Jarak Titik, Garis dan Bidang dalam Ruang

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Jarak Titik, Garis dan Bidang dalam Ruang"

Transkripsi

1 Pge of Kegitn eljr. Tujun Pembeljrn Setelh mempeljri kegitn beljr, dihrpkn sisw dpt :. Menentukn jrk titik dn gris dlm rung b. Menentukn jrk titik dn bidng dlm rung c. Menentukn jrk ntr du gris dlm rung. Urin Mteri Jrk Titik, ris dn idng dlm Rung. Jrk Titik ke Titik Jrk ntr du titik dlh dengn menrik gris hubung terpendek ntr kedu titik tersebut, jdi jrk ntr titik dn dlh pnjng gris Jik titik dlm koordint crtesius mk jrk kedu titik dlh (b, b, b ) (,, ) Pnjng ( ) ( ) ( ) b + b + b Modul Mtemtik dsr isusun oleh Khirul sri, S.Pd

2 Pge of ontoh :. Tentukn jrk ntr titik P (, 5, ) dengn titik R (, 8, ) Penyelesin Jrk PR ( ) + ( 5 8) + ( ) PR ( ) + ( ) + ( 0) PR + 9 PR 5 Jdi jrk titik P dn R dlh 5 stun pnjng. Kubus memiliki pnjng rusuk cm, titik P merupkn perpotongn digonl bidng ts, hitunglh jrk titik P dn Penyelesin Untuk mencri pnjng gris P mk perhtikn segitig P yng terbentuk, segitig P dlh segitig siku-siku, dengn siku-siku di, Sehingg dengn teorem pythgors pnjng P dlh P + P ( ) Jdi jrk titik ke titik P dlh Modul Mtemtik dsr isusun oleh Khirul sri, S.Pd

3 Pge of b. Jrk titik ke ris Jrk titik ke gris dlh jrk terdekt sebuh titik ke gris, jrk terdekt diperoleh dengn menrik gris yng tegk lurus dengn gris yng dimksud. Jrk titik dengn gris g dlh pnjng gris g ontoh :. Kubus memiliki pnjng rusuk 8 cm, titik P merupkn perpotongn digonl bidng ts, hitunglh jrk titik P dengn gris Penyelesin R Q 8 Jrk ntr titik P dn gris dlh gris PQ, sehingg PQ PR + PQ Q R P Jdi jrk titik P Ke gris dlh 5 cm. Sebuh kubus. dengn pnjng rusuk cm. tentukn jrk titik ke gris dlh Penyelesin P cm Jrk titik pd gris dlh gris P Modul Mtemtik dsr isusun oleh Khirul sri, S.Pd

4 Pge of cos ( ) + ( ) ( )( ) cos 7 mk sin sin P P P cos Jdi jrk titik ke gris dlh c. Jrk Titik dengn bidng Untuk menentukn jrk sebuh titik pd sutu bidng, mk terlebih dhulu ditrik gris lurus yng terdekt dri titik ke bidng, sehingg memotong bidng dn gris tersebut hrus tegk lurus dengn bidng. Mislkn titik terletk di lur bidng α mk jrk titik ke bidng α dpt ditentukn sebgi berikut : Jrk titik ke bidng α dlh pnjng gris α Modul Mtemtik dsr isusun oleh Khirul sri, S.Pd

5 Pge 5 of ontoh :. Sutu lims segitig berturn, pnjng rusuk tegkny 8 cm dn pnjng rusuk lsny cm. Jrk titik ke bidng dlh. Penyelesin Jrk titik ke bidng dlh pnjng gris 8 O O O O 7 O O O 55 ( ) 8 engn turn cosinus mk ( 55) ( ) + ( 8 ) ( )( 8) cos cos 8 cos sin engn definisi sinus mk sin 8 8 cos Jdi jrk titik ke bidng dlh Modul Mtemtik dsr isusun oleh Khirul sri, S.Pd

6 Pge of. Tentukn jrk titik ke bidng, pd kubus, jik pnjng rusuk kubus dlh cm. Penyelesin Jrk titik ke bidng dlh R sin p ( ) + ( 5) ( )( ) cos p cos p mk cos P cos P engn definisi sinus mk didpt pnjng R sin p R R R R P cm 5 R P Jdi jrk titik ke bidng dlh cm d. Jrk u ris Sejjr Jik d du gris yng sejjr, mk jrk kedu gris dengn menrik gris yng tegk lurus dengn kedu gris tersebut. Seperti tmpk pd gmbr di smping, dimn gris g dn h dlh du gris yng sejjr, mk jrk kedu g k R h gris tersebut dlh gris PR. Modul Mtemtik dsr isusun oleh Khirul sri, S.Pd

7 Pge 7 of ontoh ikethui sebuh blok., dengn pnjng 8 cm, lebr cm dn tinggi cm, tentukn jrk ntr gris dengn gris Penyelesin R Q 8 R Q Jdi jrk gris ke gris dlh pnjng gris PR P PR PQ + QR Jdi jrk gris ke gris dlh 5 cm e. Jrk ntr u ris yng ersilng u gris diktkn sling bersilng jik kedu gris tersebut tidk sejjr dn terletk pd du bidng yng berbed, seperti tmpk pd gmbr di bwh gris bersilngn dengn gris. Untuk menentukn jrk kedu gris tersebut di ts lkukn lngkh berikut :. utlh bidng α dn β yng sejjr, dengn ketentun gris pd bidng α dn gris pd bidng β seperti pd gmbr di bwh β Q α β α Modul Mtemtik dsr isusun oleh Khirul sri, S.Pd

8 Pge 8 of b. rilh jrk ntr du bidng dn bidng. Sehingg jrk ntr gris dn dlh gris PQ. β g Q g h α Jdi jrk gris g dn gris h dlh PQ ontoh Sutu kubus. dengn pnjng rusukny cm, tentukn jrk gris dengn dlh. Penyelesin R R Q Jrk ntr dn dlh PR Q P PR ( PQ) + ( QR) + Jdi jrk ntr dn dlh cm. Modul Mtemtik dsr isusun oleh Khirul sri, S.Pd

9 Pge 9 of f. Jrk ris ke bidng yng sejjr Untuk mengukur jrk gris ke bidng yng sejjr, mk terlebih dhulu kit tentukn titik sembrng pd gris kemudin kit trik gris lurus dri titik tersebut ke bidng sehingg gris yng terbentuk tegk lurus terhdp bidng. Seperti tmpk pd gmbr di bwh. g α Jrk gris g ke bidng α dlh grik PP. ontoh : Sutu kubus. dengn rusuk cm, jrk dengn bidng dlh. Penyelesin Q Jrk ke bidng dlh Pnjng dlh, sehingg ( ) Jdi jrk ke bidng dlh g. Jrk idng ke idng untuk mengukur jrk du bidng, pilihlh sembrng titik pd slh stu bidng kemudin ditrik grik luruh dri titik yng telh ditentukn ke bidng liny, sehingg Modul Mtemtik dsr isusun oleh Khirul sri, S.Pd

10 Pge 0 of gris yng terbentuk tegk lurus terhdp kedu bidng. Seperti tmpk pd gmbr berikut : β α Jrk ntr bidng β dn α dlh gris. ontoh ikethui kubus. dengn pnjng rusuk cm, tentukn jrk ntr dn. Penyelesin S R Q Jrk bidng dn bidng dlh gris PQ S Q R R Q S S S + ( ) + ( ) Segitig P P sin S S Segitig Q Q sin Modul Mtemtik dsr isusun oleh Khirul sri, S.Pd

11 Pge of Kren P + PQ + Q Mk PQ P Q dlh digonl rung mk pnjng dlh PQ Sehingg jrk bidng dn dlh cm. Lembr Kerj. ikethui lims segiempt berturn T. dengn cm, dn T 5 cm T P. Jrk T ke dlh Perhtikn gmbr di ts utlh gris tinggi lims ykni dengn menrik gris dri titik. Ke titik Tentukn titik tengh gris dlh Perhtikn gris TP dengn segitig T, kemudin triklh grik dri titik T ke titik, sehingg terbentuk segitig siku-siku dengn siku di titik Jrk titik T ke gris dlh gris. Pnjng TP dpt kit tentukn dengn menggunkn teorem Pythgors, pd segitig TP TP TP (...) + (...)... TP... Pnjng ntr titik P ke dlh (...). Modul Mtemtik dsr isusun oleh Khirul sri, S.Pd

12 Pge of Jrk titik T dengn gris dpt di tentukn ykni... TP ( ) + (...) b. jik dri lims di ts titik dlh titik tengh, mk jrk titik ke bidng T dlh.. Tentukn dluhu titik tengh gris dlh Pnjng T. T utlh segitig T Pd segitig T butlh gris tinggi dri ke gris T, titik potong gris tinggi dengn gris T di titik.. Jrk titik ke bidng T dlh engn menggunkn turn kosinus mk di dpt nili cos ( T ) (...)(...) cos cos... ri nili cos tentukn nili sin cos y y y sin mk nili cos engn menggunkn definisi sinus mk dpt ditentukn pnjng gris tinggi... sin Jdi jrk titik ke bidng T dlh.... Sebuh kubus. dengn pnjng rusuk cm. Modul Mtemtik dsr isusun oleh Khirul sri, S.Pd

13 Pge of. Jrk gris dn dlh.. Tentukn titik P dlh titik tengh gris, dn titik Q dlh titik tengh gris, mk pnjng gris P dn pnjng gris Q utlh segitig dri titik P, Q dn, sehingg terbentuk segitig siku-siku. engn siku di titik.. Jrk ntr gris dn dlh.. engn teorem Pythgors mk pnjng PQ dpt ditentukn PQ (...) + (... ) jdi jrk ntr gris dn dlh... b. Pd kubus di ts jrk ntr bidng dn dlh... butlh digonl rung Tentukn titik tengh gris dlh R dn titik tengh gris dlh S utlh gris tinggi pd bidng dri titik ke sehingg terbentuk du segitig siku-siku yitu segitig.. dn., begitu jug pd bidng di but gris tinggi dri ke sehingg terbentuk du segitig siku-siku, ykni segitid.. dn. Tentukn titik potong digonl rung dengn R dlh P dn titik potong dengn S dlh Q Jrk ntr bidng dn dlh.. engn teorem Pythgors mk kit tentukn pnjng R dn S R R R ( ) + (... ) engn menggunkn sinus mk kit dpt menentukn pnjng P sin P sin R... R S S S ( ) + (...) Q sin Q sin c S... S Modul Mtemtik dsr isusun oleh Khirul sri, S.Pd

14 Pge of Q +pq+pe +. PQ Jdi jrk ntr bidng dn dlh.... Rngkumn. Jrk ntr du titik dlh jrk terpendek dri kedu titik tersebut.. Jrk ntr du titik pd bidng, untuk (x, y, z ) dn (x, y, z ) dlh ( x x ) + ( y y ) + ( z ) z. Tugs. Pd kubus. yng mempunyi pnjng rusuk 5 cm, jrk ntr dn dlh.... ikethui kubus memiliki pnjng rusuk 8 cm. Mislkn titik T terletk diperpnjngn sehingg T. Tentukn jrk titik terhdp bidng T Modul Mtemtik dsr isusun oleh Khirul sri, S.Pd

15 Pge 5 of. Sebuh prism segitig sm kki di bwh, dn merupkn segitig sm kki. Jik 8 cm, tinggi segitig cm dn pnjng dlh 5 kli pnjng, tentukn jrk titik ke. Modul Mtemtik dsr isusun oleh Khirul sri, S.Pd

16 Pge of. Sebuh kmr berbentuk blok seperti gmbr di bwh. Sebuh lmpu terletk ditengh-tengh tp kmr, sedngkn sklrny terletk di pojok dinding. Jik pnjng kmr dlh m, lebrny 8 m, sedngkn ketinggin sklr dri lnti dlh,5 m. pbil seuts kbel dipsng untuk menghubungkn lmpu dn sklr dengn rh dri (lmpu) kemudin ke dn selnjutny ke (sklr), perkirkn pnjng kbel tersebut (lmpu) (Sklr). Tes ormtif. ikethui kubus. dengn pnjng rusuk 8 cm, K dlh titik tengh rusuk. Jrk titik K ke gris dlh.... cm d. 9 cm b. cm e. 5 cm c. 5 cm. ikethui kubus. dengn pnjng rusuk cm, jik titik Q dlh titik potong digonl bidng, jrk ke Q dlh.... cm d. cm Modul Mtemtik dsr isusun oleh Khirul sri, S.Pd

17 Pge 7 of b. 7 cm e. cm c. cm. Lims segitig T. dengn pnjng rusuk cm dn rusuk T cm. jrk titik ke gris T dlh.. cm d. cm 7 b. cm 8 c. cm 5 e. cm. Pd kubus. dengn pnjng rusuk cm, jik titik K, L dn M berturut-turut merupkn titik tengh, dn, jrk ntr bidng dn KLM dlh.... cm d. cm b. cm e. 7 cm c. 5 cm 5. Pd kubus. dengn pnjng rusuk, jrk ke dlh.... b. c. d. 5 e.. Pd kubus. dengn pnjng rusuk cm jrk titik ke bidng dlh.... d. b. e. 8 c. Modul Mtemtik dsr isusun oleh Khirul sri, S.Pd

18 Pge 8 of 7. Pd kubus. dengn pnjng rusuk, jik S merupkn proyeksi titik pd bidng, jrk titik S ke dlh... d. b. e. c. 8. PQRS dlh sebuh bidng empt berturn yng pnjng rusukny cm. jrk titik Q ke bidng PRS dlh. d. b. e. c. 9. Pd kubus. dengn pnjng rusuk cm, jrk dn dlh.... d. b. e. c. 0. Pd kubus. dengn pnjng rusuk, jrk pd dlh.. d. b. e. c.. ikethui bidng empt berturn. dengn rusuk 7 jrk ke dlh. 7 d. Modul Mtemtik dsr isusun oleh Khirul sri, S.Pd

19 Pge 9 of 7 b. 7 e. 7 c.. ikethui kubus. dengn rusuk cm. Titik P dn Q msing-msing terletk pd pertenghn dn. dlh. d.,5 Jrk titik dengn bidng PQ 8 b c e.. Perhtikn gmbr kubus.. Jrk titik ke bidng dlh cm.. 8 b. c. 8 d. e. cm. ikethui lims segienm berturn T., cm dn T 8 cm. Jrk T ke bidng ls cm.. d. 5 b. 5 e. c ikethui kubus., P titik tengh, Q titik tengh, dn Q cm. Jrk P ke bidng sm dengn.. cm d. cm Modul Mtemtik dsr isusun oleh Khirul sri, S.Pd

20 Pge 0 of b. cm e. 8 cm c. cm. ikethui Kubus. dengn rusuk cm. M dlh titik tengnh jrk titik M dengn gris dlh... cm d. cm b. 5 cm e. cm c. cm 7. ikethui Kubus. dengn rusuk cm. Jrk titik ke bidng dlh cm.. 8 d. 8 b. e. c. 8. ikethui prism segiempt berturn. dengn pnjng rusuk cm dn cm. Jik P titik tengh bidng ls, mk jrk titik ke gris P dlh cm. 0. d. b. e. c. 9. ikethui bidng empt berturn T. dengn pnjng rusuk cm. jrk titik T ke bidng dlh. cm d. cm b. cm e. cm c. cm 0. Lims segiempt berturn T. memiliki pnjng rusuk ls cm dn rusuk tegk cm. jrk titik ke gris T dlh. Modul Mtemtik dsr isusun oleh Khirul sri, S.Pd

21 Pge of. cm d. cm b. cm e. cm c. cm Modul Mtemtik dsr isusun oleh Khirul sri, S.Pd

Kegiatan Belajar 5. Aturan Sinus. Kegiatan 5.1

Kegiatan Belajar 5. Aturan Sinus. Kegiatan 5.1 Pge of 8 Kegitn eljr 5. Tujun Pembeljrn Setelh mempeljri kegitn beljr 5, dihrpkn sisw dpt. Menentukn unsur-unsur segitig dengn turn sinus b. Menentukn unsur-unsur segitig dengn turn kosinus. Menghitung

Lebih terperinci

SIMAK UI DIMENSI TIGA

SIMAK UI DIMENSI TIGA IMK I IMNI I. IMK I Mtemtik I, 00 ikethui blok. di mn = cm, = cm, = cm. Mislkn dlh sudut ntr dn, mk cos.... olusi: []. 0... 00 0 cos 0 cos cos cos. IMK I Mtemtik I, 00 Kubus. mempunyi rusuk cm. itik M

Lebih terperinci

CONTOH SOAL BERIKUT KUNCI JAWABNYA. Dimensi Tiga

CONTOH SOAL BERIKUT KUNCI JAWABNYA. Dimensi Tiga ONO SOL RIKU KUNI JWNY imensi ig. ikethui kubus. dengn rusuk. Mellui digonl dn titik tengh rusuk dibut bidng dtr. entukn lus bgin bidng di dlm kubus! Q L Q.Q... 6. Kubus. berusuk cm. itik, Q dn R dlh titik-titik

Lebih terperinci

DIMENSI TIGA 1. SIMAK UI

DIMENSI TIGA 1. SIMAK UI IMNI I. IMK I Mtemtik I, 00 ikethui blok. di mn = cm, = 8 cm, = cm. Mislkn dlh sudut ntr dn, mk cos.... olusi: []. 8 8 80.. 8. 8 00 0 8 cos 8 0 8 cos 8 8 cos cos. IMK I Mtemtik I, 00 Kubus. mempunyi rusuk

Lebih terperinci

Soal Latihan dan Pembahasan Dimensi Tiga

Soal Latihan dan Pembahasan Dimensi Tiga Sol Ltihn dn embhsn imensi ig i susun Oleh : Yuyun Somntri http://bimbingnbeljr.net/ i dukung oleh : ortl eduksi rtis Indonesi Open Knowledge nd duction http://oke.or.id utoril ini diperbolehkn untuk di

Lebih terperinci

SOAL DAN SOLUSI MATEMATIKA IPA UJIAN NASIONAL DIMENSI TIGA

SOAL DAN SOLUSI MATEMATIKA IPA UJIAN NASIONAL DIMENSI TIGA SOL N SOLUSI MTMTIK I UJIN NSIONL 0 0 IMNSI TI. UN 0 ikethui kubus. dengn pnjng rusuk cm. Jrk titik dn gris dlh.... cm. cm. cm. cm. cm Solusi: [] 9 Jdi, jrk titik dn gris dlh cm.. UN 0 Kubus. memiliki

Lebih terperinci

MATEMATIKA DIMENSI TIGA & RUANG

MATEMATIKA DIMENSI TIGA & RUANG SOL N MSN SOL ilengkpi kunci jwbn dn embhsn setip nomor sol MMIK IMNSI I & RUN Untuk SM, SMK ersipn Ujin Nsionl opyright sol-uns.blogspot.com rtikel ini boleh dicopy, dikutip, di cetk dlm medi kerts tu

Lebih terperinci

RUANG DEMENSI TIGA. C Sumbu Afinitas

RUANG DEMENSI TIGA. C Sumbu Afinitas RUNG EMENSI TIG b. IRISN NGUN RUNG Yng dimksud dengn irisn sutu bidng dengn bngun rung dlh derh yng dibtsi oleh gris potong-gris potong ntr bidng tersebut dengn semu sisi bngun rung yng terpotong oleh

Lebih terperinci

VEKTOR. 1. Pengertian Vektor adalah besaran yang memiliki besar (nilai) dan arah. Vektor merupakan sebuah ruas garis yang

VEKTOR. 1. Pengertian Vektor adalah besaran yang memiliki besar (nilai) dan arah. Vektor merupakan sebuah ruas garis yang VEKTOR 1. Pengertin Vektor dlh besrn yng memiliki besr (nili dn rh. Vektor merupkn sebuh rus gris yng P berrh dn memiliki pnjng. Pnjng rus gris tersebut dlh pnjng vektor. Rus gris dri titik P dn berujung

Lebih terperinci

matematika WAJIB Kelas X RASIO TRIGONOMETRI Kurikulum 2013 A. Definisi Trigonometri

matematika WAJIB Kelas X RASIO TRIGONOMETRI Kurikulum 2013 A. Definisi Trigonometri Kurikulum 0 Kels X mtemtik WAJIB RASIO TRIGONOMETRI Tujun Pembeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi rsio-rsio trigonometri yng meliputi sinus, kosinus, tngen,

Lebih terperinci

MATEMATIKA DASAR. 1. Jika x 1 dan x 2 adalah penyelesaian. persamaan Diketahui x 1 dan x 2 akar-akar persamaan 6x 2 5x + 2m 5 = 0.

MATEMATIKA DASAR. 1. Jika x 1 dan x 2 adalah penyelesaian. persamaan Diketahui x 1 dan x 2 akar-akar persamaan 6x 2 5x + 2m 5 = 0. MATEMATIKA ASAR. Jik dn dlh penyelesin persmn mk ( ).. E. B 7 6 6 + - ( + ) ( ). ( ) ( ) 7. Jik dn y b dengn, y > + y, mk. + y + b log b. + b log b b E. + log b E log dn y log b + y + y log + log b log

Lebih terperinci

VEKTOR. Dua vektor dikatakan sama jika besar dan arahnya sama. Artinya suatu vektor letaknya bisa di mana saja asalkan besar dan arahnya sama.

VEKTOR. Dua vektor dikatakan sama jika besar dan arahnya sama. Artinya suatu vektor letaknya bisa di mana saja asalkan besar dan arahnya sama. -1- VEKTOR PENGERTIAN VEKTOR dlh sutu esrn yng mempunyi nili (esr) dn rh. Sutu vektor dpt digmrkn segi rus gris errh. Nili (esr) vektor dinytkn dengn pnjng gris dn rhny dinytkn dengn tnd pnh. Notsi vektor

Lebih terperinci

PENGAYAAN MATEMATIKA SOLUSI SOAL-SOAL LATIHAN 1

PENGAYAAN MATEMATIKA SOLUSI SOAL-SOAL LATIHAN 1 PENGAYAAN MATEMATIKA SOLUSI SOAL-SOAL LATIHAN 6y y 8y. Dikethui R dn. Temukn nili y. y y 8y 6 Solusi: 6y y 8y y y 8y 6 6y y 8y 8y y 6 y 8 0 y y y 0 y y y 0 ( y ) ( y ) 0 y y 8y 6 ( y )(y ) 0 y 0tu y 0

Lebih terperinci

FISIKA BESARAN VEKTOR

FISIKA BESARAN VEKTOR K-3 Kels X FISIKA BESARAN VEKTOR TUJUAN PEMBELAJARAN Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi pengertin besrn vektor.. Mengusi konsep penjumlhn vektor dengn berbgi metode.

Lebih terperinci

Tujuan Pembelajaran. ) pada hiperbola yang berpusat di (0, 0). 2. Dapat menentukan persamaan garis singgung di titik (x 1

Tujuan Pembelajaran. ) pada hiperbola yang berpusat di (0, 0). 2. Dapat menentukan persamaan garis singgung di titik (x 1 K-3 mtemtik K e l s XI IRISAN KERUCUT: GARIS SINGGUNG PADA HIPERBOLA Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Dpt menentukn persmn gris singgung di titik (, ) pd

Lebih terperinci

Solusi Pengayaan Matematika Edisi 15 April Pekan Ke-3, 2010 Nomor Soal:

Solusi Pengayaan Matematika Edisi 15 April Pekan Ke-3, 2010 Nomor Soal: Solusi Pengyn Mtemtik disi 5 pril Pekn Ke-3, 00 Nomor Sol: -50. Pd segitig siku-siku di dibut gris bert dn F. Pnjng = dn F = 9. Pnjng sisi miringny dlh.. 6 5. 6 3. 6. 5 5. 6 Solusi: [] Menurut Teorem Pythgors:

Lebih terperinci

Bab. Vektor. A. Vektor B. Perkalian Vektor. Hasil yang harus Anda capai: menerapkan konsep besaran Fisika dan pengukurannya.

Bab. Vektor. A. Vektor B. Perkalian Vektor. Hasil yang harus Anda capai: menerapkan konsep besaran Fisika dan pengukurannya. 2 Sumer: Dsr-Dsr Foto Jurnlistik, 2003 esrn yng memiliki esr dn rh diseut esrn vektor. Keceptn merupkn slh stu esrn vektor. Vektor Hsil yng hrus nd cpi: menerpkn konsep esrn Fisik dn pengukurnny. Setelh

Lebih terperinci

b. Notasi vektor : - Vektor A dinotasikan a atau a atau PQ - Panjang vektor a dinotasikan a atau PQ

b. Notasi vektor : - Vektor A dinotasikan a atau a atau PQ - Panjang vektor a dinotasikan a atau PQ BAB 4 VEKTOR Stndr Kompetensi: 3. Menggunkn konsep mtriks, vektor, dn trnsformsi Kompetensi Dsr: 3.4 Menggunkn sift-sift dn opersi ljbr vktor dlm pemechn mslh 3.5 Menggunkn sift-sift dn opersi perklin

Lebih terperinci

matematika K-13 IRISAN KERUCUT: PERSAMAAN HIPERBOLA K e l a s A. Definisi Hiperbola Tujuan Pembelajaran

matematika K-13 IRISAN KERUCUT: PERSAMAAN HIPERBOLA K e l a s A. Definisi Hiperbola Tujuan Pembelajaran K-13 mtemtik K e l s I IRISAN KERUCUT: PERSAMAAN HIPERBLA Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi definisi dn unsur-unsur hiperol.. Dpt menentukn persmn

Lebih terperinci

matematika K-13 TRIGONOMETRI ATURAN SEGITIGA K e l a s

matematika K-13 TRIGONOMETRI ATURAN SEGITIGA K e l a s K-3 mtemtik K e l s XI TRIGONOMETRI TURN SEGITIG Tujun Pembeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi turn sinus dn kosinus, sert pembuktinny.. Memhmi turn sinus dn

Lebih terperinci

matematika wajib ATURAN SEGITIGA K e l a s Kurikulum 2013

matematika wajib ATURAN SEGITIGA K e l a s Kurikulum 2013 Kurikulum 03 mtemtik wjib K e l s X TURN SEGITIG Tujun Pembeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi turn sinus dn kosinus, sert pembuktinny.. Dpt menerpkn turn sinus

Lebih terperinci

STATIKA (Reaksi Perletakan)

STATIKA (Reaksi Perletakan) STTIK (Reksi erletkn) Meknik Rekys I Norm uspit, ST.MT. Tumpun Tumpun merupkn tempt perletkn konstruksi tu dukungn bgi konstruksi dlm meneruskn gy gyyng bekerj ke pondsi Dlm ilmu Meknik Rekys dikenl 3

Lebih terperinci

Menerapkan konsep vektor dalam pemecahan masalah. Menerapkan konsep vektor pada bangun ruang

Menerapkan konsep vektor dalam pemecahan masalah. Menerapkan konsep vektor pada bangun ruang VEKTOR PADA BIDANG SK : Menerpkn konsep vektor dlm pemechn mslh KD : Menerpkn konsep vektor pd bidng dtr Menerpkn konsep vektor pd bngun rung TUJUAN PELATIHAN: Pesert memiliki kemmpun untuk mengembngkn

Lebih terperinci

LUAS DAERAH APLIKASI INTEGRAL TENTU. Indikator Pencapaian Hasil Belajar. Ringkasan Materi Perkuliahan

LUAS DAERAH APLIKASI INTEGRAL TENTU. Indikator Pencapaian Hasil Belajar. Ringkasan Materi Perkuliahan LUAS DAERAH APLIKASI INTEGRAL TENTU Indiktor Pencpin Hsil Beljr Mhsisw menunjukkn kemmpun dlm :. Menghitung lus pd idng dtr Ringksn Mteri Perkulihn Jik sutu derh ditsi oleh kurv f(), g(), gris dn dengn

Lebih terperinci

Tujuan Pembelajaran. ) pada elips. 2. Dapat menentukan persamaan garis singgung yang melalui titik (x 1

Tujuan Pembelajaran. ) pada elips. 2. Dapat menentukan persamaan garis singgung yang melalui titik (x 1 K-3 mtemtik K e l s XI IRISAN KERUCUT: PERSAMAAN GARIS SINGGUNG PADA ELIPS Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Dpt menentukn persmn gris singgung di titik (,

Lebih terperinci

Vektor di R 2 dan R 3

Vektor di R 2 dan R 3 Vektor di R dn R Pengertin Vektor dlh besrn yng mempunyi besr dn rh Vektor digmbrkn oleh rus gris yng dilengkpi dengn nk pnh vektor dimuli dri titik wl (initil point) dn dikhiri oleh titik khir (terminl

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Bb berikut ini kn disjikn mteri pendukung yng dpt membntu penulis untuk menyelesikn permslhn yng kn dibhs pd bb selnjutny. Adpun mteri pendukungny dlh pengertin mtriks, jenis-jenis

Lebih terperinci

BAB: PENERAPAN INTEGRAL Topik: Volume Benda Putar (Khusus Kalkulus 1)

BAB: PENERAPAN INTEGRAL Topik: Volume Benda Putar (Khusus Kalkulus 1) BAB: PENERAPAN INTEGRAL Topik: Volume Bend Putr (Khusus Klkulus ) Kompetensi yng diukur dlh kemmpun mhsisw menghitung volume bend putr dengn metode cincin, metode ckrm, tu metode kulit tbung.. UAS Klkulus,

Lebih terperinci

Antiremed Kelas 11 Matematika

Antiremed Kelas 11 Matematika Antiremed Kels 11 Mtemtik Persipn UAS - 0 Doc. Nme: AR11MAT0UAS Version : 016-07 hlmn 1 01. Pd ulngn mtemtik, dikethui nili rt -rt kels dlh 58. Jik rt-rt nili mtemtik untuk sisw priny dlh 65, sedngkn untuk

Lebih terperinci

IRISAN KERUCUT: PERSAMAAN ELIPS. Tujuan Pembelajaran

IRISAN KERUCUT: PERSAMAAN ELIPS. Tujuan Pembelajaran K-13 mtemtik K e l s I IRISAN KERUCUT: PERSAMAAN ELIPS Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi definisi elips.. Memhmi unsur-unsur elips. 3. Memhmi eksentrisits

Lebih terperinci

MATERI I : VEKTOR. Pertemuan-01

MATERI I : VEKTOR. Pertemuan-01 MATERI I : VEKTOR Pertemun-0. Pendhulun Definisi Vektor didefinisikn segi esrn yng memiliki rh. Keeptn, gy dn pergesern merupkn ontoh ontoh dri vektor kren semuny memiliki esr dn rh wlupun untuk keeptn

Lebih terperinci

VEKTOR. Adri Priadana. ilkomadri.com

VEKTOR. Adri Priadana. ilkomadri.com VEKTOR Adri Pridn ilkomdri.com Pengertin Dlm Fisik dikenl du buh besrn, yitu 1. Besrn Sklr. Besrn Vektor Pengertin Besrn Sklr dlh sutu besrn yng hny mempunyi nili dn dinytkn dengn sutu bilngn tunggl diserti

Lebih terperinci

PEMBAHASAN. A. Teorema Pythagoras 1. Luas persegi dan luas segitiga siku-siku Perhatikan Gambar 1! D. Gambar 1

PEMBAHASAN. A. Teorema Pythagoras 1. Luas persegi dan luas segitiga siku-siku Perhatikan Gambar 1! D. Gambar 1 PEMBAHASAN A. Teorem Pythgors 1. Lus persegi dn lus segitig siku-siku Perhtikn Gmr 1! D s A s B Gmr 1 Pd gmr terseut tmpk seuh persegi ABD yng pnjng sisiny s stun pnjng. Lus persegi ABD = sisi sisi L =

Lebih terperinci

Kerjakan di buku tugas. Tentukan hasil operasi berikut. a. A 2 d. (A B) (A + B) b. B 2 e. A (B + B t ) c. A B f. A t (A t + B t ) Tes Mandiri

Kerjakan di buku tugas. Tentukan hasil operasi berikut. a. A 2 d. (A B) (A + B) b. B 2 e. A (B + B t ) c. A B f. A t (A t + B t ) Tes Mandiri Mmt Apliksi SMA Bhs Dikethui A = Tentukn hsil opersi berikut A c A A b A A d A Dikethui A = Tentukn hsil opersi berikut (A + B) c (B A) b A + AB + B d B BA + A Sol Terbuk Kerjkn di buku tugs Jik X = dn

Lebih terperinci

Antiremed Kelas 11 Matematika

Antiremed Kelas 11 Matematika Antiremed Kels Mtemtik Persipn UAS 0 Doc. Nme: ARMAT0UAS Version : 06-09 hlmn 0. Pd ulngn mtemtik, dikethui nili rt -rt kels dlh 8, Jik rt-rt nili mtemtik untuk sisw priny dlh 6, sedngkn untuk sisw wnit

Lebih terperinci

selisih positif jarak titik (x, y) terhadap pasangan dua titik tertentu yang disebut titik

selisih positif jarak titik (x, y) terhadap pasangan dua titik tertentu yang disebut titik Hiperol 7.1. Persmn Hiperol Bentuk Bku Hiperol dlh himpunn semu titik (, ) pd idng sedemikin hingg selisih positif jrk titik (, ) terhdp psngn du titik tertentu ng diseut titik fokus (foci) dlh tetp. Untuk

Lebih terperinci

UN SMA IPA 2004 Matematika

UN SMA IPA 2004 Matematika UN SMA IPA Mtemtik Kode Sol P Doc. Version : - hlmn. Persmn kudrt ng kr-krn dn - dlh... ² + + = ² - + = ² + + = ² + - = ² - - =. Tinggi h meter dri sebuh peluru ng ditembkkn ke ts setelh t detik dintkn

Lebih terperinci

1. Identitas Trigonometri. 1. Identitas trigonometri dasar berikut ini merupakan hubungan kebalikan.

1. Identitas Trigonometri. 1. Identitas trigonometri dasar berikut ini merupakan hubungan kebalikan. 1. Identits Trigonometri Pengertin Identits Trigonometri dlh kesmn yng memut entuk trigonometri dn erlku untuk semrng sudut yng dierikn. Jenis Identits Trigonometri 1. Identits trigonometri dsr erikut

Lebih terperinci

Erna Sri Hartatik. Aljabar Linear. Pertemuan 3 Aljabar Vektor (Perkalian vektor-lanjutan)

Erna Sri Hartatik. Aljabar Linear. Pertemuan 3 Aljabar Vektor (Perkalian vektor-lanjutan) Ern Sri Hrttik Aljr Liner Pertemun Aljr Vektor (Perklin vektor-lnjutn) Pemhsn Perklin Cross (Cross Product) - Model cross product - Sift cross product Pendhulun Selin dot product d fungsi perklin product

Lebih terperinci

matematika PEMINATAN Kelas X FUNGSI LOGARITMA K-13 A. Definisi Fungsi Logaritma

matematika PEMINATAN Kelas X FUNGSI LOGARITMA K-13 A. Definisi Fungsi Logaritma K-3 Kels mtemtik PEMINATAN FUNGSI LOGARITMA Tujun Pembeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi definisi fungsi logritm.. Dpt menggunkn konsep fungsi logritm dlm menyelesikn

Lebih terperinci

MATEMATIKA IPA PAKET A KUNCI JAWABAN

MATEMATIKA IPA PAKET A KUNCI JAWABAN MATEMATIKA IPA PAKET A KUNCI JAWABAN. Jwbn : A Mislkn : p : Msyrkt membung smph pd temptny. q: Kesehtn msyrkt terjg. Diperoleh: Premis : ~q ~p p q Premis : p Kesimpuln : q Jdi, kesimpuln dri premis-premis

Lebih terperinci

1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini:

1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini: ) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persmn kudrt dlh seperti di bwh ini: b c dengn, b, c bilngn dn riil Dimn, disebut sebgi koefisien dri b disebut sebgi koefisien dri c disebut

Lebih terperinci

Definisi Vektor. Vektor adalah besaran yang mempunyai besar dan arah

Definisi Vektor. Vektor adalah besaran yang mempunyai besar dan arah VEKTOR Definisi Vektor Vektor dlh esrn yng mempunyi esr dn rh Besr vektor rtiny pnjng vektor Arh vektor rtiny sudut yng dientuk dengn sumu X positif Vektor disjikn dlm entuk rus gris errh Gmr Vektor B

Lebih terperinci

Matematika SKALU Tahun 1978

Matematika SKALU Tahun 1978 Mtemtik SKALU Thun 978 MA-78-0 Persmn c + b + = 0, mempunyi kr-kr dn, mk berlku A. + = b B. + = c C. = c = c = c MA-78-0 Akr dri persmn 5 - = 7 + dlh A. B. C. 4 5 MA-78-0 Hrg dri log b. b log c. c log

Lebih terperinci

DETERMINAN. Misalkan A adalah suatu matriks persegi. a) Jika A memiliki satu baris atau satu kolom bilangan nol, maka det(a) = 0.

DETERMINAN. Misalkan A adalah suatu matriks persegi. a) Jika A memiliki satu baris atau satu kolom bilangan nol, maka det(a) = 0. DETERMINAN Fungsi determinn dri sutu mtriks persegi A (dinotsikn dengn det(a) tu A ) didefinisikn sebgi jumlh dri semu hsil kli elementer bertnd dri A. Sementr, ngk tu bilngn dri det(a) disebut determinn

Lebih terperinci

Seorang nakhoda kapal melihat puncak mercusuar yang berjarak 80 meter. Dalil Pythagoras. Bab. Di unduh dari : Bukupaket.com

Seorang nakhoda kapal melihat puncak mercusuar yang berjarak 80 meter. Dalil Pythagoras. Bab. Di unduh dari : Bukupaket.com b Dlil Pythgors Tujun Pembeljrn Setelh mempeljri bb ini sisw dihrpkn mmpu: Menjelskn dn menemukn dlil Pythgors, dn syrt berlkuny; Menuliskn dlil Pythgors untuk sisi-sisi segitig; Menghitung pnjng sisi

Lebih terperinci

PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN PERTIDAKSAMAAN KUADRAT

PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN PERTIDAKSAMAAN KUADRAT PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN PERTIDAKSAMAAN KUADRAT Persmn Kudrt. Bentuk Umum Persmn Kudrt Mislkn,, Є R dn 0 mk persmn yng erentuk 0 dinmkn persmn kudrt dlm peuh. Dlm persmn kudrt 0, dlh koefisien

Lebih terperinci

Integral Tak Wajar. Ayundyah Kesumawati. March 25, Prodi Statistika FMIPA-UII

Integral Tak Wajar. Ayundyah Kesumawati. March 25, Prodi Statistika FMIPA-UII Kesumwti Prodi Sttistik FMIPA-UII Mrch 25, 205 Sutu integrl tertentu b f (x)dx () diktkn wjr jik i memenuhi du syrt berikut: i. Bts integrsi dn b merupkn bilngn berhingg ii. fungsi f (x) terbts pd intervl

Lebih terperinci

INTEGRAL. Misalkan suatu fungsi f(x) diintegralkan terhadap x maka di tulis sebagai berikut:

INTEGRAL. Misalkan suatu fungsi f(x) diintegralkan terhadap x maka di tulis sebagai berikut: INTEGRAL.PENGERTIAN INTEGRAL Integrl dlh cr mencri sutu fungsi jik turunnn di kethui tu kelikn dri diferensil (turunn) ng diseut jug nti derivtif tu nti diferensil. Untuk menentukn integrl tidk semudh

Lebih terperinci

Materi IX A. Pendahuluan

Materi IX A. Pendahuluan Mteri IX Tujun :. Mhsisw dpt memhmi vektor. Mhsisw mmpu mengunkn vektor dlm persoln sederhn 3. Mhsisw mengimplementsikn konsep vektor pd rngkin listrik. Pendhulun Sudh menjdi kesepktn umum hw untuk menentukn

Lebih terperinci

SIMAK UI 2011 Matematika Dasar

SIMAK UI 2011 Matematika Dasar SIMAK UI 0 Mtemtik Dsr Kode Sol Doc. Nme: SIMAKUI0MATDAS999 Version: 0-0 hlmn 0. Sebuh segitig sm kki mempunyi ls 0 cm dn tinggi 5 cm. Jik dlm segitig tersebut dibut persegi pnjng dengn ls terletk pd ls

Lebih terperinci

ELIPS. A. Pengertian Elips

ELIPS. A. Pengertian Elips ELIPS A. Pengertin Elips Elips dlh tempt kedudukn titik-titik yng jumlh jrkny terhdp du titik tertentu mempunyi nili yng tetp. Kedu titik terseut dlh titik focus / titik pi. Elips jug didefinisikn segi

Lebih terperinci

MATEMATIKA IPA PAKET B KUNCI JAWABAN SOAL

MATEMATIKA IPA PAKET B KUNCI JAWABAN SOAL MATEMATIKA IPA PAKET KUNCI JAWAAN SOAL. Jwn : Mislkn p: ir sungi jernih q: Tidk terkndung zt pencemr r: Semu ikn tidk mti Diperoleh : Premis : p q Premis : ~r ~q q r Jdi, kesimpuln dri premis-premis terseut

Lebih terperinci

APLIKASI INTEGRAL PENERAPAN INTEGRAL. Luas daerah kelengkungan

APLIKASI INTEGRAL PENERAPAN INTEGRAL. Luas daerah kelengkungan APLIKASI INTEGRAL APLIKASI INTEGRAL PENERAPAN INTEGRAL Lus derh kelengkungn PENERAPAN INTEGRAL Indiktor 1 Indiktor 9 Lus derh di bwh kurv berdsr prinsip Riemn Volume bend putr, jik kurv diputr mengelilingi

Lebih terperinci

Vektor di R2 ( Baca : Vektor di ruang dua ) adalah Vektor- di ruang dua )

Vektor di R2 ( Baca : Vektor di ruang dua ) adalah Vektor- di ruang dua ) A Pengertin Vektor Di R Vektor di R ( B : Vektor di rung du ) dlh Vektor- di rung du ) dlh Vektor-vektor ng terletk pd idng dtr pengertin vektor ng leih singkt dlh sutu esrn ng memiliki esr dn rh tertentu

Lebih terperinci

MUH1G3/ MATRIKS DAN RUANG VEKTOR

MUH1G3/ MATRIKS DAN RUANG VEKTOR MUHG3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN 3 Sistem Persmn Liner Sistem Persmn Liner Su Pokok Bhsn Pendhulun Solusi SPL dengn OBE Solusi SPL dengn Invers mtriks dn Aturn Crmmer SPL Homogen Beerp Apliksi

Lebih terperinci

PEMBAHASAN PERSIAPAN UAS X MATEMATIKA PEMINATAN

PEMBAHASAN PERSIAPAN UAS X MATEMATIKA PEMINATAN PEMBAHASAN PERSIAPAN UAS X MATEMATIKA PEMINATAN Sol Dierikn du vektor segi erikut: Grkn vektor ) ) Jw: ) Untuk enggr vektor, gr dhulu vektor, llu disung dengn vektor Vektor dlh vektor yng pnjngny kli vektor

Lebih terperinci

NILAI EIGEN DAN VEKTOR EIGEN

NILAI EIGEN DAN VEKTOR EIGEN Pert 9 (mengjrkomputer.wordpress.com) NILAI EIGEN DAN VEKTOR EIGEN 9. Definisi Sebuh mtriks bujur sngkr dengn orde n n mislkn A, dn sebuh vektor kolom X. Vektor X dlh vektor dlm rung Euklidin n R yng dihubungkn

Lebih terperinci

TURUNAN FUNGSI. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XI

TURUNAN FUNGSI. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XI LA - WB (Lembr Aktivits Wrg Beljr) TURUNAN FUNGSI Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XI Creted By It Yulin 33 Turunn Fungsi Kompetensi Dsr 1. Menggunkn

Lebih terperinci

PERSAMAAN DAN PERTIDAKSAMAAN LOGARITMA

PERSAMAAN DAN PERTIDAKSAMAAN LOGARITMA K- Kels X mtemtik PEMINATAN PERSAMAAN DAN PERTIDAKSAMAAN LOGARITMA Tujun Pembeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi definisi persmn dn pertidksmn logritm.. Dpt

Lebih terperinci

UJIAN NASIONAL. Matematika (D10) PROGRAM STUDI IPA PAKET 1 (UTAMA) SELASA, 11 MEI 2004 Pukul

UJIAN NASIONAL. Matematika (D10) PROGRAM STUDI IPA PAKET 1 (UTAMA) SELASA, 11 MEI 2004 Pukul 0-0 D0-P-0- DOKUMEN NEGARA SANGAT RAHASIA UJIAN NASIONAL TAHUN PELAJARAN 00/00 SMA/MA Mtemtik (D0) PROGRAM STUDI IPA PAKET (UTAMA) SELASA, MEI 00 Pukul 07.0 09.0 DEPARTEMEN PENDIDIKAN NASIONAL Hk Cipt

Lebih terperinci

Persiapan US Matematika 12 IPA

Persiapan US Matematika 12 IPA Persipn US Mtemtik 1 IPA tnggl US: Sbtu, 5 Mret 017 1 1 9. Hitunglh lg 5.... 5 4 lg 100 lg 10 1. Jik = 4, b =, & c = 1 mk nili 1 b c lg 6 lg 4 10. Hitunglh lg 1. Tentukn jik 81 1 9 p 1 p. Tentukn p jik

Lebih terperinci

Rumus Luas Daerah Segi Empat Sembarang? Oleh: Al Jupri Dosen Jurusan Pendidikan Matematika Universitas Pendidikan Indonesia

Rumus Luas Daerah Segi Empat Sembarang? Oleh: Al Jupri Dosen Jurusan Pendidikan Matematika Universitas Pendidikan Indonesia Rumus Lus Derh Segi Empt Sembrng? Oleh: Al Jupri Dosen Jurusn Pendidikn Mtemtik Universits Pendidikn Indonesi Kit bisny lebih menyuki brng yng siftny serb gun dn efektif, stu brng untuk berbgi jenis keperlun.

Lebih terperinci

matematika K-13 TEOREMA FAKTOR DAN OPERASI AKAR K e l a s

matematika K-13 TEOREMA FAKTOR DAN OPERASI AKAR K e l a s K-3 mtemtik K e l s XI TEOREMA FAKTOR DAN OPERASI AKAR Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Memhmi teorem fktor.. Menentukn kr dn fktor liner suku nyk dengn

Lebih terperinci

Matematika SMA (Program Studi IPA)

Matematika SMA (Program Studi IPA) Smrt Solution UJIAN NASIONAL TAHUN PELAJARAN 2013/2014 Disusun Sesui Indiktor Kisi-Kisi UN 2013 Mtemtik SMA (Progrm Studi IPA) Disusun oleh : Pk Anng - Blogspot Pge 1 of 13 5. 2. Menyelesikn sol pliksi

Lebih terperinci

SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPA 2015

SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPA 2015 SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPA 0 Pket Pilihlh jwbn yng pling tept!. Diberikn premis-premis berikut! Premis : Jik vektor dn b sling tegk lurus, mk besr sudut ntr vektor dn b dlh 90 o. Premis

Lebih terperinci

PERTEMUAN - 1 JENIS DAN OPERASI MATRIKS

PERTEMUAN - 1 JENIS DAN OPERASI MATRIKS PERTEMUN - JENIS DN OPERSI MTRIKS Pengertin Mtriks : merupkn sutu lt tu srn yng sngt mpuh untuk menyelesikn model-model liner. Definisi : Mtriks dlh susunn empt persegi pnjng tu bujur sngkr dri bilngn-bilngn

Lebih terperinci

DETERMINAN DAN INVERS MATRIKS BLOK 2 2

DETERMINAN DAN INVERS MATRIKS BLOK 2 2 Buletin Ilmih Mth. Stt. dn Terpnny (Bimster) Volume 06, No. 3(2017), hl 193 202. DETERMINAN DAN INVERS MATRIKS BLOK 2 2 Ilhmsyh, Helmi, Frnsiskus Frn INTISARI Mtriks blok merupkn mtriks persegi yng diblok

Lebih terperinci

Pertemuan : 1 Materi : Vektor Pada Bidang ( R 2 ), Bab I. Pendahuluan

Pertemuan : 1 Materi : Vektor Pada Bidang ( R 2 ), Bab I. Pendahuluan Pertemun : 1 Mteri : Vektor Pd Bidng ( R 2 ), Bb I. Pendhulun Stndr Kompetensi : Setelh mengikuti perkulihn ini mhsisw dihrpkn dpt : 1. Memhmi kembli pengertin vektor, opersi pd vektor, dn sift-sift opersi

Lebih terperinci

LEMBAR KEGIATAN SISWA. : Menemukan Teorema Pythagoras Sekolah/Satuan Pendidikan:... Kelas/Semester :... Anggota Kelompok :

LEMBAR KEGIATAN SISWA. : Menemukan Teorema Pythagoras Sekolah/Satuan Pendidikan:... Kelas/Semester :... Anggota Kelompok : LEMBAR KEGATAN SSWA Topik : Menemukn Teorem Pythgors Sekolh/Stun Pendidikn:... Kels/Semester :... Anggot Kelompok : 1.... 2.... 3.... 4. 5.... Tnggl Mengerjkn LKS :. Petunjuk Umum: 1. Setelh mengerjkn

Lebih terperinci

[RUMUS CEPAT MATEMATIKA]

[RUMUS CEPAT MATEMATIKA] http://meetied.wordpress.com SMAN BoneBone, Luwu Utr, SulSel Keslhn teresr yng diut mnusi dlm kehidupnny dlh terusmenerus mers tkut hw merek kn melkukn keslhn (Elert Hud) [RUMUS CEPAT MATEMATIKA] Vektor

Lebih terperinci

SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPA Paket 3

SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPA Paket 3 SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPA 0 Pket Pilihlh jwbn yng pling tept!. Diberikn premis-premis berikut!. Mthmn beljr tidk serius tu i dpt mengerjkn semu sol Ujin Nsionl dengn benr.. I tdk dpt

Lebih terperinci

Bab a. maka notasi determinan dari matriks A ditulis : det (A) atau. atau A.

Bab a. maka notasi determinan dari matriks A ditulis : det (A) atau. atau A. Bb DETERMINAN MATRIKS Determinn sutu mtriks dlh sutu fungsi sklr dengn domin mtriks bujur sngkr. Dengn kt lin, determinn merupkn pemetn dengn domin berup mtriks bujur sngkr, sementr kodomin berup sutu

Lebih terperinci

IRISAN KERUCUT. 1. Persamaan lingkaran dengan pusat (0,0) dan jari-jari r. Persamaan = TK titik T = =

IRISAN KERUCUT. 1. Persamaan lingkaran dengan pusat (0,0) dan jari-jari r. Persamaan = TK titik T = = IRISAN KERUCUT Bb 9 A. LINGKARAN. Persmn lingkrn dengn pust (0,0) dn jri-jri r 0 r T(x,y) X Persmn = TK titik T = { T / OT r } = = {( x, y) / r } {( x, y) / r }. Persmn lingkrn dengn pust (,b) dengn jri-jri

Lebih terperinci

BAB I. MATRIKS BAB II. DETERMINAN BAB III. INVERS MATRIKS BAB IV. PENYELESAIAN PERSAMAAN LINEAR SIMULTAN

BAB I. MATRIKS BAB II. DETERMINAN BAB III. INVERS MATRIKS BAB IV. PENYELESAIAN PERSAMAAN LINEAR SIMULTAN DFTR ISI BB I. MTRIKS BB II. DETERMINN BB III. INVERS MTRIKS BB IV. PENYELESIN PERSMN LINER SIMULTN BB I. MTRIKS Mtriks erup sekelompok ilngn yng disusun empt persegi dn ditsi tnd terdiri dri ris dn kolom

Lebih terperinci

- - KESEBANGUNAN DAN KUNGRUENSI

- - KESEBANGUNAN DAN KUNGRUENSI - - KESENGUNN N KUNGRUENSI - - Modul ini singkron dengn pliksi ndroid, ownlod mellui Pl Store di HP Kmu, ketik di penrin sbl1kesebngunn Jik Kmu kesulitn, Tnkn ke tentor bgimn r downlodn. pliksi ini berjln

Lebih terperinci

M A T R I K S. Oleh: Dimas Rahadian AM, S.TP. M.Sc.

M A T R I K S. Oleh: Dimas Rahadian AM, S.TP. M.Sc. M T R I K S Oleh Dims Rhdin M, S.TP. M.Sc Emil rhdindims@yhoo.com JURUSN ILMU DN TEKNOLOGI PNGN UNIVERSITS SEBELS MRET SURKRT DEFINISI... Mtriks dlh susunn bilngn berbentuk jjrn segi empt siku-siku yng

Lebih terperinci

TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2009

TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2009 SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 009 Bidng Mtemtik Wktu :,5 Jm DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT

Lebih terperinci

1 B. Mengkonversi dari pecahan ke persen. 1 Operasi bilangan berpangkat. 2. Menyederhanakan bilangan berpangkat bentuk:

1 B. Mengkonversi dari pecahan ke persen. 1 Operasi bilangan berpangkat. 2. Menyederhanakan bilangan berpangkat bentuk: KISI KISI SOAL UJI COBA UJIAN NASIONAL MATA PELAJARAN MATEMATIKA TAHUN 009 / 00 MGMP MATEMATIKA SMK TEKNIK KABUPATEN KLATEN Bhn/ X / Opersi bilngn rel. Sisw dpt: A. Mengkonversi dri desiml ke persen B.

Lebih terperinci

Matematika EBTANAS Tahun 1992

Matematika EBTANAS Tahun 1992 Mtemtik EBTANAS Thun 99 EBT-SMA-9-0 Grfik fungsi kudrt yng persmnny y = x 5x memotong sumu x. Slh stu titik potongny dlh (, 0), mk nili sm dengn EBT-SMA-9-0 Persmn x px + 5 = 0 kr-krny sm. Nili p 0 tu

Lebih terperinci

IV V a b c d. a b c d. b c d. bukan fungsi linier y = x = x y 5xy + y = B.2 Konsep Fungsi Linier

IV V a b c d. a b c d. b c d. bukan fungsi linier y = x = x y 5xy + y = B.2 Konsep Fungsi Linier 8. Dri fungsi-fungsi ng disjikn dengn digrm pnh erikut ini mnkh ng merupkn fungsi onto, injektif tu ijektif, jik relsi dri A ke B? A c d IV B A c d V B A c d VI B B. Konsep Fungsi Linier. Tujun Setelh

Lebih terperinci

TRIGONOMETRI. cos ec. sec. cot an

TRIGONOMETRI. cos ec. sec. cot an TRIGONOMETRI Bb. Perbndingn Trigonometri Y y r r tn y. Hubungn fungsi-fungsi trigonometri r T(,b y X ctg ec tn sec tg ;ctg co s co s ec sec cot n tn Ltihn. Titik-titik sudut segitig sm kki ABC terletk

Lebih terperinci

VECTOR DI BIDANG R 2 DAN RUANG R 3. Nurdinintya Athari (NDT)

VECTOR DI BIDANG R 2 DAN RUANG R 3. Nurdinintya Athari (NDT) VECTOR DI BIDANG R DAN RUANG R Nurdininty Athri (NDT) VEKTOR DI BIDANG (R ) DAN DI RUANG (R ) Pokok Bhsn :. Notsi dn Opersi Vektor. Perklin titik dn Proyeksi Ortogonl. Perklin silng dn Apliksiny Beerp

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Anlisis Rel Hendr Gunwn* *http://hgunwn82.wordpress.com Anlysis nd Geometry Group Bndung Institute of Technology Bndung, INDONESIA Progrm Studi S1 Mtemtik ITB, Semester II 2016/2017 HG* (*ITB Bndung)

Lebih terperinci

Solusi Pengayaan Matematika

Solusi Pengayaan Matematika Solusi Pengn Mtemtik Edisi pril Pekn Ke-, 00 Nomor Sol: -0 Tentukn bnk psngn bilngn rel, ng memenuhi persmn ot ot Solusi: ot ot tnπ otπ π tnπ tn π π π π k π k 00 k 00 k k 00 k k 00 k k 00 k k 00 Kren k

Lebih terperinci

E-LEARNING MATEMATIKA

E-LEARNING MATEMATIKA MODUL E-LEARNING E-LEARNING MATEMATIKA Oleh : NURYADIN EKO RAHARJO, M.PD. NIP. 9705 00 00 Penulisn Modul e Lerning ini diiyi oleh dn DIPA BLU UNY TA 00 Sesui dengn Surt Perjnjin Pelksnn e Lerning Nomor

Lebih terperinci

12. LUAS DAERAH DAN INTEGRAL

12. LUAS DAERAH DAN INTEGRAL 12. LUAS DAERAH DAN INTEGRAL 12.1 Lus Derh di Bwh Kurv Mslh menentukn lus derh (dn volume rung) telh dipeljri sejk er Pythgors dn Zeno, pd thun 500-n SM. Konsep integrl (yng terkit ert dengn lus derh)

Lebih terperinci

APLIKASI INTEGRAL PENERAPAN INTEGRAL. Luas daerah kelengkungan

APLIKASI INTEGRAL PENERAPAN INTEGRAL. Luas daerah kelengkungan APLIKASI INTEGRAL APLIKASI INTEGRAL PENERAPAN INTEGRAL Lus derh kelengkungn Integrl digunkn pd design Menr Petrons di Kul lumpur, untuk perhitungn kekutn menr. Sdne Oper House di design berdsrkn irisn-irisn

Lebih terperinci

INTEGRAL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 45

INTEGRAL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 45 INTEGRAL Deprtemen Mtemtik FMIPA IPB Bogor, 2012 (Deprtemen Mtemtik FMIPA IPB) Klkulus I Bogor, 2012 1 / 45 Topik Bhsn 1 Pendhulun 2 Anti-turunn 3 Lus di Bwh Kurv 4 Integrl Tentu 5 Teorem Dsr Klkulus 6

Lebih terperinci

Bank soal Trigonometri Page 1 of 7 C. 3 + A. 3 D. 2 B. 3 E. 2 C Nilai x yang memenuhi cos3x

Bank soal Trigonometri Page 1 of 7 C. 3 + A. 3 D. 2 B. 3 E. 2 C Nilai x yang memenuhi cos3x Bnk sl Trignmetri Pge f. Jik tn =, mk sin + sin + + cs( ) =... 0. sin cs =... sin cs sin cs sin cs sin + cs sin + cs sin cs. Jik tn = dn mk cs + sin =... 0. Jik sin + cs = 0 dn 0 80 mk nili yng memenuhi

Lebih terperinci

Medan Magnet. Tahun 1820 Oersted menemukan bahwa arus listrik yang mengalir pada sebuah penghantar dapat menghasilkan

Medan Magnet. Tahun 1820 Oersted menemukan bahwa arus listrik yang mengalir pada sebuah penghantar dapat menghasilkan MEDAN MAGNET Gejl kemgnetn mirip dengn p yng terjdi pd gejl kelistrikn Mislny : Sutu besi tu bj yng dpt ditrik oleh mgnet btngn Terjdiny pol gris-gris serbuk besi jik didektkn pd mgnet btngn nterksi yng

Lebih terperinci

MATRIKS. Menggunakan konsep matriks, vektor, dan transformasi dalam pemecahan masalah.

MATRIKS. Menggunakan konsep matriks, vektor, dan transformasi dalam pemecahan masalah. MATRIKS Stndr Kompetensi : Menggunkn konsep mtriks, vektor, dn trnsformsi dlm pemechn mslh Kompetensi Dsr : Menggunkn sift-sift dn opersi mtriks untuk menentukn invers mtriks persegi Menggunkn determinn

Lebih terperinci

LIMIT FUNGSI DAN KEKONTINUAN

LIMIT FUNGSI DAN KEKONTINUAN LIMIT FUNGSI DAN KEKONTINUAN RANGKUMAN MATERI Sebelum memsuki mteri, perhtikn himpunn-himpunn berikut: ) Himpunn bilngn sli:,,,4,5,.... b) Himpunn bilngn bult:...,,,0,,,.... p c) Himpunn bilngn rsionl:

Lebih terperinci

15. INTEGRAL SEBAGAI LIMIT

15. INTEGRAL SEBAGAI LIMIT 15. INTEGRAL SEBAGAI LIMIT 15.1 Jumlh Riemnn Dlm kulih Klkulus pd thun pertm, integrl Riemnn bisny diperkenlkn sebgi limit dri jumlh Riemnn, tidk mellui integrl Riemnn ts dn integrl Riemnn bwh. Hl ini

Lebih terperinci

RUMUS HERON DAN RUMUS BRAHMAGUPTA

RUMUS HERON DAN RUMUS BRAHMAGUPTA RUMUS HERON DAN RUMUS BRAHMAGUPTA Sumrdyono, M.Pd. Topik lus bngun dtr telh dipeljri sejk di Sekolh Dsr hingg SMA. Bil di SD, dipeljri lus segitig dn beberp bngun segiempt mk di SMP dipeljri lebih lnjut

Lebih terperinci

KETERKAITAN GARIS-GARIS SEJAJAR DENGAN SEGIEMPAT DAN SEGITIGA

KETERKAITAN GARIS-GARIS SEJAJAR DENGAN SEGIEMPAT DAN SEGITIGA KETERKAITAN GARIS-GARIS SEJAJAR DENGAN SEGIEMPAT DAN SEGITIGA (Jurnl 4) Memen Permt Azmi Mhsisw S2 Pendidikn Mtemtik Universits Pendidikn Indonesi Perkulih geometri pd pertemun keempt pd tnggl 2 oktober

Lebih terperinci

BAB III MATRIKS

BAB III MATRIKS BB III MTRIKS PENGERTIN MTRIKS Pengertin Mtriks Mtriks dlh susunn bilngn-bilngn ng berbentuk persegi tu persegi pnjng ng ditur dlm bris dn kolom Bentuk Umum Mtriks : i m i m i m j j j ij mj n n n in mn

Lebih terperinci

1. HUKUM SAMBUNGAN KIRCHOFF (HUKUM KIRCHOFF I) 2. HUKUM CABANG KIRCHOFF (HUKUM KIRCHOFF II)

1. HUKUM SAMBUNGAN KIRCHOFF (HUKUM KIRCHOFF I) 2. HUKUM CABANG KIRCHOFF (HUKUM KIRCHOFF II) MATA KULIAH KODE MK Dosen : FISIKA DASAR II : EL-22 : Dr. Budi Mulynti, MSi Pertemun ke-6 CAKUPAN MATERI. HUKUM SAMBUNGAN KIRCHOFF (HUKUM KIRCHOFF I) 2. HUKUM CABANG KIRCHOFF (HUKUM KIRCHOFF II) SUMBER-SUMBER:.

Lebih terperinci

BAB 10. MATRIKS DAN DETERMINAN

BAB 10. MATRIKS DAN DETERMINAN Dessy Dwiynti, S.Si, MBA Mtemtik Ekonomi 1 BAB 10. MATRIKS DAN DETERMINAN 1. Pengertin mtriks Mtriks kumpuln bilngn yng disjikn secr tertur dlm bris dn kolom yng membentuk sutu persegi pnjng, sert termut

Lebih terperinci

3. LIMIT DAN KEKONTINUAN

3. LIMIT DAN KEKONTINUAN 3. LIMIT DAN KEKONTINUAN 1 3.1 Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi 1 1 Fungsi dits tidk terdeinisi di =1, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp

Lebih terperinci