + a. Tetuka respose impulse sistem. Apakah sistem stabil? (

Lebih terperinci

ANALISIS KESALAHAN Deskripsi : Objektif : 6.1 Pendahuluan 6.2 Koefesien Kesalahan Statik

ANALISIS KESALAHAN Deskripsi : Objektif : 6.1 Pendahuluan 6.2 Koefesien Kesalahan Statik 96 VI ANALISIS ESALAHAN Desrisi : Bab ii memberia gambara tetag aalisis esalaha da eeaa ada sistem edali yag terdiri dari oefesie esalaha stati, oefesie esalaha diami da aalisis eeaa sistem Objetif : Memahami

Lebih terperinci

PENYELESAIAN PERSAMAAN DIFERENSIAL LANE-EMDEN MENGGUNAKAN METODE TRANSFORMASI DIFERENSIAL

PENYELESAIAN PERSAMAAN DIFERENSIAL LANE-EMDEN MENGGUNAKAN METODE TRANSFORMASI DIFERENSIAL PENYELESAIAN PERSAMAAN DIFERENSIAL LANE-EMDEN MENGGUNAKAN METODE TRANSFORMASI DIFERENSIAL Ahma Sya roi, M Natsir, Eag Lily E-mail: Arolativa@yahoocom Mahasiswa Program S Matematia Dose Jurusa Matematia

Lebih terperinci

Perluasan Uji Kruskal Wallis untuk Data Multivariat

Perluasan Uji Kruskal Wallis untuk Data Multivariat Statistia, Vol. No., Mei Perluasa Uji Krusal Wallis utu Data Multivariat TETI SOFIA YANTI Program Studi Statistia, Uiversitas Islam Badug, Jl. Purawarma No. Badug. E-mail: buitet@yahoo.com ABSTAK Adaia

Lebih terperinci

Dasar Sistem Pengaturan - Transformasi Laplace. Transformasi Laplace bilateral atau dua sisi dari sinyal bernilai riil x(t) didefinisikan sebagai :

Dasar Sistem Pengaturan - Transformasi Laplace. Transformasi Laplace bilateral atau dua sisi dari sinyal bernilai riil x(t) didefinisikan sebagai : Defiisi Trasformasi Laplace Trasformasi Laplace Bilateral Trasformasi Laplace bilateral atau dua sisi dari siyal berilai riil x(t) didefiisika sebagai : X B x(t)e Operasi trasformasi Laplace bilateral

Lebih terperinci

BAB V RANDOM VARIATE GENERATOR (PEMBANGKIT RANDOM VARIATE)

BAB V RANDOM VARIATE GENERATOR (PEMBANGKIT RANDOM VARIATE) BAB V RANDOM VARIATE GENERATOR (PEMBANGKIT RANDOM VARIATE) 5.1. Pembagit Radom Variate Disrit Suatu Radom Variate diartia sebagai ilai suatu radom variate yag mempuyai distribusi tertetu. Utu megambil

Lebih terperinci

1. Integral (1) Pembahasan yang akan kita lakukan hanya mengenai bentuk persamaan diferensial seperti contoh yang pertama.

1. Integral (1) Pembahasan yang akan kita lakukan hanya mengenai bentuk persamaan diferensial seperti contoh yang pertama. Darublic www.darublic.com 1. Itegral (1) (Macam Itegral, Pedeata Numeri) Sudarato Sudirham Dalam bab sebeluma, ita memelajari salah satu bagia utama alulus, aitu alulus diferesial. Beriut ii ita aa membahas

Lebih terperinci

REGRESI LINIER SEDERHANA

REGRESI LINIER SEDERHANA REGRESI LINIER SEDERHANA REGRESI, KAUSALITAS DAN KORELASI DALAM EKONOMETRIKA Regresi adalah salah satu metode aalisis statistik yag diguaka utuk melihat pegaruh atara dua atau lebih variabel Kausalitas

Lebih terperinci

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka oi eswa (fmipa-itb) Deret Positif Deret (ta berhigga) adalah ugapa berbetu a + a + a 3 + a 4 + dega a i disebut suu. Pejumlaha ii berbeda dega pejumlaha dua, tiga, atau berhigga bilaga. Maa, ita perlu

Lebih terperinci

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan REGRESI LINIER DAN KORELASI Variabel dibedaka dalam dua jeis dalam aalisis regresi: Variabel bebas atau variabel prediktor -> variabel yag mudah didapat atau tersedia. Dapat diyataka dega X 1, X,, X k

Lebih terperinci

Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya PENS. Probability and Random Process. Topik 10. Regresi

Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya PENS. Probability and Random Process. Topik 10. Regresi Program Pasca Sarjaa Terapa Politekik Elektroika Negeri Surabaya Probability ad Radom Process Topik 10. Regresi Prima Kristalia Jui 015 1 Outlie 1. Kosep Regresi Sederhaa. Persamaa Regresi Sederhaa 3.

Lebih terperinci

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya 5 BAB II LANDASAN TEORI Dalam tugas akhir ii aka dibahas megeai peaksira besarya koefisie korelasi atara dua variabel radom kotiu jika data yag teramati berupa data kategorik yag terbetuk dari kedua variabel

Lebih terperinci

HAND OUT EK. 353 PENGOLAHAN SINYAL DIGITAL

HAND OUT EK. 353 PENGOLAHAN SINYAL DIGITAL HAND OUT EK. 353 PENGOLAHAN SINYAL DIGITAL Dosen: Ir. Arjuni BP, MT PENDIDIKAN TEKNIK TELEKOMUNIKASI JURUSAN PENDIDIKAN TEKNIK ELEKTRO FAKULTAS PENDIDIKAN TEKNOLOGI DAN KEJURUAN UNIVERSITAS PENDIDIKAN

Lebih terperinci

Isyarat dan Sistem. Sistem adalah sebuah proses yang menyusun isyarat input x(t) atau x[n] ke isyarat output y(t) atau y[n].

Isyarat dan Sistem. Sistem adalah sebuah proses yang menyusun isyarat input x(t) atau x[n] ke isyarat output y(t) atau y[n]. Sistem adalah sebuah proses yang menyusun isyarat input x(t) atau x[n] ke isyarat output y(t) atau y[n]. x(t) y(t) x[n] y[n] Jadi sistem sapat dipandang sebagai sebuah proses pemetaan atau transformasi

Lebih terperinci

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka

Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka oi eswa (fmipa-itb) Deret Positif Deret (ta berhigga) adalah ugapa berbetu a + a + a 3 + a 4 + dega a i disebut suu. Pejumlaha ii berbeda dega pejumlaha dua, tiga, atau berhigga bilaga. Maa, ita perlu

Lebih terperinci

Transformasi Z Materi :

Transformasi Z Materi : 4 Trasformasi Z Matri : Dfiisi Trasformasi Darah Kovrgsi (Rgio of Covrgc) Diagram Pol Zro Sifat Trasformasi Trasformasi dalam Btu Poliomial Rasioal Fugsi Sistm atau Fugsi Trasfr H() dari Sistm Liir Tida

Lebih terperinci

3. Rangkaian Logika Kombinasional dan Sequensial 3.1. Rangkaian Logika Kombinasional Enkoder

3. Rangkaian Logika Kombinasional dan Sequensial 3.1. Rangkaian Logika Kombinasional Enkoder 3. Ragkaia Logika Kombiasioal da Sequesial Ragkaia Logika secara garis besar dibagi mejadi dua, yaitu ragkaia logika Kombiasioal da ragkaia logika Sequesial. Ragkaia logika Kombiasioal adalah ragkaia yag

Lebih terperinci

BARISAN DAN DERET. U n = suku ke-n Contoh: Barisan bilangan asli, bilangan genap, bilangan ganjil, dan lain-lain.

BARISAN DAN DERET. U n = suku ke-n Contoh: Barisan bilangan asli, bilangan genap, bilangan ganjil, dan lain-lain. BARIAN DAN DERET A. Barisa Barisa adalah uruta bilaga yag memilii atura tertetu. etiap bilaga pada barisa disebut suu barisa yag dipisaha dega lambag, (oma). Betu umum barisa:,, 3, 4,, dega: = suu pertama

Lebih terperinci

Karakteristik Dinamik Elemen Sistem Pengukuran

Karakteristik Dinamik Elemen Sistem Pengukuran Karakteristik Diamik Eleme Sistem Pegukura Kompetesi, RP, Materi Kompetesi yag diharapka: Mahasiswa mampu merumuskaka karakteristik diamik eleme sistem pegukura Racaga Pembelajara: Miggu ke Kemampua Akhir

Lebih terperinci

CATATAN KULIAH Pertemuan I: Pengenalan Matematika Ekonomi dan Bisnis

CATATAN KULIAH Pertemuan I: Pengenalan Matematika Ekonomi dan Bisnis CATATAN KULIAH Pertemua I: Pegeala Matematika Ekoomi da Bisis A. Sifat-sifat Matematika Ekoomi 1. Perbedaa Matematika vs. Nomamatematika Ekoomi Keutuga pedekata matematika dalam ilmu ekoomi Ketepata (Precise),

Lebih terperinci

Institut Teknologi Sepuluh Nopember Surabaya. Model Sistem dalam Persamaan Keadaan

Institut Teknologi Sepuluh Nopember Surabaya. Model Sistem dalam Persamaan Keadaan Istitut Tekologi Sepuluh Nopember Surabaya Model Sistem dalam Persamaa Keadaa Pegatar Materi Cotoh Soal Rigkasa Latiha Pegatar Materi Cotoh Soal Rigkasa Istilah-istilah Dalam Persamaa Keadaa Aalisis Sistem

Lebih terperinci

TINJAUAN PUSTAKA. 2.1 Ruang Vektor. Definisi (Darmawijaya, 2007) Diketahui (V, +) grup komutatif dan (F,,. ) lapangan dengan elemen identitas

TINJAUAN PUSTAKA. 2.1 Ruang Vektor. Definisi (Darmawijaya, 2007) Diketahui (V, +) grup komutatif dan (F,,. ) lapangan dengan elemen identitas II. TINJAUAN PUSTAKA 2.1 Ruag Vektor Defiisi 2.1.1 (Darmawijaya, 2007) Diketahui (V, +) grup komutatif da (F,,. ) lapaga dega eleme idetitas 1. V disebut ruag vektor (vector space) atas F jika ada operasi

Lebih terperinci

Bab 16 Integral di Ruang-n

Bab 16 Integral di Ruang-n Catata Kuliah MA3 Kalulus Elemeter II Oi Neswa,Ph.D., Departeme Matematia-ITB Bab 6 Itegral di uag- Itegral Gada atas persegi pajag Itegral Berulag Itegral Gada atas Daerah sebarag Itegral Gada Koordiat

Lebih terperinci

Lecture 4 : Queueing Theory and Aplications. Hanna Lestari, M.Eng

Lecture 4 : Queueing Theory and Aplications. Hanna Lestari, M.Eng Leture 4 : Queueig Theory ad Apliatios Haa Lestari, M.Eg Struktur Dasar Model Model Atria Teori Atria bertujua utuk megetahui/meetuka besara kierja sistem atria. Ukura kierja sistem dalam kodisi steady

Lebih terperinci

BAB II KEGIATAN PEMBELAJARAN

BAB II KEGIATAN PEMBELAJARAN Page o BAB II KEGIATAN PEMBELAJARAN A. TURUNAN FUNGSI ALJABAR. Deiisi Tra Fgsi Deiisi Fgsi : ata mempai tra ag diotasika d d ata di deiisika : d d d d d d lim h 0 h h lim 0 ata Cotoh Soal :. Tetka tra

Lebih terperinci

Invers Transformasi Laplace

Invers Transformasi Laplace Invers Transformasi Laplace Transformasi Laplace Domain Waktu Invers Transformasi Laplace Domain Frekuensi Jika mengubah sinyal analog kontinyu dari domain waktu menjadi domain frekuensi menggunakan transformasi

Lebih terperinci

Elemen Dasar Model Antrian. Aktor utama customer dan server. Elemen dasar : 1.distribusi kedatangan customer. 2.distribusi waktu pelayanan. 3.

Elemen Dasar Model Antrian. Aktor utama customer dan server. Elemen dasar : 1.distribusi kedatangan customer. 2.distribusi waktu pelayanan. 3. Eleme Dasar Model Atria. Aktor utama customer da server. Eleme dasar :.distribusi kedataga customer. 2.distribusi waktu pelayaa. 3.disai fasilitas pelayaa (seri, paralel atau jariga). 4.disipli atria (pertama

Lebih terperinci

KALKULUS 4. Dra. D. L. Crispina Pardede, DEA. SARMAG TEKNIK MESIN

KALKULUS 4. Dra. D. L. Crispina Pardede, DEA. SARMAG TEKNIK MESIN KALKULUS Dra. D. L. Crispia Pardede DEA. SARMAG TEKNIK MESIN KALKULUS - SILABUS. Deret Fourier.. Fugsi Periodik.2. Fugsi Geap da Gajil.3. Deret Trigoometri.. Betuk umum Deret Fourier.. Kodisi Dirichlet.6.

Lebih terperinci

TKE 3105 ISYARAT DAN SISTEM. B a b 2 S i s t e m. Indah Susilawati, S.T., M.Eng.

TKE 3105 ISYARAT DAN SISTEM. B a b 2 S i s t e m. Indah Susilawati, S.T., M.Eng. TKE 3105 ISYARAT DAN SISTEM B a b 2 S i s t e m Indah Susilawati, S.T., M.Eng. Program Studi Teknik Elektro Fakultas Teknik dan Ilmu Komputer Universitas Mercu Buana Yogyakarta 2009 51 B A B I I S I S

Lebih terperinci

Metode Statistika STK211/ 3(2-3)

Metode Statistika STK211/ 3(2-3) Metode Statistika STK211/ 3(2-3) Pertemua VI Sebara Pearika Cotoh Septia Rahardiatoro - STK IPB 1 Sebara Pearika Cotoh Megidetifikasi sebara suatu fugsi dari cotoh ketika diambil dari suatu populasi X

Lebih terperinci

PERBANDINGAN PENDEKATAN SEPARABLE PROGRAMMING DENGAN THE KUHN-TUCKER CONDITIONS DALAM PEMECAHAN MASALAH NONLINEAR

PERBANDINGAN PENDEKATAN SEPARABLE PROGRAMMING DENGAN THE KUHN-TUCKER CONDITIONS DALAM PEMECAHAN MASALAH NONLINEAR Jural Tei da Ilmu Komputer PERBANDINGAN PENDEKATAN SEPARABLE PROGRAMMING DENGAN THE KUHN-TUCKER CONDITIONS DALAM PEMECAHAN MASALAH NONLINEAR Budi Marpaug Faultas Tei da Ilmu Komputer Jurusa Tei Idustri

Lebih terperinci

MENENTUKAN INVERS DRAZIN DARI MATRIKS SINGULAR. Lisnilwati Khasanah 1 dan Bambang Irawanto 2. Jl.Prof.Soedarto, S.H Semarang 50275

MENENTUKAN INVERS DRAZIN DARI MATRIKS SINGULAR. Lisnilwati Khasanah 1 dan Bambang Irawanto 2. Jl.Prof.Soedarto, S.H Semarang 50275 ENENTUKN INVERS RZIN RI TRIKS SINGULR Lisilwati Khasaah da Babag Irawato Progra Studi ateatia FIP UNIP lprofsoedarto SH Searag 7 bstract sigular atri with size has a iverse be called razi iverse ad deoted

Lebih terperinci

III. METODE PENELITIAN. Lokasi penelitian dilakukan di Provinsi Sumatera Barat yang terhitung

III. METODE PENELITIAN. Lokasi penelitian dilakukan di Provinsi Sumatera Barat yang terhitung 42 III. METODE PENELITIAN 3.. Lokasi da Waktu Peelitia Lokasi peelitia dilakuka di Provisi Sumatera Barat yag terhitug mulai miggu ketiga bula April 202 higga miggu pertama bula Mei 202. Provisi Sumatera

Lebih terperinci

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR Nur Aei Prodi Matematika, FST-UINAM uraeiatullah@gmail.com Ifo: Jural MSA Vol. 3 No. 2 Edisi: Juli Desember

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang Masalah

BAB I PENDAHULUAN. A. Latar Belakang Masalah BAB I PENDAHULUAN A. Latar Belakag Masalah Struktur alabar adalah suatu himpua yag di dalamya didefiisika suatu operasi bier yag memeuhi aksioma-aksioma tertetu. Gelaggag ( Rig ) merupaka suatu struktur

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI. Persamaa Diferesial Defiisi. Persamaa diferesial adalah suatu persamaa diatara derivatif-derivatif ag dispesifikasika pada suatu fugsi ag tidak diketahui, ilaia, da diketahui jumlah

Lebih terperinci

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP STATISTICS Haug N. Prasetyo Week 11 PENDAHULUAN Regresi da korelasi diguaka utuk megetahui hubuga dua atau lebih kejadia (variabel) yag dapat diukur secara matematis. Ada dua hal yag diukur atau diaalisis,

Lebih terperinci

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR Nur Aei Prodi Matematika, FST-UINAM uraeiatullah@gmail.com Ifo: Jural MSA Vol. 3 No. 2 Edisi: Juli Desember

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 6 BAB 2 LANDASAN TEORI 2.1. Metode Kuadrat Terkecil Aalisis regresi merupaka aalisis utuk medapatka hubuga da model matematis atara variabel depede (Y) da satu atau lebih variabel idepede (X). Hubuga atara

Lebih terperinci

METODE NUMERIK UNTUK SIMULASI. Pemodelan & Simulasi TM09

METODE NUMERIK UNTUK SIMULASI. Pemodelan & Simulasi TM09 METODE NUMERIK UNTUK SIMULASI Pemodela & Simulasi TM09 Metode Numerik ( Metode umerik dpt diklasiikasika mjd:. Metode satu-lagka atau sigle-step. Metode multistep Metode sigle-step Pada metode ii, utuk

Lebih terperinci

Probabilitas dan Proses Stokastik

Probabilitas dan Proses Stokastik Probabilitas da Proses Stokastik Tim ProStok Jurusa Tekik Elektro - FTI Istitut Tekologi Sepuluh Nopember Surabaya, 014 O U T L I N E 1. Capaia Pembelajara. Pegatar da Teori 3. Cotoh 4. Rigkasa 5. Latiha

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 31-41, April 2004, ISSN :

JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 31-41, April 2004, ISSN : Vol. 7. No. 1, 31-41, April 24, ISSN : 141-8518 Peetua Kestabila Sistem Kotrol Lup Tertutup Waktu Kotiu dega Metode Trasformasi ke Betuk Kaoik Terkotrol Robertus Heri Jurusa Matematika FMIPA UNDIP Abstrak

Lebih terperinci

Penyelesaian Persamaan Non Linier

Penyelesaian Persamaan Non Linier Peyelesaia Persamaa No Liier Metode Iterasi Sederhaa Metode Newto Raphso Permasalaha Titik Kritis pada Newto Raphso Metode Secat Metode Numerik Iterasi/NewtoRaphso/Secat - Metode Iterasi Sederhaa- Metode

Lebih terperinci

Kestabilan Rangkaian Tertutup Waktu Kontinu Menggunakan Metode Transformasi Ke Bentuk Kanonik Terkendali

Kestabilan Rangkaian Tertutup Waktu Kontinu Menggunakan Metode Transformasi Ke Bentuk Kanonik Terkendali Jural Tekika ISSN : 285-859 Fakultas Tekik Uiversitas Islam Lamoga Volume No.2 Tahu 29 Kestabila Ragkaia Tertutup Waktu Kotiu Megguaka Metode Trasformasi Ke Betuk Kaoik Terkedali Suhariyato ) Dose Fakultas

Lebih terperinci

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL Defiisi Persamaa diferesial adalah persamaa yag melibatka variabelvariabel tak bebas da derivatif-derivatifya terhadap variabel-variabel bebas. Berikut ii adalah

Lebih terperinci

B a b 1 I s y a r a t

B a b 1 I s y a r a t 34 TKE 315 ISYARAT DAN SISTEM B a b 1 I s y a r a t (bagia 3) Idah Susilawati, S.T., M.Eg. Program Studi Tekik Elektro Fakultas Tekik da Ilmu Komputer Uiversitas Mercu Buaa Yogyakarta 29 35 1.5.2. Isyarat

Lebih terperinci

MODUL BARISAN DAN DERET

MODUL BARISAN DAN DERET MODUL BARISAN DAN DERET KELAS XII. IPS SEMESTER I Oleh : Drs. Pudjul Prijoo ( http://vidyagata.wordpress.co ) SMA NEGERI 6 Jala Mayje Sugoo 58 Malag Telp./Fax : (034) 75036 E-Mail : sa6_alag@yahoo.co.id

Lebih terperinci

BAB 2 ANAVA 2 JALAN. Merupakan pengembangan dari ANAVA 1 Jalan Jika pada ANAVA 1 jalan 1 Faktor Jika pada ANAVA 2 jalan 2 Faktor

BAB 2 ANAVA 2 JALAN. Merupakan pengembangan dari ANAVA 1 Jalan Jika pada ANAVA 1 jalan 1 Faktor Jika pada ANAVA 2 jalan 2 Faktor BAB ANAVA JALAN Merupaka pegembaga dari ANAVA 1 Jala Jika pada ANAVA 1 jala 1 Faktor Jika pada ANAVA jala Faktor Model Liier i i 1,..., a j 1,..., Satu faktor ag diteliti Aava 1 jala k i j k i 1,,...,

Lebih terperinci

PENAKSIRAN DAN PERAMALAN BIAYA D. PENAKSIRAN BIAYA JANGKA PANJANG E. PERAMALAN BIAYA

PENAKSIRAN DAN PERAMALAN BIAYA D. PENAKSIRAN BIAYA JANGKA PANJANG E. PERAMALAN BIAYA PENAKSIRAN DAN PERAMALAN BIAYA Ari Darmawa, Dr. S.AB, M.AB Email: aridarmawa_fia@ub.ac.id A. PENDAHULUAN B. PENAKSIRAN DAN PRAKIRAAN FUNGSI BIAYA C. PENAKSIRAN JANGKA PENDEK - Ekstrapolasi sederhaa - Aalisis

Lebih terperinci

TINJAUAN PUSTAKA Pengertian

TINJAUAN PUSTAKA Pengertian TINJAUAN PUSTAKA Pegertia Racaga peelitia kasus-kotrol di bidag epidemiologi didefiisika sebagai racaga epidemiologi yag mempelajari hubuga atara faktor peelitia dega peyakit, dega cara membadigka kelompok

Lebih terperinci

PDP 03 Tipe Data, Operator dan Expresi

PDP 03 Tipe Data, Operator dan Expresi PDP 03 Tipe Data, Operator da Expresi Petujuk Umum: Selesaika semua permasalaha di bawah ii dega alat batu compiler gcc (migw atau code block) Sebagai peujag utuk megerjaka pdp 03 di lab. Maka ada harus

Lebih terperinci

Tri Handhika Pusat Studi Komputasi Matematika (PSKM), Kampus D 139 Universitas Gunadarma Abstrak

Tri Handhika Pusat Studi Komputasi Matematika (PSKM), Kampus D 139 Universitas Gunadarma Abstrak PENGGUNAAN MEODE EMPIRICAL BES LINEAR UNBIASED PREDICION (EBLUP) PADA GENERAL LINEAR MIXED MODEL ri Hadhika Pusat Studi Komputasi Matematika (PSKM), Kampus D 139 Uiversitas Guadarma trihadika@staff.guadarma.ac.id

Lebih terperinci

1. HIMPUNAN. HIMPUNAN dan OPERASINYA. 1.1 Pendahuluan dan notasi. 1.2 Cardinality 1.3 Power Set 1.4 Cartesian Products

1. HIMPUNAN. HIMPUNAN dan OPERASINYA. 1.1 Pendahuluan dan notasi. 1.2 Cardinality 1.3 Power Set 1.4 Cartesian Products HIMPUNN da OPERSINY 1. HIMPUNN 1.1 Pedahulua da Notasi 1.2 Cardiality 1.3 Power Set 1.4 Cartesia Products. Pegertia :Himpua adalah kumpula eleme yag tak beratura. Cotoh. {1, 2, 3} adl himpua yag memuat

Lebih terperinci

Fungsi Kompleks. (Pertemuan XXVII - XXX) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

Fungsi Kompleks. (Pertemuan XXVII - XXX) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya TKS 4007 Matematika III Fugsi Kompleks (Pertemua XXVII - XXX) Dr. AZ Jurusa Tekik Sipil Fakultas Tekik Uiversitas Brawijaya Pedahulua Persamaa x + 1 = 0 tidak memiliki akar dalam himpua bilaga real. Pertayaaya,

Lebih terperinci

Mekanika Fluida II. Aliran Berubah Lambat

Mekanika Fluida II. Aliran Berubah Lambat Mekaika Fluida II Alira Berubah Lambat Itroductio Perilaku dasar berubah lambat: - Kedalama hidrolis berubah secara lambat pada arah logitudial - Faktor pegedali alira ada di kombiasi di hulu & hilir -

Lebih terperinci

Identifikasi sistem. Respon Step Sistem Orde I Suatu sistem orde I, dapat digambarkan sebagai berikut:

Identifikasi sistem. Respon Step Sistem Orde I Suatu sistem orde I, dapat digambarkan sebagai berikut: Idetifikasi sistem A. Dasar Teori Respo Step Sistem Orde I Suatu sistem orde I, dapat digambarka sebagai berikut: Y() s K X ( s) S 1 Dega ilai K = Gai overall = Yss/Xss τ = time kosta (waktu pada saat

Lebih terperinci

Osilator Harmonik (Bagian 2)

Osilator Harmonik (Bagian 2) Osilator armoik Bagia Osilator harmoik mekaika kuatum Tijau osilator harmoik -dimesi: ˆ = E ki + E pot kostata gaa ˆ m d d k perpidaha E pot k massa k Tigkat eergi osilator Tigkat eergi osilator harmoik

Lebih terperinci

PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT

PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT Prosidig Semiar Nasioal Matematika da Terapaya 06 p-issn : 0-0384; e-issn : 0-039 PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT Liatus

Lebih terperinci

MODUL 2 SINYAL WAKTU DISKRIT DALAM KAWASAN WAKTU DAN FREKUENSI

MODUL 2 SINYAL WAKTU DISKRIT DALAM KAWASAN WAKTU DAN FREKUENSI MODUL SINYAL WAKTU DISKRIT DALAM KAWASAN WAKTU DAN FREKUENSI I. Tugas Pedahulua Peritah atau fugsi pada MATLAB dapat dilihat da dipelajari dega olie help pada Commad widow. Cotoh ketiklah : help plot.

Lebih terperinci

METODE DEKOMPOSISI LAPLACE UNTUK MENENTUKAN SOLUSI PERSAMAAN DIFERENSIAL PARSIAL NONLINIER

METODE DEKOMPOSISI LAPLACE UNTUK MENENTUKAN SOLUSI PERSAMAAN DIFERENSIAL PARSIAL NONLINIER Vol.1 No.1 (16) Hal. 38-45 METODE DEKOMPOSISI LAPLACE UNTUK MENENTUKAN SOLUSI PERSAMAAN DIFERENSIAL PARSIAL NONLINIER Siar Ismaya, Yui Yulida *, Na imah Hijriati Program Studi Matematika Fakultas MIPA

Lebih terperinci

METODE NUMERIK UNTUK SIMULASI. Pemodelan & Simulasi TM07

METODE NUMERIK UNTUK SIMULASI. Pemodelan & Simulasi TM07 METODE NUMERIK UNTUK SIMULASI Pemodela & Simulasi TM07 Metode Numerik ( Metode umerik dpt diklasiikasika mjd:. Metode satu-lagka atau sigle-step. Metode multistep Metode sigle-step Pd metode ii, utuk meetuka

Lebih terperinci

x = 16 Jadi, banyak pekerja yang harus ditambahkan = = 4 orang.

x = 16 Jadi, banyak pekerja yang harus ditambahkan = = 4 orang. SOAL N MATEMATIKA SMK KELOMPOK PARIWISATA, SENI DAN KERAJINAN, TEKNOLOGI KERMAHTANGGAAN, PEKERJAAN SOSIAL, DAN ADMINISTRASI PERKANTORAN PAKET KC-F TAHN PELAJARAN /. Ekstrakurikuler pramuka suatu SMK aka

Lebih terperinci

Pengenalan Pola. Regresi Linier

Pengenalan Pola. Regresi Linier Pegeala Pola Regresi Liier PTIIK - 014 Course Cotets 1 Defiisi Regresi Liier Model Regresi Liear 3 Estimasi Regresi Liear 4 Studi Kasus da Latiha Defiisi Regresi Liier Regresi adalah membagu model utuk

Lebih terperinci

I PENDAHULUAN II LANDASAN TEORI. mandiri jika tidak mengandung t secara eksplisit di dalamnya. (Kreyszig, 1983)

I PENDAHULUAN II LANDASAN TEORI. mandiri jika tidak mengandung t secara eksplisit di dalamnya. (Kreyszig, 1983) I PENDAHULUAN Latar Belaag Permasalaha ebiaa pemaea ia yag memberia eutuga masimum da berelauta (tida teradi epuaha dari populasi ia yag dipae) adalah hal yag sagat petig bagi idustri periaa Para ilmuwa

Lebih terperinci

4/19/2016. Regresi Linier Berganda. Regresi Berganda. Model Regresi Berganda. Model Regresi Berganda. Asumsi Regresi Berganda. Model Regresi Berganda

4/19/2016. Regresi Linier Berganda. Regresi Berganda. Model Regresi Berganda. Model Regresi Berganda. Asumsi Regresi Berganda. Model Regresi Berganda 4/9/06 Regresi Liier Bergada Program Studi Tekik Idustri Uiversitas Brawijaa Ihwa Hamdala, ST., MT SI - Regresi & Korelasi Bergada Regresi Bergada Cotoh SI - Regresi & Korelasi Bergada Meguji huuga liier

Lebih terperinci

STATISTIKA ANALISIS REGRESI ANALISIS REGRESI LINIER LEKTION ACHT(#8) ANALISIS REGRESI

STATISTIKA ANALISIS REGRESI ANALISIS REGRESI LINIER LEKTION ACHT(#8) ANALISIS REGRESI ANALISIS REGRESI STATISTIKA LEKTION ACHT(#8) ANALISIS REGRESI Regresi: kembali ke tahap perkembaga sebelumya (psi.). Aalisis regresi: aalisis yag diguaka utuk megetahui relasi depedesi (pegaruh) dari satu

Lebih terperinci

TEKNIK-TEKNIK PENGAMBARAN ARUS LALU LINTAS

TEKNIK-TEKNIK PENGAMBARAN ARUS LALU LINTAS TEKIK-TEKIK PEGABARA ARS LAL LITAS Kebutuha dasar tekik lalu litas (Traffic Egieerig) adalah pegetahua komprehesif da pegambara dari gerak mobil, truk da bus atara lai pada : jala raya da jariga jala Tekik-tekik

Lebih terperinci

PENGGGUNAAN ALGORITMA GAUSS-NEWTON UNTUK MENENTUKAN SIFAT-SIFAT PENAKSIR PARAMETER DAN

PENGGGUNAAN ALGORITMA GAUSS-NEWTON UNTUK MENENTUKAN SIFAT-SIFAT PENAKSIR PARAMETER DAN PENGGGUNAAN ALGORITMA GAUSS-NEWTON UNTUK MENENTUKAN SIFAT-SIFAT PENAKSIR PARAMETER DAN DALAM SUATU MODEL NON-LINIER Abstrak Nur ei 1 1, Jurusa Matematika FMIPA Uiversitas Tadulako Jl. Sukaro-Hatta Palu,

Lebih terperinci

Tanggapan Waktu Alih Orde Tinggi

Tanggapan Waktu Alih Orde Tinggi Tanggapan Watu Alih Orde Tinggi Sistem Orde-3 : C(s) R(s) ω P ( < ζ (s + ζω s + ω )(s + p) Respons unit stepnya: c(t) βζ n n < n ζωn t e ( β ) + βζ [ ζ + { βζ ( β ) cos ( β ) + ] sin ζ ) ζ ζ ω ω n n t

Lebih terperinci

PROGRAM SIMULASI UNTUK REALISASI STRUKTUR TAPIS INFINITE IMPULSE RESPONSE UNTUK MEDIA PEMBELAJARAN DIGITAL SIGNAL PROCESSING

PROGRAM SIMULASI UNTUK REALISASI STRUKTUR TAPIS INFINITE IMPULSE RESPONSE UNTUK MEDIA PEMBELAJARAN DIGITAL SIGNAL PROCESSING Konferensi asional Sistem dan Informatia 28; Bali, ovember 15, 28 KS&I8-44 PROGRAM SIMULASI UTUK REALISASI STRUKTUR TAPIS IFIITE IMPULSE RESPOSE UTUK MEDIA PEMBELAJARA DIGITAL SIGAL PROCESSIG Damar Widjaja

Lebih terperinci

Persamaan Non-Linear

Persamaan Non-Linear Persamaa No-Liear Peyelesaia persamaa o-liear adalah meghitug akar suatu persamaa o-liear dega satu variabel,, atau secara umum dituliska : = 0 Cotoh: 2 5. 5 4 9 2 0 2 5 5 4 9 2 2. 2 0 2 5. e 0 Metode

Lebih terperinci