Metode Numerik. Regresi. Umi Sa adah Politeknik Elektronika Negeri Surabaya 2008 PENS-ITS

Ukuran: px
Mulai penontonan dengan halaman:

Download "Metode Numerik. Regresi. Umi Sa adah Politeknik Elektronika Negeri Surabaya 2008 PENS-ITS"

Transkripsi

1 Metode Numerk Regres Um S dh Polteknk Elektronk Neger Surb 008 PENS-ITS 1

2 Metode Numerk Topk Regres Lner Regres Non Lner PENS-ITS

3 Metode Numerk

4 Metode Numerk Regres vs Interpols REGRESI KUADRAT TERKECIL INTERPOLASI POLINOM 1. Dt bersl dr hsl pengukurn 1. Dt bersl dr fungs ng ngn dsederhnkn dengn polnom, dr tbel d ltertur, tu dr hsl pengukurn. Dt berketeltn rendh. Dt berketeltn tngg (mengndung error) 3. Fungs kudrt terkecl tdk perlu 3. Fungs polnom nterpols hrus mellu mellu setp ttk dt. Kurv semu ttk dt. Semkn bnk fungsn drncng mengkut pol dtn, semkn tngg derjt polnom, ttk-ttk sebg sutu kelompok dn semkn besr error pembultnn Mnft pencocokn kurv untuk dt hsl pengukurn : 1. Bg hl sns/reks: mengembngkn formul emprk untuk sstem ng dtelt. Bg hl ekonom: menentukn kurv kecenderungn ekonom untuk mermlkn kecenderungn ms depn

5 Metode Numerk REGRESI LINIER Mslkn (, ) dlh dt hsl pengukurn, kt kn menghmpr ttk tsb dengn sebuh grs lurus Grs lurus tsb dbut sedemkn sehngg errorn sekecl mungkn dengn ttk-ttk dt

6 Metode Numerk Regres Lner Kren dt mengndung error, mk nl dt sebenrn, g() dpt dtuls sbb : g() = + e = 1,, 3,.., n Yng dlm hl n e dlh error setp dt Dngnkn untuk membentuk fungs lner : f() = + b Yng mencocokkn dt sedemkn sehngg devsn r f ( ) ( b) Totl kudrt devsn dlh R n 1 r n ( b) 1

7 Metode Numerk Regres Lner Agr R mnmum, mk hruslh Msng-msng rus kedu persmn dbg dengn - : Selnjutn 0 0 ) ( 0 0 ) ( b b b b b b n tu b b 0 ) ( 0 ) ( b b R b R b n Dlm bentuk mtrks ddpt bentuk sbb:

8 Metode Numerk Penghtungn Error Untuk menentukn seberp bgus fungs hmprn mencocokkn dt dpt dukur dengn error RMS (Root-Men-Squre error) E RMS 1 n n 1 Semkn kecl nl E RMS semkn bgus fungs hmprn mencocokkn ttk-ttk dt f ( ) 1/

9 Metode Numerk Contoh Sol : Tentukn persmn grs lurus ng mencocokkn dt pd tbel dbwh n. Kemudn perkrkn nl untuk = 1.0 Penelesn : ()

10 Metode Numerk Contoh Sol : Dperoleh Sstem Persmn Lner = b = Pers grs regres f() = b b n

11 Metode Numerk Contoh Sol Perbndngn ntr nl dn f() f() Tksrn nl untuk = 1.0 dlh.0507 E RMS = ( /6) 1/ = Devs f()- (devs) E

12 Metode Numerk Lnerss Persmn Nonlner Regres Nonlner Dt ng tdk cocok dengn bentuk lner Trnsforms Lner (jk mungkn)

13 Metode Numerk Lnerss Persmn Nonlner Meskpun fungs hmprn berbentuk non lner, nmun pencocokn kurv dengn fungs non lner tersebut dpt dseleskn jug dseleskn dengn cr regres lner Msln mcm fungs non lner berkut n : 1. Persmn pngkt sederhn = C b, C dn b konstnt. Model Eksponensl = Ce b, C dn b konstnt Contoh : - model pertumbuhn populs - model peluruhn zt rdoktf

14 Metode Numerk Pelnern Pers Pngkt Sederhn Mslkn kt kn mencocokkn dt dengn fungs : b C ln( ) ln( C) b ln( ) Defnskn : Y ln( ) ln( C) X ln( ) Sehngg persmn regres lnern dlh : Y bx Lkukn pengubhn dr (, ) menjd (ln( ),ln( )) llu htung dn b dengn cr regres lner. Dr pers = ln(c) mk kt dpt menghtung nl C = e. Msukkn nl b dn C ke dlm pngkt =C b

15 Metode Numerk Contoh Sol : Cocokkn dt berkut dengn f() = C b X=ln() Y=ln() X XY E Dperoleh sstem persmn lner b

16 Metode Numerk Contoh Sol : = b = Htung C = e = e = Jd f() =

17 Metode Numerk Pelnern Model Eksponensl = Ce b Mslkn kt kn mencocokkn dt dg fungs : = Ce b Lkukn pelnern sbb : = Ce b ln() = ln(c) + b ln(e) ln() = ln(c) + b ln(e) = 1 Defnskn : Y = ln() = ln(c) C = e X = Persmn Regres Lnern : Y = + bx Lkukn pengubhn (, ) (,ln( )) llu htung dn b dengn cr regres lner Dr persmn = ln(c) d dpt C = e Msukkn nl b dn C dlm persmn eksponensl = Ce b

BAB 6 FITTING DATA ˆ (6.1) (6.2) (6.3) =. Nilai akan. akan minimum jika. minimum. Misal. 0. Jika ini dikerjakan maka akan diperoleh nilai

BAB 6 FITTING DATA ˆ (6.1) (6.2) (6.3) =. Nilai akan. akan minimum jika. minimum. Misal. 0. Jika ini dikerjakan maka akan diperoleh nilai BAB 6 FITTIG DATA Atu dseut dengn penookn dt tu menentukn kurv terk ng mellu set dt (sekumpuln dt) dengn keslhn mnmum. Ukurn keslhn dlh E (root men squre, kr kudrt rt-rt). Ad eerp mm pol fttng dt: menurut

Lebih terperinci

CNH2B4 / KOMPUTASI NUMERIK

CNH2B4 / KOMPUTASI NUMERIK CNHB4 / KOMPUTASI NUMERIK TIM DOSEN KK MODELING AND COMPUTATIONAL EXPERIMENT PENCOCOKAN KURVA Pedhulu Dt g bersl dr hsl pegmt lpg pegukur tu tbel g dmbl dr buku-buku cu. Nl tr turu tegrl mudh dcr utuk

Lebih terperinci

Koefisien Regresi / persamaan regresi linier digunakan untuk meramalkan / mengetahui besarnya pengaruh variabel X terhadap variabel Y

Koefisien Regresi / persamaan regresi linier digunakan untuk meramalkan / mengetahui besarnya pengaruh variabel X terhadap variabel Y REGRESI Koefsen Regres / persmn regres lner dgunkn untuk mermlkn / mengethu esrny pengruh vrel terhdp vrel Vrel yng mempengruh ddlm nlss regres dseut vrel predktor ( ) Vrel yng dpengruh dseut vrel krterum

Lebih terperinci

Pemain P 1. Teorema 4.1 (Teorema minimax). Untuk setiap matriks pembayaran (pay off matrix), terdapat strategi optimal x* dan y* sedemikian sehingga

Pemain P 1. Teorema 4.1 (Teorema minimax). Untuk setiap matriks pembayaran (pay off matrix), terdapat strategi optimal x* dan y* sedemikian sehingga Rset Opers Probblstk Teor Permnn (Gme Theor) Deprtement of Mthemtcs FMIPA UNS Lecture 4: Med Strteg A. Metode Cmpurn (Med Strteg) D dlm permnn d mn permnn tersebut tdk mempun ttk peln, mk pr pemn kn bersndr

Lebih terperinci

MATEMATIKA TEKNIK 2 3 SKS TEKNIK ELEKTRO UDINUS

MATEMATIKA TEKNIK 2 3 SKS TEKNIK ELEKTRO UDINUS MATEMATIKA TEKNIK SKS TEKNIK ELEKTRO UDINUS Integrl Fungs Kompleks 4 INTEGRAL FUNGSI KOMPLEKS Sepert hlny dlm fungs rl, dlm fungs kompleks jug dkenl stlh ntegrl fungs kompleks sert sft-sftny Sft kenltkn

Lebih terperinci

BAB IV METODA ANALISIS RANGKAIAN

BAB IV METODA ANALISIS RANGKAIAN 6 BAB METODA ANALSS RANGKAAN Metod nlss rngkn sebenrny merupkn slh stu lt bntu untuk menyeleskn sutu permslhn yng muncul dlm mengnlss sutu rngkn, blmn konsep dsr tu hukum-hukum dsr sepert Hukum Ohm dn

Lebih terperinci

Interpolasi. Umi Sa adah

Interpolasi. Umi Sa adah Interolsi Umi S dh Interolsi Perbedn Interolsi dn Ekstrolsi Interolsi Linier L Interolsi Kudrt L h h Interolsi Qubic L h h h Interolsi dg Polinomil 5 Tble : Si equidistntl sced oints in [- ] 5 -..846

Lebih terperinci

ANALISIS NUMERIK. Inter polasi. SPL simultan. Akar Persama. linear

ANALISIS NUMERIK. Inter polasi. SPL simultan. Akar Persama. linear ANALISIS NUMERIK Inter polsi SPL simultn Akr Persm n Non liner INTERPOLASI Tujun Interpolsi bergun untuk menksir hrg-hrg tengh ntr titik dt yng sudh tept. Interpolsi mempunyi orde tu derjt. Mcm Interpolsi

Lebih terperinci

SOAL UN MATEMATIKA IPA 2014

SOAL UN MATEMATIKA IPA 2014 SOAL UN MATEMATIKA IPA 2014 1. Dkethu prems-prems berkut : Prems 1 : Jk hr hujn, mk tnmn pd subur. Prems 2 : Jk pnen tdk melmph, mk tnmn pd tdk subur. Prems 3 : Pnen tdk melmph Kesmpuln yng sh dr prems-prems

Lebih terperinci

Bab 4 ANALISIS REGRESI dan INTERPOLASI

Bab 4 ANALISIS REGRESI dan INTERPOLASI Als Numerk Bh Mtrkuls B 4 ANALISIS RGRSI d INTRPOLASI 4 Pedhulu Pd kulh k dpeljr eerp metde utuk mempredks d megestms dt dskret Dr sutu peelt serg dlkuk peglh dt utuk megethu pl dt tu etuk kurv g dggp

Lebih terperinci

BAB 5 PERSAMAAN DIFERENSIAL HOMOGEN ORDE TINGGI

BAB 5 PERSAMAAN DIFERENSIAL HOMOGEN ORDE TINGGI BAB 5 PESAMAAN DIFEENSIA HOMOGEN ODE TINGGI 5. Pendhulun Metode penyelesn persmn dferensl orde stu dn du yng telh dbhs dpt dpergunkn untuk persmn dferensl homogen untuk orde n dengn persmn krkterstk sepert

Lebih terperinci

Tujuan Pembelajaran. ) pada elips. 2. Dapat menentukan persamaan garis singgung yang melalui titik (x 1

Tujuan Pembelajaran. ) pada elips. 2. Dapat menentukan persamaan garis singgung yang melalui titik (x 1 K-3 mtemtik K e l s XI IRISAN KERUCUT: PERSAMAAN GARIS SINGGUNG PADA ELIPS Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Dpt menentukn persmn gris singgung di titik (,

Lebih terperinci

E. INTEGRASI BAGIAN ( PARSIAL )

E. INTEGRASI BAGIAN ( PARSIAL ) E. INTEGRASI BAGIAN ( PARSIAL ) Integrsi gin (prsil) digunkn untuk mengintegrsikn sutu perklin fungsi yng msing-msing fungsiny ukn koefisien diferensil dri yng lin ( seperti yng sudh dihs pd su. B. D )

Lebih terperinci

Regresi. Bahan Kuliah IF4058 Topik Khusus Informatika I. Oleh; Rinaldi Munir(IF-STEI ITB)

Regresi. Bahan Kuliah IF4058 Topik Khusus Informatika I. Oleh; Rinaldi Munir(IF-STEI ITB) Regres Bahan Kulah IF4058 Topk Khusus Informatka I Oleh; Rnald Munr(IF-STEI ITB) 1 Pendahuluan Regresadalahteknkpencocokankurvauntukdata ang berketeltanrendah. Contohdata ang berketeltanrendahdata haslpengamatan,

Lebih terperinci

Aljabar Linear dan Matriks (Transformasi Linier dan Matriks) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.

Aljabar Linear dan Matriks (Transformasi Linier dan Matriks) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. ljr Lner dn Mtrks (Trnsforms Lner dn Mtrks) Instruktur : Ferry Whyu Wowo SS MCs Penjumlhn Perkln Sklr dn Perkln Mtrks j : unsur dr mtrks d rs dn kolom j Defns Du mtrks dlh sm jk keduny mempuny ukurn yng

Lebih terperinci

Solusi Pengayaan Matematika Edisi 4 Januari Pekan Ke-4, 2007 Nomor Soal: 31-40

Solusi Pengayaan Matematika Edisi 4 Januari Pekan Ke-4, 2007 Nomor Soal: 31-40 Solusi Pengn Mtemtik Edisi 4 Jnuri Pekn Ke-4, 007 Nomor Sol: -40. Diberikn persmn 8 9 4 8 007 dn b, dengn b. Angk stun dri b dlh. A. B. C. D. 7 E. 9 Persmn 8 9 4 8 8 9 4 8 9 4 8 8 8 9 8 4 8 8 8 0 0 b tu

Lebih terperinci

1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini:

1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini: ) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persmn kudrt dlh seperti di bwh ini: b c dengn, b, c bilngn dn riil Dimn, disebut sebgi koefisien dri b disebut sebgi koefisien dri c disebut

Lebih terperinci

FISIKA. Sesi INDUKSI MAGNETIK A. KAWAT LURUS BERARUS

FISIKA. Sesi INDUKSI MAGNETIK A. KAWAT LURUS BERARUS FISIKA KELAS XII IPA - KURIKULUM GABUNGAN 07 Ses NGAN INDUKSI MAGNETIK Pd bd kesembln bels, Hns Chrstn Oersted (777-85) membuktkn keterktn ntr gejl lstrk dn gejl kemgnetn. Oersted mengmt st jrum kmps dtempelkn

Lebih terperinci

KALKULUS BUKAN SEKEDAR KALKULASI. Hendra Gunawan Kampus UNJ, 21 November 2015

KALKULUS BUKAN SEKEDAR KALKULASI. Hendra Gunawan Kampus UNJ, 21 November 2015 KALKULUS BUKAN SEKEDAR KALKULASI Hendr Gunwn Kmpus UNJ, 21 Novemer 2015 MENGAPA KALKULUS? APA YANG DIGARAP? c) Hendr Gunwn 2015) 2 Isc Newton 1643 1727) & Keceptn Sest Mslkn seuh prtkel ergerk sepnjng

Lebih terperinci

7. APLIKASI INTEGRAL. 7.1 Menghitung Luas Daerah. a.misalkan daerah D = {( x, Luas D =? f(x) Langkah : Contoh : Hitung luas daerah yang dibatasi oleh

7. APLIKASI INTEGRAL. 7.1 Menghitung Luas Daerah. a.misalkan daerah D = {( x, Luas D =? f(x) Langkah : Contoh : Hitung luas daerah yang dibatasi oleh 7. APLIKASI INTEGRAL MA KALKULUS I 7. Menghtung Lus erh.mslkn erh {(,, f ( ) Lus? f() Lngkh :. Irs menj n gn n lus stu uh rsn hmpr oleh lus perseg pnjng engn tngg f() ls(ler) A f ( ). Lus hmpr oleh jumlh

Lebih terperinci

PRAKTIKUM 22 Interpolasi Linier, Kuadratik, Polinomial, dan Lagrange

PRAKTIKUM 22 Interpolasi Linier, Kuadratik, Polinomial, dan Lagrange Prktkum. Iterpols Ler, Kudrtk, Poloml d Lgrge PRAKTIKUM Iterpols Ler, Kudrtk, Poloml, d Lgrge Tuju : Mempeljr berbg metode Iterpols g d utuk meetuk ttkttk tr dr buh ttk deg megguk sutu fugs pedekt tertetu.

Lebih terperinci

Metode Numerik 1. Imam Fachruddin (Departemen Fisika, Universitas Indonesia)

Metode Numerik 1. Imam Fachruddin (Departemen Fisika, Universitas Indonesia) Metode Numerk Imm Fchruddn (Deprtemen Fsk, Unversts Indones Dftr Pustk: P. L. DeVres, A Frst Course n Computtonl Physcs (John Wley & Sons, Inc., New York, 994 W. H. Press, et. l., Numercl Recpes n Fortrn

Lebih terperinci

LUAS DENGAN PARTISI SEGITIGA UNTUK FUNGSI CEKUNG

LUAS DENGAN PARTISI SEGITIGA UNTUK FUNGSI CEKUNG Posdng Semt05 dng MIPA BKS-PTN Bt Unvests Tnjungpu Pontnk Hl 7 - LUAS DENGAN PARTISI SEGITIGA UNTUK FUNGSI CEKUNG Jun Lest Nengsh *, Symsudhuh, Lel Deswt Juusn Mtemtk Unvests Ru, Ru jun.lest@gml.om, Kmpus

Lebih terperinci

REGRESI. Curve Fitting Regresi Linier Regresi Eksponensial Regresi Polynomial. Regresi 1

REGRESI. Curve Fitting Regresi Linier Regresi Eksponensial Regresi Polynomial. Regresi 1 REGRESI Curve Fttg Regres Ler Regres Ekspoesl Regres Poloml Regres Curve Fttg: Ksus Dberk dt berup kumpul ttk-ttk dskrt. Dperluk estms / perkr utuk medptk l dr ttk-ttk g berd d tr ttk-ttk dskrt tersebut

Lebih terperinci

REGRESI. Curve Fitting. Regresi Eksponensial. Regresi 1

REGRESI. Curve Fitting. Regresi Eksponensial. Regresi 1 REGRESI Curve Fttg Regres Ler Regres Ekspoesl Regres Poloml Regres Curve Fttg: Ksus Dberk dt berup kumpul ttk-ttk dskrt. Dperluk estms / perkr utuk medptk l dr ttk-ttk g berd d tr ttk-ttk dskrt t tersebut

Lebih terperinci

INTEGRAL. Misalkan suatu fungsi f(x) diintegralkan terhadap x maka di tulis sebagai berikut:

INTEGRAL. Misalkan suatu fungsi f(x) diintegralkan terhadap x maka di tulis sebagai berikut: INTEGRAL.PENGERTIAN INTEGRAL Integrl dlh cr mencri sutu fungsi jik turunnn di kethui tu kelikn dri diferensil (turunn) ng diseut jug nti derivtif tu nti diferensil. Untuk menentukn integrl tidk semudh

Lebih terperinci

MENENTUKAN AKAR-AKAR PERSAMAAN PANGKAT EMPAT. Supriyono Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo.

MENENTUKAN AKAR-AKAR PERSAMAAN PANGKAT EMPAT. Supriyono Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo. MENENTUKAN AKAR-AKAR PERSAMAAN PANGKAT EMPAT Supriyono Jurusn Pendidikn Mtemtik FKIP Universits Muhmmdiyh Purworejo Abstrk Tulisn ini terdiri bgin yitu () bgin pendhulun yng membhs bentuk umum persmn pngkt

Lebih terperinci

PRAKTIKUM 12 Regresi Linier, Regresi Eksponensial dan Regresi Polinomial

PRAKTIKUM 12 Regresi Linier, Regresi Eksponensial dan Regresi Polinomial Prktkum. Regres Regres Ler, Regres Ekspoesl, d Regres Poloml Poltekk Elektrok eger Surb ITS 47 PRAKTIKUM Regres Ler, Regres Ekspoesl d Regres Poloml. Tuju : Mempeljr metode peeles regres ler, ekspoesl

Lebih terperinci

5. INDUKSI MAGNETIK. A. Medan Magnetik

5. INDUKSI MAGNETIK. A. Medan Magnetik 5. INDUKSI MAGNETIK Setelh mempeljr modul n, dhrpkn And dpt memhm konsep nduks mgnetk secr umum. Secr lebh khusus, And dhrpkn dpt : Mendeskrpskn hsl percobn Hns Chrstn Oersted tentng pengertn nduks mgnetk.

Lebih terperinci

r x = 0. Koefisien-koefisien persamaan yang dihasilkan adalah analitik pada x = 0. Jadi dapat kita gunakan metode deret pangkat.

r x = 0. Koefisien-koefisien persamaan yang dihasilkan adalah analitik pada x = 0. Jadi dapat kita gunakan metode deret pangkat. Husn Arifh,M.Sc : Persmn Legendre Emil : husnrifh@uny.c.id Persmn diferensil Legendre (1) 1 x 2 y 2xy + n n + 1 y = 0 Prmeter n pd (1) dlh bilngn rill yng diberikn. Setip penyelesin dri (1) dinmkn fungsi

Lebih terperinci

PRAKTIKUM 6 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss Jordan

PRAKTIKUM 6 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss Jordan Prtum 6 Penyelesn Persmn Lner Smultn - Metode Elmns Guss Jordn PRAKTIKUM 6 Penyelesn Persmn Lner Smultn Metode Elmns Guss Jordn. Tujun : Mempeljr metode Elmns Guss Jordn untu penyelesn persmn lner smultn.

Lebih terperinci

Tujuan Pembelajaran. ) pada hiperbola yang berpusat di (0, 0). 2. Dapat menentukan persamaan garis singgung di titik (x 1

Tujuan Pembelajaran. ) pada hiperbola yang berpusat di (0, 0). 2. Dapat menentukan persamaan garis singgung di titik (x 1 K-3 mtemtik K e l s XI IRISAN KERUCUT: GARIS SINGGUNG PADA HIPERBOLA Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Dpt menentukn persmn gris singgung di titik (, ) pd

Lebih terperinci

SUKUBANYAK (POLINOMIAL)

SUKUBANYAK (POLINOMIAL) SUKUBANYAK (POLINOMIAL) A. Bentuk Umum Sukubnyk (Polinomil) n n n b c... z n = pngkt tertinggi (derjt sukubnyk) n = koefisien 7 5 5 9 6 dlh sukubnyk berderjt 7, koefisien dlh 9, koefisien konstnt dlh 6

Lebih terperinci

THEOREMA SISA, THEOREMA FAKTOR BENTUK POLINUM. Prepared by: Romli Shodikin, M.Pd sabtu., 23 November 2013 Pertemuan 7

THEOREMA SISA, THEOREMA FAKTOR BENTUK POLINUM. Prepared by: Romli Shodikin, M.Pd sabtu., 23 November 2013 Pertemuan 7 THEOREMA SISA, THEOREMA FAKTOR BENTUK POLINUM Prepred y: Romli Shodikin, M.Pd stu., 3 Novemer 013 Pertemun 7 TEOREMA SISA dn TEOREMA FAKTOR Teorem Sis untuk Pemgin Bentuk Liner Teorem Sis : 1.Jik sutu

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer ljbr Liner Elementer M SKS Silbus : Bb I Mtriks dn Opersiny Bb II Determinn Mtriks Bb III Sistem Persmn Liner Bb IV Vektor di Bidng dn di Rung Bb V Rung Vektor Bb VI Rung Hsil Kli Dlm Bb VII Trnsformsi

Lebih terperinci

BAB 7. LIMIT DAN LAJU PERUBAHAN

BAB 7. LIMIT DAN LAJU PERUBAHAN BAB 7. LIMIT DAN LAJU PERUBAHAN 7. LIMIT FUNGSI 7.. Limit fungsi di sutu titik Menggmbrkn perilku fungsi jik peubhn mendekti sutu titik Illustrsi: Dikethui f( ) f(), 3,30,0 3,030,00 3,003 3 f() = f() 3,000?

Lebih terperinci

12 Langkah Penyelesaian Pendekatan

12 Langkah Penyelesaian Pendekatan Meto Elemen Hngg Dlm Hrulk B 4 Dsr eu: Lngkh Penyelesn Penektn Ir. Djoko Luknnto, M.S., Ph.D. mlto:luknnto@ugm.. Revew (hl.96) Anlss yng utuhkn: Û(;) hrus r Integrs Resul rter Optms p R(;) untuk menentukn

Lebih terperinci

Bab a. maka notasi determinan dari matriks A ditulis : det (A) atau. atau A.

Bab a. maka notasi determinan dari matriks A ditulis : det (A) atau. atau A. Bb DETERMINAN MATRIKS Determinn sutu mtriks dlh sutu fungsi sklr dengn domin mtriks bujur sngkr. Dengn kt lin, determinn merupkn pemetn dengn domin berup mtriks bujur sngkr, sementr kodomin berup sutu

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Ltr Belkg Smp st, model Regres d model Alss Vrs telh dpdg sebg du hl g tdk berkt. Meskpu merupk pedekt g umum dlm meergk kedu cr pd trf permul, model Alss Vrs dpt dpdg sebg hl khusus model

Lebih terperinci

FUNGSI KUADRAT. . a 0, a, b, c bil real. ymax. ymin. , maka harga m= A. 0 B. 1 C. 2 D. 3 E. 4 Jawab : m mempunyai nilai minimum 1 5.

FUNGSI KUADRAT. . a 0, a, b, c bil real. ymax. ymin. , maka harga m= A. 0 B. 1 C. 2 D. 3 E. 4 Jawab : m mempunyai nilai minimum 1 5. FUNGSI KUADRAT Bb Bentuk Umum : x bx c. 0,, b, c bil rel b b c A. Titik Punck =, b Dengn sumbu simetri : x b c mx jik 0 Nili ekstrim : min jik 0 Jik fungsi x x m memuni nili minimum 8, mk hrg m= A. 0 B.

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer ljbr Liner Elementer M3 3 SKS Silbus : Bb I Mtriks dn Opersiny Bb II Determinn Mtriks Bb III Sistem Persmn Liner Bb IV Vektor di Bidng dn di Rung Bb V Rung Vektor Bb VI Rung Hsil Kli Dlm Bb VII Trnsformsi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Bb berikut ini kn disjikn mteri pendukung yng dpt membntu penulis untuk menyelesikn permslhn yng kn dibhs pd bb selnjutny. Adpun mteri pendukungny dlh pengertin mtriks, jenis-jenis

Lebih terperinci

MATEMATIKA INTEGRAL TENTU DAN LUAS DAERAH

MATEMATIKA INTEGRAL TENTU DAN LUAS DAERAH MATEMATIKA KELAS XII - KURIKULUM GABUNGAN 5 Sesi N INTEGRAL TENTU DAN LUAS DAERAH A. DEFINISI INTEGRAL TENTU Bentuk integrl f d = f + c diseut segi integrl tk tentu kren hsil dri pengintegrlnn msih erup

Lebih terperinci

CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. 3. Untuk k 2 didefinisikan bahwa a

CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. 3. Untuk k 2 didefinisikan bahwa a CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. Dikethui bhw,. Untuk k didefinisikn bhw k k k. Tentukn jumlh tk hingg dri. Kit mislkn S S. Dengn demikin kit dpt menuliskn Kedu

Lebih terperinci

SUKU BANYAK ( POLINOM)

SUKU BANYAK ( POLINOM) SUKU BANYAK ( POLINOM) Bb 16 Skl 8.Menyelesikn mslh yng berkitn dengn teorem sis tu teorem fktor A. PENGERTIAN SUKU BANYAK. Bentuk x x x... x x, dengn 0 dn n { bil. cch} 1 0 disebut dengn Suku bnyk (Polinomil)

Lebih terperinci

Teorema Gauss. Garis Gaya oleh muatan negatip. Garis gaya listrik. Garis gaya oleh sebuah muatan titik. Sebuah muatan negatip

Teorema Gauss. Garis Gaya oleh muatan negatip. Garis gaya listrik. Garis gaya oleh sebuah muatan titik. Sebuah muatan negatip Gs Gy Lstk Konsep fluks Teoem Guss Teoem Guss Penggunn Teoem Guss Medn oleh mutn ttk Medn oleh kwt pnjng tk behngg Medn lstk oleh plt lus tk behngg Medn lstk oleh bol solto dn kondukto Medn lstk oleh slnde

Lebih terperinci

KAJIAN TENTANG SKEMA BEDA HINGGA KOMPAK ORDE-4

KAJIAN TENTANG SKEMA BEDA HINGGA KOMPAK ORDE-4 KAJIA TETAG SKEA BEDA HIGGA KOPAK ORDE-4 Eko Prsety Budn Abstrct : Fourth order compct fnte-dfference scheme s bsed on low-storge Runge-Kutt schemes for temporl dscretzton nd fourth order compct fnte-dfference

Lebih terperinci

Metode Numerik 1. Imam Fachruddin Departemen Fisika, Universitas Indonesia

Metode Numerik 1. Imam Fachruddin Departemen Fisika, Universitas Indonesia Metode Numerk Imm Fchruddn Deprtemen Fsk, Unversts Indones Untuk dpk dlm kulh Komputs Fsk Dpt dunduh dr http://stff.fsk.u.c.d/mmf/ Metode Numerk Imm Fchruddn Deprtemen Fsk, Unversts Indones Dftr Pustk:

Lebih terperinci

2. PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT

2. PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT . PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT A. Persmn Kudrt. Bentuk umum persmn kudrt : x + bx + c = 0, 0. Nili determinn persmn kudrt : D = b c. Akr-kr persmn kudrt dpt dicri dengn memfktorkn tupun

Lebih terperinci

Komputasi Efisiensi Dan Linearitas Daya Optik Pada Pemisahan Longitudinal Serat Optik Indeks Undak Multiragam Dengan Metode Simpson

Komputasi Efisiensi Dan Linearitas Daya Optik Pada Pemisahan Longitudinal Serat Optik Indeks Undak Multiragam Dengan Metode Simpson Komputs Esens Dn Lnerts Dy Optk Pd Pemshn Longtudnl Sert Optk Indeks Undk Multrgm Dengn Metode Smpson Wrsono Jurusn Penddkn Fsk FMIPA Unversts Neger Yogykrt ABSTRAK Peneltn n bertuun untuk menentukn esens

Lebih terperinci

IRISAN KERUCUT: PERSAMAAN ELIPS. Tujuan Pembelajaran

IRISAN KERUCUT: PERSAMAAN ELIPS. Tujuan Pembelajaran K-13 mtemtik K e l s I IRISAN KERUCUT: PERSAMAAN ELIPS Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi definisi elips.. Memhmi unsur-unsur elips. 3. Memhmi eksentrisits

Lebih terperinci

PENCOCOKAN KURVA (CURVE FITTING) INTERPOLASI

PENCOCOKAN KURVA (CURVE FITTING) INTERPOLASI PENCOCOKAN KURVA (CURVE FITTING) Iterpols : Iterpols er Iterpols Kudrtk Iterpols Poloml Iterpols grge Regres : Regres er Regres Ekspoesl Regres Poloml INTERPOASI Iterpols dguk utuk meksr l tr (termedte

Lebih terperinci

A x = b apakah solusi x

A x = b apakah solusi x MTRIKS INVERSI & SIFT-SIFTNY Bil, x, dlh sklr ilngn rel yng memenuhi x, mk x pil. Sekrng, untuk sistem persmn linier x pkh solusi x dpt diselesikn dengn x? Mtriks Identits Untuk sklr (rel numer dn ), mk.

Lebih terperinci

PENYELESAIAN SOAL UJIAN TENGAH SEMESTER 2010

PENYELESAIAN SOAL UJIAN TENGAH SEMESTER 2010 PNYLSAIAN SOAL UJIAN TNGAH SMSTR SOAL A Pengolhn dt nnul series curh hujn hrin mximum, H mm, di sutu stsiun ARR menunjukkn bhw sebrn probbilits sutu besrn curh hujn, p H (h), dpt dinytkn dengn sutu ungsi

Lebih terperinci

PENDAHULUAN. 1993). Pada penelitian ini menggunakan rancangan acak kelompok dengan model liniear aditif ditulis sebagai berikut: Latar belakang

PENDAHULUAN. 1993). Pada penelitian ini menggunakan rancangan acak kelompok dengan model liniear aditif ditulis sebagai berikut: Latar belakang PENDAHULUAN Ltr belkng Anlss rgm memerlukn sums yng kett, slh stuny sums kehomogenn rgm. Pdhl bnyk ksus d lpngn yng ggl dlm memenuh sums n. Dlm percobn multloks serng terjd ketdkhomogenn rgm pd fktor loks

Lebih terperinci

3. LIMIT DAN KEKONTINUAN

3. LIMIT DAN KEKONTINUAN 3. LIMIT DAN KEKONTINUAN 1 3.1 Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi 1 1 Fungsi dits tidk terdeinisi di =1, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp

Lebih terperinci

Menentukan Statistik Pengujian Untuk Eksperimen Faktorial dengan Dua Kali Pembatasan Pengacakan. Oleh : Enny Supartini

Menentukan Statistik Pengujian Untuk Eksperimen Faktorial dengan Dua Kali Pembatasan Pengacakan. Oleh : Enny Supartini Menentukn Sttstk Pengujn Untuk Ekspermen Fktorl dengn Du Kl Pembtsn Pengckn Oleh : Enny Suprtn Jurusn Sttstk FMIPA Unversts Pdjdjrn Bndung e-ml : rthn@yhoo.com Abstrk Dlm ekspermen fktorl pbl pengckn tdk

Lebih terperinci

RUMUS HERON DAN RUMUS BRAHMAGUPTA

RUMUS HERON DAN RUMUS BRAHMAGUPTA RUMUS HERON DAN RUMUS BRAHMAGUPTA Sumrdyono, M.Pd. Topik lus bngun dtr telh dipeljri sejk di Sekolh Dsr hingg SMA. Bil di SD, dipeljri lus segitig dn beberp bngun segiempt mk di SMP dipeljri lebih lnjut

Lebih terperinci

kimia HIDROLISIS K e l a s Kurikulum 2013 A. Definisi, Jenis, dan Mekanisme Hidrolisis

kimia HIDROLISIS K e l a s Kurikulum 2013 A. Definisi, Jenis, dan Mekanisme Hidrolisis urikulum 2013 kimi e l s XI HIDROLISIS Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi definisi, jenis, dn meknisme hidrolisis. 2. Memhmi sift-sift dn ph lrutn

Lebih terperinci

4. INTEGRAL FUNGSI KOMPLEKS

4. INTEGRAL FUNGSI KOMPLEKS Intgrl Fungs Komplks 4 INTEGRAL FUNGSI KOMPLEKS Sprt hlny dlm fungs rl, dlm fungs komplks jug dknl stlh ntgrl fungs komplks srt sft-sftny Sft knltkn sutu fungs dlm sutu lntsn trtutup pntng dlm prhtungn

Lebih terperinci

3. LIMIT DAN KEKONTINUAN. INF228 Kalkulus Dasar

3. LIMIT DAN KEKONTINUAN. INF228 Kalkulus Dasar . LIMIT DAN KEKONTINUAN INF8 Klkulus Dsr . Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di =, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn

Lebih terperinci

LIMIT DAN KONTINUITAS

LIMIT DAN KONTINUITAS LIMIT DAN KONTINUITAS Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di =, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp nili jik mendekti

Lebih terperinci

3. LIMIT DAN KEKONTINUAN

3. LIMIT DAN KEKONTINUAN . LIMIT DAN KEKONTINUAN . Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp nili jik mendekti

Lebih terperinci

matematika K-13 IRISAN KERUCUT: PERSAMAAN HIPERBOLA K e l a s A. Definisi Hiperbola Tujuan Pembelajaran

matematika K-13 IRISAN KERUCUT: PERSAMAAN HIPERBOLA K e l a s A. Definisi Hiperbola Tujuan Pembelajaran K-13 mtemtik K e l s I IRISAN KERUCUT: PERSAMAAN HIPERBLA Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi definisi dn unsur-unsur hiperol.. Dpt menentukn persmn

Lebih terperinci

matematika K-13 TEOREMA FAKTOR DAN OPERASI AKAR K e l a s

matematika K-13 TEOREMA FAKTOR DAN OPERASI AKAR K e l a s K-3 mtemtik K e l s XI TEOREMA FAKTOR DAN OPERASI AKAR Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Memhmi teorem fktor.. Menentukn kr dn fktor liner suku nyk dengn

Lebih terperinci

BAB 3 APLIKASI TAGUCHI LOSS FUNCTION

BAB 3 APLIKASI TAGUCHI LOSS FUNCTION BB III PIKSI TGUHI OSS FUNTION 6 BB 3 PIKSI TGUHI OSS FUNTION 3. Kitn Tguchi oss Function dengn indeks kpilits proses p Tguchi oss Function erkitn dengn indeks kpilits proses p. Rsio rt rt loss cost seelum

Lebih terperinci

Menerapkan konsep vektor dalam pemecahan masalah. Menerapkan konsep vektor pada bangun ruang

Menerapkan konsep vektor dalam pemecahan masalah. Menerapkan konsep vektor pada bangun ruang VEKTOR PADA BIDANG SK : Menerpkn konsep vektor dlm pemechn mslh KD : Menerpkn konsep vektor pd bidng dtr Menerpkn konsep vektor pd bngun rung TUJUAN PELATIHAN: Pesert memiliki kemmpun untuk mengembngkn

Lebih terperinci

INTEGRAL. y dx. x dy. F(x)dx F(x)dx

INTEGRAL. y dx. x dy. F(x)dx F(x)dx Drs. Mtrisoni www.mtemtikdw.wordpress.om INTEGRAL PENGERTIAN Bil dikethui : = F() + C mk = F () dlh turunn dri sedngkn dlh integrl (nti turunn) dri dn dpt digmrkn : differensil differensil Y Y Y Integrl

Lebih terperinci

APLIKASI INTEGRAL PENERAPAN INTEGRAL. Luas daerah kelengkungan

APLIKASI INTEGRAL PENERAPAN INTEGRAL. Luas daerah kelengkungan APLIKASI INTEGRAL APLIKASI INTEGRAL PENERAPAN INTEGRAL Lus derh kelengkungn Integrl digunkn pd design Menr Petrons di Kul lumpur, untuk perhitungn kekutn menr. Sdne Oper House di design berdsrkn irisn-irisn

Lebih terperinci

matematika PEMINATAN Kelas X FUNGSI LOGARITMA K-13 A. Definisi Fungsi Logaritma

matematika PEMINATAN Kelas X FUNGSI LOGARITMA K-13 A. Definisi Fungsi Logaritma K-3 Kels mtemtik PEMINATAN FUNGSI LOGARITMA Tujun Pembeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi definisi fungsi logritm.. Dpt menggunkn konsep fungsi logritm dlm menyelesikn

Lebih terperinci

Solusi Pengayaan Matematika Edisi 3 Januari Pekan Ke-3, 2008 Nomor Soal: 21-30

Solusi Pengayaan Matematika Edisi 3 Januari Pekan Ke-3, 2008 Nomor Soal: 21-30 Solusi Pengn Mtemtik Edisi Jnuri Pekn Ke-, 00 Nomor Sol: -0. Crilh himpunn penelesin dri sistem persmn log log. () log Misln 0 ( )( ) 0 tu, mk persmn () menjdi: log tu log log log log tu log log log log

Lebih terperinci

BAB: PENERAPAN INTEGRAL Topik: Volume Benda Putar (Khusus Kalkulus 1)

BAB: PENERAPAN INTEGRAL Topik: Volume Benda Putar (Khusus Kalkulus 1) BAB: PENERAPAN INTEGRAL Topik: Volume Bend Putr (Khusus Klkulus ) Kompetensi yng diukur dlh kemmpun mhsisw menghitung volume bend putr dengn metode cincin, metode ckrm, tu metode kulit tbung.. UAS Klkulus,

Lebih terperinci

. = Arah induksi magnet tegak lurus bidang gambar menuju pembaca x = Arah induksi magnet tegak lurus bidang gambar menjauhi pembaca

. = Arah induksi magnet tegak lurus bidang gambar menuju pembaca x = Arah induksi magnet tegak lurus bidang gambar menjauhi pembaca 7.7 MEDAN MAGNET INDUKSI Gejl Kemgnetn : Medn Mgnet dlh rungn yng memberkn gy mgnet kepd bend-bend dn mutn lstrk yng bergerk dsektrny. Adny medn mgnet dnytkn dengn grs-grs gy mgnet ( grs nduks ) Apbl membentuk

Lebih terperinci

BAB I. MATRIKS BAB II. DETERMINAN BAB III. INVERS MATRIKS BAB IV. PENYELESAIAN PERSAMAAN LINEAR SIMULTAN

BAB I. MATRIKS BAB II. DETERMINAN BAB III. INVERS MATRIKS BAB IV. PENYELESAIAN PERSAMAAN LINEAR SIMULTAN DFTR ISI BB I. MTRIKS BB II. DETERMINN BB III. INVERS MTRIKS BB IV. PENYELESIN PERSMN LINER SIMULTN BB I. MTRIKS Mtriks erup sekelompok ilngn yng disusun empt persegi dn ditsi tnd terdiri dri ris dn kolom

Lebih terperinci

INTEGRAL TAK TENTU. x x x

INTEGRAL TAK TENTU. x x x INTEGRAL TAK TENTU Definisi : Fungsi F diktkn nti turunn dri fungsi f pd selng I jik F () = f() untuk semu di I. Notsi : F() = f() Integrl tk tentu dlh Anti/Invers/Kelikn turunn. c c Integrl tk tentu dlh

Lebih terperinci

INTEGRAL FOURIER KED. Diasumsikan syarat-syarat berikut pada f(x): 1. f x memenuhi syarat Dirichlet pada setiap interval terhingga L, L.

INTEGRAL FOURIER KED. Diasumsikan syarat-syarat berikut pada f(x): 1. f x memenuhi syarat Dirichlet pada setiap interval terhingga L, L. INTEGRAL FOURIER Disumsikn syrt-syrt berikut pd f(x):. f x memenuhi syrt Dirichlet pd setip intervl terhingg L, L.. f x dx konvergen, yitu f(x) dpt diintegrsikn secr mutlk dlm (, ). Selnjutny, Teorem integrl

Lebih terperinci

ω = kecepatan sudut poros engkol

ω = kecepatan sudut poros engkol Kerj Untuk Mengtsi Gesekn 1. Pomp Tnp Bejn Udr Telh dijelskn pd bgin muk bhw pd wl dn khir lngkh hisp mupun lngkh tekn, tidk terjdi kerugin hed kibt gesekn. Kerugin hed mksimum hny terjdi pd pertenghn

Lebih terperinci

SUKU BANYAK ( POLINOM)

SUKU BANYAK ( POLINOM) SUKU BANYAK ( POLINOM) B 15 A. PENGERTIAN SUKU BANYAK. Bentuk 1 0 x x x x x, dengn 0 dn n { il. cch } n diseut dengn Suku nyk (Polinomil) dlm x erderjt n ( n dlh pngkt tertinggi dri x),,,., diseut keofisien

Lebih terperinci

8 adalah... A. 3 3 (kunci) C. 3 D. 3 E. 6 Pembahasan: Kedua ruas diakarkan: = = 8 = 3 3. adalah Jika 2 dan. , maka nilai. log w.

8 adalah... A. 3 3 (kunci) C. 3 D. 3 E. 6 Pembahasan: Kedua ruas diakarkan: = = 8 = 3 3. adalah Jika 2 dan. , maka nilai. log w. http://www.syiknybeljr.wordpress.co PEMBAHASAN SOAL SELEKSI BERSAMA MASUK PERGURUAN TINGGI NEGERI (SBMPTN) TAHUN 0. Jik, k nili A. (kunci) B. C. D. E... ( ) ( ) Kedu rus dikrkn: 8 = ( ) = = ( ) ( ) 8 =

Lebih terperinci

IRISAN KERUCUT. 1. Persamaan lingkaran dengan pusat (0,0) dan jari-jari r. Persamaan = TK titik T = =

IRISAN KERUCUT. 1. Persamaan lingkaran dengan pusat (0,0) dan jari-jari r. Persamaan = TK titik T = = IRISAN KERUCUT Bb 9 A. LINGKARAN. Persmn lingkrn dengn pust (0,0) dn jri-jri r 0 r T(x,y) X Persmn = TK titik T = { T / OT r } = = {( x, y) / r } {( x, y) / r }. Persmn lingkrn dengn pust (,b) dengn jri-jri

Lebih terperinci

BAB III METODE METODE DEFUZZYFIKASI

BAB III METODE METODE DEFUZZYFIKASI Fuy Logi Metode Metode Deuyiksi BAB III METODE METODE DEFUYFIKASI Seperti yng telh dihs dlm, hw untuk meruh kelurn uy menjdi nili risp mk diperlukn sutu proses yng leih dikenl dengn istilh deuyiksi Dlm

Lebih terperinci

INTEGRASI NUMERIK. n ax. ax e. n 1. x x. Fungsi yang dapat dihitung integralnya : Fungsi yang rumit misal :

INTEGRASI NUMERIK. n ax. ax e. n 1. x x. Fungsi yang dapat dihitung integralnya : Fungsi yang rumit misal : INTEGRASI NUMERIK D dlm klkulus, terdpt du l petg ytu tegrl d turudervtve Pegtegrl umerk merupk lt tu r yg dguk ole lmuw utuk memperole jw mpr proksms dr pegtegrl yg tdk dpt dselesk ser ltk. INTEGRASI

Lebih terperinci

MODEL PENJADWALAN BATCH PADA FLOWSHOP DUA TAHAP DENGAN VARIASI JUMLAH PART UNTUK MEMINIMASI TOTAL ACTUAL FLOW TIME

MODEL PENJADWALAN BATCH PADA FLOWSHOP DUA TAHAP DENGAN VARIASI JUMLAH PART UNTUK MEMINIMASI TOTAL ACTUAL FLOW TIME MODEL PEJADWALA BATCH PADA LOWSHOP DUA TAHAP DEGA VARIASI JUMLAH PART UTUK MEMIIMASI TOTAL ACTUAL LOW TIME Prty Poer Surydhn Industrl Engneerng Study Progrm, Industrl Engneerng culty, Telkom Unversty prty@telkomunversty.c.d

Lebih terperinci

UJIAN PENGHABISAN SEKOLAH MENENGAH TINGKAT ATAS TAHUN

UJIAN PENGHABISAN SEKOLAH MENENGAH TINGKAT ATAS TAHUN Mengenng Jejk Sebgin Kecil Bngs Indonesi Yng Pernh Mengikuti Ujin Sekolh Pd Ms Silm UJIAN PENGHABISAN SEKOLAH MENENGAH TINGKAT ATAS TAHUN 9 ALJABAR. HBS (Hogere Burger School) NI dn AMS (Algemeene Middelbre

Lebih terperinci

Kerjakan di buku tugas. Tentukan hasil operasi berikut. a. A 2 d. (A B) (A + B) b. B 2 e. A (B + B t ) c. A B f. A t (A t + B t ) Tes Mandiri

Kerjakan di buku tugas. Tentukan hasil operasi berikut. a. A 2 d. (A B) (A + B) b. B 2 e. A (B + B t ) c. A B f. A t (A t + B t ) Tes Mandiri Mmt Apliksi SMA Bhs Dikethui A = Tentukn hsil opersi berikut A c A A b A A d A Dikethui A = Tentukn hsil opersi berikut (A + B) c (B A) b A + AB + B d B BA + A Sol Terbuk Kerjkn di buku tugs Jik X = dn

Lebih terperinci

BAB VI ANALISIS REGRESI

BAB VI ANALISIS REGRESI BAB VI ANALISIS REGRESI A. Pedhulu Alss regres merupk slh stu lss yg ertuju utuk megethu pegruh sutu vrel terhdp vrel l. Vrel yg mempegruh dseut depedet vrle/vrel es () d vrel yg dpegruh dseut depedet

Lebih terperinci

PenerapanTeori Respons Butir Dalam Penyetaran Tes. Kana Hidayati Jurusan Pendidikan Matematika FMIPA UNY ABSTRAK

PenerapanTeori Respons Butir Dalam Penyetaran Tes. Kana Hidayati Jurusan Pendidikan Matematika FMIPA UNY ABSTRAK PenerpnTeor Respons Butr Dlm Penyetrn Tes Kn Hdyt Jurusn Penddkn Mtemtk FMIPA UNY ABSTRAK Penyetrn tes perlu dlkukn khususny bg kegtn pengujn dlm skl besr yng memperspkn lebh dr stu perngkt tes mengngt

Lebih terperinci

D E F I N I S I. Contoh 1: 08/11/2015. Anita T. Kurniawati. Mendefinisikan fungsi f yang mengawankan bilangan dengan bilangan x

D E F I N I S I. Contoh 1: 08/11/2015. Anita T. Kurniawati. Mendefinisikan fungsi f yang mengawankan bilangan dengan bilangan x 08//05 Anit T. Kurniwti disebut unsi dri jik dpt ditentukn sutu hubunn ntr dn SDH untuk setip nili menentukn secr tunl nili. Hubunn ntr dn bisn ditulis : Contoh : ) ) Mendeinisikn unsi n menwnkn bilnn

Lebih terperinci

BAB III VEKTOR DALAM R 2 DAN R 3. Bab III Vektor dalam R 2 dan R 3

BAB III VEKTOR DALAM R 2 DAN R 3. Bab III Vektor dalam R 2 dan R 3 Bb III Vetor dlm R dn R BAB III VEKTOR DALAM R DAN R Dlm bgn n n dbhs mslh eto-etor dlm rng berdmens dn berdmens, opers-opers rtmet pd etor g n ddefnsn dn beberp sft-sft dsr opers-opers tersebt... VEKTOR

Lebih terperinci

ELIPS. A. Pengertian Elips

ELIPS. A. Pengertian Elips ELIPS A. Pengertin Elips Elips dlh tempt kedudukn titik-titik yng jumlh jrkny terhdp du titik tertentu mempunyi nili yng tetp. Kedu titik terseut dlh titik focus / titik pi. Elips jug didefinisikn segi

Lebih terperinci

LIMIT FUNGSI DAN KEKONTINUAN

LIMIT FUNGSI DAN KEKONTINUAN LIMIT FUNGSI DAN KEKONTINUAN RANGKUMAN MATERI Sebelum memsuki mteri, perhtikn himpunn-himpunn berikut: ) Himpunn bilngn sli:,,,4,5,.... b) Himpunn bilngn bult:...,,,0,,,.... p c) Himpunn bilngn rsionl:

Lebih terperinci

Dr.Eng. Agus S. Muntohar Department of Civil Engineering

Dr.Eng. Agus S. Muntohar Department of Civil Engineering Pertemu ke-7 Persm Ler Smult Oktober 0 Metode Iters Guss-Sedel Dr.Eg. Agus S. Mutohr Deprtmet of Cvl Egeerg Metode Guss-Sedel Merupk metode ters. Prosedur umum: - Selesk ser lbr vrbel tdk dkethu msg-msg

Lebih terperinci

LIMIT FUNGSI. Tapi jika x hanya mendekati 1, f(x) mendekati nilai berapa..? x 0,9 0,99 0,999 0, ,0001 1,001 1,01 1,1

LIMIT FUNGSI. Tapi jika x hanya mendekati 1, f(x) mendekati nilai berapa..? x 0,9 0,99 0,999 0, ,0001 1,001 1,01 1,1 Rinksn Limit Funsi Kels XI IPS SMA Trknit Jkrt LIMIT FUNGSI Limit dlm kt-kt sehri-hri: Mendekti hmpir, sedikit li, tu hr bts, sesutu yn dekt tetpi tidk dpt dicpi. Ilustrsi it = = Funsi ini tk mempunyi

Lebih terperinci

0 akar-akarnya adalah p dan q. 0 akar-akarnya 2p dan r.

0 akar-akarnya adalah p dan q. 0 akar-akarnya 2p dan r. Mengenng Jejk Sebgin Kecil Bngs Indonesi Yng Pernh Mengikuti Ujin Sekolh Pd Awl Ms Kemerdekn UJIAN PENGHABISAN SEKOLAH MENENGAH TINGKAT ATAS TAHUN 5. SMA 5 Berkh m gr suy fungsi nili rel dri? Syrt fungsi

Lebih terperinci

PERSAMAAN DAN PERTIDAKSAMAAN LOGARITMA

PERSAMAAN DAN PERTIDAKSAMAAN LOGARITMA K- Kels X mtemtik PEMINATAN PERSAMAAN DAN PERTIDAKSAMAAN LOGARITMA Tujun Pembeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi definisi persmn dn pertidksmn logritm.. Dpt

Lebih terperinci

MATEMATIKA DASAR. Bab Bilangan Irasional dan Logaritma. Drs. Sumardi Hs., M.Sc. Modul ke: 02Fakultas FASILKOM. Program Studi Teknik Informatika

MATEMATIKA DASAR. Bab Bilangan Irasional dan Logaritma. Drs. Sumardi Hs., M.Sc. Modul ke: 02Fakultas FASILKOM. Program Studi Teknik Informatika MATEMATIKA DASAR Modul ke: 0Fkults FASILKOM Progrm Studi Teknik Informtik Bb Bilngn Irsionl dn Logritm Drs. Sumrdi Hs., M.Sc. Bgin Isi Bilngn Irsionl - Berbgi bentuk kr dn opersiny Logritm - Sift-sift

Lebih terperinci

STRATEGI PENGAJARAN MATEMATIKA UNTUK MENENTUKAN AKAR-AKAR PERSAMAAN KUADRAT

STRATEGI PENGAJARAN MATEMATIKA UNTUK MENENTUKAN AKAR-AKAR PERSAMAAN KUADRAT Jurnl Vol II. No., Mret 08, hlm. 9-95 vilble online t www.jurnl.un.c.id/indeks/jmp STRTEGI PENGJRN MTEMTIK UNTUK MENENTUKN KR-KR PERSMN KUDRT Indh Purnm Putri, Symsudhuh, Ihd Hsbiyti 3 Progrm Studi Mgister

Lebih terperinci

LIMIT FUNGSI. DEFINISI Notasi. dibaca. limit f(x) bila x mendekati a sama dengan L. atau. f(x) mendekati L bila x mendekati a.

LIMIT FUNGSI. DEFINISI Notasi. dibaca. limit f(x) bila x mendekati a sama dengan L. atau. f(x) mendekati L bila x mendekati a. DEFINISI Notsi dibc tu berrti bhw IMIT FUNGSI it bil mendekti sm dengn mendekti bil mendekti nili dpt dibut sedekt mungkin dengn bil cukup dekt dengn, tetpi tidk sm dengn. Perhtikn bhw dlm deinisi tersebut

Lebih terperinci

III. LIMIT DAN KEKONTINUAN

III. LIMIT DAN KEKONTINUAN KALKULUS I MUG1A4 PROGRAM PERKULIAHAN DASAR DAN UMUM PPDU TELKOM UNIVERSITY III. LIMIT DAN KEKONTINUAN 3.1 Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi 1 1 Fungsi dits tidk terdeinisi

Lebih terperinci

IV V a b c d. a b c d. b c d. bukan fungsi linier y = x = x y 5xy + y = B.2 Konsep Fungsi Linier

IV V a b c d. a b c d. b c d. bukan fungsi linier y = x = x y 5xy + y = B.2 Konsep Fungsi Linier 8. Dri fungsi-fungsi ng disjikn dengn digrm pnh erikut ini mnkh ng merupkn fungsi onto, injektif tu ijektif, jik relsi dri A ke B? A c d IV B A c d V B A c d VI B B. Konsep Fungsi Linier. Tujun Setelh

Lebih terperinci