(c) lim. (d) lim. (f) lim

Ukuran: px
Mulai penontonan dengan halaman:

Download "(c) lim. (d) lim. (f) lim"

Transkripsi

1 FMIPA - ITB. MA Mtemtik A Semester, 6-7. Pernytn enr dn slh. () ()! e Solusi. Benr. Fungsi eksonensil (enyeut) memesr leih cet drid fungsi olinom (emilng) sehingg emginny menghsilkn nili Dengn Hoitl s Rule senyk kli, dieroleh:! e /! ln!! e Solusi. Benr. Bentuk it di ts dlh /. /! ln 9/ / /! /! (c) Jik f() dn g(), mk!!! (f())g(). (d) Jik f() dn g(), mk!!! (f())g(). (Asumsikn f() untuk 6 ) f() (e) Jik! g(), mk!(f() g()).. Bentuk tk tentu: /; /; ; ; ; ; () Tidk. ln(). () Y. (c) Y. (d) Tidk. (e) Tidk. (ln( ) ln( ) erentuk.! (ln )! erentuk /.! ln() e ln.!! e ln. (f) Y. ln( e erentuk /. ) (g) Y. erentuk. (h) Y.. Hitung ()! sin() erentuk. ( 5) ( )!! ( 7. ) Tutoril B 8: Bentuk Tk Tentu & Integrl Tk Wjr ()!5!5 5 s5!5 (5 )(5 ) (5 )(5 ) ln (c)! ( )! ln ( ) (d)!!. (e)!! (f)! tn / (5 )(5 ) 5 r. q! /!.. ln / (g)! sin! cos. (h)! R ln(et.! R ) dt t dt!.. Seelum mengerjkn sol nomor (), terleih dhulu kit co f() untukf().! ln f() f() ln ln / / / ln f() f() e ln ln ; (entuk )

2 FMIPA - ITB. MA Mtemtik A Semester, 6-7 Tutoril B 8: Bentuk Tk Tentu & Integrl Tk Wjr () Mislkn f() ( ), dengn cr yng sm seerti seelumny! ln f() f() )! ( ln ) ( ln ln f() ln( ) ln( )! ln( ) f() e ) ( () Mislkn f() (), dengn cr yng sm seerti seelumny! ln f() ln f()! ln f()! f() ln ( ) ( ) ln ) ( ( ) ln ) ln ( ln ln ) f() ( (c) Mislkn f() (( ) ), dengn cr yng sm seerti seelumny ():! ln f() f() ) )! (( ln ) ) (( ln(( ) ) ln( )! ln( ) ln ln ln f() f() e ) ) (( ) ( (d) Mislkn f() (()), dengn cr yng sm seerti seelumny! ln f() f() ln ( ) ( )! ( ( ln ) ) ( (( (( ( ) ) ) ) ln ) ) ln 5. Sol-sol erikut merukn entuk tk tentu. Selin dengn cr seerti nomor (), kit jug dt menggunkn turn eksonensil, ingt hw e ln. /(ln ) () Menghitung ln ln /(ln ) eln ln /(ln ) /(ln )) ln e(ln ln e( ln )ln e ( ln ln ) ln e / ln / e ln () Untuk menghitung! ln /(ln ), cr yng sm seerti (5) dt diterkn. Hsilny jug kn memerikn nili yng sm.

3 FMIPA - ITB. MA Mtemtik A Semester, 6-7 Tutoril B 8: Bentuk Tk Tentu & Integrl Tk Wjr (c) Dengn metode yng sm dengn nomor 5 rt seelumny, mk (! )(ln )/ e ln()(ln )/! e ln ln()! e ln() ln! ln() (! e ) ln /() (! e ) ln e ln e ln (d) ( ) /! ( )!!! (e) Berun nili R, ingt hw.! ( ) /! ( ) /! eln( ) /! e(/) ln( ) e! (/) ln( ) e 6. () Kelurkn dri entuk kr utm menjdi. q q! 5! 5 r () Perhtikn hw / / untuk >. r sin r sin sin dn (c) Secr tidk lngsung, turn l Hoitl memng tidk dt memntu, keculi erlu dilkukn mniulsi ljr terleih dhulu. e! e! (d) Sederhnkn! / e sec tn e ( )!! /! / sec : tn : sin sin (e) Mniulsi ljr 7. Integrl tk wjr? e / () Y, di ts ts. / e / e / ( / ) / e/! e () Y; di ts wh, nili integrn cot() tidk terdefinisi. (c) Y; di ts wh, nili integrn tidk terdefinisi. (d) Tidk (e) Y; di / d selng integrl, nili integrn tidk terdefinisi. (f) Tidk, nili integrn tidk ter- (g) Y; di ts wh definisi. (h) Y; d emut nol enyeut d selng integrl terseut sehingg integrn tidk terdefinisi. eih tetny di ( ) Hitung integrlny jik konvergen () Konvergen 5 d 6/7 () Konvergen d!! 5 6/7 d 5 7/7!! 7(5/7 /7 ) 7(5 /7 )!! ( ) / d / ( ) ( ) / ( ) / (c) Divergen. Setelh diintegrlkn, msih d ( 5) di enyeut, sedngkn ts whny 5 sehingg memut enyeutny ernili. (d) Divergen. Hsil integrlny dlh e sedngkn ts whny! yng kn memut nili dri hsil integrl terseut menuju ke ±.

4 FMIPA - ITB. MA Mtemtik A Semester, 6-7 Tutoril B 8: Bentuk Tk Tentu & Integrl Tk Wjr (e) Kit hitung integrl tk tentuny dhulu. Mislkn u, mk du d 9 6 d 9 6 d du 9u 9 tn (u)c 9 tn ( )C!! 9 6 d 9 6 d 9 6 d! 9 tn ( )! 9 tn ( )! 9 tn! / ( /) (f) Hitung integrl tk tentu terleih dhulu d 6 5 d ( 5)( ) 5 d 9 6 d 9 tn (ln 5 ln )C ln 5 C Terdt d selng integrl yng memut integrn tidk terdefinisi. Jdi, integrl (d enyeut ( )) terseut divergen. (g) Dengn metode integrl rsil, dieroleh e cos d e (sin cos ) C sehingg dieroleh e cos d! (sin cos )! (sin cos ) (h) Pd Tutoril B 7 Nomor (5.h) telh dihs hw sec d ln tn sec C sehingg divergen ketik disustitusikn ts /. (i) Integrn (j) (k) sin d divergen, kren menglmi osilsi. ln d! (ln ) (ln )! ln! / d ( 5) 5! / /! 5 d (ln ln 5 )C 5 5 ln ( 5) C Divergen disekn oleh ts ts. (l) Konvergen d ( )( ) ln! ln! ln 5 (ln ) ln(9/5) 6 ln 5 (m) Konvergen. Mislkn tn u sehingg d sec udu d ( ) / (tn u ) / sec udu sec u sec udu sec u du cos udu sinu C C

5 FMIPA - ITB. MA Mtemtik A Semester, 6-7 Tutoril B 8: Bentuk Tk Tentu & Integrl Tk Wjr Hitung itny Prolem Solving. Akn ditentukn konstnt c sehingg.! c 9 c d ( ) /!!!!!!! /! / /! /! / / Solusi. )!!! c c c 9! c c ln ln9! c c ln ln9! c c ln ln9! c c ln c ln9! / c c c! (! ( c) / ln9 c ( c) ln9 c c c ln9 c c/ c / ) ln9 c ln c ln c ln. Aturn Hositl tidk dt digunkn lngsung kren enyeut dn emilng hny kn menyiskn fungsi yng divergen dengn msing-msing hsil yng erosilsi. Gunkn teorem it untuk menghitung it dri sin dn cos 6 sin! 7 cos (6 sin )! (7 cos ) Akn dicri nili A dn B sehingg A B tn d.! 5

6 FMIPA - ITB. MA Mtemtik A Semester, 6-7 Solusi. Ail disustitusikn, it terseut memiliki entuk (A ), sedngkn kit thu hw stustuny kndidt (meskiun elum tentu d) gr it terseut d dlh memiliki entuk, jdi dt diilih A. Setelh memiliki entuk tk tentu, kit mniulsi ljr sehingg dt diterkn turn Hoitl.! A B tn!!!!! / B tn / B / B B B ( B B ) (/ ) Di ersmn terkhir, nili enyeut ernili, nmun emilngny msih memiliki entuk tk tentu, keculi il suku di emilng tidk d. Hl terseut terjdi ketik B, tu ketik B. Dieroleh:! A B tn ( )! (/ ) ( )! (/ ) Jdi, gr it terseut d, mk hruslh A / dn B dengn nili itny. ~ 5. Dierikn le f() le g() d [, ) () Kren g() dn f() tk negtif, mk lus di wh kurv msing-msing ernili sm dengn nili integrlny di intervl [, ). Dierikn g() f() yng errti kurv g() tidk ernh di wh kurv f() sehingg re di wh kurv g() tidk ernh kurng dri re di wh kurv f(), tu dlm hl ini le f() d le g() d Tutoril B 8: Bentuk Tk Tentu & Integrl Tk Wjr Jels il re yng esr g() d sj konvergen, lgi re yng leih kecil f() d. () Berdsrkn hsil 5(), kit kn memilih g() yng is dihitung integrlny dn konvergen, sehingg integrn f() di wh ini jug kn konvergen. i. Kit ilih g(). Jels hw d intervl [, ), fungsi g() tk negtif dn leih esr dri f() (. Selnjutny hitung integrl g() d intervl yng dierikn ) dengn cr sustitusi u sehingg du d tu du d d u d Berdsrkn 5(), mk konvergen. tn (u)! tn () tn ()! (Konvergen) ( d jug ) ii. Pd intervl yng dierikn, kit kethui hw e le e sehingg dt diilih hw g() e. Jdi e d le e d! e! e e! e e d konvergen. e e e (Konvergen) iii. Perhtikn hw fungsi eksonensil meningkt secr cet dinding dengn olinom. Hl ini errti nili e (n ) juh leih esr drid untuk dengn sutu nili tertentu. Ke- 6

7 FMIPA - ITB. MA Mtemtik A Semester, 6-7 Tutoril B 8: Bentuk Tk Tentu & Integrl Tk Wjr mudin, integrl di sol dt kit ish menjdi: n e d n n e d e d yng mn R n e d sti konvergen (kren tsny tertentu) sehingg kit erlu meliht kh R n e d konvergen tu tidk. Jik y, mk integrl di sol terseut konvergen. Kit thu hw (n ) << e, tu dengn entuk lin setelh dikr n << e /,dieroleh: n e d <<! e / e d e / d e /! e / e / e / e / (Konvergen) Jdi R n e d jug konvergen, kitny integrl yng dimint di sol jug konvergen. 7

E. INTEGRASI BAGIAN ( PARSIAL )

E. INTEGRASI BAGIAN ( PARSIAL ) E. INTEGRASI BAGIAN ( PARSIAL ) Integrsi gin (prsil) digunkn untuk mengintegrsikn sutu perklin fungsi yng msing-msing fungsiny ukn koefisien diferensil dri yng lin ( seperti yng sudh dihs pd su. B. D )

Lebih terperinci

INTEGRAL. Misalkan suatu fungsi f(x) diintegralkan terhadap x maka di tulis sebagai berikut:

INTEGRAL. Misalkan suatu fungsi f(x) diintegralkan terhadap x maka di tulis sebagai berikut: INTEGRAL.PENGERTIAN INTEGRAL Integrl dlh cr mencri sutu fungsi jik turunnn di kethui tu kelikn dri diferensil (turunn) ng diseut jug nti derivtif tu nti diferensil. Untuk menentukn integrl tidk semudh

Lebih terperinci

matematika K-13 TEOREMA FAKTOR DAN OPERASI AKAR K e l a s

matematika K-13 TEOREMA FAKTOR DAN OPERASI AKAR K e l a s K-3 mtemtik K e l s XI TEOREMA FAKTOR DAN OPERASI AKAR Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Memhmi teorem fktor.. Menentukn kr dn fktor liner suku nyk dengn

Lebih terperinci

MATEMATIKA INTEGRAL TENTU DAN LUAS DAERAH

MATEMATIKA INTEGRAL TENTU DAN LUAS DAERAH MATEMATIKA KELAS XII - KURIKULUM GABUNGAN 5 Sesi N INTEGRAL TENTU DAN LUAS DAERAH A. DEFINISI INTEGRAL TENTU Bentuk integrl f d = f + c diseut segi integrl tk tentu kren hsil dri pengintegrlnn msih erup

Lebih terperinci

Hendra Gunawan. 30 Oktober 2013

Hendra Gunawan. 30 Oktober 2013 MA MATEMATIKA A Hendr Gunwn Semester I, 2/24 Oktoer 2 Ltihn. Fungsi g =,, terintegrlkn pd [, ]. Nytkn integrl tentu g pd [, ] segi limit jumlh Riemnn dengn prtisi reguler, dn hitunglh niliny. //2 c Hendr

Lebih terperinci

INTEGRAL. Integral Tak Tentu Dan Integral Tertentu Dari Fungsi Aljabar

INTEGRAL. Integral Tak Tentu Dan Integral Tertentu Dari Fungsi Aljabar INTEGRAL Integrl Tk Tentu Dn Integrl Tertentu Dri Fungsi Aljr A. Integrl Tk Tentu Hitung integrl dlh kelikn dri hitung differensil. Pd hitung differensil yng dicri dlh fungsi turunnny, sedngkn pd hitung

Lebih terperinci

RANGKUMAN MATERI ' maupun F(x) = Pengerjaan f(x) sehingga memperoleh F(x) + c disebut mengintegralkan f(x) ke x dengan notasi:

RANGKUMAN MATERI ' maupun F(x) = Pengerjaan f(x) sehingga memperoleh F(x) + c disebut mengintegralkan f(x) ke x dengan notasi: INTEGRAL RANGKUMAN MATERI A. ANTIDERIVATIF DAN INTEGRAL TAK TENTU Jik kit mengmil uku dri temptny mk kit dpt mengemliknny lgi ke tempt semul. Opersi yng kedu menghpus opersi yng pertm. Kit ktkn hw du opersi

Lebih terperinci

Integral Tak Tentu dan Integral Tertentu

Integral Tak Tentu dan Integral Tertentu Integrl Tk Tentu dn Integrl Tertentu Pengertin Integrl Jik F dlh fungsi umum yng ersift F = f, mk F merupkn ntiturunn tu integrl dri f. Pengintegrln fungsi f terhdp dinotsikn segi erikut : f d F c notsi

Lebih terperinci

INTEGRAL TAK TENTU. x x x

INTEGRAL TAK TENTU. x x x INTEGRAL TAK TENTU Definisi : Fungsi F diktkn nti turunn dri fungsi f pd selng I jik F () = f() untuk semu di I. Notsi : F() = f() Integrl tk tentu dlh Anti/Invers/Kelikn turunn. c c Integrl tk tentu dlh

Lebih terperinci

Suku banyak. Akar-akar rasional dari

Suku banyak. Akar-akar rasional dari Suku nyk Algoritm pemgin suku nyk menentukn Teorem sis dn teorem fktor terdiri dri Pengertin dn nili suku nyk Hsil gi dn sis pemgin suku nyk Penggunn teorem sis Penggunn teorem fktor Derjd suku nyk pd

Lebih terperinci

PEMANTAPAN BELAJAR SMA BBS INTEGRAL

PEMANTAPAN BELAJAR SMA BBS INTEGRAL BAB I PEMANTAPAN BELAJAR SMA BBS INTEGRAL I A RANGKUMAN INTEGRAL. Pengertin Apil terdpt fungsi F() yng dpt didiferensilkn pd selng I sedemikin hingg F () = f(), mk nti turunn (integrl) dri f() dlh F()

Lebih terperinci

Tujuan Pembelajaran. ) pada hiperbola yang berpusat di (0, 0). 2. Dapat menentukan persamaan garis singgung di titik (x 1

Tujuan Pembelajaran. ) pada hiperbola yang berpusat di (0, 0). 2. Dapat menentukan persamaan garis singgung di titik (x 1 K-3 mtemtik K e l s XI IRISAN KERUCUT: GARIS SINGGUNG PADA HIPERBOLA Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Dpt menentukn persmn gris singgung di titik (, ) pd

Lebih terperinci

Integral. Konstanta dari Integrasi. Integral Tak Tentu. AntiTurunan (Antiderivative)

Integral. Konstanta dari Integrasi. Integral Tak Tentu. AntiTurunan (Antiderivative) Integrl AntiTurunn (Antiderivtive) AntiTurunn dri seuh fungsi f dl seuh fungsi F sedemikin hingg Dierikn Pd Peltihn Guru-Guru Aceh Jy 5 Septemer 0 Oleh: Ridh Ferdhin, M.Sc F f E. AntiTurunn dri f ( ) 6

Lebih terperinci

LUAS DAERAH APLIKASI INTEGRAL TENTU. Indikator Pencapaian Hasil Belajar. Ringkasan Materi Perkuliahan

LUAS DAERAH APLIKASI INTEGRAL TENTU. Indikator Pencapaian Hasil Belajar. Ringkasan Materi Perkuliahan LUAS DAERAH APLIKASI INTEGRAL TENTU Indiktor Pencpin Hsil Beljr Mhsisw menunjukkn kemmpun dlm :. Menghitung lus pd idng dtr Ringksn Mteri Perkulihn Jik sutu derh ditsi oleh kurv f(), g(), gris dn dengn

Lebih terperinci

A. PANGKAT. Materi Pokok BENTUK PANGKAT,AKAR DAN LOGARITMA

A. PANGKAT. Materi Pokok BENTUK PANGKAT,AKAR DAN LOGARITMA Mtemtik SMA Semester B : Bentuk Pngkt,Akr & Logritm Mteri Pokok BENTUK PANGKAT,AKAR DAN LOGARITMA Kometensi Dsr : Menggunkn sift dn turn tentng ngkt, kr dn logritm dlm emechn mslh Kometensi Dsr : Melkukn

Lebih terperinci

LIMIT FUNGSI DAN KEKONTINUAN

LIMIT FUNGSI DAN KEKONTINUAN LIMIT FUNGSI DAN KEKONTINUAN RANGKUMAN MATERI Sebelum memsuki mteri, perhtikn himpunn-himpunn berikut: ) Himpunn bilngn sli:,,,4,5,.... b) Himpunn bilngn bult:...,,,0,,,.... p c) Himpunn bilngn rsionl:

Lebih terperinci

Tujuan Pembelajaran. ) pada elips. 2. Dapat menentukan persamaan garis singgung yang melalui titik (x 1

Tujuan Pembelajaran. ) pada elips. 2. Dapat menentukan persamaan garis singgung yang melalui titik (x 1 K-3 mtemtik K e l s XI IRISAN KERUCUT: PERSAMAAN GARIS SINGGUNG PADA ELIPS Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Dpt menentukn persmn gris singgung di titik (,

Lebih terperinci

Integral Tak Wajar. Ayundyah Kesumawati. March 25, Prodi Statistika FMIPA-UII

Integral Tak Wajar. Ayundyah Kesumawati. March 25, Prodi Statistika FMIPA-UII Kesumwti Prodi Sttistik FMIPA-UII Mrch 25, 205 Sutu integrl tertentu b f (x)dx () diktkn wjr jik i memenuhi du syrt berikut: i. Bts integrsi dn b merupkn bilngn berhingg ii. fungsi f (x) terbts pd intervl

Lebih terperinci

INTEGRAL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 45

INTEGRAL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 45 INTEGRAL Deprtemen Mtemtik FMIPA IPB Bogor, 2012 (Deprtemen Mtemtik FMIPA IPB) Klkulus I Bogor, 2012 1 / 45 Topik Bhsn 1 Pendhulun 2 Anti-turunn 3 Lus di Bwh Kurv 4 Integrl Tentu 5 Teorem Dsr Klkulus 6

Lebih terperinci

PROBLEM SOLVING TERKAIT DENGAN KELAS X SEMESTER 1 PADA STANDAR KOMPETENSI (SK) 1.

PROBLEM SOLVING TERKAIT DENGAN KELAS X SEMESTER 1 PADA STANDAR KOMPETENSI (SK) 1. PROLEM SOLVING TERKIT DENGN KELS X SEMESTER PD STNDR KOMPETENSI (SK). LJR Memechkn mslh yng berkitn dengn bentuk pngkt, kr, dn logritm Oleh: Sigit Tri Guntoro. Du orng berselisih mengeni bnykny psngn bilngn

Lebih terperinci

matematika K-13 IRISAN KERUCUT: PERSAMAAN HIPERBOLA K e l a s A. Definisi Hiperbola Tujuan Pembelajaran

matematika K-13 IRISAN KERUCUT: PERSAMAAN HIPERBOLA K e l a s A. Definisi Hiperbola Tujuan Pembelajaran K-13 mtemtik K e l s I IRISAN KERUCUT: PERSAMAAN HIPERBLA Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi definisi dn unsur-unsur hiperol.. Dpt menentukn persmn

Lebih terperinci

Tiara Ariqoh Bawindaputri TIP / kelas L

Tiara Ariqoh Bawindaputri TIP / kelas L Tir Ariqoh Bwindputri 500008 TIP / kels L INTEGRAL Integrl Tk tentu Integrl dlh entuk invers dri turunn. Secr umum jik seuh fungsi diintegrlkn terhdp vrile tertentu dpt disjikn dlm entuk : f ( F( C Untuk

Lebih terperinci

MATEMATIKA. Sesi INTEGRAL VOLUME A. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR B. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR TERHADAP SUMBU-X

MATEMATIKA. Sesi INTEGRAL VOLUME A. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR B. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR TERHADAP SUMBU-X MATEMATIKA KELAS XII - KURIKULUM GABUNGAN 6 Sesi N INTEGRAL VOLUME A. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR Apliksi integrl erikutn dlh menentukn volume end ng memiliki sumu putr. Contoh endn dlh tung,

Lebih terperinci

BAB 3 APLIKASI TAGUCHI LOSS FUNCTION

BAB 3 APLIKASI TAGUCHI LOSS FUNCTION BB III PIKSI TGUHI OSS FUNTION 6 BB 3 PIKSI TGUHI OSS FUNTION 3. Kitn Tguchi oss Function dengn indeks kpilits proses p Tguchi oss Function erkitn dengn indeks kpilits proses p. Rsio rt rt loss cost seelum

Lebih terperinci

E-LEARNING MATEMATIKA

E-LEARNING MATEMATIKA MOUL E-LEARNING E-LEARNING MATEMATIKA Oleh : NURYAIN EKO RAHARJO, M.P. NIP. 7 Penulisn Modul e Lerning ini diiyi oleh dn IPA BLU UNY TA Sesui dengn Surt Perjnjin Pelksnn e Lerning Nomor./H./PL/ Tnggl Juli

Lebih terperinci

PENGAYAAN MATEMATIKA SOLUSI SOAL-SOAL LATIHAN 1

PENGAYAAN MATEMATIKA SOLUSI SOAL-SOAL LATIHAN 1 PENGAYAAN MATEMATIKA SOLUSI SOAL-SOAL LATIHAN 6y y 8y. Dikethui R dn. Temukn nili y. y y 8y 6 Solusi: 6y y 8y y y 8y 6 6y y 8y 8y y 6 y 8 0 y y y 0 y y y 0 ( y ) ( y ) 0 y y 8y 6 ( y )(y ) 0 y 0tu y 0

Lebih terperinci

7. APLIKASI INTEGRAL

7. APLIKASI INTEGRAL 7. APLIKASI INTEGRAL 7. Menghitung Lus Derh.Mislkn derh D (, ), f ( ) D f() Lus D =? Lngkh :. Iris D menjdi n gin dn lus stu uh irisn dihmpiri oleh lus persegi pnjng dengn tinggi f() ls(ler) A f ( ). Lus

Lebih terperinci

MUH1G3/ MATRIKS DAN RUANG VEKTOR

MUH1G3/ MATRIKS DAN RUANG VEKTOR MUHG3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN 3 Sistem Persmn Liner Sistem Persmn Liner Su Pokok Bhsn Pendhulun Solusi SPL dengn OBE Solusi SPL dengn Invers mtriks dn Aturn Crmmer SPL Homogen Beerp Apliksi

Lebih terperinci

PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN MENGGUNAKAN DETERMINAN (ATURAN CRAMER)

PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN MENGGUNAKAN DETERMINAN (ATURAN CRAMER) PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN MENGGUNAKAN DETERMINAN (ATURAN CRAMER) Dikethui system Persmn Linier x+ x + x = x+ x + x = x+ x + x = dlm entuk mtriks x x x Penyelesin Dengn Aturn Crmer dlh

Lebih terperinci

BAB III METODE METODE DEFUZZYFIKASI

BAB III METODE METODE DEFUZZYFIKASI Fuy Logi Metode Metode Deuyiksi BAB III METODE METODE DEFUYFIKASI Seperti yng telh dihs dlm, hw untuk meruh kelurn uy menjdi nili risp mk diperlukn sutu proses yng leih dikenl dengn istilh deuyiksi Dlm

Lebih terperinci

didefinisikan sebagai bilangan yang dapat ditulis dengan b

didefinisikan sebagai bilangan yang dapat ditulis dengan b 1 PENDAHULUAN 1.1 Sistem Bilngn Rel Untuk mempeljri klkulus perlu memhmi hsn tentng system ilngn rel, kren klkulus didsrkn pd system ilngn rel dn siftsiftny. Sistem ilngn yng pling sederhn dlh ilngn sli,

Lebih terperinci

OSN 2015 Matematika SMA/MA

OSN 2015 Matematika SMA/MA Sol 5. Mislkn,, c, d dlh ilngn sli sehingg c d dn d c. Buktikn hw () (cd) mx{,}. Jw: Klim hw c. Jik = 1 mk jels memenuhi pernytn. Mislkn p prim dn = p t s dengn p s. Untuk menunjukkn hw c cukup kit tunjukkn

Lebih terperinci

15. INTEGRAL SEBAGAI LIMIT

15. INTEGRAL SEBAGAI LIMIT 15. INTEGRAL SEBAGAI LIMIT 15.1 Jumlh Riemnn Dlm kulih Klkulus pd thun pertm, integrl Riemnn bisny diperkenlkn sebgi limit dri jumlh Riemnn, tidk mellui integrl Riemnn ts dn integrl Riemnn bwh. Hl ini

Lebih terperinci

SISTEM BILANGAN REAL. 1. Sifat Aljabar Bilangan Real

SISTEM BILANGAN REAL. 1. Sifat Aljabar Bilangan Real SISTEM BILANGAN REAL Dlm terminologi Aljbr Abstrk, sistem bilngn rel disebut dengn field (lpngn) pd opersi penjumlhn dn perklin. Sutu opersi biner bis ditulis dengn sutu psngn terurut (, b) yng unik dri

Lebih terperinci

INTEGRAL. Kelas XII IIS Semester Genap. Oleh : Markus Yuniarto, S.Si. SMA Santa Angela Tahun Pelajaran 2017/2018

INTEGRAL. Kelas XII IIS Semester Genap. Oleh : Markus Yuniarto, S.Si. SMA Santa Angela Tahun Pelajaran 2017/2018 Modul Integrl INTEGRAL Kels XII IIS Semester Genp Oleh : Mrkus Yunirto, SSi SMA Snt Angel Thun Peljrn 7/8 Modul Mtemtik Kels XII IIS Semester TA 7/8 Modul Integrl INTEGRAL Stndr Kompetensi: Menggunkn konsep

Lebih terperinci

Integral Numerik. Sunkar E. Gautama, 2013

Integral Numerik. Sunkar E. Gautama, 2013 Integrl Numerik Sunkr E. Gutm, 2013 http://prdoks77.logspot.com Integrl numerik ilh metode untuk menghitung nili integrsi sutu fungsi dlm sutu selng tnp mempedulikn fungsi hsil integrlny dengn menggunkn

Lebih terperinci

3. LIMIT DAN KEKONTINUAN. INF228 Kalkulus Dasar

3. LIMIT DAN KEKONTINUAN. INF228 Kalkulus Dasar . LIMIT DAN KEKONTINUAN INF8 Klkulus Dsr . Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di =, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn

Lebih terperinci

r x = 0. Koefisien-koefisien persamaan yang dihasilkan adalah analitik pada x = 0. Jadi dapat kita gunakan metode deret pangkat.

r x = 0. Koefisien-koefisien persamaan yang dihasilkan adalah analitik pada x = 0. Jadi dapat kita gunakan metode deret pangkat. Husn Arifh,M.Sc : Persmn Legendre Emil : husnrifh@uny.c.id Persmn diferensil Legendre (1) 1 x 2 y 2xy + n n + 1 y = 0 Prmeter n pd (1) dlh bilngn rill yng diberikn. Setip penyelesin dri (1) dinmkn fungsi

Lebih terperinci

PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN PERTIDAKSAMAAN KUADRAT

PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN PERTIDAKSAMAAN KUADRAT PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN PERTIDAKSAMAAN KUADRAT Persmn Kudrt. Bentuk Umum Persmn Kudrt Mislkn,, Є R dn 0 mk persmn yng erentuk 0 dinmkn persmn kudrt dlm peuh. Dlm persmn kudrt 0, dlh koefisien

Lebih terperinci

SIFAT-SIFAT LOGARITMA

SIFAT-SIFAT LOGARITMA K- Kels X mtemtik PEMINATAN SIFAT-SIFAT LOGARITMA Tujun Pembeljrn Setelh memeljri mteri ini, kmu dihrkn memiliki kemmun berikut.. Memhmi definisi logritm.. Dt menentukn nili logritm dengn menggunkn tbel

Lebih terperinci

DETERMINAN. Misalkan A adalah suatu matriks persegi. a) Jika A memiliki satu baris atau satu kolom bilangan nol, maka det(a) = 0.

DETERMINAN. Misalkan A adalah suatu matriks persegi. a) Jika A memiliki satu baris atau satu kolom bilangan nol, maka det(a) = 0. DETERMINAN Fungsi determinn dri sutu mtriks persegi A (dinotsikn dengn det(a) tu A ) didefinisikn sebgi jumlh dri semu hsil kli elementer bertnd dri A. Sementr, ngk tu bilngn dri det(a) disebut determinn

Lebih terperinci

kimia HIDROLISIS K e l a s Kurikulum 2013 A. Definisi, Jenis, dan Mekanisme Hidrolisis

kimia HIDROLISIS K e l a s Kurikulum 2013 A. Definisi, Jenis, dan Mekanisme Hidrolisis urikulum 2013 kimi e l s XI HIDROLISIS Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi definisi, jenis, dn meknisme hidrolisis. 2. Memhmi sift-sift dn ph lrutn

Lebih terperinci

3. LIMIT DAN KEKONTINUAN

3. LIMIT DAN KEKONTINUAN 3. LIMIT DAN KEKONTINUAN 1 3.1 Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi 1 1 Fungsi dits tidk terdeinisi di =1, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp

Lebih terperinci

INTEGRAL FOURIER KED. Diasumsikan syarat-syarat berikut pada f(x): 1. f x memenuhi syarat Dirichlet pada setiap interval terhingga L, L.

INTEGRAL FOURIER KED. Diasumsikan syarat-syarat berikut pada f(x): 1. f x memenuhi syarat Dirichlet pada setiap interval terhingga L, L. INTEGRAL FOURIER Disumsikn syrt-syrt berikut pd f(x):. f x memenuhi syrt Dirichlet pd setip intervl terhingg L, L.. f x dx konvergen, yitu f(x) dpt diintegrsikn secr mutlk dlm (, ). Selnjutny, Teorem integrl

Lebih terperinci

Fungsi f dikatakan pada / onto / surjektif jika setiap elemen himpunan B merupakan

Fungsi f dikatakan pada / onto / surjektif jika setiap elemen himpunan B merupakan III FUNGSI 15 1. Definisi Fungsi Definisi 1 Mislkn dn dlh himpunn. Relsi iner f dri ke merupkn sutu fungsi jik setip elemen di dlm dihuungkn dengn tept stu elemen di dlm. Jik f dlh fungsi dri ke, mk f

Lebih terperinci

LIMIT DAN KONTINUITAS

LIMIT DAN KONTINUITAS LIMIT DAN KONTINUITAS Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di =, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp nili jik mendekti

Lebih terperinci

1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini:

1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini: ) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persmn kudrt dlh seperti di bwh ini: b c dengn, b, c bilngn dn riil Dimn, disebut sebgi koefisien dri b disebut sebgi koefisien dri c disebut

Lebih terperinci

BAB 4 IMPLEMENTASI HASIL PENELITIAN. Rancangan ini dibuat dan dites pada konfigurasi hardware sebagai berikut :

BAB 4 IMPLEMENTASI HASIL PENELITIAN. Rancangan ini dibuat dan dites pada konfigurasi hardware sebagai berikut : BAB 4 IMPLEMENTASI HASIL PENELITIAN 4.1 Spesifiksi Hrdwre dn Softwre Rncngn ini diut dn dites pd konfigursi hrdwre segi erikut : Processor : AMD Athlon XP 1,4 Gytes. Memory : 18 Mytes. Hrddisk : 0 Gytes.

Lebih terperinci

BAB 3 SOLUSI NUMERIK SISTEM PERSAMAAN LINEAR

BAB 3 SOLUSI NUMERIK SISTEM PERSAMAAN LINEAR A SOLUSI NUMERIK SISTEM PERSAMAAN LINEAR. Metode Eliminsi Guss Tinu sistem persmn liner ng terdiri dri i ris dn peuh, kni,,,, erikut.......... i i i Jik =, sistem persmn linern diseut sistem homogen, sedngkn

Lebih terperinci

IRISAN KERUCUT: PERSAMAAN ELIPS. Tujuan Pembelajaran

IRISAN KERUCUT: PERSAMAAN ELIPS. Tujuan Pembelajaran K-13 mtemtik K e l s I IRISAN KERUCUT: PERSAMAAN ELIPS Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi definisi elips.. Memhmi unsur-unsur elips. 3. Memhmi eksentrisits

Lebih terperinci

6. Himpunan Fungsi Ortogonal

6. Himpunan Fungsi Ortogonal 6. Himpunn Fungsi Ortogonl Mislkn f periodik dengn periode, dn mulus bgin demi bgin pd [ π, π]. Jik S f N (θ) = N n= N c ne inθ, n =,, 2,..., dlh jumlh prsil dri deret Fourier f, mk kit telh menunjukkn

Lebih terperinci

1. Identitas Trigonometri. 1. Identitas trigonometri dasar berikut ini merupakan hubungan kebalikan.

1. Identitas Trigonometri. 1. Identitas trigonometri dasar berikut ini merupakan hubungan kebalikan. 1. Identits Trigonometri Pengertin Identits Trigonometri dlh kesmn yng memut entuk trigonometri dn erlku untuk semrng sudut yng dierikn. Jenis Identits Trigonometri 1. Identits trigonometri dsr erikut

Lebih terperinci

1. Luas daerah yang dibatasi oleh kurva y = x 2 dan garis x + y = 6 adalah satuan luas. a. 54 b. 32. d. 18 e.

1. Luas daerah yang dibatasi oleh kurva y = x 2 dan garis x + y = 6 adalah satuan luas. a. 54 b. 32. d. 18 e. . Lus derh yng ditsi oleh kurv y = x dn gris x + y = dlh stun lus... c. d. 8 e. Sol Ujin Nsionl Thun 7 Kurv y = x dn gris x + y = ( y = x ) Sustikn nili y pd y = x sehingg didpt : x = x x = x x + x = (

Lebih terperinci

1. Luas daerah yang dibatasi oleh kurva y = x 2 dan garis x + y = 6 adalah

1. Luas daerah yang dibatasi oleh kurva y = x 2 dan garis x + y = 6 adalah . Lus derh yng ditsi oleh kurv y = x dn gris x + y = dlh stun lus... c. d. 8 Sol Ujin Nsionl Thun 7 Kurv y = x dn gris x + y = ( y = x ) Sustikn nili y pd y = x sehingg didpt : x = x x = x x + x = ( =,

Lebih terperinci

BAB IV METODE ANALISIS RANGKAIAN

BAB IV METODE ANALISIS RANGKAIAN BAB IV METODE ANALISIS RANGKAIAN. Anlisis Arus Cng Anlisis rus cng memnftkn hukum Kirchoff I (KCL) dn hukum Kirchoff I (KVL). Contoh - Tentukn esr rus dlm loop terseut dn gimn rh rusny? Ohm 0V 0V Ohm 0V

Lebih terperinci

HITUNG INTEGRAL ( 4 ) 4. Diketahui f(x) = 4x + 1 dan F(2) = 17 ; Tentukan fungsi F f(x) = 4x + 1

HITUNG INTEGRAL ( 4 ) 4. Diketahui f(x) = 4x + 1 dan F(2) = 17 ; Tentukan fungsi F f(x) = 4x + 1 HITUNG INTEGRA BAB.Integrl tk tentu (tnp ts). Rumus-rumus ) ) n n n d c, n ) d c n n n. d c, n ). Sift-sift Integrl Contoh :... ) k. f ( ) d k. f ( ) d d d ln c ) ( ( ) ( )) ( ) ( ) d c ( ) ( ) d ( ) d

Lebih terperinci

STRATEGI PENGAJARAN MATEMATIKA UNTUK MENENTUKAN AKAR-AKAR PERSAMAAN KUADRAT

STRATEGI PENGAJARAN MATEMATIKA UNTUK MENENTUKAN AKAR-AKAR PERSAMAAN KUADRAT Jurnl Vol II. No., Mret 08, hlm. 9-95 vilble online t www.jurnl.un.c.id/indeks/jmp STRTEGI PENGJRN MTEMTIK UNTUK MENENTUKN KR-KR PERSMN KUDRT Indh Purnm Putri, Symsudhuh, Ihd Hsbiyti 3 Progrm Studi Mgister

Lebih terperinci

3. LIMIT DAN KEKONTINUAN

3. LIMIT DAN KEKONTINUAN . LIMIT DAN KEKONTINUAN . Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp nili jik mendekti

Lebih terperinci

INTEGRAL. y dx. x dy. F(x)dx F(x)dx

INTEGRAL. y dx. x dy. F(x)dx F(x)dx Drs. Mtrisoni www.mtemtikdw.wordpress.om INTEGRAL PENGERTIAN Bil dikethui : = F() + C mk = F () dlh turunn dri sedngkn dlh integrl (nti turunn) dri dn dpt digmrkn : differensil differensil Y Y Y Integrl

Lebih terperinci

SMA Santa Angela. Bandung. 1 P a g e

SMA Santa Angela. Bandung. 1 P a g e Persmn Gris Singgung SMA Snt Angel Bndung P g e P g e Persmn Gris Singgung pd Ellips Seperti hln pd lingkrn, terdpt du mcm gris singgung ng kn diicrkn, itu gris singgung ng mellui slh stu titik pd ellips

Lebih terperinci

RANGKUMAN INTEGRAL. Di Susun Oleh : Syaiful Hamzah Nasution, S.Si., S.Pd.

RANGKUMAN INTEGRAL. Di Susun Oleh : Syaiful Hamzah Nasution, S.Si., S.Pd. Generted y Foxit PDF Cretor Foxit Softwre http://www.foxitsoftwre.om For evlution only. RANGKUMAN INTEGRAL Di Susun Oleh : Syiful Hmzh Nsution, S.Si., S.Pd. Di dukung oleh : Portl eduksi Indonesi Open

Lebih terperinci

PERTEMUAN 4 Metode Simpleks Kasus Maksimum

PERTEMUAN 4 Metode Simpleks Kasus Maksimum PERTEMUAN 4 Metode Simpleks Ksus Mksimum Untuk menyelesikn Persoln Progrm Linier dengn Metode Simpleks untuk fungsi tujun memksimumkn dn meminimumkn crny ered Model mtemtik dri Permslhn Progrm Linier dpt

Lebih terperinci

3 PANGKAT, AKAR, DAN LOGARITMA

3 PANGKAT, AKAR, DAN LOGARITMA PANGKAT, AKAR, DAN LOGARITMA.. Pngkt Pngkt dri seuh ilngn dlh sutu indeks ng menunjukkn nkn perklin ilngn ng sm secr eruntun. Notsi n errti hw hrus diklikn degn itu sendiri senk n kli. Notsi ilngn erpngkt

Lebih terperinci

selisih positif jarak titik (x, y) terhadap pasangan dua titik tertentu yang disebut titik

selisih positif jarak titik (x, y) terhadap pasangan dua titik tertentu yang disebut titik Hiperol 7.1. Persmn Hiperol Bentuk Bku Hiperol dlh himpunn semu titik (, ) pd idng sedemikin hingg selisih positif jrk titik (, ) terhdp psngn du titik tertentu ng diseut titik fokus (foci) dlh tetp. Untuk

Lebih terperinci

A x = b apakah solusi x

A x = b apakah solusi x MTRIKS INVERSI & SIFT-SIFTNY Bil, x, dlh sklr ilngn rel yng memenuhi x, mk x pil. Sekrng, untuk sistem persmn linier x pkh solusi x dpt diselesikn dengn x? Mtriks Identits Untuk sklr (rel numer dn ), mk.

Lebih terperinci

TEORI DEFINITE INTEGRAL

TEORI DEFINITE INTEGRAL definite integrl & lus yog.prihstomo TEORI DEFINITE INTEGRAL Definisi : Jik y = f(x) dlh fungsi kontinu dn terdefinisi dlm intervl tertutup [,] sehingg lim n n i= f ( xi). Δxi d (mempunyi nili), mk definite

Lebih terperinci

Modul Matematika 2012

Modul Matematika 2012 Modul Mtemtik. ANTI TURUNAN Definisi Mislkn fungsi f terdefinisi pd selng teruk I. Fungsi F ng memenuhi F () = f () pd I dinmkn nti turunn tu fungsi primitif dri fungsi f pd I.. F() = cos nti turunn dri

Lebih terperinci

Bab 3 M M 3.1 PENDAHULUAN

Bab 3 M M 3.1 PENDAHULUAN B SISTEM PERSAMAAN LINEAR Pd gin ini kn dijelskn tentng sistem persmn liner (SPL) dn r menentukn solusiny. SPL nyk digunkn untuk memodelkn eerp mslh rel, mislny: mslh rngkin listrik, jringn komputer, model

Lebih terperinci

Materi IX A. Pendahuluan

Materi IX A. Pendahuluan Mteri IX Tujun :. Mhsisw dpt memhmi vektor. Mhsisw mmpu mengunkn vektor dlm persoln sederhn 3. Mhsisw mengimplementsikn konsep vektor pd rngkin listrik. Pendhulun Sudh menjdi kesepktn umum hw untuk menentukn

Lebih terperinci

Bab a. maka notasi determinan dari matriks A ditulis : det (A) atau. atau A.

Bab a. maka notasi determinan dari matriks A ditulis : det (A) atau. atau A. Bb DETERMINAN MATRIKS Determinn sutu mtriks dlh sutu fungsi sklr dengn domin mtriks bujur sngkr. Dengn kt lin, determinn merupkn pemetn dengn domin berup mtriks bujur sngkr, sementr kodomin berup sutu

Lebih terperinci

Matriks yang mempunyai jumlah baris sama dengan jumlah kolomnya disebut matriks bujur sangkar (square matrix). contoh :

Matriks yang mempunyai jumlah baris sama dengan jumlah kolomnya disebut matriks bujur sangkar (square matrix). contoh : TRIKS. PENGERTIN triks dlh sutu deretn elemen yng mementuk empt persegi pnjng, terdiri dri m ris dn n kolom. Elemen terseut dpt erentuk koefisien, ilngn tu simul. triks yng mempunyi m ris dn n kolom diseut

Lebih terperinci

LIMIT FUNGSI. DEFINISI Notasi. dibaca. limit f(x) bila x mendekati a sama dengan L. atau. f(x) mendekati L bila x mendekati a.

LIMIT FUNGSI. DEFINISI Notasi. dibaca. limit f(x) bila x mendekati a sama dengan L. atau. f(x) mendekati L bila x mendekati a. DEFINISI Notsi dibc tu berrti bhw IMIT FUNGSI it bil mendekti sm dengn mendekti bil mendekti nili dpt dibut sedekt mungkin dengn bil cukup dekt dengn, tetpi tidk sm dengn. Perhtikn bhw dlm deinisi tersebut

Lebih terperinci

Soal-soal dan Pembahasan Matematika Dasar SBMPTN-SNMPTN 2006

Soal-soal dan Pembahasan Matematika Dasar SBMPTN-SNMPTN 2006 www.purwntowhyudi.com Hl- Sol-sol dn Pemhsn Mtemtik Dsr SBMPTN-SNMPTN 006. Jik > 0, > 0 dn mk A. C. E. B. D. Jw:. Jwnny dlh A. Jik p - dn q -, mk q p. A. C. E. B. D. Jw: q p Jwnny dlh A . Grfik y terletk

Lebih terperinci

VEKTOR. Dua vektor dikatakan sama jika besar dan arahnya sama. Artinya suatu vektor letaknya bisa di mana saja asalkan besar dan arahnya sama.

VEKTOR. Dua vektor dikatakan sama jika besar dan arahnya sama. Artinya suatu vektor letaknya bisa di mana saja asalkan besar dan arahnya sama. -1- VEKTOR PENGERTIAN VEKTOR dlh sutu esrn yng mempunyi nili (esr) dn rh. Sutu vektor dpt digmrkn segi rus gris errh. Nili (esr) vektor dinytkn dengn pnjng gris dn rhny dinytkn dengn tnd pnh. Notsi vektor

Lebih terperinci

INTEGRAL. 1. Macam-macam Integral. Nuria Rahmatin TIP L. A. Integral Tak Tentu

INTEGRAL. 1. Macam-macam Integral. Nuria Rahmatin TIP L. A. Integral Tak Tentu INTEGRAL Nuri Rhmtin 5000006 TIP L. Mcm-mcm Integrl A. Integrl Tk Tentu Integrl dlh entuk invers dri turunn. Secr umum jik seuh fungsi diintegrlkn terhdp vrile tertentu dpt disjikn dlm entuk : f ( F( C

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA MATEMATIKA A Hendr Gunwn Semester II, 6/7 Februri 7 Kulih yng Llu 8. Bentuk Tk Tentu Tipe / Menghitung limit bentuk tk tentu / dengn menggunkn Aturn l Hopitl 8. Bentuk Tk Tentu Linny Menghitung bentuk

Lebih terperinci

IAH IAAH I H HAAH xaah I A b x2ah x23h I A 3 x23b H 2

IAH IAAH I H HAAH xaah I A b x2ah x23h I A 3 x23b H 2 GRMMR CONTEXT-FREE DN PRING entuk umum produksi CFG dlh :, V N, (V N V T )* nlisis sintks dlh penelusurn seuh klimt (tu sentensil) smpi pd simol wl grmmr. nlisis sintks dpt dilkukn mellui derivsi tu prsing.

Lebih terperinci

A. PENGERTIAN B. DETERMINAN MATRIKS

A. PENGERTIAN B. DETERMINAN MATRIKS ATRIKS A. PENGERTIAN triks dlh sutu deretn elemen yng mementuk empt persegi pnjng, terdiri dri m ris dn n kolom. Elemen terseut dpt erentuk koefisien, ilngn tu simul. triks yng mempunyi m ris dn n kolom

Lebih terperinci

BAB VI PEWARNAAN GRAF

BAB VI PEWARNAAN GRAF 85 BAB VI PEWARNAAN GRAF 6.1 Pewrnn Simpul Pewrnn dri sutu grf G merupkn sutu pemetn dri sekumpuln wrn ke eerp simpul (vertex) yng d pd grf G sedemikin sehingg simpul yng ertetngg memiliki wrn yng ered.

Lebih terperinci

INTEGRAL TAK-WAJAR. bentuk tak-tentu karena bentuk ini saling membantu dan tidak bersaing.

INTEGRAL TAK-WAJAR. bentuk tak-tentu karena bentuk ini saling membantu dan tidak bersaing. INTEGRAL TAK-WAJAR A. Tk Terhingg Seip ilngn sli merupkn ilngn erhingg dn dp menykn sesuu yng nykny erhingg. Arisoeles menykn hw ilngn sli n dp ernili seesr-esrny epi ep erhingg dn idk kn pernh sm dengn

Lebih terperinci

PERSAMAAN DAN PERTIDAKSAMAAN LOGARITMA

PERSAMAAN DAN PERTIDAKSAMAAN LOGARITMA K- Kels X mtemtik PEMINATAN PERSAMAAN DAN PERTIDAKSAMAAN LOGARITMA Tujun Pembeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi definisi persmn dn pertidksmn logritm.. Dpt

Lebih terperinci

BAB: PENERAPAN INTEGRAL Topik: Volume Benda Putar (Khusus Kalkulus 1)

BAB: PENERAPAN INTEGRAL Topik: Volume Benda Putar (Khusus Kalkulus 1) BAB: PENERAPAN INTEGRAL Topik: Volume Bend Putr (Khusus Klkulus ) Kompetensi yng diukur dlh kemmpun mhsisw menghitung volume bend putr dengn metode cincin, metode ckrm, tu metode kulit tbung.. UAS Klkulus,

Lebih terperinci

MATERI I : VEKTOR. Pertemuan-01

MATERI I : VEKTOR. Pertemuan-01 MATERI I : VEKTOR Pertemun-0. Pendhulun Definisi Vektor didefinisikn segi esrn yng memiliki rh. Keeptn, gy dn pergesern merupkn ontoh ontoh dri vektor kren semuny memiliki esr dn rh wlupun untuk keeptn

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Anlisis Rel Hendr Gunwn* *http://hgunwn82.wordpress.com Anlysis nd Geometry Group Bndung Institute of Technology Bndung, INDONESIA Progrm Studi S1 Mtemtik ITB, Semester II 2016/2017 HG* (*ITB Bndung)

Lebih terperinci

SUKU BANYAK ( POLINOM)

SUKU BANYAK ( POLINOM) SUKU BANYAK ( POLINOM) B 15 A. PENGERTIAN SUKU BANYAK. Bentuk 1 0 x x x x x, dengn 0 dn n { il. cch } n diseut dengn Suku nyk (Polinomil) dlm x erderjt n ( n dlh pngkt tertinggi dri x),,,., diseut keofisien

Lebih terperinci

Relasi Ekuivalensi dan Automata Minimal

Relasi Ekuivalensi dan Automata Minimal Relsi Ekuivlensi dn Automt Miniml Teori Bhs dn Automt Semester Gnjil 01 Jum t, 1.11.01 Dosen pengsuh: Kurni Sputr ST, M.Sc Emil: kurni.sputr@gmil.com Jurusn Informtik Fkults Mtemtik dn Ilmu Pengethun Alm

Lebih terperinci

E-LEARNING MATEMATIKA

E-LEARNING MATEMATIKA MODUL E-LEARNING E-LEARNING MATEMATIKA Oleh : NURYADIN EKO RAHARJO, M.PD. NIP. 9705 00 00 Penulisn Modul e Lerning ini diiyi oleh dn DIPA BLU UNY TA 00 Sesui dengn Surt Perjnjin Pelksnn e Lerning Nomor

Lebih terperinci

Penyelesaian Persamaan Kuadrat 1. Rumus abc Rumus menentukan akar persamaan kuadrat ax 2 bx c 0; a, b, c R dan a 0

Penyelesaian Persamaan Kuadrat 1. Rumus abc Rumus menentukan akar persamaan kuadrat ax 2 bx c 0; a, b, c R dan a 0 PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT PERSAMAAN KUADRAT Bentuk umum persmn kudrt dlh c 0,,,c R, 0 Penyelesin Persmn Kudrt. Rumus c Rumus menentukn kr persmn kudrt c 0;,, c R dn 0, = ± 4c. Memfktorkn

Lebih terperinci

THEOREMA SISA, THEOREMA FAKTOR BENTUK POLINUM. Prepared by: Romli Shodikin, M.Pd sabtu., 23 November 2013 Pertemuan 7

THEOREMA SISA, THEOREMA FAKTOR BENTUK POLINUM. Prepared by: Romli Shodikin, M.Pd sabtu., 23 November 2013 Pertemuan 7 THEOREMA SISA, THEOREMA FAKTOR BENTUK POLINUM Prepred y: Romli Shodikin, M.Pd stu., 3 Novemer 013 Pertemun 7 TEOREMA SISA dn TEOREMA FAKTOR Teorem Sis untuk Pemgin Bentuk Liner Teorem Sis : 1.Jik sutu

Lebih terperinci

Solusi Pengayaan Matematika

Solusi Pengayaan Matematika Solusi Pengn Mtemtik Edisi pril Pekn Ke-, 00 Nomor Sol: -0 Tentukn bnk psngn bilngn rel, ng memenuhi persmn ot ot Solusi: ot ot tnπ otπ π tnπ tn π π π π k π k 00 k 00 k k 00 k k 00 k k 00 k k 00 Kren k

Lebih terperinci

MATRIKS Definisi: Matriks Susunan persegi panjang dari bilangan-bilangan yang diatur dalam baris dan kolom. Matriks ditulis sebagai berikut (1)...

MATRIKS Definisi: Matriks Susunan persegi panjang dari bilangan-bilangan yang diatur dalam baris dan kolom. Matriks ditulis sebagai berikut (1)... MATRIKS Definisi: Mtriks Susunn persegi pnjng dri ilngn-ilngn yng ditur dlm ris dn kolom. Mtriks ditulis segi erikut ()... m... m... n... n......... mn Susunn dits diseut mtriks m x n kren memiliki m ris

Lebih terperinci

Integral Kompleks (Bagian Kesatu)

Integral Kompleks (Bagian Kesatu) Integrl Kompleks (Bgin Kestu) Supm Jurusn Mtemtik, FMIPA UGM Yogykrt 55281, INDONESIA Emil:mspomo@yhoo.com, supm@ugm.c.id (Pertemun Minggu XI) Outline 1 Fungsi Bernili Kompleks 2 Lintsn tu Kontur 3 Integrl

Lebih terperinci

7. Ruang L 2 (a, b) f(x) 2 dx < }.

7. Ruang L 2 (a, b) f(x) 2 dx < }. 7. Rung L (, b) Rung L (, b) didefinisikn sebgi rung semu fungsi f yng kudrtny terintegrlkn pd [, b], ykni L (, b) := {f : b f(x) dx < }. Rung ini menckup fungsi-fungsi f yng tk terbts pd [, b] tetpi f

Lebih terperinci

PEMBAHASAN. A. Teorema Pythagoras 1. Luas persegi dan luas segitiga siku-siku Perhatikan Gambar 1! D. Gambar 1

PEMBAHASAN. A. Teorema Pythagoras 1. Luas persegi dan luas segitiga siku-siku Perhatikan Gambar 1! D. Gambar 1 PEMBAHASAN A. Teorem Pythgors 1. Lus persegi dn lus segitig siku-siku Perhtikn Gmr 1! D s A s B Gmr 1 Pd gmr terseut tmpk seuh persegi ABD yng pnjng sisiny s stun pnjng. Lus persegi ABD = sisi sisi L =

Lebih terperinci

1 Sifat Penambahan Selang

1 Sifat Penambahan Selang BAB : INTEGRAL TOPIK: Sift-sift Integrl Tentu Kometensi yng iukur lh kemmun mhsisw menyelesikn integrl tentu engn menggunkn sift-sift integrl tentu. Sift Penmbhn Selng. UAS Klkulus, Semester Penek 4 no.

Lebih terperinci

Integral Agus Yodi Gunawan

Integral Agus Yodi Gunawan Integrl Agus Yodi Gunwn Teknik pengintegrln.. Metode substitusi pd integrl tk tentu. Mislkn g() sutu fungsi yng terdiferensilkn. Mislkn pul F () merupkn ntiturunn dri fungsi f(). Jik u = g(), mk f(g())g

Lebih terperinci

12. LUAS DAERAH DAN INTEGRAL

12. LUAS DAERAH DAN INTEGRAL 12. LUAS DAERAH DAN INTEGRAL 12.1 Lus Derh di Bwh Kurv Mslh menentukn lus derh (dn volume rung) telh dipeljri sejk er Pythgors dn Zeno, pd thun 500-n SM. Konsep integrl (yng terkit ert dengn lus derh)

Lebih terperinci

14. SIFAT-SIFAT INTEGRAL RIEMANN

14. SIFAT-SIFAT INTEGRAL RIEMANN 4. SIFAT-SIFAT INTEGRAL RIEMANN 4. Sift-sift Dsr Integrl Riemnn Pd bb ini kit kn mempeljri sift-sift dsr integrl Riemnn. Sift pertm dlh sift kelinern, yng dinytkn dlm Proposisi. Sepnjng bb ini, I menytkn

Lebih terperinci

Hendra Gunawan. 15 November 2013

Hendra Gunawan. 15 November 2013 MA1101 MATEMATIKA 1A Hendr Gunwn Semester I, 2013/2014 15 Novemer 2013 Ltihn 1. Pnjng lmi sutu pegs dlh 0.08 m. Gy seesr 0.6 N diperlukn untuk menekn dn menhnny pd pnjng 0.07 m. Tentukn kerjyng dilkukn

Lebih terperinci

kimia LARUTAN PENYANGGA K e l a s Kurikulum 2013 A. Pengenalan Larutan Penyangga dan Penggunaannya

kimia LARUTAN PENYANGGA K e l a s Kurikulum 2013 A. Pengenalan Larutan Penyangga dan Penggunaannya Kurikulum 2013 kimi K e l s XI LARUTAN PENYANGGA Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi pengertin lrutn penyngg dn penggunnny dlm kehidupn sehri-hri.

Lebih terperinci