Integral Kompleks (Bagian Kesatu)

Ukuran: px
Mulai penontonan dengan halaman:

Download "Integral Kompleks (Bagian Kesatu)"

Transkripsi

1 Integrl Kompleks (Bgin Kestu) Supm Jurusn Mtemtik, FMIPA UGM Yogykrt 55281, INDONESIA (Pertemun Minggu XI)

2 Outline 1 Fungsi Bernili Kompleks 2 Lintsn tu Kontur 3 Integrl Kontur

3 Fungsi bernili kompleks Terlebih dhulu kn diperkenlkn derivtif dn integrl tertentu fungsi bernili kompleks yng didefinisikn pd sutu derh definisi di dlm sistem bilngn rel R. Diberikn fungsi bernili kompleks w(t) = u(t) + iv(t) dengn t vribel rel. Turunn w, ditulis w (t) tu dw(t) dt w (t) = u (t) + iv (t) slkn u (t) dn v (t) d untuk setip t. didefinisikn sebgi

4 Fungsi bernili kompleks Dri definisi tersebut, dpt diturunkn sift-sift derivtif fungsi bernili kompleks. Theorem Jik dw 1(t) dt dn dw 2(t) dt d, mk d(w 1(t)+w 2 (t)) dt d(w 1 (t) + w 2 (t)) dt = dw 1(t) dt dn + dw 2(t) dt

5 Fungsi bernili kompleks Theorem Diberikn fungsi bernili kompleks w(t) = u(t) + iv(t). Jik w (t) d, mk untuk sebrng z 0 C, d(z 0w(t)) dt d dn d(z 0 w(t)) dt dw(t) = z 0. dt Theorem Untuk sebrng z 0 C, d(ez 0 t ) dt d dn d(e z 0t ) dt = z 0 e z 0t.

6 Fungsi bernili kompleks Perlu diperhtikn, meskipun turunn fungsi bernili kompleks diturunkn dri definisi fungsi bernili rel, nmun ternyt tidk semu sift yng berlku untuk turunn fungsi bernili rel bis dibw ke fungsi bernili kompleks. Sebgi contoh, diperhtikn fungsi w(t) = e it, 0 t 2π (1) Fungsi tersebut kontinu pd [0, 2π], mempunyi turunn w (t) = ie it pd (0, 2π), dn w(0) = w(2π). Akn tetpi w (t) 0 untuk semu 0 < t < 2π. Jdi, di sini tidk berlku Teorem Nili Rt-rt, khususny Teorem Rolle.

7 Fungsi bernili kompleks Diberikn w(t) = u(t) + iv(t), t [, b]. Integrl tk tentu dri w(t) pd [, b] dlh fungsi W (t) yng terdefinisi pd [, b] sehingg W (t) = w(t) untuk setip t [, b]. Mudh ditunjukkn bhw pbil W (t) dn H(t) keduny merupkn integrl tk tentu dri w(t) pd [, b], mk W (t) H(t) merupkn fungsi konstn pd [, b]. Jdi, sebgimn berlku pd fungsi bernili rel, jik U(t) dn V (t) msing-msing dlh sutu ntiderivtif (integrl tk tentu) dri u(t) dn v(t) pd [, b], mk inetgrl tk tentu dri w(t) pd [, b] dlh W (t) = w(t) = U(t) + iv (t) + K, (2) dengn K sebrng konstnt kompleks.

8 Fungsi bernili kompleks Untuk sebrng fungsi w(t), t [b], integrl tertentu w pd [, b] didefinisikn sebgi b w(t)dt = b u(t)dt + i b slkn integrl di rus knn keduny d. Jdi, v(t)dt (3) b Re{ Im{ b w(t)dt} = w(t)dt} = b b Re(w(t))dt dn (4) Im(w(t))dt (5)

9 Fungsi bernili kompleks Selnjutny mudh ditunjukkn sift-sift integrl tertentu sebgimn diberikn dlm teorem berikut. Theorem Jik b w(t)dt dn b h(t)dt keduny d dn c C sebrng konstnt kompleks, mk (i) b (w(t) + h(t))dt = b w(t)dt + b h(t)dt, (ii) b cw(t)dt = c b w(t)dt, dn (iii) b w(t)dt = c w(t)dt + b c w(t)dt untuk setip < c < b. Seperti hlny di dlm klkulus, untuk integrl fungsi bernili kompleks jug berlku teorem fundmentl integrl.

10 Contoh Exmple Tentukn 1 0 (2t 3it2 )dt. Penyelesin: Kren (2t 3it 2 )dt = t 2 it 3 + K, mk 1 0 (2t 3it 2 )dt = [t 2 it 3 ] 1 0 = 1 i.

11 Fungsi bernili kompleks Theorem Jik w(t) terintegrl pd [, b], mk w(t) terintegrl pd [, b] dn b b w(t)dt w(t) dt (6) Integrl tk wjr fungsi bernili kompleks didefinisikn sejln dengn definisi integrl tk wjr fungsi bernili rel sebgimn telh diberikn pd mt kulih klkulus.

12 Lintsn tu Kontur Seperti telh dikethui, integrl fungsi bernili rel dengn vribel rel didefinisikn pd sutu intervl di mn fungsi tersebut terdefinisi. Hl itu tk bis dilkukn untuk fungsi bernili kompleks dengn vribel kompleks, mengingt di dlm C tidk dikenl dny urutn sebgimn di R. Mengingt hl itu, integrl fungsi kompleks dengn vribel kompleks kn didefinisikn pd sutu kurv di dlm bidng dtr. Pd bgin ini, kn dibicrkn kelurg kurv-kurv di dlm bidng dtr yng nntiny kn digunkn untuk mendefinisikn integrl fungsi bernili kompleks dengn vribel kompleks.

13 Lintsn tu Kontur Diberikn fungsi-fungsi kontinu g dn h yng terdefinisi pd [, b]. Himpunn semu titik z = (x, y) di dlm bidng kompleks sehingg x = g(t) dn y = h(t), t [, b] disebut rc tu kurv. Secr umum, sutu kurv tu rc C dpt pul dirumuskn sebgi z = z(t) = x(t) + iy(t), t b dengn x dn y msing-msing fungsi kontinu pd [, b].

14 Lintsn tu Kontur Kurv C disebut kurv sederhn jik C tidk memotong diriny sendiri, yitu pbil z(t 1 ) z(t 2 ) untuk setip t 1 t 2. Jik kurv C sederhn keculi pd kedu ujungny (z() = z(b)), mk C dinmkn kurv tertutup sederhn tu kurv Jordn.

15 Contoh Exmple Poligonl dlh kurv sederhn. Exmple t, 0 t 1 z = 1 + it, 0 t 1 Lingkrn z = 2e it, 0 θ 2π dlh kurv tertutup sederhn.

16 Lintsn tu Kontur Diberikn kurv z = x(t) + iy(t), t b dengn x (t) dn y (t) keduny d pd [, b]. Kurv z = x(t) + iy(t), t b sehingg x (t) dn y (t) keduny d pd [, b] disebut kurv diferensibel. Turunn dri z(t) dlh z (t) = x (t) + y (t) Selnjutny, kren x (t) dn y (t) terintegrl pd [, b], mk demikin pul dengn z (t) dn b z (t) dt = b (x (t)) 2 + (y (t)) 2, (7) yitu pnjng kurv z sebgimn diberikn di klkulus.

17 Lintsn tu Kontur Sutu kurv z = z(t), t b, diktkn mulus (smooth) jik z (t) d untuk setip t [, b] dn bernili tidk nol pd (, b). Sejumlh berhingg kurv mulus sehingg ujung sutu kurv bertutn dengn ujung kurv berikutny disebut kontur (contour). Sutu kontur C disebut kontur tertutup sederhn jik titik wl dn titik khir C sm tu berimpit.

18 Integrl Kontur Pd bgin ini kn dibicrkn integrl fungsi bernili kompleks yng terdefinisi untuk vribel kompleks. Integrl tersebut didefinisikn di sepnjng sutu kontur C, muli dri z = z 1 smpi z = z 2 di bidng kompleks. Jdi, integrl yng dimksud sesungguhny merupkn integrl gris. Nili integrl tergntung tidk hny pd fungsi f, nmun jug pd kontur C.

19 Integrl Kontur Diberikn fungsi kompleks f dn kontur C dri z 1 ke z 2 di dlm bidng kompleks. Integrl lintsn f pd C ditulis dengn notsi C f (z)dz. Secr umum, nili integrl ini selin bergntung pd f jug bergntung pd lintsn C. Apbil nili integrl tidk bergntung pd C, mk dituliskn z2 z 1 f (z)dz

20 Diberikn kontur C dengn representsi z = z(t), t b yng memnjng dri z 1 = z() smpi dengn z 2 = z(b). Untuk sebrng fungsi f (z) yng kontinu sepotong-sepotong pd C, yitu pbil f (z) kontinu pd C keculi di sebnyk berhingg titik pd C, integrl kontur f sepnjng kontur C didefinisikn sebgi b f (z)dz = f (z(t))z (t)dt (8) C Untuk sebrng kontur C dengn representsi z = z(t), t b kontur C didefinisikn sebgi sutu kontur yng memut titik sebgimn titik-titik pd C nmun dengn rh yng berlwnn, dri z 2 smpi z 1.

21 Integrl Kontur Selnjutny, dpt ditunjukkn beberp teorem berikut. Theorem Diberikn kontur C dengn representsi z = z(t), t b yng memnjng dri z 1 = z() smpi dengn z 2 = z(b). Jik f (z) sebrng fungsi yng kontinu sepotong-sepotong pd C, mk f (z)dz = f (z)dz C C

22 Integrl Kontur Theorem Diberikn kontur C yng terdiri ts kontur C 1 dri z 1 smpi z 2 dn kontur C 2 dri z 2 smpi z 3. Kontur C yng demikin bis ditulis sebgi C = C 1 + C 2. Jik f kontinu sepotong-sepotong pd C, mk f (z)dz = C f (z)dz + C 1 f (z)dz C 2

23 Integrl Kontur Theorem Jik f dn g keduny kontinu sepotong-sepotong pd sutu kontur C dn z 0 sebrng konstnt kompleks, mk (f (z) + g(z))dz = f (z)dz + g(z)dz C C C dn z 0 f (z)dz = z 0 C C f (z)dz

24 Contoh Exmple Jik C dlh kontur yng terdiri ts penggl gris C 1 dri z = 0 smpi z = 1 dn penggl C 2 dri z = 1 smpi z = i, mk hitunglh ((x + 2y) 3ixy)dz C

25 Integrl Kontur Theorem Diberikn fungsi kompleks f yng kontinu sepotong-sepotong pd sutu kontur C. Jik terdpt M > 0 sehingg f (z) M untuk setip z C, mk f (z)dz ML C dengn L menytkn pnjng kontur tu lintsn C. Bukti: Dengn memperhtikn (7), mk teorem terbukti.

26 Integrl Kontur Exmple Jik C dlh kontur berbentuk setengh lingkrn z = 4e iθ dri z = 4 smpi z = 4, mk tunjukkn bhw z 16π dz z C Bukti: Mudh dimengerti bhw pnjng kontur C dlh L = 4π. Selnjutny, kren untuk semu z C berlku z z + 1 z z 1 = 4 3, mk z C z + 1 dz (4 16π )(4π) = 3 3.

(1) Pertemuan I: Fungsi bernilai kompleks, lintasan, dan integral lintasan. (2) Pertemuan II: Antiderivatif dan Teorema Cauchy-Goursat.

(1) Pertemuan I: Fungsi bernilai kompleks, lintasan, dan integral lintasan. (2) Pertemuan II: Antiderivatif dan Teorema Cauchy-Goursat. Bb 4 Integrl Bb 4 ini direncnkn kn dismpikn dlm 4 kli pertemun, dengn perincin sebgi berikut: (1) Pertemun I: Fungsi bernili kompleks, lintsn, dn integrl lintsn. (2) Pertemun II: Antiderivtif dn Teorem

Lebih terperinci

Integral Tak Wajar. Ayundyah Kesumawati. March 25, Prodi Statistika FMIPA-UII

Integral Tak Wajar. Ayundyah Kesumawati. March 25, Prodi Statistika FMIPA-UII Kesumwti Prodi Sttistik FMIPA-UII Mrch 25, 205 Sutu integrl tertentu b f (x)dx () diktkn wjr jik i memenuhi du syrt berikut: i. Bts integrsi dn b merupkn bilngn berhingg ii. fungsi f (x) terbts pd intervl

Lebih terperinci

12. LUAS DAERAH DAN INTEGRAL

12. LUAS DAERAH DAN INTEGRAL 12. LUAS DAERAH DAN INTEGRAL 12.1 Lus Derh di Bwh Kurv Mslh menentukn lus derh (dn volume rung) telh dipeljri sejk er Pythgors dn Zeno, pd thun 500-n SM. Konsep integrl (yng terkit ert dengn lus derh)

Lebih terperinci

LIMIT FUNGSI DAN KEKONTINUAN

LIMIT FUNGSI DAN KEKONTINUAN LIMIT FUNGSI DAN KEKONTINUAN RANGKUMAN MATERI Sebelum memsuki mteri, perhtikn himpunn-himpunn berikut: ) Himpunn bilngn sli:,,,4,5,.... b) Himpunn bilngn bult:...,,,0,,,.... p c) Himpunn bilngn rsionl:

Lebih terperinci

SISTEM BILANGAN REAL. 1. Sifat Aljabar Bilangan Real

SISTEM BILANGAN REAL. 1. Sifat Aljabar Bilangan Real SISTEM BILANGAN REAL Dlm terminologi Aljbr Abstrk, sistem bilngn rel disebut dengn field (lpngn) pd opersi penjumlhn dn perklin. Sutu opersi biner bis ditulis dengn sutu psngn terurut (, b) yng unik dri

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Anlisis Rel Hendr Gunwn* *http://hgunwn82.wordpress.com Anlysis nd Geometry Group Bndung Institute of Technology Bndung, INDONESIA Progrm Studi S1 Mtemtik ITB, Semester II 2016/2017 HG* (*ITB Bndung)

Lebih terperinci

15. INTEGRAL SEBAGAI LIMIT

15. INTEGRAL SEBAGAI LIMIT 15. INTEGRAL SEBAGAI LIMIT 15.1 Jumlh Riemnn Dlm kulih Klkulus pd thun pertm, integrl Riemnn bisny diperkenlkn sebgi limit dri jumlh Riemnn, tidk mellui integrl Riemnn ts dn integrl Riemnn bwh. Hl ini

Lebih terperinci

6. Himpunan Fungsi Ortogonal

6. Himpunan Fungsi Ortogonal 6. Himpunn Fungsi Ortogonl Mislkn f periodik dengn periode, dn mulus bgin demi bgin pd [ π, π]. Jik S f N (θ) = N n= N c ne inθ, n =,, 2,..., dlh jumlh prsil dri deret Fourier f, mk kit telh menunjukkn

Lebih terperinci

GEOMETRI PADA BIDANG: VEKTOR

GEOMETRI PADA BIDANG: VEKTOR GEOMETRI PADA BIDANG: VEKTOR A. Kurv Bidng: Representsi Prmetrik Sutu kurv bidng ditentukn oleh sepsng persmn prmetrik: x f () t, y f () t t dlm intervl I dengn f dn g kontinu pd intervl I. Secr umum,

Lebih terperinci

Teorema Dasar Integral Garis

Teorema Dasar Integral Garis ISBN: 978-979-79-55-9 Teorem Dsr Integrl Gris Erdwti Nurdin Progrm Studi Pendidikn Mtemtik FKIP UIR d_1910@yhoo.com Abstrk Slh stu generlissi integrl tentu (definite integrl) f x dx diperoleh dengn menggnti

Lebih terperinci

7. Ruang L 2 (a, b) f(x) 2 dx < }.

7. Ruang L 2 (a, b) f(x) 2 dx < }. 7. Rung L (, b) Rung L (, b) didefinisikn sebgi rung semu fungsi f yng kudrtny terintegrlkn pd [, b], ykni L (, b) := {f : b f(x) dx < }. Rung ini menckup fungsi-fungsi f yng tk terbts pd [, b] tetpi f

Lebih terperinci

14. SIFAT-SIFAT INTEGRAL RIEMANN

14. SIFAT-SIFAT INTEGRAL RIEMANN 4. SIFAT-SIFAT INTEGRAL RIEMANN 4. Sift-sift Dsr Integrl Riemnn Pd bb ini kit kn mempeljri sift-sift dsr integrl Riemnn. Sift pertm dlh sift kelinern, yng dinytkn dlm Proposisi. Sepnjng bb ini, I menytkn

Lebih terperinci

INTEGRAL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 45

INTEGRAL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 45 INTEGRAL Deprtemen Mtemtik FMIPA IPB Bogor, 2012 (Deprtemen Mtemtik FMIPA IPB) Klkulus I Bogor, 2012 1 / 45 Topik Bhsn 1 Pendhulun 2 Anti-turunn 3 Lus di Bwh Kurv 4 Integrl Tentu 5 Teorem Dsr Klkulus 6

Lebih terperinci

BAB 7. LIMIT DAN LAJU PERUBAHAN

BAB 7. LIMIT DAN LAJU PERUBAHAN BAB 7. LIMIT DAN LAJU PERUBAHAN 7. LIMIT FUNGSI 7.. Limit fungsi di sutu titik Menggmbrkn perilku fungsi jik peubhn mendekti sutu titik Illustrsi: Dikethui f( ) f(), 3,30,0 3,030,00 3,003 3 f() = f() 3,000?

Lebih terperinci

CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. 3. Untuk k 2 didefinisikan bahwa a

CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. 3. Untuk k 2 didefinisikan bahwa a CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. Dikethui bhw,. Untuk k didefinisikn bhw k k k. Tentukn jumlh tk hingg dri. Kit mislkn S S. Dengn demikin kit dpt menuliskn Kedu

Lebih terperinci

r x = 0. Koefisien-koefisien persamaan yang dihasilkan adalah analitik pada x = 0. Jadi dapat kita gunakan metode deret pangkat.

r x = 0. Koefisien-koefisien persamaan yang dihasilkan adalah analitik pada x = 0. Jadi dapat kita gunakan metode deret pangkat. Husn Arifh,M.Sc : Persmn Legendre Emil : husnrifh@uny.c.id Persmn diferensil Legendre (1) 1 x 2 y 2xy + n n + 1 y = 0 Prmeter n pd (1) dlh bilngn rill yng diberikn. Setip penyelesin dri (1) dinmkn fungsi

Lebih terperinci

Bab a. maka notasi determinan dari matriks A ditulis : det (A) atau. atau A.

Bab a. maka notasi determinan dari matriks A ditulis : det (A) atau. atau A. Bb DETERMINAN MATRIKS Determinn sutu mtriks dlh sutu fungsi sklr dengn domin mtriks bujur sngkr. Dengn kt lin, determinn merupkn pemetn dengn domin berup mtriks bujur sngkr, sementr kodomin berup sutu

Lebih terperinci

FUNGSI TRANSENDEN. Definisi 1 Fungsi logaritma natural, ditulis sebagai ln, didefenisikan dengan

FUNGSI TRANSENDEN. Definisi 1 Fungsi logaritma natural, ditulis sebagai ln, didefenisikan dengan 2 FUNGSI TRANSENDEN Fungsi trnsenen tu fungsi non-ljbr lh fungsi yng tik pt inytkn lm sejumlh berhingg opersi ljbr. Fungsi trnsenen yng bis ijumpi lm hl ini teriri ri fungsi eksponensil, fungsi logritmik,

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Anlisis Rel Hendr Gunwn* *http://hgunwn82.wordpress.com Anlysis nd Geometry Group Bndung Institute of Technology Bndung, INDONESIA Progrm Studi S1 Mtemtik ITB, Semester II 2016/2017 HG* (*ITB Bndung)

Lebih terperinci

didefinisikan sebagai bilangan yang dapat ditulis dengan b

didefinisikan sebagai bilangan yang dapat ditulis dengan b 1 PENDAHULUAN 1.1 Sistem Bilngn Rel Untuk mempeljri klkulus perlu memhmi hsn tentng system ilngn rel, kren klkulus didsrkn pd system ilngn rel dn siftsiftny. Sistem ilngn yng pling sederhn dlh ilngn sli,

Lebih terperinci

LIMIT FUNGSI. DEFINISI Notasi. dibaca. limit f(x) bila x mendekati a sama dengan L. atau. f(x) mendekati L bila x mendekati a.

LIMIT FUNGSI. DEFINISI Notasi. dibaca. limit f(x) bila x mendekati a sama dengan L. atau. f(x) mendekati L bila x mendekati a. DEFINISI Notsi dibc tu berrti bhw IMIT FUNGSI it bil mendekti sm dengn mendekti bil mendekti nili dpt dibut sedekt mungkin dengn bil cukup dekt dengn, tetpi tidk sm dengn. Perhtikn bhw dlm deinisi tersebut

Lebih terperinci

Minggu ke 6 LIMIT FUNGSI (LIMITS OF FINCTIONS) 2,1, 2,01, 2,001, 2,0001,, 2 + 1/10 n maka :

Minggu ke 6 LIMIT FUNGSI (LIMITS OF FINCTIONS) 2,1, 2,01, 2,001, 2,0001,, 2 + 1/10 n maka : Minggu ke 6 Modul Mtemtik LIMIT FUNGSI LIMITS OF FINCTIONS). BRISN SEQUENCES) VS. LIMIT FUNGSI LIMITS OF FUNCTIONS) Contoh : Sequence : fn) = + / n,,,,,,,,, + / n mk : Limit dri fungsi f) =, dimn vribel

Lebih terperinci

Skew- Semifield dan Beberapa Sifatnya 1

Skew- Semifield dan Beberapa Sifatnya 1 Skew- Semifield dn Beberp Siftny K r y t i Jurusn Pendidikn Mtemtik Fkults Mtemtik dn Ilmu Pengethun Alm Universits Negeri Yogykrt E-mil: ytiuny@yhoo.com Abstrk Sutu field ( lpngn ) F dlh struktur ljbr

Lebih terperinci

INTEGRAL TAK TENTU. x x x

INTEGRAL TAK TENTU. x x x INTEGRAL TAK TENTU Definisi : Fungsi F diktkn nti turunn dri fungsi f pd selng I jik F () = f() untuk semu di I. Notsi : F() = f() Integrl tk tentu dlh Anti/Invers/Kelikn turunn. c c Integrl tk tentu dlh

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Bb berikut ini kn disjikn mteri pendukung yng dpt membntu penulis untuk menyelesikn permslhn yng kn dibhs pd bb selnjutny. Adpun mteri pendukungny dlh pengertin mtriks, jenis-jenis

Lebih terperinci

Kerjakan di buku tugas. Tentukan hasil operasi berikut. a. A 2 d. (A B) (A + B) b. B 2 e. A (B + B t ) c. A B f. A t (A t + B t ) Tes Mandiri

Kerjakan di buku tugas. Tentukan hasil operasi berikut. a. A 2 d. (A B) (A + B) b. B 2 e. A (B + B t ) c. A B f. A t (A t + B t ) Tes Mandiri Mmt Apliksi SMA Bhs Dikethui A = Tentukn hsil opersi berikut A c A A b A A d A Dikethui A = Tentukn hsil opersi berikut (A + B) c (B A) b A + AB + B d B BA + A Sol Terbuk Kerjkn di buku tugs Jik X = dn

Lebih terperinci

PERSAMAAN DAN PERTIDAKSAMAAN LOGARITMA

PERSAMAAN DAN PERTIDAKSAMAAN LOGARITMA K- Kels X mtemtik PEMINATAN PERSAMAAN DAN PERTIDAKSAMAAN LOGARITMA Tujun Pembeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi definisi persmn dn pertidksmn logritm.. Dpt

Lebih terperinci

LUAS DAERAH APLIKASI INTEGRAL TENTU. Indikator Pencapaian Hasil Belajar. Ringkasan Materi Perkuliahan

LUAS DAERAH APLIKASI INTEGRAL TENTU. Indikator Pencapaian Hasil Belajar. Ringkasan Materi Perkuliahan LUAS DAERAH APLIKASI INTEGRAL TENTU Indiktor Pencpin Hsil Beljr Mhsisw menunjukkn kemmpun dlm :. Menghitung lus pd idng dtr Ringksn Mteri Perkulihn Jik sutu derh ditsi oleh kurv f(), g(), gris dn dengn

Lebih terperinci

INTEGRAL FOURIER KED. Diasumsikan syarat-syarat berikut pada f(x): 1. f x memenuhi syarat Dirichlet pada setiap interval terhingga L, L.

INTEGRAL FOURIER KED. Diasumsikan syarat-syarat berikut pada f(x): 1. f x memenuhi syarat Dirichlet pada setiap interval terhingga L, L. INTEGRAL FOURIER Disumsikn syrt-syrt berikut pd f(x):. f x memenuhi syrt Dirichlet pd setip intervl terhingg L, L.. f x dx konvergen, yitu f(x) dpt diintegrsikn secr mutlk dlm (, ). Selnjutny, Teorem integrl

Lebih terperinci

VEKTOR. 1. Pengertian Vektor adalah besaran yang memiliki besar (nilai) dan arah. Vektor merupakan sebuah ruas garis yang

VEKTOR. 1. Pengertian Vektor adalah besaran yang memiliki besar (nilai) dan arah. Vektor merupakan sebuah ruas garis yang VEKTOR 1. Pengertin Vektor dlh besrn yng memiliki besr (nili dn rh. Vektor merupkn sebuh rus gris yng P berrh dn memiliki pnjng. Pnjng rus gris tersebut dlh pnjng vektor. Rus gris dri titik P dn berujung

Lebih terperinci

BAB IV INTEGRAL. 30. FUNGSI BERNILAI KOMPLEKS w(t)

BAB IV INTEGRAL. 30. FUNGSI BERNILAI KOMPLEKS w(t) BAB IV INTEGRAL Integrl dlh sngt penting dlm mempeljri fungsi ernili kompleks Teori integrl yng kn dikemngkn dlm ini dlh terkenl dlm mtemtik moderen Teorem-teorem yng disjikn umumny singkt dn pdt sert

Lebih terperinci

VEKTOR. Adri Priadana. ilkomadri.com

VEKTOR. Adri Priadana. ilkomadri.com VEKTOR Adri Pridn ilkomdri.com Pengertin Dlm Fisik dikenl du buh besrn, yitu 1. Besrn Sklr. Besrn Vektor Pengertin Besrn Sklr dlh sutu besrn yng hny mempunyi nili dn dinytkn dengn sutu bilngn tunggl diserti

Lebih terperinci

Deret Fourier. (Pertemuan X) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

Deret Fourier. (Pertemuan X) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya TKS 47 Mtemtik III Deret Fourier (Pertemun X) Dr. AZ Jurusn Teknik Sipil Fkults Teknik Universits Brwijy Pendhulun Deret Fourier ditemukn oleh ilmun Perncis, Jen Bptiste Joseph Fourier (768-83) yng menytkn

Lebih terperinci

BAB 1 PERSAMAAN DAN PERTIDAKSAMAAN. Standar Kompetensi Mahasiswa memahami konsep dasar sistem bilangan real (R)

BAB 1 PERSAMAAN DAN PERTIDAKSAMAAN. Standar Kompetensi Mahasiswa memahami konsep dasar sistem bilangan real (R) BAB PERSAMAAN DAN PERTIDAKSAMAAN Stndr Kompetensi Mhsisw memhmi konsep dsr sistem bilngn rel (R) sebgi semest untuk menentukn selesin persmn dn pertidksmn, dpt mengembngkn bentuk persmn dn pertidksmn yng

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer ljbr Liner Elementer M3 3 SKS Silbus : Bb I Mtriks dn Opersiny Bb II Determinn Mtriks Bb III Sistem Persmn Liner Bb IV Vektor di Bidng dn di Rung Bb V Rung Vektor Bb VI Rung Hsil Kli Dlm Bb VII Trnsformsi

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer ljbr Liner Elementer M SKS Silbus : Bb I Mtriks dn Opersiny Bb II Determinn Mtriks Bb III Sistem Persmn Liner Bb IV Vektor di Bidng dn di Rung Bb V Rung Vektor Bb VI Rung Hsil Kli Dlm Bb VII Trnsformsi

Lebih terperinci

DETERMINAN. Misalkan A adalah suatu matriks persegi. a) Jika A memiliki satu baris atau satu kolom bilangan nol, maka det(a) = 0.

DETERMINAN. Misalkan A adalah suatu matriks persegi. a) Jika A memiliki satu baris atau satu kolom bilangan nol, maka det(a) = 0. DETERMINAN Fungsi determinn dri sutu mtriks persegi A (dinotsikn dengn det(a) tu A ) didefinisikn sebgi jumlh dri semu hsil kli elementer bertnd dri A. Sementr, ngk tu bilngn dri det(a) disebut determinn

Lebih terperinci

Sudaryatno Sudirham. Studi Mandiri. Fungsi dan Grafik. Darpublic

Sudaryatno Sudirham. Studi Mandiri. Fungsi dan Grafik. Darpublic Sudrtno Sudirhm Studi Mndiri Fungsi dn Grfik Drpublic BAB 8 Fungsi Logritm turl, Eksponensil, Hiperbolik 8.. Fungsi Logrithm turl. Definisi. Logritm nturl dlh logritm dengn menggunkn bsis bilngn e. Bilngn

Lebih terperinci

INTEGRAL. Misalkan suatu fungsi f(x) diintegralkan terhadap x maka di tulis sebagai berikut:

INTEGRAL. Misalkan suatu fungsi f(x) diintegralkan terhadap x maka di tulis sebagai berikut: INTEGRAL.PENGERTIAN INTEGRAL Integrl dlh cr mencri sutu fungsi jik turunnn di kethui tu kelikn dri diferensil (turunn) ng diseut jug nti derivtif tu nti diferensil. Untuk menentukn integrl tidk semudh

Lebih terperinci

MODEL POTENSIAL 1 DIMENSI

MODEL POTENSIAL 1 DIMENSI MODEL POTENSIAL 1 DIMENSI 1. Sumur Potensil Tk Berhingg Kit tinju prtikel bermss m dengn energi positif, berd dlm sumur potensil stu dimensi dengn dinding potensil tk berhingg dn potensil didlmny nol,

Lebih terperinci

Aljabar Linear. Pertemuan 12_14 Aljabar Vektor (Perkalian vektor)

Aljabar Linear. Pertemuan 12_14 Aljabar Vektor (Perkalian vektor) Aljbr Liner Pertemun 12_14 Aljbr Vektor (Perklin vektor) Pembhsn Perklin vektor dengn sklr Rung vektor Perklin Vektor dengn Vektor: Dot Product - Model dot product - Sift dot product Pendhulun Penmbhn

Lebih terperinci

3. LIMIT DAN KEKONTINUAN

3. LIMIT DAN KEKONTINUAN 3. LIMIT DAN KEKONTINUAN 1 3.1 Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi 1 1 Fungsi dits tidk terdeinisi di =1, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp

Lebih terperinci

Hendra Gunawan. 30 Oktober 2013

Hendra Gunawan. 30 Oktober 2013 MA MATEMATIKA A Hendr Gunwn Semester I, 2/24 Oktoer 2 Ltihn. Fungsi g =,, terintegrlkn pd [, ]. Nytkn integrl tentu g pd [, ] segi limit jumlh Riemnn dengn prtisi reguler, dn hitunglh niliny. //2 c Hendr

Lebih terperinci

BAB: PENERAPAN INTEGRAL Topik: Volume Benda Putar (Khusus Kalkulus 1)

BAB: PENERAPAN INTEGRAL Topik: Volume Benda Putar (Khusus Kalkulus 1) BAB: PENERAPAN INTEGRAL Topik: Volume Bend Putr (Khusus Klkulus ) Kompetensi yng diukur dlh kemmpun mhsisw menghitung volume bend putr dengn metode cincin, metode ckrm, tu metode kulit tbung.. UAS Klkulus,

Lebih terperinci

3.1 Permutasi. Secara umum, bilangan-bilangan pada {1, 2,, n} akan mempunyai n! permutasi

3.1 Permutasi. Secara umum, bilangan-bilangan pada {1, 2,, n} akan mempunyai n! permutasi BB Determinn . Permutsi Definisi Permutsi: (i) Sutu permutsi dri bilngn-bilngn bult {,,,, n} dlh penyusunn bilngn-bilngn tersebut dengn urutn tnp pengulngn. (ii) Brisn bilngn ( j, j,.., j n ) dimn j i

Lebih terperinci

1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini:

1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini: ) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persmn kudrt dlh seperti di bwh ini: b c dengn, b, c bilngn dn riil Dimn, disebut sebgi koefisien dri b disebut sebgi koefisien dri c disebut

Lebih terperinci

PROSIDING ISBN : RUANG LINEAR BERNORMA CESS. Muslim Ansori

PROSIDING ISBN : RUANG LINEAR BERNORMA CESS. Muslim Ansori PROSIDING ISBN : 978 979 16353 3 RUANG LINEAR BERNORMA C (, L ([, b ] An-1 Muslim Ansori Jurusn Mtemtik FMIPA Universits Lmpung Almt : Jln. Soemtri Brodjonegoro No.1 Bndr Lmpung E-mil: nsomth@yhoo.com

Lebih terperinci

3. LIMIT DAN KEKONTINUAN. INF228 Kalkulus Dasar

3. LIMIT DAN KEKONTINUAN. INF228 Kalkulus Dasar . LIMIT DAN KEKONTINUAN INF8 Klkulus Dsr . Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di =, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn

Lebih terperinci

3. LIMIT DAN KEKONTINUAN

3. LIMIT DAN KEKONTINUAN . LIMIT DAN KEKONTINUAN . Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp nili jik mendekti

Lebih terperinci

Limit & Kontinuitas. Oleh: Hanung N. Prasetyo. Calculus/Hanung N. Prasetyo/Politeknik Telkom Bandung

Limit & Kontinuitas. Oleh: Hanung N. Prasetyo. Calculus/Hanung N. Prasetyo/Politeknik Telkom Bandung imit & Kontinuits Oleh: Hnung N. Prsetyo Clculus/Hnung N. Bb. IMIT.1. Du mslh undmentl klkulus... Gris Tngen.. Konsep imit.4. Teorem imit.5. Konsep kontinuits Clculus/Hnung N. Du Mslh Fundmentl Klkulus

Lebih terperinci

MENENTUKAN AKAR-AKAR PERSAMAAN PANGKAT EMPAT. Supriyono Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo.

MENENTUKAN AKAR-AKAR PERSAMAAN PANGKAT EMPAT. Supriyono Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo. MENENTUKAN AKAR-AKAR PERSAMAAN PANGKAT EMPAT Supriyono Jurusn Pendidikn Mtemtik FKIP Universits Muhmmdiyh Purworejo Abstrk Tulisn ini terdiri bgin yitu () bgin pendhulun yng membhs bentuk umum persmn pngkt

Lebih terperinci

RUANG VEKTOR (lanjut..)

RUANG VEKTOR (lanjut..) RUANG VEKTOR (Vector Spce) dn Rung Bgin (Subspce) 8/0/009 budi murtiys ums surkrt RUANG VEKTOR (VECTOR SPACE) Dikethui himpunn V dengn u, v, w V dn opersi i(+)b berlku dintr nggot-nggot t V. Dikethui Field

Lebih terperinci

RANGKUMAN MATERI ' maupun F(x) = Pengerjaan f(x) sehingga memperoleh F(x) + c disebut mengintegralkan f(x) ke x dengan notasi:

RANGKUMAN MATERI ' maupun F(x) = Pengerjaan f(x) sehingga memperoleh F(x) + c disebut mengintegralkan f(x) ke x dengan notasi: INTEGRAL RANGKUMAN MATERI A. ANTIDERIVATIF DAN INTEGRAL TAK TENTU Jik kit mengmil uku dri temptny mk kit dpt mengemliknny lgi ke tempt semul. Opersi yng kedu menghpus opersi yng pertm. Kit ktkn hw du opersi

Lebih terperinci

Sistem Persamaan Linear Bagian 1

Sistem Persamaan Linear Bagian 1 Sistem Persmn Liner Bgin. SISTEM PERSAMAAN LINEAR PENGANTAR Dlm bgin ini kn kit perkenlkn istilh dsr dn kit bhs sebuh metode untuk memechkn sistem-sistem persmn liner. Sebuh gris dlm bidng xy secr ljbr

Lebih terperinci

KALKULUS I Dr. Wuryansari Muharini Kusumawinahyu Program Sarjana Matematika Universitas Brawijaya

KALKULUS I Dr. Wuryansari Muharini Kusumawinahyu Program Sarjana Matematika Universitas Brawijaya KALKULUS I Dr. Wurnsri Muhrini Kusumwinhu Progrm Srjn Mtemtik Universits Brwij Deinisi: Mislkn A dn B dlh himpunn tk kosong. Fungsi dri A ke B dlh sutu ATURAN ng MEMADANKAN SETIAP ELEMEN di A dengn tept

Lebih terperinci

PROBLEM SOLVING TERKAIT DENGAN KELAS X SEMESTER 1 PADA STANDAR KOMPETENSI (SK) 1.

PROBLEM SOLVING TERKAIT DENGAN KELAS X SEMESTER 1 PADA STANDAR KOMPETENSI (SK) 1. PROLEM SOLVING TERKIT DENGN KELS X SEMESTER PD STNDR KOMPETENSI (SK). LJR Memechkn mslh yng berkitn dengn bentuk pngkt, kr, dn logritm Oleh: Sigit Tri Guntoro. Du orng berselisih mengeni bnykny psngn bilngn

Lebih terperinci

Vektor di R 2 dan R 3

Vektor di R 2 dan R 3 Vektor di R dn R Pengertin Vektor dlh besrn yng mempunyi besr dn rh Vektor digmbrkn oleh rus gris yng dilengkpi dengn nk pnh vektor dimuli dri titik wl (initil point) dn dikhiri oleh titik khir (terminl

Lebih terperinci

LIMIT DAN KONTINUITAS

LIMIT DAN KONTINUITAS LIMIT DAN KONTINUITAS Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di =, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp nili jik mendekti

Lebih terperinci

TURUNAN FUNGSI. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XI

TURUNAN FUNGSI. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XI LA - WB (Lembr Aktivits Wrg Beljr) TURUNAN FUNGSI Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XI Creted By It Yulin 33 Turunn Fungsi Kompetensi Dsr 1. Menggunkn

Lebih terperinci

M A T R I K S. Oleh: Dimas Rahadian AM, S.TP. M.Sc.

M A T R I K S. Oleh: Dimas Rahadian AM, S.TP. M.Sc. M T R I K S Oleh Dims Rhdin M, S.TP. M.Sc Emil rhdindims@yhoo.com JURUSN ILMU DN TEKNOLOGI PNGN UNIVERSITS SEBELS MRET SURKRT DEFINISI... Mtriks dlh susunn bilngn berbentuk jjrn segi empt siku-siku yng

Lebih terperinci

MUH1G3/ MATRIKS DAN RUANG VEKTOR

MUH1G3/ MATRIKS DAN RUANG VEKTOR MUHG3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN 3 Sistem Persmn Liner Sistem Persmn Liner Su Pokok Bhsn Pendhulun Solusi SPL dengn OBE Solusi SPL dengn Invers mtriks dn Aturn Crmmer SPL Homogen Beerp Apliksi

Lebih terperinci

Matriks. Pengertian. Lambang Matrik

Matriks. Pengertian. Lambang Matrik triks Pengertin Definisi: trik dlh susunn bilngn tu fungsi yng diletkkn ts bris dn kolom sert dipit oleh du kurung siku. Bilngn tu fungsi tersebut disebut entri tu elemen mtrik. mbng mtrik dilmbngkn dengn

Lebih terperinci

DETERMINAN DAN INVERS MATRIKS BLOK 2 2

DETERMINAN DAN INVERS MATRIKS BLOK 2 2 Buletin Ilmih Mth. Stt. dn Terpnny (Bimster) Volume 06, No. 3(2017), hl 193 202. DETERMINAN DAN INVERS MATRIKS BLOK 2 2 Ilhmsyh, Helmi, Frnsiskus Frn INTISARI Mtriks blok merupkn mtriks persegi yng diblok

Lebih terperinci

Matematika SMA (Program Studi IPA)

Matematika SMA (Program Studi IPA) Smrt Solution UJIAN NASIONAL TAHUN PELAJARAN 2013/2014 Disusun Sesui Indiktor Kisi-Kisi UN 2013 Mtemtik SMA (Progrm Studi IPA) Disusun oleh : Pk Anng - Blogspot Pge 1 of 13 5. 2. Menyelesikn sol pliksi

Lebih terperinci

TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL RIEMANN

TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL RIEMANN Teorem Kekonvergenn Fungsi Terintegrl Riemnn ( Frikhin ) TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL RIEMANN Frikhin Jurusn Mtemtik FMIPA Undip Astrk Teorem kekonvergenn merupkn gin yng penting dlm mempeljri

Lebih terperinci

METODE ANALISIS. Tentukan arus pada masing-masing tahanan dengan menggunakan metode arus cabang untuk rangkaian seperti pada Gambar 1.

METODE ANALISIS. Tentukan arus pada masing-masing tahanan dengan menggunakan metode arus cabang untuk rangkaian seperti pada Gambar 1. 1. Anlisis Arus Cng METODE ANALSS Metode rus ng dlh slh stu metode penyelesin nlisis rngkin il rngkin terdiri dri du tu leih sumer. Pd metode rus ng ini, kn diperoleh rus pd setip ng dri sutu rngkin yng

Lebih terperinci

III. LIMIT DAN KEKONTINUAN

III. LIMIT DAN KEKONTINUAN KALKULUS I MUG1A4 PROGRAM PERKULIAHAN DASAR DAN UMUM PPDU TELKOM UNIVERSITY III. LIMIT DAN KEKONTINUAN 3.1 Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi 1 1 Fungsi dits tidk terdeinisi

Lebih terperinci

1 Sifat Penambahan Selang

1 Sifat Penambahan Selang BAB : INTEGRAL TOPIK: Sift-sift Integrl Tentu Kometensi yng iukur lh kemmun mhsisw menyelesikn integrl tentu engn menggunkn sift-sift integrl tentu. Sift Penmbhn Selng. UAS Klkulus, Semester Penek 4 no.

Lebih terperinci

matematika K-13 IRISAN KERUCUT: PERSAMAAN HIPERBOLA K e l a s A. Definisi Hiperbola Tujuan Pembelajaran

matematika K-13 IRISAN KERUCUT: PERSAMAAN HIPERBOLA K e l a s A. Definisi Hiperbola Tujuan Pembelajaran K-13 mtemtik K e l s I IRISAN KERUCUT: PERSAMAAN HIPERBLA Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi definisi dn unsur-unsur hiperol.. Dpt menentukn persmn

Lebih terperinci

Menerapkan konsep vektor dalam pemecahan masalah. Menerapkan konsep vektor pada bangun ruang

Menerapkan konsep vektor dalam pemecahan masalah. Menerapkan konsep vektor pada bangun ruang VEKTOR PADA BIDANG SK : Menerpkn konsep vektor dlm pemechn mslh KD : Menerpkn konsep vektor pd bidng dtr Menerpkn konsep vektor pd bngun rung TUJUAN PELATIHAN: Pesert memiliki kemmpun untuk mengembngkn

Lebih terperinci

Definisi Vektor. Vektor adalah besaran yang mempunyai besar dan arah

Definisi Vektor. Vektor adalah besaran yang mempunyai besar dan arah VEKTOR Definisi Vektor Vektor dlh esrn yng mempunyi esr dn rh Besr vektor rtiny pnjng vektor Arh vektor rtiny sudut yng dientuk dengn sumu X positif Vektor disjikn dlm entuk rus gris errh Gmr Vektor B

Lebih terperinci

Pertemuan : 1 Materi : Vektor Pada Bidang ( R 2 ), Bab I. Pendahuluan

Pertemuan : 1 Materi : Vektor Pada Bidang ( R 2 ), Bab I. Pendahuluan Pertemun : 1 Mteri : Vektor Pd Bidng ( R 2 ), Bb I. Pendhulun Stndr Kompetensi : Setelh mengikuti perkulihn ini mhsisw dihrpkn dpt : 1. Memhmi kembli pengertin vektor, opersi pd vektor, dn sift-sift opersi

Lebih terperinci

(Suatu Aplikasi dari Faktorisasi Tunggal Pada Z[X])

(Suatu Aplikasi dari Faktorisasi Tunggal Pada Z[X]) DADU SICHERMAN (Sutu Apliksi dri Fktorissi Tunggl Pd Z[X]) Elh Nurlelh Jurusn Pendidikn Mtemtik Fkults Pendidikn Mtemtik dn Ilmu Pengethun Alm Universits Pendidikn Indonesi *) ABSTRACT An interesting ppliction

Lebih terperinci

PEMANTAPAN BELAJAR SMA BBS INTEGRAL

PEMANTAPAN BELAJAR SMA BBS INTEGRAL BAB I PEMANTAPAN BELAJAR SMA BBS INTEGRAL I A RANGKUMAN INTEGRAL. Pengertin Apil terdpt fungsi F() yng dpt didiferensilkn pd selng I sedemikin hingg F () = f(), mk nti turunn (integrl) dri f() dlh F()

Lebih terperinci

matematika PEMINATAN Kelas X FUNGSI LOGARITMA K-13 A. Definisi Fungsi Logaritma

matematika PEMINATAN Kelas X FUNGSI LOGARITMA K-13 A. Definisi Fungsi Logaritma K-3 Kels mtemtik PEMINATAN FUNGSI LOGARITMA Tujun Pembeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi definisi fungsi logritm.. Dpt menggunkn konsep fungsi logritm dlm menyelesikn

Lebih terperinci

RUMUS HERON DAN RUMUS BRAHMAGUPTA

RUMUS HERON DAN RUMUS BRAHMAGUPTA RUMUS HERON DAN RUMUS BRAHMAGUPTA Sumrdyono, M.Pd. Topik lus bngun dtr telh dipeljri sejk di Sekolh Dsr hingg SMA. Bil di SD, dipeljri lus segitig dn beberp bngun segiempt mk di SMP dipeljri lebih lnjut

Lebih terperinci

BAB ALJABAR MARIX Dlm pokok bhsn ini kn disjikn dsr-dsr opersi ljbr mtrix yng berhubungn dengn nlisis struktur dengn menggunkn metode mtrix kekkun (stiffness method)... Pengertin Mtrix Mtrix merupkn sutu

Lebih terperinci

(c) lim. (d) lim. (f) lim

(c) lim. (d) lim. (f) lim FMIPA - ITB. MA Mtemtik A Semester, 6-7. Pernytn enr dn slh. () ()! e Solusi. Benr. Fungsi eksonensil (enyeut) memesr leih cet drid fungsi olinom (emilng) sehingg emginny menghsilkn nili Dengn Hoitl s

Lebih terperinci

A x = b apakah solusi x

A x = b apakah solusi x MTRIKS INVERSI & SIFT-SIFTNY Bil, x, dlh sklr ilngn rel yng memenuhi x, mk x pil. Sekrng, untuk sistem persmn linier x pkh solusi x dpt diselesikn dengn x? Mtriks Identits Untuk sklr (rel numer dn ), mk.

Lebih terperinci

IRISAN KERUCUT: PERSAMAAN ELIPS. Tujuan Pembelajaran

IRISAN KERUCUT: PERSAMAAN ELIPS. Tujuan Pembelajaran K-13 mtemtik K e l s I IRISAN KERUCUT: PERSAMAAN ELIPS Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi definisi elips.. Memhmi unsur-unsur elips. 3. Memhmi eksentrisits

Lebih terperinci

CHAPTER 1 EXPONENTS, ROOTS, AND LOGARITHMS

CHAPTER 1 EXPONENTS, ROOTS, AND LOGARITHMS CHAPTER EXPONENTS, ROOTS, AND LOGARITHMS Indiktor (penunjuk): Mengubh bentuk pngkt negtif ke pngkt positif dn seblikny. (4 jp) A. EXPONENTS. Definition (ketentun): Positive Integers Exponents n = x x...

Lebih terperinci

Kegiatan Belajar 5. Aturan Sinus. Kegiatan 5.1

Kegiatan Belajar 5. Aturan Sinus. Kegiatan 5.1 Pge of 8 Kegitn eljr 5. Tujun Pembeljrn Setelh mempeljri kegitn beljr 5, dihrpkn sisw dpt. Menentukn unsur-unsur segitig dengn turn sinus b. Menentukn unsur-unsur segitig dengn turn kosinus. Menghitung

Lebih terperinci

MATRIKS. Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ

MATRIKS. Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ MTRIKS gustin Prdjningsih, M.Si. Jurusn Mtemtik FMIP UNEJ tinprdj.mth@gmil.com DEFINISI MTRIKS Sutu dftr bilngn-bilngn rel tu kompleks terdiri ts m bris dn n kolom, m dn n bilngn bult positip disebut mtriks

Lebih terperinci

1 TEORI KETERBAGIAN. Jadi himpunan bilangan asli dapat disajikan secara eksplisit N = { 1, 2, 3, }. Himpunan bilangan bulat Z didenisikan sebagai

1 TEORI KETERBAGIAN. Jadi himpunan bilangan asli dapat disajikan secara eksplisit N = { 1, 2, 3, }. Himpunan bilangan bulat Z didenisikan sebagai Contents 1 TEORI KETERBAGIAN 2 1.1 Algoritm Pembgin.............................. 3 1.2 Pembgi persekutun terbesr.......................... 6 1.3 Algoritm Euclid................................. 10 1.4

Lebih terperinci

PEMBAHASAN SOAL OSN MATEMATIKA SMP 2013 TINGKAT KABUPATEN

PEMBAHASAN SOAL OSN MATEMATIKA SMP 2013 TINGKAT KABUPATEN www.sip-osn.blogspot.com @Mret 0 PEMBAHASAN SOAL OSN MATEMATIKA SMP 0 TINGKAT KABUPATEN. B. x ( x ) ( x + )( x ) ( x ( ) )( x ) ( x + )( x )( x + )( x ) (d fktor) Tidk d penjelsn tentng fktor hrus bilngn

Lebih terperinci

Tiara Ariqoh Bawindaputri TIP / kelas L

Tiara Ariqoh Bawindaputri TIP / kelas L Tir Ariqoh Bwindputri 500008 TIP / kels L INTEGRAL Integrl Tk tentu Integrl dlh entuk invers dri turunn. Secr umum jik seuh fungsi diintegrlkn terhdp vrile tertentu dpt disjikn dlm entuk : f ( F( C Untuk

Lebih terperinci

BAB III MATRIKS

BAB III MATRIKS BB III MTRIKS PENGERTIN MTRIKS Pengertin Mtriks Mtriks dlh susunn bilngn-bilngn ng berbentuk persegi tu persegi pnjng ng ditur dlm bris dn kolom Bentuk Umum Mtriks : i m i m i m j j j ij mj n n n in mn

Lebih terperinci

MATERI I : VEKTOR. Pertemuan-01

MATERI I : VEKTOR. Pertemuan-01 MATERI I : VEKTOR Pertemun-0. Pendhulun Definisi Vektor didefinisikn segi esrn yng memiliki rh. Keeptn, gy dn pergesern merupkn ontoh ontoh dri vektor kren semuny memiliki esr dn rh wlupun untuk keeptn

Lebih terperinci

FISIKA BESARAN VEKTOR

FISIKA BESARAN VEKTOR K-3 Kels X FISIKA BESARAN VEKTOR TUJUAN PEMBELAJARAN Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi pengertin besrn vektor.. Mengusi konsep penjumlhn vektor dengn berbgi metode.

Lebih terperinci

TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL RIEMANN

TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL RIEMANN Teorem Kekonvergenn Fungsi Terintegrl Riemnn ( Frikhin ) TEOREMA KEKONVERGENAN FUNGI TERINTEGRAL RIEMANN Frikhin Jurusn Mtemtik FMIPA Undip Astrk Teorem kekonvergenn merupkn gin yng penting dlm mempeljri

Lebih terperinci

matematika K-13 TEOREMA FAKTOR DAN OPERASI AKAR K e l a s

matematika K-13 TEOREMA FAKTOR DAN OPERASI AKAR K e l a s K-3 mtemtik K e l s XI TEOREMA FAKTOR DAN OPERASI AKAR Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Memhmi teorem fktor.. Menentukn kr dn fktor liner suku nyk dengn

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI. Mtriks Definisi. (Anton, Howrd. ). Mtriks dlh sutu susunn bilngn berbentuk segi empt. Bilngn-bilngn dlm susunn itu disebut nggot dlm mtriks tersebut. Ukurn (size) sutu mtriks dinytkn

Lebih terperinci

Integral Tak Tentu dan Integral Tertentu

Integral Tak Tentu dan Integral Tertentu Integrl Tk Tentu dn Integrl Tertentu Pengertin Integrl Jik F dlh fungsi umum yng ersift F = f, mk F merupkn ntiturunn tu integrl dri f. Pengintegrln fungsi f terhdp dinotsikn segi erikut : f d F c notsi

Lebih terperinci

INTEGRAL. 1. Macam-macam Integral. Nuria Rahmatin TIP L. A. Integral Tak Tentu

INTEGRAL. 1. Macam-macam Integral. Nuria Rahmatin TIP L. A. Integral Tak Tentu INTEGRAL Nuri Rhmtin 5000006 TIP L. Mcm-mcm Integrl A. Integrl Tk Tentu Integrl dlh entuk invers dri turunn. Secr umum jik seuh fungsi diintegrlkn terhdp vrile tertentu dpt disjikn dlm entuk : f ( F( C

Lebih terperinci

TEORI DEFINITE INTEGRAL

TEORI DEFINITE INTEGRAL definite integrl & lus yog.prihstomo TEORI DEFINITE INTEGRAL Definisi : Jik y = f(x) dlh fungsi kontinu dn terdefinisi dlm intervl tertutup [,] sehingg lim n n i= f ( xi). Δxi d (mempunyi nili), mk definite

Lebih terperinci

PAM 252 Metode Numerik Bab 6 Pengintegralan Numerik

PAM 252 Metode Numerik Bab 6 Pengintegralan Numerik PAM 252 Metode Numerik Bb 6 Pengintegrln Numerik Mhdhivn Syfwn Jurusn Mtemtik FMIPA Universits Andls Semester Genp 2013/2014 1 Mhdhivn Syfwn Metode Numerik: Pengintegrln Numerik Motivsi Pendhulun Motivsi

Lebih terperinci

ω = kecepatan sudut poros engkol

ω = kecepatan sudut poros engkol Kerj Untuk Mengtsi Gesekn 1. Pomp Tnp Bejn Udr Telh dijelskn pd bgin muk bhw pd wl dn khir lngkh hisp mupun lngkh tekn, tidk terjdi kerugin hed kibt gesekn. Kerugin hed mksimum hny terjdi pd pertenghn

Lebih terperinci

Jarak Titik, Garis dan Bidang dalam Ruang

Jarak Titik, Garis dan Bidang dalam Ruang Pge of Kegitn eljr. Tujun Pembeljrn Setelh mempeljri kegitn beljr, dihrpkn sisw dpt :. Menentukn jrk titik dn gris dlm rung b. Menentukn jrk titik dn bidng dlm rung c. Menentukn jrk ntr du gris dlm rung.

Lebih terperinci

Integral. Konstanta dari Integrasi. Integral Tak Tentu. AntiTurunan (Antiderivative)

Integral. Konstanta dari Integrasi. Integral Tak Tentu. AntiTurunan (Antiderivative) Integrl AntiTurunn (Antiderivtive) AntiTurunn dri seuh fungsi f dl seuh fungsi F sedemikin hingg Dierikn Pd Peltihn Guru-Guru Aceh Jy 5 Septemer 0 Oleh: Ridh Ferdhin, M.Sc F f E. AntiTurunn dri f ( ) 6

Lebih terperinci

Solusi Pengayaan Matematika Edisi 4 Januari Pekan Ke-4, 2007 Nomor Soal: 31-40

Solusi Pengayaan Matematika Edisi 4 Januari Pekan Ke-4, 2007 Nomor Soal: 31-40 Solusi Pengn Mtemtik Edisi 4 Jnuri Pekn Ke-4, 007 Nomor Sol: -40. Diberikn persmn 8 9 4 8 007 dn b, dengn b. Angk stun dri b dlh. A. B. C. D. 7 E. 9 Persmn 8 9 4 8 8 9 4 8 9 4 8 8 8 9 8 4 8 8 8 0 0 b tu

Lebih terperinci