SIFAT SIFAT TRANSFORMASI LINEAR DARI R KE R

Ukuran: px
Mulai penontonan dengan halaman:

Download "SIFAT SIFAT TRANSFORMASI LINEAR DARI R KE R"

Transkripsi

1 SIF SIF RNSFORMSI LINER m DRI R KE R Diuu utuk memeuhi uga Mata Kuliah ljabar Liear Doe Pegampu : Dr. Suroo, M. Pd Diuu oleh : Kelompok. ge Chritie rii ( ). dik Setyo Nugroho ( ). Beti Lutvi Muyaaroh ( 84.9 ) PROGRM SUDI PENDIDIKN MEMIK FKULS PENDIDIKN MEMIK DN ILMU PENGEHUN LM IKIP PGRI MDIUN

2 SIF SIF RNSFORMSI LINER m DRI R KE R. raformai Liear Satu ke Satu raformai liear yag memetaka vektor vektor (titik titik) berbeda ke vektor vektor (titik titik) berbeda laiya merupaka hal yag petig. Satu cotoh traformai emacam ii adalah operator liear : R R yag merotai etiap vektor ebear θ. Secara geometrik jela bahwa jika u da v adalah vektor vektor yag berada pada R, maka demikia juga vektor vektor hail rotai (u) da (v) eperti terlihat pada Gambar di ampig. Sebalikya, eperti yag Nampak pada gambar di ampig, jika : R R adalah proyeki ortogoal R pada bidag y, maka titik titik yag berbeda yag terletak pada gari vertikal yag ama aka dipetaka ke titik yag ama pada bidag y.

3 Defiii : m Suatu traformai liear : R R diyataka ebagai atu ke atu (oe-to-oe) jika memetaka vektor vektor (titik titik) berbeda m pada R ke vektor vektor (titik titik) berbeda pada R eorema. Peryataa Peryataa yag Ekuivale m Jika adalah uatu matrik da jika : R R adalah perkalia dega, maka petayaa peryataa berikut adalah eluivale: (a). dapat dibalik (b). Rage dari adalah R (c). adalah atu ke atu kibat eorema. Iver dari Operator Liear Satu ke Satu m Jika : R R adalah operator liear atu ke atu, maka dari teorema dapat diperoleh : R yag diebut iver dari R ediri merupaka operator liear Sebelum mempelajari lebih lajut, aka kita pelajari dahulu maalah otai. Jika operator liear atu ke atu pada bukaya R dituli ebagai : R R ), maka iver dari operator diotaika dega bukaya ) karea matrik tadar utuk utuk, kita peroleh : : R R (da (da adalah iver dari matrik tadar B. SIF SIF LINERIS eorema. m Suatu traformai : R R adalah liear jika da haya jika hubuga hubuga berikut berlaku utuk emua vektor u da v pada R da etiap kalar c. (a). ( u v) ( u) ( v) (b). ( cu) c ( u)

4 Bukti: umika adalah uatu traformai liear, da mialka adalah matrik tadar utuk. Selajutya, euai dega ifat ifat aritmatika daar matrik diperoleh: ( u v) ( u v) u v ( u) ( v) da ( cu) ( cu) c( u) c ( u) Sebalikya, aumika ifat ifat (a) da (b) berlaku utuk traformai. Dapat kita buktika liear dega meetuka uatu matrik dega ifat ( ) Utuk emua vektor pada perkalia dega da oleh karea itu adalah liear. R. Ii aka meujukka bahwa adalah eorema. m Jika : R R adalah uatu traformai liear, da e, e,..., e adalah vektor vektor bai tadar utuk R, maka matrik tadar utuk adalah e e... e Rumu di ata dapat diadalka utuk meetuka matrik tadard da megaalii dampak geometrik dari uatu traformai liear. C. Iterpretai Geometrik dari Vektor Eige Defiii Jika : R R adalah operator liear, maka kalar λ diebut ebagai ilai Eige dari (eigevalue of ), jika terdapat yag takol pada R edemikia rupa ehigga ( ) Vektor vektor takol terebut yag memeuhi peramaa ii diebut vektor Eige dari yag terkait dega λ (eigevector of correpodig to λ) Jika λ adalah ilai Eige dari da adalah uatu vektor Eige yag terkait, maka =λ, ehigga perkalia dega memetaka ke dalam uatu perkalia kalar dega diriya ediri. Pada R da R, ii berarti bahwa perkalia dega memetaka etiap vektor eige ke uatu vektor yag terletak pada gari yag ama dega, eperti gambar di bawah ii 4

5 5 Cotoh Vektor Eige Mial = λi = λ - det (λi ) = det λ = I (λ ) (λ ) = λ = λ = Nilai Eige λ = da λ = Vektor Eige = Jika λ = maka + Mial maka = Jika λ = maka + Mial maka =

6 Keimpula: eorema 4. Peryataa Peryataa yag Ekuivale Jika adalah uatu matrik da jika : R R adalah perkalia dega, maka peryataa peryataa berikut ekuivale (a). dapat dibalik (b). = haya memiliki olui trivial (c). Betuk eelo bari tereduki dari da I (d). dapat diyataka ebagai uatu hailkali dari matrik matrik elemeter. (e). = b koite utuk etiap matrik b, (f). = b memiliki tepat atu olui utuk etiap matrik b, (g). det (h). Rage dari adalah (i). adalah atu ke atu. R 6

7 DFR PUSK to, Howard, ad Rorre, Chri. ljabar Liear Elemeter. Jakarta : Erlagga. to, Howard. 99. ljabar Liear Elemeter Edii ke. Jakarta : Erlagga 7

Bab II Landasan Teori

Bab II Landasan Teori Bab II adaa eori Bab ii meyajika kajia item da teori-teori yag aka medaari da diguaka dalam mecari betuk model tereduki. Beberapa hal yag aka dikaji dalam bab ii adalah item PV da beberapa teori daar yag

Lebih terperinci

MENENTUKAN SPECTRUM SUATU GRAF BERBANTUAN MATLAB

MENENTUKAN SPECTRUM SUATU GRAF BERBANTUAN MATLAB LAPORAN PENELITIAN KOMPETITIF DOSEN BERSAMA MAHASISWA MENENTUKAN SPECTRUM SUATU GRAF BERBANTUAN MATLAB KETUA TIM PENELITI ABDUSSAKIR, M.Pd JURUSAN MATEMATIKA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM

Lebih terperinci

RUANG BASIS SOLUSI. Ini disusun untuk memenuhi tugas mata kuliah. Aljabar Linier DISUSUN OLEH : DONNA SEPTIAN CAHYA RINI (08411.

RUANG BASIS SOLUSI. Ini disusun untuk memenuhi tugas mata kuliah. Aljabar Linier DISUSUN OLEH : DONNA SEPTIAN CAHYA RINI (08411. RUANG BASIS SOLUSI Ii disusu utuk memeuhi tugas mata kuliah Aljabar Liier DISUSUN OLEH : DONNA SEPIAN CAHYA RINI (08411.114) FIRIA ASUI (08411.133) NURUL AISYAH (08411.211) SULIS SEYOWAI (08411.260) SULISIANI

Lebih terperinci

MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR. Dosen Pengampu : Darmadi, S.Si, M.Pd

MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR. Dosen Pengampu : Darmadi, S.Si, M.Pd MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR Dose Pegampu : Darmadi, S.Si, M.Pd Disusu : Kelas 5A / Kelompok 5 : Dia Dwi Rahayu (084. 06) Hefetamala (084. 4) Khoiril Haafi (084. 70) Liaatul Nihayah (084. 74)

Lebih terperinci

BAB II LANDASAN TEORI. Pada bab ini akan dibahas dasar-dasar teori yang akan digunakan

BAB II LANDASAN TEORI. Pada bab ini akan dibahas dasar-dasar teori yang akan digunakan BAB II LANDASAN TEORI Pada bab ii aka dibaa daar-daar teori yag aka diguaka dalam peulia kripi ii, yaitu megeai metode peakira maximum likeliood, metode peakira oit maximum likeliood da fier iformatio..1

Lebih terperinci

DEFINISI DAN RUANG SOLUSI

DEFINISI DAN RUANG SOLUSI DEFINISI DAN RUANG SOLUSI Pada bagian ini akan dibaha tentang bai dan dimeni menggunakan pengertian dari kebebaan linear ( beba linear dan merentang ) yang dibaha pada bab ebelumnya. Definii dari bai diberikan

Lebih terperinci

PERTEMUAN 13. VEKTOR dalam R 3

PERTEMUAN 13. VEKTOR dalam R 3 PERTEMUAN VEKTOR dalam R Pegertia Ruag Vektor Defiisi R Jika adalah sebuah bilaga bulat positif, maka tupel - - terorde (ordered--tuple) adalah sebuah uruta bilaga riil ( a ),a,..., a. Semua tupel - -terorde

Lebih terperinci

BAB IV SEBARAN ASIMTOTIK PENDUGA DENGAN MENGGUNAKAN KERNEL SERAGAM. ) menyatakan banyaknya kejadian pada interval [ 0, n ] dan h

BAB IV SEBARAN ASIMTOTIK PENDUGA DENGAN MENGGUNAKAN KERNEL SERAGAM. ) menyatakan banyaknya kejadian pada interval [ 0, n ] dan h BAB IV SEBARAN ASIMTOTIK PENDUGA DENGAN MENGGUNAKAN KERNEL SERAGAM 4.1 Peduga dega Kerel Seragam Pada bab ii diguaka peduga dega kerel eragam. Hal ii karea aya belum berail memperole ebara aimtotik dari

Lebih terperinci

INTERVAL KEPERCAYAAN

INTERVAL KEPERCAYAAN INTERVAL KEPERCAYAAN Tujua utama diambil ebuah ampel dari ebuah populai adalah utuk memperoleh iformai megeai parameter populai.. Ada cara meetuka parameter populai yaitu peakira da pegujia hipotei. Peakira

Lebih terperinci

TINJAUAN PUSTAKA. 2.1 Ruang Vektor. Definisi (Darmawijaya, 2007) Diketahui (V, +) grup komutatif dan (F,,. ) lapangan dengan elemen identitas

TINJAUAN PUSTAKA. 2.1 Ruang Vektor. Definisi (Darmawijaya, 2007) Diketahui (V, +) grup komutatif dan (F,,. ) lapangan dengan elemen identitas II. TINJAUAN PUSTAKA 2.1 Ruag Vektor Defiisi 2.1.1 (Darmawijaya, 2007) Diketahui (V, +) grup komutatif da (F,,. ) lapaga dega eleme idetitas 1. V disebut ruag vektor (vector space) atas F jika ada operasi

Lebih terperinci

SUMMABILITAS CESARO PADA OPERASI DERET DIVERGEN. Sangadji* 1

SUMMABILITAS CESARO PADA OPERASI DERET DIVERGEN. Sangadji* 1 Summabilita Cearo pada Operai Dere Diverge (Sagadji) SUMMABILITAS CESARO PADA OPERASI DERET DIVERGE Sagadji* ABSTRAK SUMMABILITAS CESARO PADA OPERASI DERET DIVERGE Bayak orag uka membicaraka tetag deret

Lebih terperinci

BAB III ANALISIS PEMODELAN ANTRIAN HAULER PENGANGKUTAN OVERBURDEN PADA JALAN 7F

BAB III ANALISIS PEMODELAN ANTRIAN HAULER PENGANGKUTAN OVERBURDEN PADA JALAN 7F BAB III AALISIS EMODELA ATRIA HAULER EGAGKUTA OVERBURDE ADA JALA 7F 3.. edahulua ada Bab II telah dijelaka beberapa teori yag diguaka utuk melakuka aalii yag tepat dalam memecahka maalah yag ada. ada bab

Lebih terperinci

Semigrup Matriks Admitting Struktur Ring

Semigrup Matriks Admitting Struktur Ring Semigrup Matriks dmittig Struktur ig K a r y a t i Jurusa Pedidika Matematika FMIP, Uiversitas Negeri Yogyakarta Email: yatiuy@yahoo.com bstrak Diberika adalah rig komutatif dega eleme satua da adalah

Lebih terperinci

HOMOMORFISMA RING DERET PANGKAT TERITLAK MIRING

HOMOMORFISMA RING DERET PANGKAT TERITLAK MIRING J. Sai MIPA Agutu 2009 Vol. 5 No. 2 Hal.: 9-24 ISSN 978-873 HOMOMORFISMA RING DERET PANGKAT TERITLAK MIRING Ahmad Faiol Jurua Matematika FMIPA Uiverita Lampug Badar Lampug 3545 Idoeia Email: faiol_mathuila@yahoo.co.id

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 1, 41-48, April 2003, ISSN : MATRIKS STOKASTIK GANDA DAN SIFAT-SIFATNYA

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 1, 41-48, April 2003, ISSN : MATRIKS STOKASTIK GANDA DAN SIFAT-SIFATNYA JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No., 4-48, April 00, ISSN : 40-858 MATRIKS STOKASTIK GANDA DAN SIFAT-SIFATNYA Suryoto Jurusa Matematika F-MIPA Uiversas Dipoegoro Semarag Abstrak Suatu matriks tak

Lebih terperinci

ANALISIS SISTEM NON LINEAR MELALUI PENDEKATAN SISTEM LINEAR DENGAN PARAMETER BERUBAH-UBAH

ANALISIS SISTEM NON LINEAR MELALUI PENDEKATAN SISTEM LINEAR DENGAN PARAMETER BERUBAH-UBAH ANALISIS SISEM NON LINEAR MELALUI PENDEKAAN SISEM LINEAR DENGAN PARAMEER BERUBAH-UBAH Widowati Jurua Matematika FMIPA UNDIP Jl Prof H Soedarto SH Semarag 5075 e-mail: wiwied_mathudip@yahoocom Abtrak Pada

Lebih terperinci

TEOREMA WEYL UNTUK OPERATOR HYPONORMAL

TEOREMA WEYL UNTUK OPERATOR HYPONORMAL Jural UJMC, Volume 3, Nomor, Hal. - 6 pissn : 460-3333 eissn : 579-907X TEOREMA WEYL UNTUK OPERATOR HYPONORMAL Guawa Uiversitas Muhammadiyah Purwokerto, gu.oge@gmail.com Abstract This paper aims at describig

Lebih terperinci

Fisika Statistik. Jumlah SKS : 3. Oleh : Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Mulawarman

Fisika Statistik. Jumlah SKS : 3. Oleh : Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Mulawarman Fiika Statitik Jumlah SKS : 3 Oleh : Rahmawati M, S.Si., M.Si. Jurua Fiika Fakulta Matematika da Ilmu Pegetahua Alam Uiverita Mulawarma Pertemua 2 da 3 Pedahulua (Termodiamika) 2. Statitik Maxwell-Boltzma.

Lebih terperinci

PERTEMUAN 3 PENYELESAIAN PERSOALAN PROGRAM LINIER

PERTEMUAN 3 PENYELESAIAN PERSOALAN PROGRAM LINIER PERTEMUAN PENYELESAIAN PERSOALAN PROGRAM LINIER Setelah dapat membuat Model Matematika (merumukan) peroalan Program Linier, maka untuk menentukan penyeleaian Peroalan Program Linier dapat menggunakan metode,

Lebih terperinci

Diagram Kendali Simpangan Baku Eksak untuk Proses Berdistribusi Normal dengan Parameter σ Diketahui

Diagram Kendali Simpangan Baku Eksak untuk Proses Berdistribusi Normal dengan Parameter σ Diketahui Statitika, Vol. No., 5 6 Mei Diagram Kedali Simpaga Baku Ekak utuk Proe Berditribui Normal dega Parameter Diketahui Aceg Komarudi Mutaqi, Suwada Program Studi Statitika Fakulta MIPA Uiverita Ilam Badug,

Lebih terperinci

BAB II ESTIMASI STATISTIK 2.1 Pengertian Estimasi a. Estimasi merupakan suatu metode dimana kita dapat memperkirakan nilai Populasi dengan memakai

BAB II ESTIMASI STATISTIK 2.1 Pengertian Estimasi a. Estimasi merupakan suatu metode dimana kita dapat memperkirakan nilai Populasi dengan memakai 3 BAB II ESTIMASI STATISTIK. Pegertia Etimai a. Etimai merupaka uatu metode dimaa kita dapat memperkiraka ilai Populai dega memakai ilai ampel. b. Etimai merupaka kegiata pearika keimpula tatitik yag berawal

Lebih terperinci

BAB III TEOREMA GLEASON DAN t-desain

BAB III TEOREMA GLEASON DAN t-desain BAB III TEOREMA GLEASON DAN t-desain Dalam ubbab 3., kta aka mempelaar alah atu fat petg dar kode wa-dual geap. Sfat terebut dberka oleh Teorema 3.(Teorema Gleao), Teorema ecara megeaka telah meetuka betuk

Lebih terperinci

Selang Kepercayaan dari Parameter Distribusi Log-Normal Menggunakan Metode Bootstrap Persentil

Selang Kepercayaan dari Parameter Distribusi Log-Normal Menggunakan Metode Bootstrap Persentil Statitika, Vol. 8 No. 1, 13 17 Mei 008 Selag Kepercayaa dari Parameter Ditribui Log-Normal Megguaka Metode Boottrap Peretil Akhmad Fauzy Jurua Statitika FMIPA Uiverita Ilam Idoeia Yogyakarta Abtract I

Lebih terperinci

BAB IV ENTROPI GAS SEMPURNA

BAB IV ENTROPI GAS SEMPURNA BAB IV ENROPI GAS SEMPURNA Itilah etroi ecara literatur berarti traformai, da dierkealka oleh lauiu. Etroi adalah ifat termodiamika yag etig dari ebuah zat, dimaa hargaya aka meigkat ketika ada eambaha

Lebih terperinci

ARTIKEL. Menentukan rumus Jumlah Suatu Deret dengan Operator Beda. Markaban Maret 2015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN

ARTIKEL. Menentukan rumus Jumlah Suatu Deret dengan Operator Beda. Markaban Maret 2015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN ARTIKEL Meetuka rumus Jumlah Suatu Deret dega Operator Beda Markaba 191115198801005 Maret 015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN PUSAT PENGEMBANGAN DAN PEMBERDAYAAN PENDIDIK DAN TENAGA KEPENDIDIKAN

Lebih terperinci

PENDUGAAN PARAMETER. Ledhyane Ika Harlyan

PENDUGAAN PARAMETER. Ledhyane Ika Harlyan PENDUGAAN PARAMETER Ledhyae Ika Harlya Jurua Pemafaata Sumberdaya Perikaa da Kelauta Uiverita Brawijaya 03 Statitik Ifereia Mecakup emua metode yag diguaka dalam pearika keimpula atau geeraliai megeai

Lebih terperinci

Pendugaan. Parameter HAZMIRA YOZZA IZZATI RAHMI HG JURUSAN MATEMATIKA FMIPA UNIV. ANDALAS LOGO

Pendugaan. Parameter HAZMIRA YOZZA IZZATI RAHMI HG JURUSAN MATEMATIKA FMIPA UNIV. ANDALAS LOGO Pedugaa Parameter HAZMIRA YOZZA JURUSAN MATEMATIKA FMIPA UNIV. ANDALAS LOGO Kompetei meyebutka klp ifereia tatitika & ruag ligkupya mejelaka metode pedugaa klaik da yarat-yarat peduga yag baik pada pedugaa

Lebih terperinci

2. Fungsi Bessel Persamaan Diferensial Bessel 2.2. Sifat-sifat Fungsi Bessel 2.3. Fungsi-fungsi Hankel, Bessel Orde-fraksional, Bessel Sferis

2. Fungsi Bessel Persamaan Diferensial Bessel 2.2. Sifat-sifat Fungsi Bessel 2.3. Fungsi-fungsi Hankel, Bessel Orde-fraksional, Bessel Sferis . Fugi Beel.. Peramaa Difereial Beel.. Sifat-ifat Fugi Beel.3. Fugi-fugi Hakel, Beel Orde-frakioal, Beel Sferi Pegguaa Fugi Beel Mecari olui eparai variabel dari peramaa Laplace da Helmholtz dalam koordiat

Lebih terperinci

LANDASAN TEORI. Pada bab ini akan diberikan beberapa konsep dasar (pengertian) yang akan digunakan dalam. pembahasan penelitian. 2.

LANDASAN TEORI. Pada bab ini akan diberikan beberapa konsep dasar (pengertian) yang akan digunakan dalam. pembahasan penelitian. 2. II. LANDASAN TEORI Pada bab ii aka diberika beberapa kosep dasar (pegertia) yag aka diguaka dalam pembahasa peelitia 2.1 Ruag Vektor Defiisi 3.1.1 (Darmawijaya, 2007) Diketahui (V, +) grup komutatif da

Lebih terperinci

ESTIMASI. Jika parameter populasi disimbolkan dengan θ maka θ yang tidak diketahui harganya ditaksir oleh harga

ESTIMASI. Jika parameter populasi disimbolkan dengan θ maka θ yang tidak diketahui harganya ditaksir oleh harga ESTIMASI Salah atu aek utuk mearik keimula megeai uatu oulai dega memakai amel yag diambil dari oulai terebut megguaka etimai (eakira) Jika arameter oulai diimbolka dega θ maka θ yag tidak diketahui hargaya

Lebih terperinci

STATISTICS. Confidence Intervals (Rentang Keyakinan) Confidence Intervals (1)

STATISTICS. Confidence Intervals (Rentang Keyakinan) Confidence Intervals (1) STATISTICS Cofidece Iterval (Retag Keyakia) Cofidece Iterval () Etimai Parameter Ditribui abilita memiliki ejumlah parameter. Parameter-parameter tb umumya tak diketahui. Nilai parameter terebut diperkiraka

Lebih terperinci

Tetapi apabila n < 5% N maka digunakan :

Tetapi apabila n < 5% N maka digunakan : Jei- jei pedugaa Iterval:. Pedugaa Parameter dega ampel bear (>30) a. Pedugaa terhadap parameter rata-rata Diketahui; z Maka; Z Z Tetapi apabila tadard deviai populai tidak diketahui, maka diguaka tadar

Lebih terperinci

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang 5. DERET

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang 5. DERET Pertemua 7. BAHAN AJAR ANALISIS REAL Matematika STKIP Tuaku Tambusai Bagkiag 5. da kekovergeaya 5. DERET Diberika sebuah barisa a, dapat didefeisika barisa bilaga real S N dega S N := N a = a + a 2 +...

Lebih terperinci

BARISAN PANGKAT TERURUT MATRIKS PADA ALJABAR MAX PLUS

BARISAN PANGKAT TERURUT MATRIKS PADA ALJABAR MAX PLUS BRISN PNGKT TERURUT MTRIKS PD LJBR MX PLUS Nurwa Jurusa Matematika FMIP Uiversitas Negeri Gorotalo E-mail: urwa_mat@ug.ac.id bstrak Diberika matriks R yag memeuhi = λ. Matriks adalah k + c c k taktereduksi

Lebih terperinci

PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT

PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT Prosidig Semiar Nasioal Matematika da Terapaya 06 p-issn : 0-0384; e-issn : 0-039 PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT Liatus

Lebih terperinci

I. DERET TAKHINGGA, DERET PANGKAT

I. DERET TAKHINGGA, DERET PANGKAT I. DERET TAKHINGGA, DERET PANGKAT. Pedahulua Pembahasa tetag deret takhigga sebagai betuk pejumlaha suku-suku takhigga memegag peraa petig dalam fisika. Pada bab ii aka dibahas megeai pegertia deret da

Lebih terperinci

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI IPA SMA Al Azhar-3

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI IPA SMA Al Azhar-3 III. METODOLOGI PENELITIAN A. Populai da Sampel Peelitia Populai dalam peelitia ii adalah emua iwa kela I IPA SMA Al Azhar-3 Badar Lampug tahu ajara 0/0 yag berjumlah 48 iwa da terebar dalam empat kela.

Lebih terperinci

BAB II TEORI DASAR. Definisi Grup G disebut grup komutatif atau grup abel jika berlaku hukum

BAB II TEORI DASAR. Definisi Grup G disebut grup komutatif atau grup abel jika berlaku hukum BAB II TEORI DASAR 2.1 Aljabar Liier Defiisi 2. 1. 1 Grup Himpua tak kosog G disebut grup (G, ) jika pada G terdefiisi operasi, sedemikia rupa sehigga berlaku : a. Jika a, b eleme dari G, maka a b eleme

Lebih terperinci

Institut Teknologi Sepuluh Nopember Surabaya. Model Sistem dalam Persamaan Keadaan

Institut Teknologi Sepuluh Nopember Surabaya. Model Sistem dalam Persamaan Keadaan Istitut Tekologi Sepuluh Nopember Surabaya Model Sistem dalam Persamaa Keadaa Pegatar Materi Cotoh Soal Rigkasa Latiha Pegatar Materi Cotoh Soal Rigkasa Istilah-istilah Dalam Persamaa Keadaa Aalisis Sistem

Lebih terperinci

Mata Kuliah: Statistik Inferensial

Mata Kuliah: Statistik Inferensial STATISTIK INFERENSIAL Prof. Dr. H. Almadi Syahza, SE., MP Email: ayahza@yahoo.co.id PROGRAM STUDI PENDIDIKAN EKONOMI FKIP UNIVERSITAS RIAU DISTRIBUSI SAMPLING 2 Bagia I Statitik Iduktif Metode da Ditribui

Lebih terperinci

II. TINJAUAN PUSTAKA. Secara umum apabila a bilangan bulat dan b bilangan bulat positif, maka ada tepat = +, 0 <

II. TINJAUAN PUSTAKA. Secara umum apabila a bilangan bulat dan b bilangan bulat positif, maka ada tepat = +, 0 < II. TINJAUAN PUSTAKA 2.1 Keterbagia Secara umum apabila a bilaga bulat da b bilaga bulat positif, maka ada tepat satu bilaga bulat q da r sedemikia sehigga : = +, 0 < dalam hal ii b disebut hasil bagi

Lebih terperinci

Barisan Dan Deret Arimatika

Barisan Dan Deret Arimatika Barisa Da Deret Arimatika A. Barisa Aritmatika Niko etera memiliki sebuah peggaris ukura 0 cm. Ia megamati bilaga-bilaga pada peggarisya ii. Bilaga-bilaga tersebut beruruta 0, 1,, 3,, 0. etiap bilaga beruruta

Lebih terperinci

terurut dari bilangan bulat, misalnya (7,2) (notasi lain 2

terurut dari bilangan bulat, misalnya (7,2) (notasi lain 2 Bab Bilaga kompleks BAB BILANGAN KOMPLEKS Defiisi Bilaga Kompleks Sebelum medefiisika bilaga kompleks, pembaca diigatka kembali pada permasalah dalam sistem bilaga yag telah dikeal sebelumya Yag pertama

Lebih terperinci

BAB IV DESKRIPSI ANALISIS DATA

BAB IV DESKRIPSI ANALISIS DATA BAB IV DESKRIPSI ANALISIS DATA A. Dekripi Data Peelitia ii megguaka peelitia ekperime, ubyek peelitiaya dibedaka mejadi dua kela, yaitu kela kotrol da kela ekperime. Kela kotrol pada peelitia ii merupaka

Lebih terperinci

A. Interval Konfidensi untuk Mean

A. Interval Konfidensi untuk Mean ESTIMASI INTERVAL A. Iterval Kofidei utuk Mea Defiii Jika ˆ merupaka etimator utuk parameter da P ˆ ˆ, maka ˆ ˆ diebut Dimaa iterval kofidei(-)00% utuk. :- koefiie kofidei ˆ, ˆ bata iterval tigkat kealaha

Lebih terperinci

A. PENGERTIAN DISPERSI

A. PENGERTIAN DISPERSI UKURAN DISPERSI A. PENGERTIAN DISPERSI Ukura diperi atau ukura variai atau ukura peyimpaga adalah ukura yag meyataka eberapa jauh peyimpaga ilai-ilai data dari ilaiilai puatya atau ukura yag meyataka eberapa

Lebih terperinci

MINGGU KE XII PENDUGAAN INTERVAL

MINGGU KE XII PENDUGAAN INTERVAL MINGGU KE XII PENDUGAAN INTERVAL Tujua Itrukioal Umum :. Mahaiwa mampu memahami apa yag dimakud dega pedugaa iterval. Mahaiwa mampu memahami pedugaa iterval utuk ample bear da utuk ample kecil 3. Mahaiwa

Lebih terperinci

Induksi Matematika. Pertemuan VII Matematika Diskret Semester Gasal 2014/2015 Jurusan Teknik Informatika UPN Veteran Yogyakarta

Induksi Matematika. Pertemuan VII Matematika Diskret Semester Gasal 2014/2015 Jurusan Teknik Informatika UPN Veteran Yogyakarta Iduksi Matematika Pertemua VII Matematika Diskret Semester Gasal 2014/2015 Jurusa Tekik Iformatika UPN Vetera Yogyakarta Metode pembuktia utuk peryataa perihal bilaga bulat adalah iduksi matematik. Cotoh

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN JURAL MATEMATKA DA KOMPUTER Vol. 6. o., 77-85, Agustus 003, SS : 40-858 DSTRBUS WAKTU BERHET PADA PROSES PEMBAHARUA Sudaro Jurusa Matematika FMPA UDP Abstrak Dalam proses stokhastik yag maa kejadia dapat

Lebih terperinci

Hendra Gunawan. 12 Februari 2014

Hendra Gunawan. 12 Februari 2014 MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2013/2014 12 Februari 2014 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 82 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg

Lebih terperinci

SAP. Pertemu Materi Pokok Sub-Materi Tugas KBM Bentuk. Matriks. Projector/Vie proses penunjang. software. pembelajaran. Sistem

SAP. Pertemu Materi Pokok Sub-Materi Tugas KBM Bentuk. Matriks. Projector/Vie proses penunjang. software. pembelajaran. Sistem Mata kuliah Bobot Deskripsi Mata Kuliah SAP : Matriks & Ruag Vektor : 2 SKS/IT043231 : Mata kuliah ii merupaka fodasi keragka berfikir mahasiswa dalam memahami da meyelesaika masalah berbasis ruag melalui

Lebih terperinci

III. METODE PENELITIAN. Populasi penelitian ini yaitu seluruh siswa kelas X SMA Negeri 2 Bandar

III. METODE PENELITIAN. Populasi penelitian ini yaitu seluruh siswa kelas X SMA Negeri 2 Bandar 7 III. METDE PENELITIAN A. Populai Peelitia Populai peelitia ii yaitu eluruh iwa kela MA Negeri Badar Lampug dega ampel kela, pada emeter geap Tahu Pelajara 0/0. B. ampel Peelitia Tekik pegambila ampel

Lebih terperinci

Setelah mempelajari modul ini Anda diharapkan dapat: a. memeriksa apakah suatu pemetaan merupakan operasi;

Setelah mempelajari modul ini Anda diharapkan dapat: a. memeriksa apakah suatu pemetaan merupakan operasi; Modul 1 Operasi Dr. Ahmad Muchlis B PENDAHULUAN erapakah 97531 86042? Kalau Ada megguaka kalkulator, jawabaya amat bergatug pada tipe kalkulator yag Ada pakai. 9 Kalkulator ilmiah Casio fx-250 memberika

Lebih terperinci

Solusi Numerik Persamaan Transport

Solusi Numerik Persamaan Transport Solusi Numerik Persamaa Trasport M. Jamhuri December 16, 2013 Diberika persamaa Trasport u t + 2u x = 0 1) Diberika persamaa Trasport u t + 2u x = 0 1) Diskretka persamaa trasport 1) dega megguaka persamaa

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN EORI Pada bab ii aka dijelaska megeai ladasa teori yag aka diguaka pada bab pembahasa. eori-teori ii diguaka sebagai baha acua yag medukug tujua peulisa. Materi-materi yag aka dibahas atara

Lebih terperinci

Fungsi Kompleks. (Pertemuan XXVII - XXX) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

Fungsi Kompleks. (Pertemuan XXVII - XXX) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya TKS 4007 Matematika III Fugsi Kompleks (Pertemua XXVII - XXX) Dr. AZ Jurusa Tekik Sipil Fakultas Tekik Uiversitas Brawijaya Pedahulua Persamaa x + 1 = 0 tidak memiliki akar dalam himpua bilaga real. Pertayaaya,

Lebih terperinci

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n LIMIT 4.. FUNGSI LIMIT Defiisi 4.. A R Titik c R adalah titik limit dari A, jika utuk setiap δ > 0 ada palig sedikit satu titik di A, c sedemikia sehigga c < δ. Defiisi diatas dapat disimpulka dega cara

Lebih terperinci

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya 5 BAB II LANDASAN TEORI Dalam tugas akhir ii aka dibahas megeai peaksira besarya koefisie korelasi atara dua variabel radom kotiu jika data yag teramati berupa data kategorik yag terbetuk dari kedua variabel

Lebih terperinci

KALKULUS 4. Dra. D. L. Crispina Pardede, DEA. SARMAG TEKNIK MESIN

KALKULUS 4. Dra. D. L. Crispina Pardede, DEA. SARMAG TEKNIK MESIN KALKULUS Dra. D. L. Crispia Pardede DEA. SARMAG TEKNIK MESIN KALKULUS - SILABUS. Deret Fourier.. Fugsi Periodik.2. Fugsi Geap da Gajil.3. Deret Trigoometri.. Betuk umum Deret Fourier.. Kodisi Dirichlet.6.

Lebih terperinci

Statistika. Besaran Statistik

Statistika. Besaran Statistik Statitika Beara Statitik Itiarto Statitical Meaure Commo tatitical meaure Meaure of cetral tedecy Mea Mode Media Meaure of variability Rage Variace Stadard deviatio Meaure of a idividual i a populatio

Lebih terperinci

Distribusi Pendekatan (Limiting Distributions)

Distribusi Pendekatan (Limiting Distributions) Distribusi Pedekata (Limitig Distributios) Ada 3 tekik utuk meetuka distribusi pedekata: 1. Tekik Fugsi Distribusi Cotoh 2. Tekik Fugsi Pembagkit Mome Cotoh 3. Tekik Teorema Limit Pusat Cotoh Fitriai Agustia,

Lebih terperinci

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR Nur Aei Prodi Matematika, FST-UINAM uraeiatullah@gmail.com Ifo: Jural MSA Vol. 3 No. 2 Edisi: Juli Desember

Lebih terperinci

DIMENSI PARTISI PADA GRAF KINCIR PARTITION DIMENSION OF WINDMILL GRAPH

DIMENSI PARTISI PADA GRAF KINCIR PARTITION DIMENSION OF WINDMILL GRAPH PROPOAL TUGA AKHIR DIMENI PARTII PADA GRAF KINCIR PARTITION DIMENION OF WINDMILL GRAPH Oleh: CHANDRA IRAWAN NRP : 100 109 04 JURUAN MATEMATIKA FAKULTA MATEMATIKA DAN ILMU PENGETAHUAN ALAM INTITUT TEKNOLOGI

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2016/2017 3 Februari 2017 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg Batas

Lebih terperinci

ANALISIS HUBUNGAN KETAKSAMAAN NILAI SINGULAR PADA PEMETAAN LINIER DAN RENTANG NUMERIK UNTUK FUNGSI EKSPONENSIAL MATRIKS

ANALISIS HUBUNGAN KETAKSAMAAN NILAI SINGULAR PADA PEMETAAN LINIER DAN RENTANG NUMERIK UNTUK FUNGSI EKSPONENSIAL MATRIKS ANALISIS HUBUNGAN KETAKSAMAAN NILAI SINGULAR PADA PEMETAAN LINIER DAN RENTANG NUMERIK UNTUK FUNGSI EKSPONENSIAL MATRIKS MNatsir 1) Asli Sirait ) Musraii 3) Rola Pae 4) Jurusa Matematika Fakultas Matematika

Lebih terperinci

BARISAN TAK HINGGA DAN DERET TAK HINGGA

BARISAN TAK HINGGA DAN DERET TAK HINGGA BARIAN TAK HINGGA DAN DERET TAK HINGGA Bajar/Barisa Tak Higga Barisa tak higga { } adalah suatu fugsi dari dimaa daerah domaiya adalah himpua bilaga bulat positif (bilaga asli). Cotoh: Bila.. maka fugsi

Lebih terperinci

STABILISASI SISTEM LINIER POSITIF MENGGUNAKAN STATE FEEDBACK

STABILISASI SISTEM LINIER POSITIF MENGGUNAKAN STATE FEEDBACK Jurnal Matematika UNAND Vol. VI No. 1 Hal. 105 109 ISSN : 2303 2910 c Juruan Matematika FMIPA UNAND STABILISASI SISTEM LINIER POSITIF MENGGUNAKAN STATE FEEDBACK ERIN DWI FENTIKA, ZULAKMAL Program Studi

Lebih terperinci

Secara umum, suatu barisan dapat dinyatakan sebagai susunan terurut dari bilangan-bilangan real:

Secara umum, suatu barisan dapat dinyatakan sebagai susunan terurut dari bilangan-bilangan real: BARISAN TAK HINGGA Secara umum, suatu barisa dapat diyataka sebagai susua terurut dari bilaga-bilaga real: u 1, u 2, u 3, Barisa tak higga merupaka suatu fugsi dega domai berupa himpua bilaga bulat positif

Lebih terperinci

BAB I PENDAHULUAN. , membentuk struktur ring terhadap operasi penjumlahan matriks dan operasi pergandaan matriks baku. Himpunan bagian dari

BAB I PENDAHULUAN. , membentuk struktur ring terhadap operasi penjumlahan matriks dan operasi pergandaan matriks baku. Himpunan bagian dari BB I PENDHULUN. Latar Belakag Masalah Struktur rig (gelaggag) R adalah suatu himpua R yag kepadaya didefiisika dua operasi bier yag disebut pejumlaha da pergadaa yag memeuhi aksioma-aksioma tertetu, yaitu:

Lebih terperinci

Pendugaan Parameter. Selang Kepercayaan = Konfidensi Interval = Confidence Interval

Pendugaan Parameter. Selang Kepercayaan = Konfidensi Interval = Confidence Interval Pedugaa Parameter. Pedahulua Pedugaa Parameter Popoulai dilakuka dega megguaka ilai Statitik Sampel Mial :. x diguaka ebagai peduga bagi. diguaka ebagai peduga bagi 3. p atau p diguaka ebagai peduga bagi

Lebih terperinci

(The Method of Separation of Variables). Metode ini dapat digunakan pada PDP linier, khususnya PDP dengan koefisien konstan.

(The Method of Separation of Variables). Metode ini dapat digunakan pada PDP linier, khususnya PDP dengan koefisien konstan. METODE PEMISAHAN PEUBAH (The Method of Separatio of Variales) Metode ii dapat diguaka pada PDP liier, khususya PDP dega koefisie kosta Tujua Istruksioal : Setelah megikuti perkuliaha mahasiswa dapat: 1

Lebih terperinci

5/12/2014. Tempat Kedudukan Akar(Root Locus Analysis) ROOT LOCUS ANALYSIS

5/12/2014. Tempat Kedudukan Akar(Root Locus Analysis) ROOT LOCUS ANALYSIS 5//04 Matakulah: T EDALI Tahu : 04 Pertemuaa 45 Tempat eduduka Akar(Root Lou Aaly) Learg Outome Pada akhr pertemua, dharapka mahawa aka mampu : meerapka aal da aplka Tempat keduduka Akar dalam dea tem

Lebih terperinci

BAB III METODE PENELITIAN. dengan kemampuan berpikir kreatif dengan menggunakan dua model

BAB III METODE PENELITIAN. dengan kemampuan berpikir kreatif dengan menggunakan dua model 3 BAB III METODE PENELITIAN A. Jei Peelitia Tujua peelitia ii yaki membadigka kemampua berpikir kriti dega kemampua berpikir kreatif dega megguaka dua model pembelajara yaitu model pembelajara berbai maalah

Lebih terperinci

Pedahulua Pedugaa Parameter Pedugaa Parameter Populai dilakuka dega megguaka ilai Statitik Sampel, Mial :. x diguaka ebagai peduga bagi µ. diguaka ebagai peduga bagi σ 3. p atau p$ diguaka ebagai peduga

Lebih terperinci

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR Nur Aei Prodi Matematika, FST-UINAM uraeiatullah@gmail.com Ifo: Jural MSA Vol. 3 No. 2 Edisi: Juli Desember

Lebih terperinci

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4 Program Studi : Tekik Iformatika Miggu ke : 4 INDUKSI MATEMATIKA Hampir semua rumus da hukum yag berlaku tidak tercipta dega begitu saja sehigga diraguka kebearaya. Biasaya, rumus-rumus dapat dibuktika

Lebih terperinci

Induksi matematik untuk memecahkan problema deret dan bilangan bulat bentuk kuadrat sempurna

Induksi matematik untuk memecahkan problema deret dan bilangan bulat bentuk kuadrat sempurna Iduksi matematik utuk memecahka problema deret da bilaga bulat betuk kuadrat sempura Oleh: Sutopo Jurusa Fisika FMIPA UM sutopo@fisika.um.ac.id Ditulis pada sekitar bula Februari 2011. Diuggah pada 3 Desember

Lebih terperinci

III PEMBAHASAN. λ = 0. Ly = 0, maka solusi umum dari persamaan diferensial (3.3) adalah

III PEMBAHASAN. λ = 0. Ly = 0, maka solusi umum dari persamaan diferensial (3.3) adalah III PEMBAHASAN Pada bagia ii aka diformulasika masalah yag aka dibahas. Solusi masalah aka diselesaika dega Metode Dekomposisi Adomia. Selajutya metode ii aka diguaka utuk meyelesaika model yag diyataka

Lebih terperinci

Fungsi. Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B.

Fungsi. Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B. Fugsi Misalka A da B himpua. Relasi bier f dari A ke B merupaka suatu fugsi jika setiap eleme di dalam A dihubugka dega tepat satu eleme di dalam B. Jika f adalah fugsi dari A ke B kita meuliska f : A

Lebih terperinci

Pengujian Hipotesis untuk selisih dua nilai tengah populasi

Pengujian Hipotesis untuk selisih dua nilai tengah populasi Pegujia Hipotei utuk eliih dua ilai tegah populai Hipotei Hipotei atu arah: H 0 : - 0 v H : - < 0 H 0 : - 0 v H : - > 0 Hipotei dua arah: H 0 : - = 0 v H : - 0 Statitik uji z h ( ( ) ) 0 Formula klik diketahui

Lebih terperinci

BAHAN AJAR RISET OPERASI

BAHAN AJAR RISET OPERASI BAHAN AJAR RISET OERASI Oleh : Miarwati, ST SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN ILMU KOMUTER EL RAHMA YOGYAKARTA 4 BAB I egatar erkembaga Riet Operai Akar dari perkembaga riet operai dapat diteluuri

Lebih terperinci

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3 BAB XII. SUKU BANYAK A = a Pegertia: f(x) = a x + a x + a x + + a x +a adalah suku bayak (poliom) dega : - a, a, a,.,a, a, a 0 adalah koefisiekoefisie suku bayak yag merupaka kostata real dega a 0 - a

Lebih terperinci

) didefinisikan sebagai persamaan yang dapat dinyatakan dalam bentuk: a x a x a x b... b adalah suatu urutan bilangan dari bilangan s1, s2,...

) didefinisikan sebagai persamaan yang dapat dinyatakan dalam bentuk: a x a x a x b... b adalah suatu urutan bilangan dari bilangan s1, s2,... SISEM PERSAMAAN LINIER DAN MARIKS. SISEM PERSAMAAN LINIER Secara umum, persamaa liier dega variabel ( x, x,..., x ) didefiisika sebagai persamaa yag dapat diyataka dalam betuk: a x a x a x b... dega a,

Lebih terperinci

SOAL PELATIHAN 1. File_Imamgun_Statistik Inferensial

SOAL PELATIHAN 1. File_Imamgun_Statistik Inferensial SOAL PELATIHAN. Jelaka pegertia hipotei?. Seorag peeliti biaaya tertarik meguji atu hipotei dari eam alteratif hipotei. Sebutka eam alteratif hipotei terebut? 3. Apa yag dimakud dega pegujia hipotei? 4.

Lebih terperinci

Watak Dinamis Sensor. Laila Katriani.

Watak Dinamis Sensor. Laila Katriani. Watak Diami Seor Laila Katriai laila_katriai@uy.ac.id Defiii Fugi Trafer uatu item liear didefiiika ebagai perbadiga traformai Laplace iyal output terhadap iyal iput dega aumi emua kodii awal ama dega

Lebih terperinci

RING MATRIKS ATAS RING KOMUTATIF. Achmad Abdurrazzaq, Ari Wardayani, Suroto Universitas Jenderal Soedirman

RING MATRIKS ATAS RING KOMUTATIF. Achmad Abdurrazzaq, Ari Wardayani, Suroto Universitas Jenderal Soedirman JMP : Volume 7 Nomor 1, Jui 2015, hal 11-18 RING MATRIKS ATAS RING KOMUTATIF Achmad Abdurrazzaq, Ari Wardayai, Suroto razzaqgaesha@gmailcom Uiversitas Jederal Soedirma ABSTRACT This paper discusses a matrices

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang Masalah

BAB I PENDAHULUAN. A. Latar Belakang Masalah BAB I PENDAHULUAN A. Latar Belakag Masalah Struktur alabar adalah suatu himpua yag di dalamya didefiisika suatu operasi bier yag memeuhi aksioma-aksioma tertetu. Gelaggag ( Rig ) merupaka suatu struktur

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 3 BAB II TINJAUAN PUSTAKA Pada bab ii aka dituliska beberapa aspek teoritis berupa defiisi, teorema da sifat-sifat yag berhubuga dega aljabar liear, struktur aljabar da teori kodig yag diguaka sebagai

Lebih terperinci

BAB III PEMBAHASAN TEOREMA DAN LEMMA YANG DIBUTUHKAN DALAM KONSTRUKSI ARITMETIK GF(5m)

BAB III PEMBAHASAN TEOREMA DAN LEMMA YANG DIBUTUHKAN DALAM KONSTRUKSI ARITMETIK GF(5m) BAB III PEMBAHASAN TEOREMA DAN LEMMA YANG DIBUTUHKAN DALAM KONSTRUKSI ARITMETIK GF5m) Teori finite field mulai diperkenalkan pada abad ke tujuh dan abad ke delapan dengan tokoh matematikanya Pierre de

Lebih terperinci

Himpunan/Selang Kekonvergenan

Himpunan/Selang Kekonvergenan oki eswa (fmipa-itb) Deret Pagkat Kita aka mempelajari beberapa tehik utuk meyajika suatu fugsi f (x) dalam betuk deret pagkat (power series), yaitu meetuka derat pagkat c (x a) sehigga f (x) = c (x a)

Lebih terperinci

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi 6. Pecacaha Lajut Relasi Rekuresi Relasi rekuresi utuk dereta {a } adalah persamaa yag meyataka a kedalam satu atau lebih suku sebelumya, yaitu a 0, a,, a -, utuk seluruh bilaga bulat, dega 0, dimaa 0

Lebih terperinci

BAB 1 PENDAHULUAN. dimana f(x) adalah fungsi tujuan dan h(x) adalah fungsi pembatas.

BAB 1 PENDAHULUAN. dimana f(x) adalah fungsi tujuan dan h(x) adalah fungsi pembatas. BAB 1 PENDAHUUAN 1.1 atar Belakag Pada dasarya masalah optimisasi adalah suatu masalah utuk membuat ilai fugsi tujua mejadi maksimum atau miimum dega memperhatika pembatas pembatas yag ada. Dalam aplikasi

Lebih terperinci

BUKTI ALTERNATIF KONVERGENSI DERET PELL DAN PELL-LUCAS (ALTERNATIVE PROOF THE CONVERGENCE OF PELL AND PELL-LUCAS SERIES)

BUKTI ALTERNATIF KONVERGENSI DERET PELL DAN PELL-LUCAS (ALTERNATIVE PROOF THE CONVERGENCE OF PELL AND PELL-LUCAS SERIES) rosidig Semirata2015 bidag MIA BKS-TN Barat Uiversitas Tajugpura otiaak BUKTI ALTERNATIF KONVERGENSI DERET ELL DAN ELL-LUCAS (ALTERNATIVE ROOF THE CONVERGENCE OF ELL AND ELL-LUCAS SERIES) Baki Swita 1

Lebih terperinci

SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS

SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS Prosidig Semiar Nasioal Peelitia, Pedidika da Peerapa MIPA, Fakultas MIPA, Uiversitas Negeri Yogyakarta, 4 Mei 0 SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS Musthofa Jurusa Pedidika Matematika FMIPA

Lebih terperinci

A.Interval Konfidensi pada Selisih Rata-rata

A.Interval Konfidensi pada Selisih Rata-rata A.Iterval Kofidei pada Seliih Rata-rata. Bila kita mempuyai da maig-maig adalah mea ample acak beba berukura da yag diambil dari populai dega ragam da diketahui, maka elag kepercayaa 00-% bagi - adalah

Lebih terperinci

SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS. Abstrak

SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS. Abstrak Prosidig Semiar Nasioal Peelitia, Pedidika da Peerapa MIPA, Fakultas MIPA, Uiversitas Negeri Yogyakarta, 4 Mei 0 SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS Musthofa Jurusa Pedidika Matematika FMIPA

Lebih terperinci

,n N. Jelas barisan ini terbatas pada dengan batas M =: 1, dan. barisan ini kovergen ke 0.

,n N. Jelas barisan ini terbatas pada dengan batas M =: 1, dan. barisan ini kovergen ke 0. PROGRAM STUDI PENDIDIKAN MATEMATIKA FKIP UNMUH PONOROGO SOAL UJIAN TENGAH SEMESTER GENAP TA 03/04 Mata Ujia : Aalisis Real Tipe Soal : REGULER Dose : Dr. Jula HERNADI Waktu : 90 meit Hari, Taggal : Selasa,

Lebih terperinci

Mariatul Kiftiah. JurusanMatematika FMIPA Universitas Tanjungpura, Pontianak Jl. A Yani Pontianak ABSTRACT

Mariatul Kiftiah. JurusanMatematika FMIPA Universitas Tanjungpura, Pontianak Jl. A Yani Pontianak ABSTRACT Prosidig Semirata2015 bidag MIPA BKS-PTN Barat Uiversitas Tajugpura Potiaak EKSISTENSI DAN KETUNGGALAN TITIK TETAP DARI PEMETAAN KANNAN DI RUANG MODULAR (THE EXISTENCE AND UNIQUENESS OF A FIXED POINT FOR

Lebih terperinci

KELUARGA EKSPONENSIAL Untuk Memenuhi Tugas Mata Kuliah Statistika Inferensial Dosen Pengampu: Nendra Mursetya Somasih Dwipa, M.Pd

KELUARGA EKSPONENSIAL Untuk Memenuhi Tugas Mata Kuliah Statistika Inferensial Dosen Pengampu: Nendra Mursetya Somasih Dwipa, M.Pd KELUARGA EKSPONENSIAL Utuk Memeuhi Tugas Mata Kuliah Statistika Iferesial Dose Pegampu: Nedra Mursetya Somasih Dwipa, M.Pd Disusu Oleh : V A4 Kelompok. Nuuk Rohaigsih (444009). Rochayati (444000) 3. Siam

Lebih terperinci

MINGGU KE-12 TEOREMA LIMIT PUSAT DAN TERAPANNYA

MINGGU KE-12 TEOREMA LIMIT PUSAT DAN TERAPANNYA MINGGU KE-12 TEOREMA LIMIT PUSAT DAN TERAPANNYA TEOREMA LIMIT PUSAT DAN TERAPANNYA Telah dikeal bahwa X 1, X 2...X sampel radom dari distribusi ormal dega mea µ da variasi σ 2, maka x µ σ/ atau xi µ σ

Lebih terperinci