(, ) 2 ESS C ESS YANG DIBANGKITKAN OLEH FUNGSI TERUKUR DAN TERBATAS ESSENSIAL. Muslim Ansori 1 dan Y.D. Sumanto 2

Ukuran: px
Mulai penontonan dengan halaman:

Download "(, ) 2 ESS C ESS YANG DIBANGKITKAN OLEH FUNGSI TERUKUR DAN TERBATAS ESSENSIAL. Muslim Ansori 1 dan Y.D. Sumanto 2"

Transkripsi

1 RUANG BANA ( L ( b L [ ] SEBAGAI RUANG OPERATOR YANG DIBANGKITKAN OLE FUNGSI TERUKUR DAN TERBATAS ENSIAL Muslm Ansor dn YD Sumnto Jurusn Mtemtk FMIPA Unversts Lmpung Jln Soemntr Brodjonegoro No Bndr Lmpung E-ml: nsomth@yhooom Jurusn Mtemtk FMIPA Unversts Dponegoro Jln Prof Soedrto S Temblng Semrng Abstrt In ths pper we onstrut new normed Bnh spe from olleton of ll rlemn opertors from lbert spe nto Lebesgue spe L ( [ b] denoted by ( L ([ b] wth respet to the norm K = esssup ( every K ([ b] k :[ b] ( x [0] k x for L generted by n essenslly bounded mesurble funton Keywords: rlemn opertors essenslly bounded mesurble funtons PENDAULUAN Opertor rlemn dkembngkn pertm kl pd L ( [ b] ytu koleks semu fungs f :[ b] R R dengn b ( f y dy < dn dlkukn oleh rlemn (93 Selnjutny untuk menghormt penemuny opertor tersebut dnmkn opertor rlemn Opertor rlemn tersebut berbentuk = b ( ( ( ( untuk setp f L ( b Kf x k x y f y dy b [ ] ( dengn k x y dy < Dlm hl n fungs k merupkn fungs terukur dn dnmkn kernel tu pembngkt opertor K Peneltn-peneltn tentng opertor rlemn selnjutny bnyk dlkukn ntr ln oleh Korotkov ( Dlm kry-kryny tersebut Korotkov bnyk menjelskn sft-sft kernel opertor rlemn pd rung lbert Peneltn-peneltn terkn berktn dengn opertor rlemn ntr ln oleh Novtsk (994 memberkn represents ntegrl dr opertor-opertor lner menggunkn kernel mulus tpe Merer Novtsk (00 memberkn represents ntegrl opertor-opertor tk terbts menggunkn kernel mulus Novtsk (003 memberkn represents ntegrl opertor-opertor tertutup menggunkn kenel mulus dn Novtsk (003 memberkn ekuvlens unter smultn terhdp opertor rlemn dengn kernel mulus sebrng Selnjutny Ansor (009 berhsl menunjukkn bhw semu opertor rlemn yng dbngktkn oleh fungs terukur terbts essensl pd [ b ] membentuk rung lner bernorm yng ternsprs oleh lporn kemjun peneltn yng dlkukn Ansor dkk (008 tentng opertor-da dengn memperumum opertor rlemn pd rung Bnh Jd tulsn n kn

2 Jurnl Mtemtk Vol No Agustus 009:-6 memberkn ksus khusus dr opertor tersebut Pd tulsn n kn dkj syrt perlu dn ukup bg kernel sutu opertor rlemn K dr rung lbert ke rung Lebesgue L ( [ b] supy K lner kontnu dn seklgus kn dbuktkn bhw rung lner bernorm ([ ] L b merupkn rung Bnh ASIL PENELITIAN DAN PEMBAASAN Bgn n dbg menjd du bgn Bgn pertm menyjkn defns dn nots yng memut pengertn-pengertn dsr dn hsl-hsl terdhulu yng menjd lndsn peneltn n Bgn kedu memut hslhsl peneltn yng berktn dengn topk yng dbrkn tentng konstruks rung Bnh ([ ] L b sebg hsl utm DEFINISI DAN NOTASI Beberp sft-sft opertor rlemn dr rung lbert ke rung L ( [ b] berkut sngtlh mendsr: Defns [0] Dberkn rung lbert Sutu K : L [ b] opertor lner ( dnmkn opertor rlemn jk d fungs terukur k :[ b] sehngg untuk setp f ( Kf ( x = f k ( x Selnjutny k dsebut pembngkt (kernel opertor rlemn K : L [ b] Opertor K yng ( dbngktkn oleh kernel k tersebut bersft tunggl sebb jk K dn K msng-msng merupkn opertor rlemn yng dbngktkn oleh sutu fungs terukur k :[ b] mk untuk setp f berlku ( K f ( x = f k ( x dn ( K f ( x = f k ( x Selnjutny berdsrkn sft lner K dn K dperoleh 0 = K f x K f x = K K f x ( ( ( ( (( ( dn f Oleh kren tu untuk setp f ( θl K K f = K f K f = K f = K f [ b] dengn θ merupkn fungs nol L [ b] sehngg K = K ontoh Dberkn fungs terukur k L [ b] [ b] Oleh kren tu ( ( = ( ([ ] k x k x L b hmpr untuk setp x [ b] Opertor lner ( ( K : L [ b] L [ b] dengn rumus untuk setp f ( ( ( ( b ( ( Kf x f k x k x y f y dy = = merupkn opertor rlemn yng dbngktkn oleh k Selnjutny nots L ([ b] ( menytkn koleks semu opertor rlemn dr ke L ( [ b] Teorem [0] K L [ b] mk K ( Jk ( tertutup ( Bukt : Kren K ([ b] L mk terdpt fungs terukur k :[ b] sehngg untuk setp f berlku ( Kf ( x = f k ( x Dmbl

3 Muslm Ansor dn YD Sumnto ( Rung Bnh ( L ( b L [ ] sebg Rung sembrng brsn { fn} yng konvergen ke sutu f dn brsn { Kf n } konvergen ke sutu g ( [ b] L * Kren k ( x = hmpr untuk setp x [ b] mk brsn { Kfn ( x } { f kn ( x } { f k ( x } { Kf ( x } = konvergen ke = hmpr untuk setp x [ b] Oleh kren tu dengn ketunggln lmt dperoleh g f k ( x hmpr untuk setp bhw K tertutup = f tu terbukt Teorem 3 [0] L [ b] merupkn ( mpunn ( rung lner Bukt : Dmbl du opertor K K L [ b] sembrng ( ( Oleh kren tu terdpt fungs terukur k :[ b] dn k :[ b] sehngg untuk setp f berlku ( K f ( x = f k ( x dn ( K f ( x f k ( x = hmpr untuk setp x [ b] Kren k :[ b] dn k :[ ] b terukur mk αk :[ b] βk :[ b] α + β k b dn terukur untuk ( :[ ] setp sklr α β Selnjutny dperoleh ( α K + βk f x = αk f x + βk f x = α k x + f βk x ( ( ( ( ( ( ( f ( ( ( = ( f αk ( x + βk ( x = ( f ( αk + βk ( x Jd α K + β K merupkn opertor rlemn yng dbngktkn oleh fungs terukur αk + βk Berkut n kn dberkn slh stu syrt bg kernel k :[ b] untuk menjd pembngkt opertor rlemn K : L [ b] sebg bgn dr ( hsl utm peneltn n Perlu dngt kembl sutu fungs k :[ b] dktkn terbts essensl pd [ b ] jk terdpt hmpunn terhtung E [ b] sehngg k :[ b] \ E terbts Dengn kt ln jk k :[ b] terbts essensl mk terdpt blngn rel postp M sehngg sup k x = esssup k x M ( ( \ E Teorem 4 [] Dberkn rung lbert Opertor K : L [ b] merupkn lner ( opertor rlemn jk dn hny jk terdpt fungs terukur k :[ b] dn k ( L ([ b] sehngg ( Kf ( x f k ( x Bukt : Kren K L ([ b] ( mk terdpt fungs terukur k :[ b] sehngg untuk setp f berlku ( Kf ( x = f k ( x Oleh kren tu ( Kf ( x = f k ( x f k ( x Dengn demkn ( ( Kf ( x dx f ( k ( x dx E E jk dn hny jk k ( ([ b] Seblkny kren < L k :[ b] fungs terukur dn k ( ([ b] ( Kf ( x f k ( x L sehngg 3

4 Jurnl Mtemtk Vol No Agustus 009:-6 untuk setp 4 f opertor lner K : ([ b] dengn ( Kf ( x f k ( x L dpt drumuskn = hmpr untuk setp x [ b] Terbukt ( ([ b] K L Slh stu yng memenuh sft d dlm teorem d ts ytu jk k :[ b] fungs terukur dn terbts essensl ( Selnjutny nots L ([ b] menytkn koleks semu opertor rlemn dr ke L ( [ b] yng dbngktkn oleh fungs terukur dn terbts essensl k :[ b] Ddefnskn fungs norm pd L [ b] dengn ( ( : ( L ([ b] R dengn rumus = esssup ( K k x Teorem 5 [] L [ b] merupkn ( mpunn ( ( esssup ( α K = esssup α k x = α k x = α K rung lner bernorm terhdp norm Teorem 6 ([ ] (( ([ ] Bukt : ( Untuk setp opertor L b L L b K ( L ([ b] dengn Bukt : Dmbl sembrng pembngkt fungs terbts essensl K ([ ] k :[ b] dperoleh L b yng dbngktkn oleh fungs terukur terbts K = esssup k ( x 0 dn essensl k :[ b] Oleh kren tu K = 0 esssup k( x terdpt sutu hmpunn terhtung x [ b] E [ b] sehngg k terbts pd K = 0 esssup k ( x = 0 k ( x = 0[ b k ] \ = E θ Dengn K = O kt ln terdpt sutu blngn rel M > 0 sehngg (O opertor nol hmpr d mn-mn esssup k pd [ b ] ( x M ( Untuk setp Akn dtunjukkn bhw K ( L ([ b] dengn fungs K ( ([ ] L b dengn pembngkt terbts essensl ( L [ b] merupkn koleks k :[ b] dn sklr α dperoleh ( Untuk setp K L L [ b] dengn ( ( fungs pembngkt terbts essensl k :[ b] dn l :[ b] dperoleh K + L = esssup k x + l x Jd ( ( ( k ( x l ( x esssup + ( esssup ( esssup k x + l x K + L K + L K + L Berdsrkn ((( dn Teorem 3 terbukt bhw ( L ([ b] merupkn rung lner bernorm RUANG BANA ( L ([ b] Berdsrkn Teorem 4 dn Teorem 5 dperoleh semu fungs lner kontnu dr ke E

5 Muslm Ansor dn YD Sumnto ( Rung Bnh ( L ( b L [ ] sebg Rung L [ b] Berdsrkn yng dkethu dperoleh { } { ( } f b k x dx Kf f k x dx L = ( ( [ ] b b ( f esssup k x b Dengn demkn K lner dn kontnu dn terbukt K ( ([ ] L b Akbt 7 ( [ ] dengn pembngkt fungs terukur dn terbts essensl k :[ b] mk Jk K L ( b ( L ( b K K b [ ] Bukt : Berdsrkn bukt d dlm Teorem 6 dperoleh K = sup Kf ( L( [ b] L ([ b] sup f f ( f esssup k x b K b Teorem 8 mpunn L ( b ( [ ] merupkn rung Bnh Bukt : Dmbl sebrng brsn uhy K L [ b] dengn ( { } ( brsn fungs pembngkt yng k k : E yng bersesun { } terukur dn terbts essensl = Oleh kren tu untuk setp blngn ε > 0 terdpt blngn bult postp n 0 sehngg untuk setp du blngn bult postp j n0 berlku esssup ( ( k x k x = K K < j j Oleh kren tu brsn vektor { k ( x } untuk setp x [ b] jug merupkn brsn uhy d dlm rung lbert Kren rung lbert lengkp mk terdpt sutu fungs terukur dn terbts essensl k : E sehngg lm k ( x = k ( x untuk setp x [ b] Dln phk berdsrkn Teorem 6 berlku ([ ] (( ([ ] L b L L b Oleh kren tu K L L [ b] jug ( { } ( merupkn brsn uhy Kren L L [ b] lengkp mk terdpt ( ( ([ b] K L L sehngg lm K = K Berdsrkn sft-sft d ts dperoleh untuk setp f ε ( = ( ( = ( ( = ( lm f k x lm K f x Kf x f k x ytu ( ([ b] K L Dengn kt ln terbukt brsn K L [ b] konvergen ( ( [ b] ( L b { } ( ke sutu K ( L tu hmpunn ( [ ] merupkn rung Bnh 3 KESIMPULAN DAN SARAN Rung lner bernorm ([ ] L b merupkn rung Bnh terhdp norm Peneltn lnjutn terhdp rung Bnh ([ ] L b ytu menyeldk kekompkn opertor tersebut dn menyeldk pkh rung n 5

6 Jurnl Mtemtk Vol No Agustus 009:-6 merupkn ljbr bnh d dlm rung ( [ ] L b DAFTAR PUSTAKA [] Ansor M (009 Rung Lner L [ b] ( Bernorm ( Prosdng Semnr Nsonl Mtemtk dn Penddkn Mtemtk dlm rngk Pekn Ilmh Penddkn Mtemtk PIPM 009 Jurusn Mtemtk FMIPA UNY Yogykrt 3-36 [] Ansor M Drmwjy S Supm (008 DA-Opertors on Bnh Spes V Kernel Interntonl onferene on Mthemts nd Nturl Senes ITB Bndung [3] Korotkov VB (970 hrterst Propertes of Integrl Opertors wth Kernels of rlemn Type Sbern Mth Journl ( : [4] Korotkov VB (97 rlemn Opertors n Spes of Abstr Funtons I Sbern Mth Journl (4 : 56-5 [5] Korotkov VB (97 rlemn Opertors n Spes of Abstr Funtons II Sbern Mth Journl (4 : [6] Novtsk IM (994 Integrl Representton of Lner Opertors by Smooth rlemn Kernels of Merer Type Pro London Mth So 3 : 6-77 [7] Novtsk IM (00 Integrl Representton of Unbounded Opertors by Smooth rlemn Kernels Preprnt [8] Novtsk IM (003 Integrl Representton of losed Opertors s B-rlemn Opertors wth Arbtrrly Smooth Kernels Reserh Report Fr Estern Brnh of The Russn Ademy of Sene [9] Novtsk IM (003 Smultneous Untry equvlene to rlemn Opertors wth Arbtrrly Smooth Kernels Reserh Report Fr Estern Brnh of The Russn Ademy of Sene [0] Wedmnn J (980 Lner Opertors n lbert Spes Sprnger Verlg New York 6

PROSIDING ISBN : RUANG LINEAR BERNORMA CESS. Muslim Ansori

PROSIDING ISBN : RUANG LINEAR BERNORMA CESS. Muslim Ansori PROSIDING ISBN : 978 979 16353 3 RUANG LINEAR BERNORMA C (, L ([, b ] An-1 Muslim Ansori Jurusn Mtemtik FMIPA Universits Lmpung Almt : Jln. Soemtri Brodjonegoro No.1 Bndr Lmpung E-mil: nsomth@yhoo.com

Lebih terperinci

MATEMATIKA TEKNIK 2 3 SKS TEKNIK ELEKTRO UDINUS

MATEMATIKA TEKNIK 2 3 SKS TEKNIK ELEKTRO UDINUS MATEMATIKA TEKNIK SKS TEKNIK ELEKTRO UDINUS Integrl Fungs Kompleks 4 INTEGRAL FUNGSI KOMPLEKS Sepert hlny dlm fungs rl, dlm fungs kompleks jug dkenl stlh ntegrl fungs kompleks sert sft-sftny Sft kenltkn

Lebih terperinci

Pemain P 1. Teorema 4.1 (Teorema minimax). Untuk setiap matriks pembayaran (pay off matrix), terdapat strategi optimal x* dan y* sedemikian sehingga

Pemain P 1. Teorema 4.1 (Teorema minimax). Untuk setiap matriks pembayaran (pay off matrix), terdapat strategi optimal x* dan y* sedemikian sehingga Rset Opers Probblstk Teor Permnn (Gme Theor) Deprtement of Mthemtcs FMIPA UNS Lecture 4: Med Strteg A. Metode Cmpurn (Med Strteg) D dlm permnn d mn permnn tersebut tdk mempun ttk peln, mk pr pemn kn bersndr

Lebih terperinci

Skew- Semifield dan Beberapa Sifatnya 1

Skew- Semifield dan Beberapa Sifatnya 1 Skew- Semifield dn Beberp Siftny K r y t i Jurusn Pendidikn Mtemtik Fkults Mtemtik dn Ilmu Pengethun Alm Universits Negeri Yogykrt E-mil: ytiuny@yhoo.com Abstrk Sutu field ( lpngn ) F dlh struktur ljbr

Lebih terperinci

SISTEM BILANGAN REAL. 1. Sifat Aljabar Bilangan Real

SISTEM BILANGAN REAL. 1. Sifat Aljabar Bilangan Real SISTEM BILANGAN REAL Dlm terminologi Aljbr Abstrk, sistem bilngn rel disebut dengn field (lpngn) pd opersi penjumlhn dn perklin. Sutu opersi biner bis ditulis dengn sutu psngn terurut (, b) yng unik dri

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Anlisis Rel Hendr Gunwn* *http://hgunwn82.wordpress.com Anlysis nd Geometry Group Bndung Institute of Technology Bndung, INDONESIA Progrm Studi S1 Mtemtik ITB, Semester II 2016/2017 HG* (*ITB Bndung)

Lebih terperinci

7. Ruang L 2 (a, b) f(x) 2 dx < }.

7. Ruang L 2 (a, b) f(x) 2 dx < }. 7. Rung L (, b) Rung L (, b) didefinisikn sebgi rung semu fungsi f yng kudrtny terintegrlkn pd [, b], ykni L (, b) := {f : b f(x) dx < }. Rung ini menckup fungsi-fungsi f yng tk terbts pd [, b] tetpi f

Lebih terperinci

BAB IV METODA ANALISIS RANGKAIAN

BAB IV METODA ANALISIS RANGKAIAN 6 BAB METODA ANALSS RANGKAAN Metod nlss rngkn sebenrny merupkn slh stu lt bntu untuk menyeleskn sutu permslhn yng muncul dlm mengnlss sutu rngkn, blmn konsep dsr tu hukum-hukum dsr sepert Hukum Ohm dn

Lebih terperinci

Teorema Dasar Integral Garis

Teorema Dasar Integral Garis ISBN: 978-979-79-55-9 Teorem Dsr Integrl Gris Erdwti Nurdin Progrm Studi Pendidikn Mtemtik FKIP UIR d_1910@yhoo.com Abstrk Slh stu generlissi integrl tentu (definite integrl) f x dx diperoleh dengn menggnti

Lebih terperinci

6. Himpunan Fungsi Ortogonal

6. Himpunan Fungsi Ortogonal 6. Himpunn Fungsi Ortogonl Mislkn f periodik dengn periode, dn mulus bgin demi bgin pd [ π, π]. Jik S f N (θ) = N n= N c ne inθ, n =,, 2,..., dlh jumlh prsil dri deret Fourier f, mk kit telh menunjukkn

Lebih terperinci

Integral Tak Wajar. Ayundyah Kesumawati. March 25, Prodi Statistika FMIPA-UII

Integral Tak Wajar. Ayundyah Kesumawati. March 25, Prodi Statistika FMIPA-UII Kesumwti Prodi Sttistik FMIPA-UII Mrch 25, 205 Sutu integrl tertentu b f (x)dx () diktkn wjr jik i memenuhi du syrt berikut: i. Bts integrsi dn b merupkn bilngn berhingg ii. fungsi f (x) terbts pd intervl

Lebih terperinci

ξ. Elemen elemen dari ruang vektor

ξ. Elemen elemen dari ruang vektor KEGITN BELJR REPRESENTSI MTRIKS Rung Hlbert "ξ" Menurut nots drc Vektor Ket dn Vektor Br Setp elemen tu vektor ddlm rung hlbert dsebut vektor ket tu ket Ket menurut nots drc dnytkn dengn smbol " " Supy

Lebih terperinci

DETERMINAN. Misalkan A adalah suatu matriks persegi. a) Jika A memiliki satu baris atau satu kolom bilangan nol, maka det(a) = 0.

DETERMINAN. Misalkan A adalah suatu matriks persegi. a) Jika A memiliki satu baris atau satu kolom bilangan nol, maka det(a) = 0. DETERMINAN Fungsi determinn dri sutu mtriks persegi A (dinotsikn dengn det(a) tu A ) didefinisikn sebgi jumlh dri semu hsil kli elementer bertnd dri A. Sementr, ngk tu bilngn dri det(a) disebut determinn

Lebih terperinci

15. INTEGRAL SEBAGAI LIMIT

15. INTEGRAL SEBAGAI LIMIT 15. INTEGRAL SEBAGAI LIMIT 15.1 Jumlh Riemnn Dlm kulih Klkulus pd thun pertm, integrl Riemnn bisny diperkenlkn sebgi limit dri jumlh Riemnn, tidk mellui integrl Riemnn ts dn integrl Riemnn bwh. Hl ini

Lebih terperinci

Integral Kompleks (Bagian Kesatu)

Integral Kompleks (Bagian Kesatu) Integrl Kompleks (Bgin Kestu) Supm Jurusn Mtemtik, FMIPA UGM Yogykrt 55281, INDONESIA Emil:mspomo@yhoo.com, supm@ugm.c.id (Pertemun Minggu XI) Outline 1 Fungsi Bernili Kompleks 2 Lintsn tu Kontur 3 Integrl

Lebih terperinci

INTEGRAL FOURIER KED. Diasumsikan syarat-syarat berikut pada f(x): 1. f x memenuhi syarat Dirichlet pada setiap interval terhingga L, L.

INTEGRAL FOURIER KED. Diasumsikan syarat-syarat berikut pada f(x): 1. f x memenuhi syarat Dirichlet pada setiap interval terhingga L, L. INTEGRAL FOURIER Disumsikn syrt-syrt berikut pd f(x):. f x memenuhi syrt Dirichlet pd setip intervl terhingg L, L.. f x dx konvergen, yitu f(x) dpt diintegrsikn secr mutlk dlm (, ). Selnjutny, Teorem integrl

Lebih terperinci

SOAL UN MATEMATIKA IPA 2014

SOAL UN MATEMATIKA IPA 2014 SOAL UN MATEMATIKA IPA 2014 1. Dkethu prems-prems berkut : Prems 1 : Jk hr hujn, mk tnmn pd subur. Prems 2 : Jk pnen tdk melmph, mk tnmn pd tdk subur. Prems 3 : Pnen tdk melmph Kesmpuln yng sh dr prems-prems

Lebih terperinci

RUANG VEKTOR (lanjut..)

RUANG VEKTOR (lanjut..) RUANG VEKTOR (Vector Spce) dn Rung Bgin (Subspce) 8/0/009 budi murtiys ums surkrt RUANG VEKTOR (VECTOR SPACE) Dikethui himpunn V dengn u, v, w V dn opersi i(+)b berlku dintr nggot-nggot t V. Dikethui Field

Lebih terperinci

LUAS DENGAN PARTISI SEGITIGA UNTUK FUNGSI CEKUNG

LUAS DENGAN PARTISI SEGITIGA UNTUK FUNGSI CEKUNG Posdng Semt05 dng MIPA BKS-PTN Bt Unvests Tnjungpu Pontnk Hl 7 - LUAS DENGAN PARTISI SEGITIGA UNTUK FUNGSI CEKUNG Jun Lest Nengsh *, Symsudhuh, Lel Deswt Juusn Mtemtk Unvests Ru, Ru jun.lest@gml.om, Kmpus

Lebih terperinci

BAB I PENDAHULUAN. Universitas Sumatera Utara

BAB I PENDAHULUAN. Universitas Sumatera Utara BAB I PENDAHULUAN 1.1 Ltr Belkng Dlm teor permnn dkenl orng kembl setelh munculny kry bersm yng gemlng dr John Von Neumn dn V Mergenstern pd thun 1944 dengn judul Theory of Gmes nd economc behvor. Teor

Lebih terperinci

LIMIT FUNGSI DAN KEKONTINUAN

LIMIT FUNGSI DAN KEKONTINUAN LIMIT FUNGSI DAN KEKONTINUAN RANGKUMAN MATERI Sebelum memsuki mteri, perhtikn himpunn-himpunn berikut: ) Himpunn bilngn sli:,,,4,5,.... b) Himpunn bilngn bult:...,,,0,,,.... p c) Himpunn bilngn rsionl:

Lebih terperinci

BAB 6 FITTING DATA ˆ (6.1) (6.2) (6.3) =. Nilai akan. akan minimum jika. minimum. Misal. 0. Jika ini dikerjakan maka akan diperoleh nilai

BAB 6 FITTING DATA ˆ (6.1) (6.2) (6.3) =. Nilai akan. akan minimum jika. minimum. Misal. 0. Jika ini dikerjakan maka akan diperoleh nilai BAB 6 FITTIG DATA Atu dseut dengn penookn dt tu menentukn kurv terk ng mellu set dt (sekumpuln dt) dengn keslhn mnmum. Ukurn keslhn dlh E (root men squre, kr kudrt rt-rt). Ad eerp mm pol fttng dt: menurut

Lebih terperinci

KALKULUS BUKAN SEKEDAR KALKULASI. Hendra Gunawan Kampus UNJ, 21 November 2015

KALKULUS BUKAN SEKEDAR KALKULASI. Hendra Gunawan Kampus UNJ, 21 November 2015 KALKULUS BUKAN SEKEDAR KALKULASI Hendr Gunwn Kmpus UNJ, 21 Novemer 2015 MENGAPA KALKULUS? APA YANG DIGARAP? c) Hendr Gunwn 2015) 2 Isc Newton 1643 1727) & Keceptn Sest Mslkn seuh prtkel ergerk sepnjng

Lebih terperinci

VEKTOR. 1. Pengertian Vektor adalah besaran yang memiliki besar (nilai) dan arah. Vektor merupakan sebuah ruas garis yang

VEKTOR. 1. Pengertian Vektor adalah besaran yang memiliki besar (nilai) dan arah. Vektor merupakan sebuah ruas garis yang VEKTOR 1. Pengertin Vektor dlh besrn yng memiliki besr (nili dn rh. Vektor merupkn sebuh rus gris yng P berrh dn memiliki pnjng. Pnjng rus gris tersebut dlh pnjng vektor. Rus gris dri titik P dn berujung

Lebih terperinci

BAB 5 PERSAMAAN DIFERENSIAL HOMOGEN ORDE TINGGI

BAB 5 PERSAMAAN DIFERENSIAL HOMOGEN ORDE TINGGI BAB 5 PESAMAAN DIFEENSIA HOMOGEN ODE TINGGI 5. Pendhulun Metode penyelesn persmn dferensl orde stu dn du yng telh dbhs dpt dpergunkn untuk persmn dferensl homogen untuk orde n dengn persmn krkterstk sepert

Lebih terperinci

12. LUAS DAERAH DAN INTEGRAL

12. LUAS DAERAH DAN INTEGRAL 12. LUAS DAERAH DAN INTEGRAL 12.1 Lus Derh di Bwh Kurv Mslh menentukn lus derh (dn volume rung) telh dipeljri sejk er Pythgors dn Zeno, pd thun 500-n SM. Konsep integrl (yng terkit ert dengn lus derh)

Lebih terperinci

CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. 3. Untuk k 2 didefinisikan bahwa a

CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. 3. Untuk k 2 didefinisikan bahwa a CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. Dikethui bhw,. Untuk k didefinisikn bhw k k k. Tentukn jumlh tk hingg dri. Kit mislkn S S. Dengn demikin kit dpt menuliskn Kedu

Lebih terperinci

Metode Numerik. Regresi. Umi Sa adah Politeknik Elektronika Negeri Surabaya 2008 PENS-ITS

Metode Numerik. Regresi. Umi Sa adah Politeknik Elektronika Negeri Surabaya 2008 PENS-ITS Metode Numerk Regres Um S dh Polteknk Elektronk Neger Surb 008 PENS-ITS 1 Metode Numerk Topk Regres Lner Regres Non Lner PENS-ITS Metode Numerk Metode Numerk Regres vs Interpols REGRESI KUADRAT TERKECIL

Lebih terperinci

Hendra Gunawan. 30 Oktober 2013

Hendra Gunawan. 30 Oktober 2013 MA MATEMATIKA A Hendr Gunwn Semester I, 2/24 Oktoer 2 Ltihn. Fungsi g =,, terintegrlkn pd [, ]. Nytkn integrl tentu g pd [, ] segi limit jumlh Riemnn dengn prtisi reguler, dn hitunglh niliny. //2 c Hendr

Lebih terperinci

Aljabar Linear dan Matriks (Transformasi Linier dan Matriks) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.

Aljabar Linear dan Matriks (Transformasi Linier dan Matriks) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. ljr Lner dn Mtrks (Trnsforms Lner dn Mtrks) Instruktur : Ferry Whyu Wowo SS MCs Penjumlhn Perkln Sklr dn Perkln Mtrks j : unsur dr mtrks d rs dn kolom j Defns Du mtrks dlh sm jk keduny mempuny ukurn yng

Lebih terperinci

DETERMINAN DAN INVERS MATRIKS BLOK 2 2

DETERMINAN DAN INVERS MATRIKS BLOK 2 2 Buletin Ilmih Mth. Stt. dn Terpnny (Bimster) Volume 06, No. 3(2017), hl 193 202. DETERMINAN DAN INVERS MATRIKS BLOK 2 2 Ilhmsyh, Helmi, Frnsiskus Frn INTISARI Mtriks blok merupkn mtriks persegi yng diblok

Lebih terperinci

Menentukan Statistik Pengujian Untuk Eksperimen Faktorial dengan Dua Kali Pembatasan Pengacakan. Oleh : Enny Supartini

Menentukan Statistik Pengujian Untuk Eksperimen Faktorial dengan Dua Kali Pembatasan Pengacakan. Oleh : Enny Supartini Menentukn Sttstk Pengujn Untuk Ekspermen Fktorl dengn Du Kl Pembtsn Pengckn Oleh : Enny Suprtn Jurusn Sttstk FMIPA Unversts Pdjdjrn Bndung e-ml : rthn@yhoo.com Abstrk Dlm ekspermen fktorl pbl pengckn tdk

Lebih terperinci

Aljabar Linear. Pertemuan 12_14 Aljabar Vektor (Perkalian vektor)

Aljabar Linear. Pertemuan 12_14 Aljabar Vektor (Perkalian vektor) Aljbr Liner Pertemun 12_14 Aljbr Vektor (Perklin vektor) Pembhsn Perklin vektor dengn sklr Rung vektor Perklin Vektor dengn Vektor: Dot Product - Model dot product - Sift dot product Pendhulun Penmbhn

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Anlisis Rel Hendr Gunwn* *http://hgunwn82.wordpress.com Anlysis nd Geometry Group Bndung Institute of Technology Bndung, INDONESIA Progrm Studi S1 Mtemtik ITB, Semester II 2016/2017 HG* (*ITB Bndung)

Lebih terperinci

TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL RIEMANN

TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL RIEMANN Teorem Kekonvergenn Fungsi Terintegrl Riemnn ( Frikhin ) TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL RIEMANN Frikhin Jurusn Mtemtik FMIPA Undip Astrk Teorem kekonvergenn merupkn gin yng penting dlm mempeljri

Lebih terperinci

14. SIFAT-SIFAT INTEGRAL RIEMANN

14. SIFAT-SIFAT INTEGRAL RIEMANN 4. SIFAT-SIFAT INTEGRAL RIEMANN 4. Sift-sift Dsr Integrl Riemnn Pd bb ini kit kn mempeljri sift-sift dsr integrl Riemnn. Sift pertm dlh sift kelinern, yng dinytkn dlm Proposisi. Sepnjng bb ini, I menytkn

Lebih terperinci

MODUL 6. Materi Kuliah New_S1

MODUL 6. Materi Kuliah New_S1 MODUL 6 Mteri Kulih New_S1 KULIAH 10 Spnning tree dn minimum spnning tree - Definisi spnning tree T diktkn spnning tree dri grph terhubung G bil T dlh sutu tree yng vertexvertexny sm dengn vertexny G dn

Lebih terperinci

Koefisien Regresi / persamaan regresi linier digunakan untuk meramalkan / mengetahui besarnya pengaruh variabel X terhadap variabel Y

Koefisien Regresi / persamaan regresi linier digunakan untuk meramalkan / mengetahui besarnya pengaruh variabel X terhadap variabel Y REGRESI Koefsen Regres / persmn regres lner dgunkn untuk mermlkn / mengethu esrny pengruh vrel terhdp vrel Vrel yng mempengruh ddlm nlss regres dseut vrel predktor ( ) Vrel yng dpengruh dseut vrel krterum

Lebih terperinci

3.1 Permutasi. Secara umum, bilangan-bilangan pada {1, 2,, n} akan mempunyai n! permutasi

3.1 Permutasi. Secara umum, bilangan-bilangan pada {1, 2,, n} akan mempunyai n! permutasi BB Determinn . Permutsi Definisi Permutsi: (i) Sutu permutsi dri bilngn-bilngn bult {,,,, n} dlh penyusunn bilngn-bilngn tersebut dengn urutn tnp pengulngn. (ii) Brisn bilngn ( j, j,.., j n ) dimn j i

Lebih terperinci

matematika K-13 TEOREMA FAKTOR DAN OPERASI AKAR K e l a s

matematika K-13 TEOREMA FAKTOR DAN OPERASI AKAR K e l a s K-3 mtemtik K e l s XI TEOREMA FAKTOR DAN OPERASI AKAR Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Memhmi teorem fktor.. Menentukn kr dn fktor liner suku nyk dengn

Lebih terperinci

PROBLEM SOLVING TERKAIT DENGAN KELAS X SEMESTER 1 PADA STANDAR KOMPETENSI (SK) 1.

PROBLEM SOLVING TERKAIT DENGAN KELAS X SEMESTER 1 PADA STANDAR KOMPETENSI (SK) 1. PROLEM SOLVING TERKIT DENGN KELS X SEMESTER PD STNDR KOMPETENSI (SK). LJR Memechkn mslh yng berkitn dengn bentuk pngkt, kr, dn logritm Oleh: Sigit Tri Guntoro. Du orng berselisih mengeni bnykny psngn bilngn

Lebih terperinci

Pengenalan Pola/ Pattern Recognition

Pengenalan Pola/ Pattern Recognition Pengenln Pol/ Pttern Recognton Byesn Decson Theory Imm Cholssodn S.S., M.Kom. Klsfks 1 1. Teor Keputusn Byes Keputusn ddukung probblts posteror Keputusn mempertmbngkn Rsk/Cost 2. Fse Trnng & Testng Dt

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Bb berikut ini kn disjikn mteri pendukung yng dpt membntu penulis untuk menyelesikn permslhn yng kn dibhs pd bb selnjutny. Adpun mteri pendukungny dlh pengertin mtriks, jenis-jenis

Lebih terperinci

BEBERAPA SIFAT QUASI-IDEAL MINIMAL PADA RING TRANSFORMASI LINEAR V, W,

BEBERAPA SIFAT QUASI-IDEAL MINIMAL PADA RING TRANSFORMASI LINEAR V, W, BEBERAPA SIFAT QUASI-IDEAL MINIMAL PADA RING TRANSFORMASI LINEAR V,,, K r y t i Jurusn Pendidin Mtemti Fults Mtemti dn Ilmu Pengethun Alm Uniersits Negeri Yogyrt e-mil : ytiuny@yhoo.com Abstr Misln R dlh

Lebih terperinci

NFA. Teori Bahasa dan Automata. Viska Mutiawani - Informatika FMIPA Unsyiah

NFA. Teori Bahasa dan Automata. Viska Mutiawani - Informatika FMIPA Unsyiah NFA Teori Bhs dn Automt Visk Mutiwni - Informtik FMIPA Unsyih 1 NFA NFA: Nondeterministic Finite Automt Atu Automt Hingg NonDeterministik (AHND) Slh stu bentuk dri Finite Automt NFA memiliki kemmpun untuk

Lebih terperinci

FUNGSI TRANSENDEN. Definisi 1 Fungsi logaritma natural, ditulis sebagai ln, didefenisikan dengan

FUNGSI TRANSENDEN. Definisi 1 Fungsi logaritma natural, ditulis sebagai ln, didefenisikan dengan 2 FUNGSI TRANSENDEN Fungsi trnsenen tu fungsi non-ljbr lh fungsi yng tik pt inytkn lm sejumlh berhingg opersi ljbr. Fungsi trnsenen yng bis ijumpi lm hl ini teriri ri fungsi eksponensil, fungsi logritmik,

Lebih terperinci

Integral Tak Tentu dan Integral Tertentu

Integral Tak Tentu dan Integral Tertentu Integrl Tk Tentu dn Integrl Tertentu Pengertin Integrl Jik F dlh fungsi umum yng ersift F = f, mk F merupkn ntiturunn tu integrl dri f. Pengintegrln fungsi f terhdp dinotsikn segi erikut : f d F c notsi

Lebih terperinci

RUMUS HERON DAN RUMUS BRAHMAGUPTA

RUMUS HERON DAN RUMUS BRAHMAGUPTA RUMUS HERON DAN RUMUS BRAHMAGUPTA Sumrdyono, M.Pd. Topik lus bngun dtr telh dipeljri sejk di Sekolh Dsr hingg SMA. Bil di SD, dipeljri lus segitig dn beberp bngun segiempt mk di SMP dipeljri lebih lnjut

Lebih terperinci

didefinisikan sebagai bilangan yang dapat ditulis dengan b

didefinisikan sebagai bilangan yang dapat ditulis dengan b 1 PENDAHULUAN 1.1 Sistem Bilngn Rel Untuk mempeljri klkulus perlu memhmi hsn tentng system ilngn rel, kren klkulus didsrkn pd system ilngn rel dn siftsiftny. Sistem ilngn yng pling sederhn dlh ilngn sli,

Lebih terperinci

BAB III VEKTOR DALAM R 2 DAN R 3. Bab III Vektor dalam R 2 dan R 3

BAB III VEKTOR DALAM R 2 DAN R 3. Bab III Vektor dalam R 2 dan R 3 Bb III Vetor dlm R dn R BAB III VEKTOR DALAM R DAN R Dlm bgn n n dbhs mslh eto-etor dlm rng berdmens dn berdmens, opers-opers rtmet pd etor g n ddefnsn dn beberp sft-sft dsr opers-opers tersebt... VEKTOR

Lebih terperinci

Kerjakan di buku tugas. Tentukan hasil operasi berikut. a. A 2 d. (A B) (A + B) b. B 2 e. A (B + B t ) c. A B f. A t (A t + B t ) Tes Mandiri

Kerjakan di buku tugas. Tentukan hasil operasi berikut. a. A 2 d. (A B) (A + B) b. B 2 e. A (B + B t ) c. A B f. A t (A t + B t ) Tes Mandiri Mmt Apliksi SMA Bhs Dikethui A = Tentukn hsil opersi berikut A c A A b A A d A Dikethui A = Tentukn hsil opersi berikut (A + B) c (B A) b A + AB + B d B BA + A Sol Terbuk Kerjkn di buku tugs Jik X = dn

Lebih terperinci

VEKTOR. Adri Priadana. ilkomadri.com

VEKTOR. Adri Priadana. ilkomadri.com VEKTOR Adri Pridn ilkomdri.com Pengertin Dlm Fisik dikenl du buh besrn, yitu 1. Besrn Sklr. Besrn Vektor Pengertin Besrn Sklr dlh sutu besrn yng hny mempunyi nili dn dinytkn dengn sutu bilngn tunggl diserti

Lebih terperinci

PERTEMUAN - 1 JENIS DAN OPERASI MATRIKS

PERTEMUAN - 1 JENIS DAN OPERASI MATRIKS PERTEMUN - JENIS DN OPERSI MTRIKS Pengertin Mtriks : merupkn sutu lt tu srn yng sngt mpuh untuk menyelesikn model-model liner. Definisi : Mtriks dlh susunn empt persegi pnjng tu bujur sngkr dri bilngn-bilngn

Lebih terperinci

INTEGRAL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 45

INTEGRAL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 45 INTEGRAL Deprtemen Mtemtik FMIPA IPB Bogor, 2012 (Deprtemen Mtemtik FMIPA IPB) Klkulus I Bogor, 2012 1 / 45 Topik Bhsn 1 Pendhulun 2 Anti-turunn 3 Lus di Bwh Kurv 4 Integrl Tentu 5 Teorem Dsr Klkulus 6

Lebih terperinci

Luas Dengan Partisi Segitiga Untuk Fungsi Cekung

Luas Dengan Partisi Segitiga Untuk Fungsi Cekung Jurnl Sns Mtemtk dn Sttstk, Vol1, No1, Jnur 015 ISSN 40-454 Lus Dengn Prts Segtg Untuk Fungs Cekung Jun Lest Nengsh 1, Symsudhuh, Lel Deswt 3 Jurusn Mtemtk, Fkults MIPA, Unversts Ru Jl HR Soebrnts No 155

Lebih terperinci

FISIKA. Sesi INDUKSI MAGNETIK A. KAWAT LURUS BERARUS

FISIKA. Sesi INDUKSI MAGNETIK A. KAWAT LURUS BERARUS FISIKA KELAS XII IPA - KURIKULUM GABUNGAN 07 Ses NGAN INDUKSI MAGNETIK Pd bd kesembln bels, Hns Chrstn Oersted (777-85) membuktkn keterktn ntr gejl lstrk dn gejl kemgnetn. Oersted mengmt st jrum kmps dtempelkn

Lebih terperinci

MODEL POTENSIAL 1 DIMENSI

MODEL POTENSIAL 1 DIMENSI MODEL POTENSIAL 1 DIMENSI 1. Sumur Potensil Tk Berhingg Kit tinju prtikel bermss m dengn energi positif, berd dlm sumur potensil stu dimensi dengn dinding potensil tk berhingg dn potensil didlmny nol,

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA MATEMATIKA A Hendr Gunwn Semester II, 6/7 Februri 7 Kulih yng Llu 8. Bentuk Tk Tentu Tipe / Menghitung limit bentuk tk tentu / dengn menggunkn Aturn l Hopitl 8. Bentuk Tk Tentu Linny Menghitung bentuk

Lebih terperinci

5. INDUKSI MAGNETIK. A. Medan Magnetik

5. INDUKSI MAGNETIK. A. Medan Magnetik 5. INDUKSI MAGNETIK Setelh mempeljr modul n, dhrpkn And dpt memhm konsep nduks mgnetk secr umum. Secr lebh khusus, And dhrpkn dpt : Mendeskrpskn hsl percobn Hns Chrstn Oersted tentng pengertn nduks mgnetk.

Lebih terperinci

MODEL PENJADWALAN BATCH PADA FLOWSHOP DUA TAHAP DENGAN VARIASI JUMLAH PART UNTUK MEMINIMASI TOTAL ACTUAL FLOW TIME

MODEL PENJADWALAN BATCH PADA FLOWSHOP DUA TAHAP DENGAN VARIASI JUMLAH PART UNTUK MEMINIMASI TOTAL ACTUAL FLOW TIME MODEL PEJADWALA BATCH PADA LOWSHOP DUA TAHAP DEGA VARIASI JUMLAH PART UTUK MEMIIMASI TOTAL ACTUAL LOW TIME Prty Poer Surydhn Industrl Engneerng Study Progrm, Industrl Engneerng culty, Telkom Unversty prty@telkomunversty.c.d

Lebih terperinci

r x = 0. Koefisien-koefisien persamaan yang dihasilkan adalah analitik pada x = 0. Jadi dapat kita gunakan metode deret pangkat.

r x = 0. Koefisien-koefisien persamaan yang dihasilkan adalah analitik pada x = 0. Jadi dapat kita gunakan metode deret pangkat. Husn Arifh,M.Sc : Persmn Legendre Emil : husnrifh@uny.c.id Persmn diferensil Legendre (1) 1 x 2 y 2xy + n n + 1 y = 0 Prmeter n pd (1) dlh bilngn rill yng diberikn. Setip penyelesin dri (1) dinmkn fungsi

Lebih terperinci

TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL RIEMANN

TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL RIEMANN Teorem Kekonvergenn Fungsi Terintegrl Riemnn ( Frikhin ) TEOREMA KEKONVERGENAN FUNGI TERINTEGRAL RIEMANN Frikhin Jurusn Mtemtik FMIPA Undip Astrk Teorem kekonvergenn merupkn gin yng penting dlm mempeljri

Lebih terperinci

Bab a. maka notasi determinan dari matriks A ditulis : det (A) atau. atau A.

Bab a. maka notasi determinan dari matriks A ditulis : det (A) atau. atau A. Bb DETERMINAN MATRIKS Determinn sutu mtriks dlh sutu fungsi sklr dengn domin mtriks bujur sngkr. Dengn kt lin, determinn merupkn pemetn dengn domin berup mtriks bujur sngkr, sementr kodomin berup sutu

Lebih terperinci

Matriks. Pengertian. Lambang Matrik

Matriks. Pengertian. Lambang Matrik triks Pengertin Definisi: trik dlh susunn bilngn tu fungsi yng diletkkn ts bris dn kolom sert dipit oleh du kurung siku. Bilngn tu fungsi tersebut disebut entri tu elemen mtrik. mbng mtrik dilmbngkn dengn

Lebih terperinci

(c) lim. (d) lim. (f) lim

(c) lim. (d) lim. (f) lim FMIPA - ITB. MA Mtemtik A Semester, 6-7. Pernytn enr dn slh. () ()! e Solusi. Benr. Fungsi eksonensil (enyeut) memesr leih cet drid fungsi olinom (emilng) sehingg emginny menghsilkn nili Dengn Hoitl s

Lebih terperinci

PRAKTIKUM 6 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss Jordan

PRAKTIKUM 6 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss Jordan Prtum 6 Penyelesn Persmn Lner Smultn - Metode Elmns Guss Jordn PRAKTIKUM 6 Penyelesn Persmn Lner Smultn Metode Elmns Guss Jordn. Tujun : Mempeljr metode Elmns Guss Jordn untu penyelesn persmn lner smultn.

Lebih terperinci

Universitas Esa Unggul

Universitas Esa Unggul ALJABAR LINIER DAN MATRIKS BHAN KULIAH DRA SURYARI PURNAMA, MM Universits Es Unggul Minggu I Mtriks Pokok Bhsn Sub Pokok Bhsn Tujun Instruksionl Umum Tujun Instruksionl Khusus : Pendhulun Mtriks : A. Pengertin

Lebih terperinci

Jarak Titik, Garis dan Bidang dalam Ruang

Jarak Titik, Garis dan Bidang dalam Ruang Pge of Kegitn eljr. Tujun Pembeljrn Setelh mempeljri kegitn beljr, dihrpkn sisw dpt :. Menentukn jrk titik dn gris dlm rung b. Menentukn jrk titik dn bidng dlm rung c. Menentukn jrk ntr du gris dlm rung.

Lebih terperinci

LUAS DAERAH APLIKASI INTEGRAL TENTU. Indikator Pencapaian Hasil Belajar. Ringkasan Materi Perkuliahan

LUAS DAERAH APLIKASI INTEGRAL TENTU. Indikator Pencapaian Hasil Belajar. Ringkasan Materi Perkuliahan LUAS DAERAH APLIKASI INTEGRAL TENTU Indiktor Pencpin Hsil Beljr Mhsisw menunjukkn kemmpun dlm :. Menghitung lus pd idng dtr Ringksn Mteri Perkulihn Jik sutu derh ditsi oleh kurv f(), g(), gris dn dengn

Lebih terperinci

1. HUKUM SAMBUNGAN KIRCHOFF (HUKUM KIRCHOFF I) 2. HUKUM CABANG KIRCHOFF (HUKUM KIRCHOFF II)

1. HUKUM SAMBUNGAN KIRCHOFF (HUKUM KIRCHOFF I) 2. HUKUM CABANG KIRCHOFF (HUKUM KIRCHOFF II) MATA KULIAH KODE MK Dosen : FISIKA DASAR II : EL-22 : Dr. Budi Mulynti, MSi Pertemun ke-6 CAKUPAN MATERI. HUKUM SAMBUNGAN KIRCHOFF (HUKUM KIRCHOFF I) 2. HUKUM CABANG KIRCHOFF (HUKUM KIRCHOFF II) SUMBER-SUMBER:.

Lebih terperinci

FORMULASI DAN ALGORITMA PENYELESAIAN MODEL BATCHING DAN SEQUENCING DENGAN KRITERIA MINIMASI WAKTU TINGGAL AKTUAL TOTAL

FORMULASI DAN ALGORITMA PENYELESAIAN MODEL BATCHING DAN SEQUENCING DENGAN KRITERIA MINIMASI WAKTU TINGGAL AKTUAL TOTAL FORMULASI DAN ALGORITMA PENYELESAIAN MODEL BATCHING DAN SEQUENCING DENGAN KRITERIA MINIMASI WAKTU TINGGAL AKTUAL TOTAL Zhed ABSTRACT Ths pper exmnes btch schedulng problem tht hve btchng nd sequencng n

Lebih terperinci

FISIKA BESARAN VEKTOR

FISIKA BESARAN VEKTOR K-3 Kels X FISIKA BESARAN VEKTOR TUJUAN PEMBELAJARAN Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi pengertin besrn vektor.. Mengusi konsep penjumlhn vektor dengn berbgi metode.

Lebih terperinci

matematika WAJIB Kelas X RASIO TRIGONOMETRI Kurikulum 2013 A. Definisi Trigonometri

matematika WAJIB Kelas X RASIO TRIGONOMETRI Kurikulum 2013 A. Definisi Trigonometri Kurikulum 0 Kels X mtemtik WAJIB RASIO TRIGONOMETRI Tujun Pembeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi rsio-rsio trigonometri yng meliputi sinus, kosinus, tngen,

Lebih terperinci

Fungsi f dikatakan pada / onto / surjektif jika setiap elemen himpunan B merupakan

Fungsi f dikatakan pada / onto / surjektif jika setiap elemen himpunan B merupakan III FUNGSI 15 1. Definisi Fungsi Definisi 1 Mislkn dn dlh himpunn. Relsi iner f dri ke merupkn sutu fungsi jik setip elemen di dlm dihuungkn dengn tept stu elemen di dlm. Jik f dlh fungsi dri ke, mk f

Lebih terperinci

Eksistensi Interpolan Deret Ganda Sinusoida

Eksistensi Interpolan Deret Ganda Sinusoida Eksstens Interpoln Deret Gnd Snusod Endng Rusmn ), Hendr Gunwn ), sep Kuswnd Suprtn ), dn Rustm Effend Sregr ) ) Jurusn temtk, Fkults temtk dn Ilmu Pengethun lm, Unpd, ) Kelompk Kehln nlss dn Geometr,

Lebih terperinci

BAB III METODE METODE DEFUZZYFIKASI

BAB III METODE METODE DEFUZZYFIKASI Fuy Logi Metode Metode Deuyiksi BAB III METODE METODE DEFUYFIKASI Seperti yng telh dihs dlm, hw untuk meruh kelurn uy menjdi nili risp mk diperlukn sutu proses yng leih dikenl dengn istilh deuyiksi Dlm

Lebih terperinci

INTEGRAL TAK TENTU. x x x

INTEGRAL TAK TENTU. x x x INTEGRAL TAK TENTU Definisi : Fungsi F diktkn nti turunn dri fungsi f pd selng I jik F () = f() untuk semu di I. Notsi : F() = f() Integrl tk tentu dlh Anti/Invers/Kelikn turunn. c c Integrl tk tentu dlh

Lebih terperinci

1. Pengertian Matriks

1. Pengertian Matriks BAB MATRIKS BAB MATRIKS. Pengertin Mtriks. Opersi Mtriks. Trnspose Sutu Mtriks. Kesmn Duh Buh Mtriks. Jenis-Jenis Mtriks. Trnsformsi Elementer 7. Rnk Mtriks . Pengertin Mtriks Mtriks dlh dftr ilngn yng

Lebih terperinci

INTEGRAL PARSIAL PADA INTEGRAL DESKRIPTIF RIEMANN Oleh : Muslich Jurusan Matematika FMIPA UNS

INTEGRAL PARSIAL PADA INTEGRAL DESKRIPTIF RIEMANN Oleh : Muslich Jurusan Matematika FMIPA UNS INTEGRAL PARSIAL PADA INTEGRAL DESKRIPTIF RIEMANN Oleh : Muslich Jurusn Mtemtik FMIPA UNS e-mil: muslich_mus@yhoo.com ABSTRAK: Pernytn fungsi f :[, terintegrl Riemnn pd [, jik dn hny jik f kontinu hmpir

Lebih terperinci

BAB 10. MATRIKS DAN DETERMINAN

BAB 10. MATRIKS DAN DETERMINAN Dessy Dwiynti, S.Si, MBA Mtemtik Ekonomi 1 BAB 10. MATRIKS DAN DETERMINAN 1. Pengertin mtriks Mtriks kumpuln bilngn yng disjikn secr tertur dlm bris dn kolom yng membentuk sutu persegi pnjng, sert termut

Lebih terperinci

RUANG VEKTOR UMUM. Dosen Pengampu : Darmadi S.Si M.Pd. Disusun oleh :

RUANG VEKTOR UMUM. Dosen Pengampu : Darmadi S.Si M.Pd. Disusun oleh : RUNG VEKTOR UMUM Dosen Pengmpu : Drmdi S.Si M.Pd Disusun oleh : 1. gung Dwi Chyono (84.56) 2. rdie Kusum (84.73) 3. Heri Chyono (84.145) 4. Lingg Nio Prdn (84.18) 5. Yudh Sofyn Mhmudi (84.293) PROGRM STUDI

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI. Persmn Smultn Persmn smultn tmbul hmpr dsetp cbng mtemtk, dlm beberp hl, persmn n tmbul lngsung dr perumusn mul dr persolnny, ddlm hl ln penyelesn dr persmn merupkn bgn dr pengerjn

Lebih terperinci

ANALISIS OPTIMASI. Oleh Muhiddin Sirat*)

ANALISIS OPTIMASI. Oleh Muhiddin Sirat*) ANALISIS OPTIMASI Oleh Muhddn Srt*) I. PENDAHULUAN D tnju dr seg ekonom, sumber terjdny mslh ekonom yng dhdp msyrkt berwl dr kebutuhn mnus yng tdk terbts, dln phk sumber-sumber ekonom sngt terbts. Untuk

Lebih terperinci

Rumus Luas Daerah Segi Empat Sembarang? Oleh: Al Jupri Dosen Jurusan Pendidikan Matematika Universitas Pendidikan Indonesia

Rumus Luas Daerah Segi Empat Sembarang? Oleh: Al Jupri Dosen Jurusan Pendidikan Matematika Universitas Pendidikan Indonesia Rumus Lus Derh Segi Empt Sembrng? Oleh: Al Jupri Dosen Jurusn Pendidikn Mtemtik Universits Pendidikn Indonesi Kit bisny lebih menyuki brng yng siftny serb gun dn efektif, stu brng untuk berbgi jenis keperlun.

Lebih terperinci

Latihan 2 : Ruang Vektor dan Ruang Vektor Bagian

Latihan 2 : Ruang Vektor dan Ruang Vektor Bagian udi murtis, ums, ltihn rung vektor dn rung gin Pge Ltihn : Rung Vektor dn Rung Vektor Bgin Andikn V {, R} dengn opersi penjumlhn pd himpunn V di definisikn : dn opersi perklin pd V didefinisikn: k k k

Lebih terperinci

matematika K-13 IRISAN KERUCUT: PERSAMAAN HIPERBOLA K e l a s A. Definisi Hiperbola Tujuan Pembelajaran

matematika K-13 IRISAN KERUCUT: PERSAMAAN HIPERBOLA K e l a s A. Definisi Hiperbola Tujuan Pembelajaran K-13 mtemtik K e l s I IRISAN KERUCUT: PERSAMAAN HIPERBLA Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi definisi dn unsur-unsur hiperol.. Dpt menentukn persmn

Lebih terperinci

1. Identitas Trigonometri. 1. Identitas trigonometri dasar berikut ini merupakan hubungan kebalikan.

1. Identitas Trigonometri. 1. Identitas trigonometri dasar berikut ini merupakan hubungan kebalikan. 1. Identits Trigonometri Pengertin Identits Trigonometri dlh kesmn yng memut entuk trigonometri dn erlku untuk semrng sudut yng dierikn. Jenis Identits Trigonometri 1. Identits trigonometri dsr erikut

Lebih terperinci

KAJIAN TENTANG SKEMA BEDA HINGGA KOMPAK ORDE-4

KAJIAN TENTANG SKEMA BEDA HINGGA KOMPAK ORDE-4 KAJIA TETAG SKEA BEDA HIGGA KOPAK ORDE-4 Eko Prsety Budn Abstrct : Fourth order compct fnte-dfference scheme s bsed on low-storge Runge-Kutt schemes for temporl dscretzton nd fourth order compct fnte-dfference

Lebih terperinci

M A T R I K S. Oleh: Dimas Rahadian AM, S.TP. M.Sc.

M A T R I K S. Oleh: Dimas Rahadian AM, S.TP. M.Sc. M T R I K S Oleh Dims Rhdin M, S.TP. M.Sc Emil rhdindims@yhoo.com JURUSN ILMU DN TEKNOLOGI PNGN UNIVERSITS SEBELS MRET SURKRT DEFINISI... Mtriks dlh susunn bilngn berbentuk jjrn segi empt siku-siku yng

Lebih terperinci

Deret Fourier. (Pertemuan X) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

Deret Fourier. (Pertemuan X) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya TKS 47 Mtemtik III Deret Fourier (Pertemun X) Dr. AZ Jurusn Teknik Sipil Fkults Teknik Universits Brwijy Pendhulun Deret Fourier ditemukn oleh ilmun Perncis, Jen Bptiste Joseph Fourier (768-83) yng menytkn

Lebih terperinci

LEMBAR KEGIATAN SISWA. : Menemukan Teorema Pythagoras Sekolah/Satuan Pendidikan:... Kelas/Semester :... Anggota Kelompok :

LEMBAR KEGIATAN SISWA. : Menemukan Teorema Pythagoras Sekolah/Satuan Pendidikan:... Kelas/Semester :... Anggota Kelompok : LEMBAR KEGATAN SSWA Topik : Menemukn Teorem Pythgors Sekolh/Stun Pendidikn:... Kels/Semester :... Anggot Kelompok : 1.... 2.... 3.... 4. 5.... Tnggl Mengerjkn LKS :. Petunjuk Umum: 1. Setelh mengerjkn

Lebih terperinci

PenerapanTeori Respons Butir Dalam Penyetaran Tes. Kana Hidayati Jurusan Pendidikan Matematika FMIPA UNY ABSTRAK

PenerapanTeori Respons Butir Dalam Penyetaran Tes. Kana Hidayati Jurusan Pendidikan Matematika FMIPA UNY ABSTRAK PenerpnTeor Respons Butr Dlm Penyetrn Tes Kn Hdyt Jurusn Penddkn Mtemtk FMIPA UNY ABSTRAK Penyetrn tes perlu dlkukn khususny bg kegtn pengujn dlm skl besr yng memperspkn lebh dr stu perngkt tes mengngt

Lebih terperinci

1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini:

1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini: ) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persmn kudrt dlh seperti di bwh ini: b c dengn, b, c bilngn dn riil Dimn, disebut sebgi koefisien dri b disebut sebgi koefisien dri c disebut

Lebih terperinci

A x = b apakah solusi x

A x = b apakah solusi x MTRIKS INVERSI & SIFT-SIFTNY Bil, x, dlh sklr ilngn rel yng memenuhi x, mk x pil. Sekrng, untuk sistem persmn linier x pkh solusi x dpt diselesikn dengn x? Mtriks Identits Untuk sklr (rel numer dn ), mk.

Lebih terperinci

PERSAMAAN DAN PERTIDAKSAMAAN LOGARITMA

PERSAMAAN DAN PERTIDAKSAMAAN LOGARITMA K- Kels X mtemtik PEMINATAN PERSAMAAN DAN PERTIDAKSAMAAN LOGARITMA Tujun Pembeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi definisi persmn dn pertidksmn logritm.. Dpt

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer ljbr Liner Elementer M SKS Silbus : Bb I Mtriks dn Opersiny Bb II Determinn Mtriks Bb III Sistem Persmn Liner Bb IV Vektor di Bidng dn di Rung Bb V Rung Vektor Bb VI Rung Hsil Kli Dlm Bb VII Trnsformsi

Lebih terperinci

Vektor di R 2 dan R 3

Vektor di R 2 dan R 3 Vektor di R dn R Pengertin Vektor dlh besrn yng mempunyi besr dn rh Vektor digmbrkn oleh rus gris yng dilengkpi dengn nk pnh vektor dimuli dri titik wl (initil point) dn dikhiri oleh titik khir (terminl

Lebih terperinci

Kegiatan Belajar 5. Aturan Sinus. Kegiatan 5.1

Kegiatan Belajar 5. Aturan Sinus. Kegiatan 5.1 Pge of 8 Kegitn eljr 5. Tujun Pembeljrn Setelh mempeljri kegitn beljr 5, dihrpkn sisw dpt. Menentukn unsur-unsur segitig dengn turn sinus b. Menentukn unsur-unsur segitig dengn turn kosinus. Menghitung

Lebih terperinci

ALJABAR LINIER. Ruang Hasil Kali Dalam. Oleh : Kelompok VI / VB

ALJABAR LINIER. Ruang Hasil Kali Dalam. Oleh : Kelompok VI / VB ALJABAR LINIER Rung Hsil Kli Dlm Dosen Pengmpu : DARMADI, S.Si, M.Pd Oleh : Kelompok VI / VB 1. Agustin Syrswri ( 08411.060 ) 2. Chndr Andmri ( 08411.095 ) 3. Mei Citr D.A ( 08411.186 ) 4. Nur Alfin Lil

Lebih terperinci

3. LIMIT DAN KEKONTINUAN. INF228 Kalkulus Dasar

3. LIMIT DAN KEKONTINUAN. INF228 Kalkulus Dasar . LIMIT DAN KEKONTINUAN INF8 Klkulus Dsr . Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di =, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn

Lebih terperinci