MATEMATIKA TEKNIK 2 3 SKS TEKNIK ELEKTRO UDINUS

Ukuran: px
Mulai penontonan dengan halaman:

Download "MATEMATIKA TEKNIK 2 3 SKS TEKNIK ELEKTRO UDINUS"

Transkripsi

1 MATEMATIKA TEKNIK SKS TEKNIK ELEKTRO UDINUS

2 Integrl Fungs Kompleks 4 INTEGRAL FUNGSI KOMPLEKS Sepert hlny dlm fungs rl, dlm fungs kompleks jug dkenl stlh ntegrl fungs kompleks sert sft-sftny Sft kenltkn sutu fungs dlm sutu lntsn tertutup pentng dlm perhtungn ntegrl Setelh memc B 4, mhssw dhrpkn dpt : Menghtung ntegrl lntsn kompleks Menggunkn teorem uchy Gourst dn rumus ntegrl uchy dlm perhtungn ntegrl Menggunkn turunn fungs nltk untuk menghtung ntegrl 4 Fungs Kompleks dr Vrel Rl Mslkn F( dlh fungs kompleks dr vrel rl t, dtuls seg F( u( v( dengn u( dn v( dlh fungs rl Jk u( dn v( kontnu pd ntervl tertutup t, mk u( F ( v( Sft-sft Re F( Re F( Im F( Im F( k F( k F( 4 F( F( 5 F( F( Pemuktn sft-sft ntegrl d ts menggunkn sft-sft ntegrl fungs rl Bukt sft : F( k[ u( k v( ] k u( k v( k u( k v( (sft ntegrl fungs rl : k f ( x dx k f ( x dx

3 Integrl Fungs Kompleks Bukt sft 4 : k u( v( k F( (terukt ( u( F v( 4 Lntsn Jk g dn (sft ntegrl fungs rl : u ( v( h t u ( v( u ( v( F ( (terukt fungs ernl rl dn kontnu dr vrel f ( x dx f ( x dx t dlm ntervl tertutup t, mk hmpunn ttk-ttk d dng xy dpt dnytkn dlm entuk prmetrk x g(, y, t Oleh kren tu, hmpunn ttk-ttk dlm dng kompleks jug dpt dnytkn dlm entuk prmetrk Defns 4 Kurv d dng r merupkn kurv mulus (smooth curve jhj kurv terseut dpt dnykn dengn du fungs ernl rl x g(, y, t sedemkn sehngg dx g' ( dy dn h' ( t d dn kontnu dlm ntervl t ontoh Kurv dengn entuk prmetrk x cost, y sn t, t merupkn kurv mulus Jk merupkn kurv mulus dengn entuk prmetrk : x g(, y, t mk ttk pd yng erpdnn dengn t dseut ttk wl ttk pd yng erpdnn dengn t dseut ttk khr Selnjutny, dseut lntsn (pth l terdr dr erhngg nyk kurv mulus,

4 Integrl Fungs Kompleks dengn n n,, merupkn kurv mulus Pengertn lntsn n sngt, pentng dlm ntegrl fungs kompleks kren erpern seg selng pengntegrln dlm ntegrl fungs rl dr stu vrel ttn : dseut lntsn tertutup jk ttk khr erhmpt dengn ttk wl dseut lntsn teruk jk ttk khr tdk erhmpt dengn ttk wl dseut lntsn sederhn jk lntsn tdk memotong drny sendr 4 dseut lntsn ergnd jk lntsn memotong drny sendr ontoh Lntsn tertutup Lntsn teruk c Lntsn sederhn d Lntsn ergnd Teorem 4 ( Kurv Jordn Jk lntsn tertutup sederhn d dng r, mk dng r tu dg oleh menjd gn, ytu kurv gn dlm, dtuls Int (, yng merupkn hmpunn teruk dn terts gn lur, dtuls Ext (, yng merupkn hmpunn teruk dn tdk terts Kurv merupkn ts dr hmpunn Int ( dn Ext ( 4 Integrl Grs Mslkn kurv mulus dsjkn dengn x g(, y, t g ( dn h ( kontnu d t g '( dn h '( kontnu d t Kurv mempuny rh dr ttk wl A ( g(, ke ttk khr B( g(, dn P( x, sutu fungs yng terdefns d

5 Integrl Fungs Kompleks Teorem 4 Jk P( x, kontnu d, mk P ( x, dx dn B P ( x, dy d dn ( x, dx ( x, dx A P P[ g(, ] g' ( P ( x, dy P[ g(, ] h'( P P( x, dx A B Jk P( x, dn Q ( x, kontnu d, mk x, dx Q( x, dx P( x, dx P ( Q( x, dx Teorem 4 P( x, Q( x, Jk dn sert turunn prsl tngkt pertm kontnu pd seluruh derh tertutup R yng dts lntsn tertutup, mk Q P P dx Q dy dxdy x y R ontoh Tentukn ntegrl grs fungs x y sepnjng lntsn K dengn : grs dr (, ke (, dn K : grs dr (, ke (, Penyelesn : (, (, : y, x K (, K : x, y Pd kurv : dy dn pd kurv K : dx K K dx dy = K dx ( x dx x dx dy ( x dy = 6 ( y dx K K dx dy 4

6 Integrl Fungs Kompleks 44 Integrl Lntsn Kompleks Derkn lntsn dlm entuk prmetrk t t Jk g( dn x y kontnu d, mk ttk-ttk ( g (, ke ( g(, tu dr dn ( g(, t smp x g( g' (, dn y h' ( dengn kontnu d terletk Arh pd kurv dengn ( g(, Defns 4 Derkn fungs u( x, v( x, dr t fungs smp dengn u dn fungs yng kontnu sepotong-potong pd Integrl sepnjng lntsn dengn rh dr dlh g( g '( h'( t ( f f Sft-sft k k ( g( ontoh 4 f g( Htung e jk : grs lurus dr ke Penyelesn : (, (, Persmn grs : y dn mempuny entuk prmetrk : x g( t, t [,] ( 4 y Dr (4 dperoleh : g( t g' ( h'( Kren e mk f g( ( t f ( t ( t e t v Sehngg, e ( t e ( t ( t ( t e (gunkn suttus : u ( t 5

7 Integrl Fungs Kompleks 4 e e 45 Pengntegrln uchy Teorem 44 ( Teorem uch Jk nltk dn f '( kontnu d dlm dn pd lntsn tertutup sederhn, mk nltk dn f '( kontnu ontoh 4 Mslkn derkn serng lntsn tertutup dlm dng kompleks Teorem 45 ( Teorem uchy- Gours Jk nltk d dlm dn pd lntsn tertutup sederhn, mk nltk ontoh 5 Dkethu : Htunglh jk Penyelesn : f '( (, tdk nltk d dn terletk d lur Oleh kren tu, nltk d dlm dn pd lntsn, sehngg ( Teorem 46 (Bentuk ln Teorem uchy Gourst Teorem 47 (Teorem uchy Jk fungs nltk d seluruh domn terhuung sederhn D, mk untuk setp lntsn tertutup d dlm D, erlku Derkn sutu lntsn tertutup, sedngkn,,, n dlh lntsn-lntsn tertutup yng terletk 6

8 Integrl Fungs Kompleks Gourst yng dperlus d nteror sedemkn sehngg,,, n tdk slng erpotongn Jk fungs nltk d dlm derh tertutup yng terdr dr ttk-ttk pd dn ttk-ttk d dlm, kecul ttk-ttk nteror,,, n, mk f ( n tdk nltk nltk ontoh 6 ( Htung, jk : Penyelesn : tdk nltk d yng erd d dlm nteror Dut lntsn tertutup erpust d ytu t : Dperoleh e t, t dn e Menurut Teorem uchy Gourst yng dperlus, ( ( e t e t d dlm 46 Integrl Tk Tentu dn Integrl Tentu Jk fungs f nltk d dlm domn terhuung sederhn D, mk F( f ( d mempuny turunn untuk setp ttk d dlm D dengn F' (, slkn lntsn pengntegrln dr ke seluruhny terletk d dlm D Jd F ( jug nltk d dlm D Teorem 48 Jk dn d dlm D, mk F( F( 7

9 Integrl Fungs Kompleks D nltk ontoh 7 (Kren merupkn fungs utuh, mk dpt dut serng domn terhuung sederhn D yng memut lntsn pengntegrln dr ke 47 Rumus Integrl uchy Teorem 49 (Rumus Integrl uchy Jk nltk d dlm dn pd lntsn tertutup serng ttk d dlm, mk tu f ( f ( dn nltk Turunn Fungs Anltk f '( (! f ''( ( n! n f ( n ( ( ( ( n f '( f ''(! f n! n ( ontoh 8 Htung dengn Penyelesn : Dml : ( nltk d dlm dn pd d dlm 8

10 Integrl Fungs Kompleks f ( f ( Menggunkn rumus ntegrl uchy, dperoleh f ( Htung ( Penyelesn : Dml : dengn : ( nltk d dlm dn pd d dlm f '( f '( '( 4 f 6 Menggunkn turunn fungs nltk, dperoleh f ( ( (! Teorem Morer dn Teorem Lonvlle Teorem 4 (Teorem Morer Jk kontnu dlm domn terhuung setp lntsn tertutup dlm D erlku mk nltk d seluruh D D dn untuk, Teorem 4 (Teorem Lonvlle Jk kompleks, mk nltk dn terts d seluruh dng dlh sutu fungs konstn 49 Teorem Modulus Mksmum Jk nltk dn M derh D r nl mksmum dr untuk :, dn jk f ( M, mk d dlm konstn d seluruh derh D Aktny, jk nltk dn tdk konstn pd D, mk f ( M Prnsp Modulus Mksmum Teorem 4 (Teorem Modulus Mksmum Jk fungs tk konstn nltk d, mk d setp ktr dr, terdpt ttk dn f ( Jk nltk d dlm dn pd lntsn tertutup sederhn, dn tdk konstn, mk mencp nl mksmum d sutu ttk pd, ytu pd pertsn derh tu dn tdk d ttk nteror 9

11 Integrl Fungs Kompleks Teorem 4 (Ketksmn uch Jk sederhn nltk d dlm dn pd lntsn tertutup : r, dn terts pd, n n! M M, mk f (, n,,, n r Rngksn Sft kenltkn fungs kompleks d dlm dn pd sutu lntsn tertutup merupkn hl yng hrus dperhtkn dlm perhtungn ntegrl fungs kompleks

12 Integrl Fungs Kompleks Sol-sol e Htung jk : kurv y x dr ke Htung jk dengn : setengn lngkrn dr ke Htung ntegrl fungs sepnjng lntsn tertutup erkut : e, (4 : (counterclockwse f e ( ( ( 4, : ellps x 4y 4 (counterclockwse Ln( cos c, ( : segempt dengn ttk-ttk sudut dn (counterclockwse d, ( (clockwswe : terdr dr (counterclockwse dn ( sn e, : (counterclockwse ( e f, ( : segempt dengn ttk-ttk sudut (counterclockwse dn (clockwswe sn g, ( : segtg dengn ttk-ttk sudut, (counterclockwse

4. INTEGRAL FUNGSI KOMPLEKS

4. INTEGRAL FUNGSI KOMPLEKS Intgrl Fungs Komplks 4 INTEGRAL FUNGSI KOMPLEKS Sprt hlny dlm fungs rl, dlm fungs komplks jug dknl stlh ntgrl fungs komplks srt sft-sftny Sft knltkn sutu fungs dlm sutu lntsn trtutup pntng dlm prhtungn

Lebih terperinci

KALKULUS BUKAN SEKEDAR KALKULASI. Hendra Gunawan Kampus UNJ, 21 November 2015

KALKULUS BUKAN SEKEDAR KALKULASI. Hendra Gunawan Kampus UNJ, 21 November 2015 KALKULUS BUKAN SEKEDAR KALKULASI Hendr Gunwn Kmpus UNJ, 21 Novemer 2015 MENGAPA KALKULUS? APA YANG DIGARAP? c) Hendr Gunwn 2015) 2 Isc Newton 1643 1727) & Keceptn Sest Mslkn seuh prtkel ergerk sepnjng

Lebih terperinci

7. APLIKASI INTEGRAL. 7.1 Menghitung Luas Daerah. a.misalkan daerah D = {( x, Luas D =? f(x) Langkah : Contoh : Hitung luas daerah yang dibatasi oleh

7. APLIKASI INTEGRAL. 7.1 Menghitung Luas Daerah. a.misalkan daerah D = {( x, Luas D =? f(x) Langkah : Contoh : Hitung luas daerah yang dibatasi oleh 7. APLIKASI INTEGRAL MA KALKULUS I 7. Menghtung Lus erh.mslkn erh {(,, f ( ) Lus? f() Lngkh :. Irs menj n gn n lus stu uh rsn hmpr oleh lus perseg pnjng engn tngg f() ls(ler) A f ( ). Lus hmpr oleh jumlh

Lebih terperinci

BAB 6 FITTING DATA ˆ (6.1) (6.2) (6.3) =. Nilai akan. akan minimum jika. minimum. Misal. 0. Jika ini dikerjakan maka akan diperoleh nilai

BAB 6 FITTING DATA ˆ (6.1) (6.2) (6.3) =. Nilai akan. akan minimum jika. minimum. Misal. 0. Jika ini dikerjakan maka akan diperoleh nilai BAB 6 FITTIG DATA Atu dseut dengn penookn dt tu menentukn kurv terk ng mellu set dt (sekumpuln dt) dengn keslhn mnmum. Ukurn keslhn dlh E (root men squre, kr kudrt rt-rt). Ad eerp mm pol fttng dt: menurut

Lebih terperinci

Koefisien Regresi / persamaan regresi linier digunakan untuk meramalkan / mengetahui besarnya pengaruh variabel X terhadap variabel Y

Koefisien Regresi / persamaan regresi linier digunakan untuk meramalkan / mengetahui besarnya pengaruh variabel X terhadap variabel Y REGRESI Koefsen Regres / persmn regres lner dgunkn untuk mermlkn / mengethu esrny pengruh vrel terhdp vrel Vrel yng mempengruh ddlm nlss regres dseut vrel predktor ( ) Vrel yng dpengruh dseut vrel krterum

Lebih terperinci

Metode Numerik. Regresi. Umi Sa adah Politeknik Elektronika Negeri Surabaya 2008 PENS-ITS

Metode Numerik. Regresi. Umi Sa adah Politeknik Elektronika Negeri Surabaya 2008 PENS-ITS Metode Numerk Regres Um S dh Polteknk Elektronk Neger Surb 008 PENS-ITS 1 Metode Numerk Topk Regres Lner Regres Non Lner PENS-ITS Metode Numerk Metode Numerk Regres vs Interpols REGRESI KUADRAT TERKECIL

Lebih terperinci

Aljabar Linear dan Matriks (Transformasi Linier dan Matriks) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.

Aljabar Linear dan Matriks (Transformasi Linier dan Matriks) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. ljr Lner dn Mtrks (Trnsforms Lner dn Mtrks) Instruktur : Ferry Whyu Wowo SS MCs Penjumlhn Perkln Sklr dn Perkln Mtrks j : unsur dr mtrks d rs dn kolom j Defns Du mtrks dlh sm jk keduny mempuny ukurn yng

Lebih terperinci

BAB IV METODA ANALISIS RANGKAIAN

BAB IV METODA ANALISIS RANGKAIAN 6 BAB METODA ANALSS RANGKAAN Metod nlss rngkn sebenrny merupkn slh stu lt bntu untuk menyeleskn sutu permslhn yng muncul dlm mengnlss sutu rngkn, blmn konsep dsr tu hukum-hukum dsr sepert Hukum Ohm dn

Lebih terperinci

LUAS DAERAH APLIKASI INTEGRAL TENTU. Indikator Pencapaian Hasil Belajar. Ringkasan Materi Perkuliahan

LUAS DAERAH APLIKASI INTEGRAL TENTU. Indikator Pencapaian Hasil Belajar. Ringkasan Materi Perkuliahan LUAS DAERAH APLIKASI INTEGRAL TENTU Indiktor Pencpin Hsil Beljr Mhsisw menunjukkn kemmpun dlm :. Menghitung lus pd idng dtr Ringksn Mteri Perkulihn Jik sutu derh ditsi oleh kurv f(), g(), gris dn dengn

Lebih terperinci

LUAS DENGAN PARTISI SEGITIGA UNTUK FUNGSI CEKUNG

LUAS DENGAN PARTISI SEGITIGA UNTUK FUNGSI CEKUNG Posdng Semt05 dng MIPA BKS-PTN Bt Unvests Tnjungpu Pontnk Hl 7 - LUAS DENGAN PARTISI SEGITIGA UNTUK FUNGSI CEKUNG Jun Lest Nengsh *, Symsudhuh, Lel Deswt Juusn Mtemtk Unvests Ru, Ru jun.lest@gml.om, Kmpus

Lebih terperinci

INTEGRAL. Misalkan suatu fungsi f(x) diintegralkan terhadap x maka di tulis sebagai berikut:

INTEGRAL. Misalkan suatu fungsi f(x) diintegralkan terhadap x maka di tulis sebagai berikut: INTEGRAL.PENGERTIAN INTEGRAL Integrl dlh cr mencri sutu fungsi jik turunnn di kethui tu kelikn dri diferensil (turunn) ng diseut jug nti derivtif tu nti diferensil. Untuk menentukn integrl tidk semudh

Lebih terperinci

7. APLIKASI INTEGRAL

7. APLIKASI INTEGRAL 7. APLIKASI INTEGRAL 7. Menghitung Lus Derh.Mislkn derh D (, ), f ( ) D f() Lus D =? Lngkh :. Iris D menjdi n gin dn lus stu uh irisn dihmpiri oleh lus persegi pnjng dengn tinggi f() ls(ler) A f ( ). Lus

Lebih terperinci

FISIKA. Sesi INDUKSI MAGNETIK A. KAWAT LURUS BERARUS

FISIKA. Sesi INDUKSI MAGNETIK A. KAWAT LURUS BERARUS FISIKA KELAS XII IPA - KURIKULUM GABUNGAN 07 Ses NGAN INDUKSI MAGNETIK Pd bd kesembln bels, Hns Chrstn Oersted (777-85) membuktkn keterktn ntr gejl lstrk dn gejl kemgnetn. Oersted mengmt st jrum kmps dtempelkn

Lebih terperinci

Tujuan Pembelajaran. ) pada elips. 2. Dapat menentukan persamaan garis singgung yang melalui titik (x 1

Tujuan Pembelajaran. ) pada elips. 2. Dapat menentukan persamaan garis singgung yang melalui titik (x 1 K-3 mtemtik K e l s XI IRISAN KERUCUT: PERSAMAAN GARIS SINGGUNG PADA ELIPS Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Dpt menentukn persmn gris singgung di titik (,

Lebih terperinci

PEMANTAPAN BELAJAR SMA BBS INTEGRAL

PEMANTAPAN BELAJAR SMA BBS INTEGRAL BAB I PEMANTAPAN BELAJAR SMA BBS INTEGRAL I A RANGKUMAN INTEGRAL. Pengertin Apil terdpt fungsi F() yng dpt didiferensilkn pd selng I sedemikin hingg F () = f(), mk nti turunn (integrl) dri f() dlh F()

Lebih terperinci

Integral Kompleks (Bagian Kesatu)

Integral Kompleks (Bagian Kesatu) Integrl Kompleks (Bgin Kestu) Supm Jurusn Mtemtik, FMIPA UGM Yogykrt 55281, INDONESIA Emil:mspomo@yhoo.com, supm@ugm.c.id (Pertemun Minggu XI) Outline 1 Fungsi Bernili Kompleks 2 Lintsn tu Kontur 3 Integrl

Lebih terperinci

INTEGRAL TAK TENTU. x x x

INTEGRAL TAK TENTU. x x x INTEGRAL TAK TENTU Definisi : Fungsi F diktkn nti turunn dri fungsi f pd selng I jik F () = f() untuk semu di I. Notsi : F() = f() Integrl tk tentu dlh Anti/Invers/Kelikn turunn. c c Integrl tk tentu dlh

Lebih terperinci

Soal-soal dan Pembahasan Matematika Dasar SBMPTN-SNMPTN 2006

Soal-soal dan Pembahasan Matematika Dasar SBMPTN-SNMPTN 2006 www.purwntowhyudi.com Hl- Sol-sol dn Pemhsn Mtemtik Dsr SBMPTN-SNMPTN 006. Jik > 0, > 0 dn mk A. C. E. B. D. Jw:. Jwnny dlh A. Jik p - dn q -, mk q p. A. C. E. B. D. Jw: q p Jwnny dlh A . Grfik y terletk

Lebih terperinci

a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Integral Pertemuan - 6

a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Integral Pertemuan - 6 home se to ecellece Mt Kulh : Klkulus Kode : TSP 0 SKS : SKS Itegrl Pertemu - 6 home se to ecellece TIU : Mhssw dpt memhm tegrl fugs d plksy TIK : Mhssw mmpu mecr tegrl fugs Mhssw mmpu megguk tegrl utuk

Lebih terperinci

10. cos (ax+b)sin(ax+b) dx = 12. sec x dx = tan x + c. 13. sec (ax+b)dx = tan (ax+b)+ c. 14. c sec x dx = - ctg x + c

10. cos (ax+b)sin(ax+b) dx = 12. sec x dx = tan x + c. 13. sec (ax+b)dx = tan (ax+b)+ c. 14. c sec x dx = - ctg x + c Integrl Tk Tentu INTEGRAL. Rumus Integrl Fungsi Aljr. k x n k n +. ( x + n ( n +. x ln x + x n + + ; n - n+ (x+ + ; dn 4. ( f ( x ± g( x f ( x ± g ( x n - n. os (x+sin(x+ ( n + n+ os (x+ + ( + (. sin x

Lebih terperinci

MATEMATIKA INTEGRAL TENTU DAN LUAS DAERAH

MATEMATIKA INTEGRAL TENTU DAN LUAS DAERAH MATEMATIKA KELAS XII - KURIKULUM GABUNGAN 5 Sesi N INTEGRAL TENTU DAN LUAS DAERAH A. DEFINISI INTEGRAL TENTU Bentuk integrl f d = f + c diseut segi integrl tk tentu kren hsil dri pengintegrlnn msih erup

Lebih terperinci

Tujuan Pembelajaran. ) pada hiperbola yang berpusat di (0, 0). 2. Dapat menentukan persamaan garis singgung di titik (x 1

Tujuan Pembelajaran. ) pada hiperbola yang berpusat di (0, 0). 2. Dapat menentukan persamaan garis singgung di titik (x 1 K-3 mtemtik K e l s XI IRISAN KERUCUT: GARIS SINGGUNG PADA HIPERBOLA Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Dpt menentukn persmn gris singgung di titik (, ) pd

Lebih terperinci

15. INTEGRAL SEBAGAI LIMIT

15. INTEGRAL SEBAGAI LIMIT 15. INTEGRAL SEBAGAI LIMIT 15.1 Jumlh Riemnn Dlm kulih Klkulus pd thun pertm, integrl Riemnn bisny diperkenlkn sebgi limit dri jumlh Riemnn, tidk mellui integrl Riemnn ts dn integrl Riemnn bwh. Hl ini

Lebih terperinci

Hendra Gunawan. 30 Oktober 2013

Hendra Gunawan. 30 Oktober 2013 MA MATEMATIKA A Hendr Gunwn Semester I, 2/24 Oktoer 2 Ltihn. Fungsi g =,, terintegrlkn pd [, ]. Nytkn integrl tentu g pd [, ] segi limit jumlh Riemnn dengn prtisi reguler, dn hitunglh niliny. //2 c Hendr

Lebih terperinci

selisih positif jarak titik (x, y) terhadap pasangan dua titik tertentu yang disebut titik

selisih positif jarak titik (x, y) terhadap pasangan dua titik tertentu yang disebut titik Hiperol 7.1. Persmn Hiperol Bentuk Bku Hiperol dlh himpunn semu titik (, ) pd idng sedemikin hingg selisih positif jrk titik (, ) terhdp psngn du titik tertentu ng diseut titik fokus (foci) dlh tetp. Untuk

Lebih terperinci

CATATAN KULIAH Pertemuan XI: Optimasi Tanpa Kendala dan Aplikasinya (Fungsi dengan Variabel 2 atau Lebih) II. = dx

CATATAN KULIAH Pertemuan XI: Optimasi Tanpa Kendala dan Aplikasinya (Fungsi dengan Variabel 2 atau Lebih) II. = dx CATATAN KULIA ertemun XI: Optms Tnp Kendl dn Aplksny (Fungs dengn Vrel tu Leh) II A. Fungs Tujun dengn Leh dr Du Vrel Bentuk Umum Fungs Vrel : z( ) Derensl Totl Orde Stu: Derensl Totl Orde Du: Derensl

Lebih terperinci

SOAL UN MATEMATIKA IPA 2014

SOAL UN MATEMATIKA IPA 2014 SOAL UN MATEMATIKA IPA 2014 1. Dkethu prems-prems berkut : Prems 1 : Jk hr hujn, mk tnmn pd subur. Prems 2 : Jk pnen tdk melmph, mk tnmn pd tdk subur. Prems 3 : Pnen tdk melmph Kesmpuln yng sh dr prems-prems

Lebih terperinci

BAB: PENERAPAN INTEGRAL Topik: Volume Benda Putar (Khusus Kalkulus 1)

BAB: PENERAPAN INTEGRAL Topik: Volume Benda Putar (Khusus Kalkulus 1) BAB: PENERAPAN INTEGRAL Topik: Volume Bend Putr (Khusus Klkulus ) Kompetensi yng diukur dlh kemmpun mhsisw menghitung volume bend putr dengn metode cincin, metode ckrm, tu metode kulit tbung.. UAS Klkulus,

Lebih terperinci

Pemain P 1. Teorema 4.1 (Teorema minimax). Untuk setiap matriks pembayaran (pay off matrix), terdapat strategi optimal x* dan y* sedemikian sehingga

Pemain P 1. Teorema 4.1 (Teorema minimax). Untuk setiap matriks pembayaran (pay off matrix), terdapat strategi optimal x* dan y* sedemikian sehingga Rset Opers Probblstk Teor Permnn (Gme Theor) Deprtement of Mthemtcs FMIPA UNS Lecture 4: Med Strteg A. Metode Cmpurn (Med Strteg) D dlm permnn d mn permnn tersebut tdk mempun ttk peln, mk pr pemn kn bersndr

Lebih terperinci

Teorema Dasar Integral Garis

Teorema Dasar Integral Garis ISBN: 978-979-79-55-9 Teorem Dsr Integrl Gris Erdwti Nurdin Progrm Studi Pendidikn Mtemtik FKIP UIR d_1910@yhoo.com Abstrk Slh stu generlissi integrl tentu (definite integrl) f x dx diperoleh dengn menggnti

Lebih terperinci

x 1 M = x 1 m 1 + x 2 m x n m n = x i

x 1 M = x 1 m 1 + x 2 m x n m n = x i Iterl Tertetu..6 oe d ust ss Ttk Bert slk d du ed s-s elk ss sesr d y dletkk pd pp er de jrk erturut-turut d d d dr ttk pey pd - y ered. Ked terseut k se jk dpeuh d d. d d Sutu odel tets y k dperoleh pl

Lebih terperinci

INTEGRAL. Integral Tak Tentu Dan Integral Tertentu Dari Fungsi Aljabar

INTEGRAL. Integral Tak Tentu Dan Integral Tertentu Dari Fungsi Aljabar INTEGRAL Integrl Tk Tentu Dn Integrl Tertentu Dri Fungsi Aljr A. Integrl Tk Tentu Hitung integrl dlh kelikn dri hitung differensil. Pd hitung differensil yng dicri dlh fungsi turunnny, sedngkn pd hitung

Lebih terperinci

INTEGRAL. y dx. x dy. F(x)dx F(x)dx

INTEGRAL. y dx. x dy. F(x)dx F(x)dx Drs. Mtrisoni www.mtemtikdw.wordpress.om INTEGRAL PENGERTIAN Bil dikethui : = F() + C mk = F () dlh turunn dri sedngkn dlh integrl (nti turunn) dri dn dpt digmrkn : differensil differensil Y Y Y Integrl

Lebih terperinci

12 Langkah Penyelesaian Pendekatan

12 Langkah Penyelesaian Pendekatan Meto Elemen Hngg Dlm Hrulk B 4 Dsr eu: Lngkh Penyelesn Penektn Ir. Djoko Luknnto, M.S., Ph.D. mlto:luknnto@ugm.. Revew (hl.96) Anlss yng utuhkn: Û(;) hrus r Integrs Resul rter Optms p R(;) untuk menentukn

Lebih terperinci

Hendra Gunawan. 2 April 2014

Hendra Gunawan. 2 April 2014 MA1201 MATEMATIKA 2A Hendr Gunwn Semester II 2013/2014 2 April 2014 Kulih ng Llu 12.1 Fungsi du tu leih peuh 12.2 Turunn Prsil 12.3 Limit dn Kekontinun 12.4 Turunn ungsi du peuh 12.5 Turunn errh dn grdien

Lebih terperinci

(1) Pertemuan I: Fungsi bernilai kompleks, lintasan, dan integral lintasan. (2) Pertemuan II: Antiderivatif dan Teorema Cauchy-Goursat.

(1) Pertemuan I: Fungsi bernilai kompleks, lintasan, dan integral lintasan. (2) Pertemuan II: Antiderivatif dan Teorema Cauchy-Goursat. Bb 4 Integrl Bb 4 ini direncnkn kn dismpikn dlm 4 kli pertemun, dengn perincin sebgi berikut: (1) Pertemun I: Fungsi bernili kompleks, lintsn, dn integrl lintsn. (2) Pertemun II: Antiderivtif dn Teorem

Lebih terperinci

CATATAN KULIAH Pertemuan XIII: Analisis Dinamik dan Integral (1)

CATATAN KULIAH Pertemuan XIII: Analisis Dinamik dan Integral (1) CATATAN KULIAH Pertemu XIII: Alss Dmk d Itegrl () A. Dmk d Itegrs Model Stts : mecr l vrel edoge yg memeuh kods ekulrum tertetu. Model Optms : mecr l vrel plh yg megoptms fugs tuju tertetu. Model Dmk :

Lebih terperinci

INTEGRAL. Kelas XII IIS Semester Genap. Oleh : Markus Yuniarto, S.Si. SMA Santa Angela Tahun Pelajaran 2017/2018

INTEGRAL. Kelas XII IIS Semester Genap. Oleh : Markus Yuniarto, S.Si. SMA Santa Angela Tahun Pelajaran 2017/2018 Modul Integrl INTEGRAL Kels XII IIS Semester Genp Oleh : Mrkus Yunirto, SSi SMA Snt Angel Thun Peljrn 7/8 Modul Mtemtik Kels XII IIS Semester TA 7/8 Modul Integrl INTEGRAL Stndr Kompetensi: Menggunkn konsep

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA1201 MATEMATIKA 2A Hendr Gunwn Semester II 2016/2017 31 Mret 2017 Kulih yng Llu 12.1 Fungsi du tu leih peuh 12.2 Turunn Prsil 12.3 Limit dn Kekontinun 12.4 Turunn ungsi du peuh 12.5 Turunn errh dn grdien

Lebih terperinci

BAB 5 PERSAMAAN DIFERENSIAL HOMOGEN ORDE TINGGI

BAB 5 PERSAMAAN DIFERENSIAL HOMOGEN ORDE TINGGI BAB 5 PESAMAAN DIFEENSIA HOMOGEN ODE TINGGI 5. Pendhulun Metode penyelesn persmn dferensl orde stu dn du yng telh dbhs dpt dpergunkn untuk persmn dferensl homogen untuk orde n dengn persmn krkterstk sepert

Lebih terperinci

1. Identitas Trigonometri. 1. Identitas trigonometri dasar berikut ini merupakan hubungan kebalikan.

1. Identitas Trigonometri. 1. Identitas trigonometri dasar berikut ini merupakan hubungan kebalikan. 1. Identits Trigonometri Pengertin Identits Trigonometri dlh kesmn yng memut entuk trigonometri dn erlku untuk semrng sudut yng dierikn. Jenis Identits Trigonometri 1. Identits trigonometri dsr erikut

Lebih terperinci

IRISAN KERUCUT: PERSAMAAN ELIPS. Tujuan Pembelajaran

IRISAN KERUCUT: PERSAMAAN ELIPS. Tujuan Pembelajaran K-13 mtemtik K e l s I IRISAN KERUCUT: PERSAMAAN ELIPS Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi definisi elips.. Memhmi unsur-unsur elips. 3. Memhmi eksentrisits

Lebih terperinci

PENGAYAAN MATEMATIKA SOLUSI SOAL-SOAL LATIHAN 1

PENGAYAAN MATEMATIKA SOLUSI SOAL-SOAL LATIHAN 1 PENGAYAAN MATEMATIKA SOLUSI SOAL-SOAL LATIHAN 6y y 8y. Dikethui R dn. Temukn nili y. y y 8y 6 Solusi: 6y y 8y y y 8y 6 6y y 8y 8y y 6 y 8 0 y y y 0 y y y 0 ( y ) ( y ) 0 y y 8y 6 ( y )(y ) 0 y 0tu y 0

Lebih terperinci

Integral Tak Tentu dan Integral Tertentu

Integral Tak Tentu dan Integral Tertentu Integrl Tk Tentu dn Integrl Tertentu Pengertin Integrl Jik F dlh fungsi umum yng ersift F = f, mk F merupkn ntiturunn tu integrl dri f. Pengintegrln fungsi f terhdp dinotsikn segi erikut : f d F c notsi

Lebih terperinci

RANGKUMAN INTEGRAL. Di Susun Oleh : Syaiful Hamzah Nasution, S.Si., S.Pd.

RANGKUMAN INTEGRAL. Di Susun Oleh : Syaiful Hamzah Nasution, S.Si., S.Pd. Generted y Foxit PDF Cretor Foxit Softwre http://www.foxitsoftwre.om For evlution only. RANGKUMAN INTEGRAL Di Susun Oleh : Syiful Hmzh Nsution, S.Si., S.Pd. Di dukung oleh : Portl eduksi Indonesi Open

Lebih terperinci

E. INTEGRASI BAGIAN ( PARSIAL )

E. INTEGRASI BAGIAN ( PARSIAL ) E. INTEGRASI BAGIAN ( PARSIAL ) Integrsi gin (prsil) digunkn untuk mengintegrsikn sutu perklin fungsi yng msing-msing fungsiny ukn koefisien diferensil dri yng lin ( seperti yng sudh dihs pd su. B. D )

Lebih terperinci

A. Pusat Massa Suatu Batang

A. Pusat Massa Suatu Batang Perteu 7 Pust ss sutu Kepg, Setrod, d Teore Pppus A. Pust ss Sutu Btg Dskusk!. slk ss,,..., terletk pd tg pdt sgsg d ttk,...,,, d = jrk errh tr ss ke sutu ttk tetp 0 pd tg,,,...,. ss prtkel, oe prtkel

Lebih terperinci

A x = b apakah solusi x

A x = b apakah solusi x MTRIKS INVERSI & SIFT-SIFTNY Bil, x, dlh sklr ilngn rel yng memenuhi x, mk x pil. Sekrng, untuk sistem persmn linier x pkh solusi x dpt diselesikn dengn x? Mtriks Identits Untuk sklr (rel numer dn ), mk.

Lebih terperinci

Modul Matematika 2012

Modul Matematika 2012 Modul Mtemtik. ANTI TURUNAN Definisi Mislkn fungsi f terdefinisi pd selng teruk I. Fungsi F ng memenuhi F () = f () pd I dinmkn nti turunn tu fungsi primitif dri fungsi f pd I.. F() = cos nti turunn dri

Lebih terperinci

Tiara Ariqoh Bawindaputri TIP / kelas L

Tiara Ariqoh Bawindaputri TIP / kelas L Tir Ariqoh Bwindputri 500008 TIP / kels L INTEGRAL Integrl Tk tentu Integrl dlh entuk invers dri turunn. Secr umum jik seuh fungsi diintegrlkn terhdp vrile tertentu dpt disjikn dlm entuk : f ( F( C Untuk

Lebih terperinci

(c) lim. (d) lim. (f) lim

(c) lim. (d) lim. (f) lim FMIPA - ITB. MA Mtemtik A Semester, 6-7. Pernytn enr dn slh. () ()! e Solusi. Benr. Fungsi eksonensil (enyeut) memesr leih cet drid fungsi olinom (emilng) sehingg emginny menghsilkn nili Dengn Hoitl s

Lebih terperinci

5. INDUKSI MAGNETIK. A. Medan Magnetik

5. INDUKSI MAGNETIK. A. Medan Magnetik 5. INDUKSI MAGNETIK Setelh mempeljr modul n, dhrpkn And dpt memhm konsep nduks mgnetk secr umum. Secr lebh khusus, And dhrpkn dpt : Mendeskrpskn hsl percobn Hns Chrstn Oersted tentng pengertn nduks mgnetk.

Lebih terperinci

(, ) 2 ESS C ESS YANG DIBANGKITKAN OLEH FUNGSI TERUKUR DAN TERBATAS ESSENSIAL. Muslim Ansori 1 dan Y.D. Sumanto 2

(, ) 2 ESS C ESS YANG DIBANGKITKAN OLEH FUNGSI TERUKUR DAN TERBATAS ESSENSIAL. Muslim Ansori 1 dan Y.D. Sumanto 2 RUANG BANA ( L ( b L [ ] SEBAGAI RUANG OPERATOR YANG DIBANGKITKAN OLE FUNGSI TERUKUR DAN TERBATAS ENSIAL Muslm Ansor dn YD Sumnto Jurusn Mtemtk FMIPA Unversts Lmpung Jln Soemntr Brodjonegoro No Bndr Lmpung

Lebih terperinci

RANGKUMAN MATERI ' maupun F(x) = Pengerjaan f(x) sehingga memperoleh F(x) + c disebut mengintegralkan f(x) ke x dengan notasi:

RANGKUMAN MATERI ' maupun F(x) = Pengerjaan f(x) sehingga memperoleh F(x) + c disebut mengintegralkan f(x) ke x dengan notasi: INTEGRAL RANGKUMAN MATERI A. ANTIDERIVATIF DAN INTEGRAL TAK TENTU Jik kit mengmil uku dri temptny mk kit dpt mengemliknny lgi ke tempt semul. Opersi yng kedu menghpus opersi yng pertm. Kit ktkn hw du opersi

Lebih terperinci

Integral. Konstanta dari Integrasi. Integral Tak Tentu. AntiTurunan (Antiderivative)

Integral. Konstanta dari Integrasi. Integral Tak Tentu. AntiTurunan (Antiderivative) Integrl AntiTurunn (Antiderivtive) AntiTurunn dri seuh fungsi f dl seuh fungsi F sedemikin hingg Dierikn Pd Peltihn Guru-Guru Aceh Jy 5 Septemer 0 Oleh: Ridh Ferdhin, M.Sc F f E. AntiTurunn dri f ( ) 6

Lebih terperinci

INTEGRAL FOURIER KED. Diasumsikan syarat-syarat berikut pada f(x): 1. f x memenuhi syarat Dirichlet pada setiap interval terhingga L, L.

INTEGRAL FOURIER KED. Diasumsikan syarat-syarat berikut pada f(x): 1. f x memenuhi syarat Dirichlet pada setiap interval terhingga L, L. INTEGRAL FOURIER Disumsikn syrt-syrt berikut pd f(x):. f x memenuhi syrt Dirichlet pd setip intervl terhingg L, L.. f x dx konvergen, yitu f(x) dpt diintegrsikn secr mutlk dlm (, ). Selnjutny, Teorem integrl

Lebih terperinci

Jarak Titik, Garis dan Bidang dalam Ruang

Jarak Titik, Garis dan Bidang dalam Ruang Pge of Kegitn eljr. Tujun Pembeljrn Setelh mempeljri kegitn beljr, dihrpkn sisw dpt :. Menentukn jrk titik dn gris dlm rung b. Menentukn jrk titik dn bidng dlm rung c. Menentukn jrk ntr du gris dlm rung.

Lebih terperinci

BAB VI ANALISIS REGRESI

BAB VI ANALISIS REGRESI BAB VI ANALISIS REGRESI A. Pedhulu Alss regres merupk slh stu lss yg ertuju utuk megethu pegruh sutu vrel terhdp vrel l. Vrel yg mempegruh dseut depedet vrle/vrel es () d vrel yg dpegruh dseut depedet

Lebih terperinci

BAB 7. LIMIT DAN LAJU PERUBAHAN

BAB 7. LIMIT DAN LAJU PERUBAHAN BAB 7. LIMIT DAN LAJU PERUBAHAN 7. LIMIT FUNGSI 7.. Limit fungsi di sutu titik Menggmbrkn perilku fungsi jik peubhn mendekti sutu titik Illustrsi: Dikethui f( ) f(), 3,30,0 3,030,00 3,003 3 f() = f() 3,000?

Lebih terperinci

MATEMATIKA. Sesi INTEGRAL VOLUME A. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR B. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR TERHADAP SUMBU-X

MATEMATIKA. Sesi INTEGRAL VOLUME A. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR B. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR TERHADAP SUMBU-X MATEMATIKA KELAS XII - KURIKULUM GABUNGAN 6 Sesi N INTEGRAL VOLUME A. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR Apliksi integrl erikutn dlh menentukn volume end ng memiliki sumu putr. Contoh endn dlh tung,

Lebih terperinci

matematika K-13 TEOREMA FAKTOR DAN OPERASI AKAR K e l a s

matematika K-13 TEOREMA FAKTOR DAN OPERASI AKAR K e l a s K-3 mtemtik K e l s XI TEOREMA FAKTOR DAN OPERASI AKAR Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Memhmi teorem fktor.. Menentukn kr dn fktor liner suku nyk dengn

Lebih terperinci

II. LANDASAN TEORI. Dalam bab ini akan didiskusikan definisi definisi, istilah istilah dan teoremateorema. yang berhubungan dengan penelitian ini.

II. LANDASAN TEORI. Dalam bab ini akan didiskusikan definisi definisi, istilah istilah dan teoremateorema. yang berhubungan dengan penelitian ini. II. LANDASAN TEORI Dlm ini kn didiskusikn definisi definisi, istilh istilh dn teoremteorem yng erhuungn dengn penelitin ini. 2.1 Anlitik Geometri Definisi 2.1.1 Titik dlh unsur yng tidk memiliki pnjng,

Lebih terperinci

Materi IX A. Pendahuluan

Materi IX A. Pendahuluan Mteri IX Tujun :. Mhsisw dpt memhmi vektor. Mhsisw mmpu mengunkn vektor dlm persoln sederhn 3. Mhsisw mengimplementsikn konsep vektor pd rngkin listrik. Pendhulun Sudh menjdi kesepktn umum hw untuk menentukn

Lebih terperinci

Metode Numerik 1. Imam Fachruddin (Departemen Fisika, Universitas Indonesia)

Metode Numerik 1. Imam Fachruddin (Departemen Fisika, Universitas Indonesia) Metode Numerk Imm Fchruddn (Deprtemen Fsk, Unversts Indones Dftr Pustk: P. L. DeVres, A Frst Course n Computtonl Physcs (John Wley & Sons, Inc., New York, 994 W. H. Press, et. l., Numercl Recpes n Fortrn

Lebih terperinci

CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. 3. Untuk k 2 didefinisikan bahwa a

CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. 3. Untuk k 2 didefinisikan bahwa a CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. Dikethui bhw,. Untuk k didefinisikn bhw k k k. Tentukn jumlh tk hingg dri. Kit mislkn S S. Dengn demikin kit dpt menuliskn Kedu

Lebih terperinci

IV PEMBAHASAN DAN HASIL

IV PEMBAHASAN DAN HASIL 5 mngs erkurng seesr r untuk setp K ertmhny stu nvu mngs kren ny ketertsn y ukung lngkungn n seesr c kt mngs oleh pemngs. Besrny tngkt pemngsn pengruh oleh tngkt kepusn pemngs seesr m. erkhr erkurng seesr

Lebih terperinci

BAB III METODE METODE DEFUZZYFIKASI

BAB III METODE METODE DEFUZZYFIKASI Fuy Logi Metode Metode Deuyiksi BAB III METODE METODE DEFUYFIKASI Seperti yng telh dihs dlm, hw untuk meruh kelurn uy menjdi nili risp mk diperlukn sutu proses yng leih dikenl dengn istilh deuyiksi Dlm

Lebih terperinci

APLIKASI INTEGRAL PENERAPAN INTEGRAL. Luas daerah kelengkungan

APLIKASI INTEGRAL PENERAPAN INTEGRAL. Luas daerah kelengkungan APLIKASI INTEGRAL APLIKASI INTEGRAL PENERAPAN INTEGRAL Lus derh kelengkungn PENERAPAN INTEGRAL Indiktor 1 Indiktor 9 Lus derh di bwh kurv berdsr prinsip Riemn Volume bend putr, jik kurv diputr mengelilingi

Lebih terperinci

MUH1G3/ MATRIKS DAN RUANG VEKTOR

MUH1G3/ MATRIKS DAN RUANG VEKTOR MUHG3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN 3 Sistem Persmn Liner Sistem Persmn Liner Su Pokok Bhsn Pendhulun Solusi SPL dengn OBE Solusi SPL dengn Invers mtriks dn Aturn Crmmer SPL Homogen Beerp Apliksi

Lebih terperinci

INTEGRAL. 1. Macam-macam Integral. Nuria Rahmatin TIP L. A. Integral Tak Tentu

INTEGRAL. 1. Macam-macam Integral. Nuria Rahmatin TIP L. A. Integral Tak Tentu INTEGRAL Nuri Rhmtin 5000006 TIP L. Mcm-mcm Integrl A. Integrl Tk Tentu Integrl dlh entuk invers dri turunn. Secr umum jik seuh fungsi diintegrlkn terhdp vrile tertentu dpt disjikn dlm entuk : f ( F( C

Lebih terperinci

7. Ruang L 2 (a, b) f(x) 2 dx < }.

7. Ruang L 2 (a, b) f(x) 2 dx < }. 7. Rung L (, b) Rung L (, b) didefinisikn sebgi rung semu fungsi f yng kudrtny terintegrlkn pd [, b], ykni L (, b) := {f : b f(x) dx < }. Rung ini menckup fungsi-fungsi f yng tk terbts pd [, b] tetpi f

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA MATEMATIKA A Hendr Gunwn Semester II, 6/7 Februri 7 Kulih yng Llu 8. Bentuk Tk Tentu Tipe / Menghitung limit bentuk tk tentu / dengn menggunkn Aturn l Hopitl 8. Bentuk Tk Tentu Linny Menghitung bentuk

Lebih terperinci

Erna Sri Hartatik. Aljabar Linear. Pertemuan 3 Aljabar Vektor (Perkalian vektor-lanjutan)

Erna Sri Hartatik. Aljabar Linear. Pertemuan 3 Aljabar Vektor (Perkalian vektor-lanjutan) Ern Sri Hrttik Aljr Liner Pertemun Aljr Vektor (Perklin vektor-lnjutn) Pemhsn Perklin Cross (Cross Product) - Model cross product - Sift cross product Pendhulun Selin dot product d fungsi perklin product

Lebih terperinci

PRAKTIKUM 6 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss Jordan

PRAKTIKUM 6 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss Jordan Prtum 6 Penyelesn Persmn Lner Smultn - Metode Elmns Guss Jordn PRAKTIKUM 6 Penyelesn Persmn Lner Smultn Metode Elmns Guss Jordn. Tujun : Mempeljr metode Elmns Guss Jordn untu penyelesn persmn lner smultn.

Lebih terperinci

12. LUAS DAERAH DAN INTEGRAL

12. LUAS DAERAH DAN INTEGRAL 12. LUAS DAERAH DAN INTEGRAL 12.1 Lus Derh di Bwh Kurv Mslh menentukn lus derh (dn volume rung) telh dipeljri sejk er Pythgors dn Zeno, pd thun 500-n SM. Konsep integrl (yng terkit ert dengn lus derh)

Lebih terperinci

APLIKASI INTEGRAL PENERAPAN INTEGRAL. Luas daerah kelengkungan

APLIKASI INTEGRAL PENERAPAN INTEGRAL. Luas daerah kelengkungan APLIKASI INTEGRAL APLIKASI INTEGRAL PENERAPAN INTEGRAL Lus derh kelengkungn Integrl digunkn pd design Menr Petrons di Kul lumpur, untuk perhitungn kekutn menr. Sdne Oper House di design berdsrkn irisn-irisn

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Anlisis Rel Hendr Gunwn* *http://hgunwn82.wordpress.com Anlysis nd Geometry Group Bndung Institute of Technology Bndung, INDONESIA Progrm Studi S1 Mtemtik ITB, Semester II 2016/2017 HG* (*ITB Bndung)

Lebih terperinci

Bab 4 ANALISIS REGRESI dan INTERPOLASI

Bab 4 ANALISIS REGRESI dan INTERPOLASI Als Numerk Bh Mtrkuls B 4 ANALISIS RGRSI d INTRPOLASI 4 Pedhulu Pd kulh k dpeljr eerp metde utuk mempredks d megestms dt dskret Dr sutu peelt serg dlkuk peglh dt utuk megethu pl dt tu etuk kurv g dggp

Lebih terperinci

GEOMETRI PADA BIDANG: VEKTOR

GEOMETRI PADA BIDANG: VEKTOR GEOMETRI PADA BIDANG: VEKTOR A. Kurv Bidng: Representsi Prmetrik Sutu kurv bidng ditentukn oleh sepsng persmn prmetrik: x f () t, y f () t t dlm intervl I dengn f dn g kontinu pd intervl I. Secr umum,

Lebih terperinci

matematika K-13 IRISAN KERUCUT: PERSAMAAN HIPERBOLA K e l a s A. Definisi Hiperbola Tujuan Pembelajaran

matematika K-13 IRISAN KERUCUT: PERSAMAAN HIPERBOLA K e l a s A. Definisi Hiperbola Tujuan Pembelajaran K-13 mtemtik K e l s I IRISAN KERUCUT: PERSAMAAN HIPERBLA Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi definisi dn unsur-unsur hiperol.. Dpt menentukn persmn

Lebih terperinci

PRAKTIKUM 9 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss Jordan

PRAKTIKUM 9 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss Jordan Prtum 9 Penyelesn Persmn Lner Smultn - Metode Elmns Guss Jordn PRAKTIKUM 9 Penyelesn Persmn Lner Smultn Metode Elmns Guss Jordn Tujun : lner smultn Mempeljr metode Elmns Guss Jordn untu penyelesn persmn

Lebih terperinci

KETAKSAMAAN CHEBYSHEV DAN PERUMUMANNYA. Pangeran B.H.P Institut Teknologi Bandung

KETAKSAMAAN CHEBYSHEV DAN PERUMUMANNYA. Pangeran B.H.P Institut Teknologi Bandung JMP : Volume 4 Nomor 1, Juni 2012, hl. 217-222 KETAKSAMAAN CHEBYSHEV DAN PERUMUMANNYA Pngern B.H.P Institut Teknologi Bndung pngernhp@yhoo.com Hendr Gunwn Institut Teknologi Bndung hgunwn@mth.it.c.id ABSTRACT.

Lebih terperinci

BAB 3 APLIKASI TAGUCHI LOSS FUNCTION

BAB 3 APLIKASI TAGUCHI LOSS FUNCTION BB III PIKSI TGUHI OSS FUNTION 6 BB 3 PIKSI TGUHI OSS FUNTION 3. Kitn Tguchi oss Function dengn indeks kpilits proses p Tguchi oss Function erkitn dengn indeks kpilits proses p. Rsio rt rt loss cost seelum

Lebih terperinci

METODE ANALISIS. Tentukan arus pada masing-masing tahanan dengan menggunakan metode arus cabang untuk rangkaian seperti pada Gambar 1.

METODE ANALISIS. Tentukan arus pada masing-masing tahanan dengan menggunakan metode arus cabang untuk rangkaian seperti pada Gambar 1. 1. Anlisis Arus Cng METODE ANALSS Metode rus ng dlh slh stu metode penyelesin nlisis rngkin il rngkin terdiri dri du tu leih sumer. Pd metode rus ng ini, kn diperoleh rus pd setip ng dri sutu rngkin yng

Lebih terperinci

Integral Tak Wajar. Ayundyah Kesumawati. March 25, Prodi Statistika FMIPA-UII

Integral Tak Wajar. Ayundyah Kesumawati. March 25, Prodi Statistika FMIPA-UII Kesumwti Prodi Sttistik FMIPA-UII Mrch 25, 205 Sutu integrl tertentu b f (x)dx () diktkn wjr jik i memenuhi du syrt berikut: i. Bts integrsi dn b merupkn bilngn berhingg ii. fungsi f (x) terbts pd intervl

Lebih terperinci

didefinisikan sebagai bilangan yang dapat ditulis dengan b

didefinisikan sebagai bilangan yang dapat ditulis dengan b 1 PENDAHULUAN 1.1 Sistem Bilngn Rel Untuk mempeljri klkulus perlu memhmi hsn tentng system ilngn rel, kren klkulus didsrkn pd system ilngn rel dn siftsiftny. Sistem ilngn yng pling sederhn dlh ilngn sli,

Lebih terperinci

4.2. Vektor dalam Ruang Dimensi Tiga

4.2. Vektor dalam Ruang Dimensi Tiga 4.. Vetor dlm Rng Dmens Tg Seenrny pengertn etor pd dng dmens d sm hlny pengertn etor dlm rng dmens tg, etor pd sng mempny d omponen, m etor dlm rng mempny tg omponen. Yt ;,,,, Dmn merpn etor stn t etor

Lebih terperinci

Matematika Dasar VOLUME BENDA PUTAR

Matematika Dasar VOLUME BENDA PUTAR OLUME BENDA PUTAR Ben putr yng seerhn pt kit mil ontoh lh tung engn esr volume lh hsilkli lus ls ( lus lingkrn ) n tinggi tung. olume ri en putr ser umum pt ihitung ri hsilkli ntr lus ls n tinggi. Bil

Lebih terperinci

PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN GRAFIKNYA

PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN GRAFIKNYA PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN GRAFIKNYA Persmn dlh klimt mtemtik teruk ng memut huungn sm dengn. Sedngkn klimt mtemtik tertutup ng memut huungn sm dengn diseut kesmn. Klimt mtemtik :. Klimt mtemtik

Lebih terperinci

Hendra Gunawan. 15 November 2013

Hendra Gunawan. 15 November 2013 MA1101 MATEMATIKA 1A Hendr Gunwn Semester I, 2013/2014 15 Novemer 2013 Ltihn 1. Pnjng lmi sutu pegs dlh 0.08 m. Gy seesr 0.6 N diperlukn untuk menekn dn menhnny pd pnjng 0.07 m. Tentukn kerjyng dilkukn

Lebih terperinci

IV V a b c d. a b c d. b c d. bukan fungsi linier y = x = x y 5xy + y = B.2 Konsep Fungsi Linier

IV V a b c d. a b c d. b c d. bukan fungsi linier y = x = x y 5xy + y = B.2 Konsep Fungsi Linier 8. Dri fungsi-fungsi ng disjikn dengn digrm pnh erikut ini mnkh ng merupkn fungsi onto, injektif tu ijektif, jik relsi dri A ke B? A c d IV B A c d V B A c d VI B B. Konsep Fungsi Linier. Tujun Setelh

Lebih terperinci

SIMULASI TINGGI HIDRAULIK PADA ALIRAN AIR DALAM TANAH DUA DIMENSI MENGGUNAKAN METODE ELEMEN HINGGA. BAYU CAHAYA NUGRAHA

SIMULASI TINGGI HIDRAULIK PADA ALIRAN AIR DALAM TANAH DUA DIMENSI MENGGUNAKAN METODE ELEMEN HINGGA. BAYU CAHAYA NUGRAHA ISSN : 407-65 SIMULASI TINGGI HIDRAULIK PADA ALIRAN AIR DALAM TANAH DUA DIMENSI MENGGUNAKAN METODE ELEMEN HINGGA BAYU CAHAYA NUGRAHA quetzlcotl@gml.com ABSTRAK Peneltn n merepresentskn smuls tngg hdrulk

Lebih terperinci

DETERMINAN. Misalkan A adalah suatu matriks persegi. a) Jika A memiliki satu baris atau satu kolom bilangan nol, maka det(a) = 0.

DETERMINAN. Misalkan A adalah suatu matriks persegi. a) Jika A memiliki satu baris atau satu kolom bilangan nol, maka det(a) = 0. DETERMINAN Fungsi determinn dri sutu mtriks persegi A (dinotsikn dengn det(a) tu A ) didefinisikn sebgi jumlh dri semu hsil kli elementer bertnd dri A. Sementr, ngk tu bilngn dri det(a) disebut determinn

Lebih terperinci

matematika PEMINATAN Kelas X FUNGSI LOGARITMA K-13 A. Definisi Fungsi Logaritma

matematika PEMINATAN Kelas X FUNGSI LOGARITMA K-13 A. Definisi Fungsi Logaritma K-3 Kels mtemtik PEMINATAN FUNGSI LOGARITMA Tujun Pembeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi definisi fungsi logritm.. Dpt menggunkn konsep fungsi logritm dlm menyelesikn

Lebih terperinci

VEKTOR. Dua vektor dikatakan sama jika besar dan arahnya sama. Artinya suatu vektor letaknya bisa di mana saja asalkan besar dan arahnya sama.

VEKTOR. Dua vektor dikatakan sama jika besar dan arahnya sama. Artinya suatu vektor letaknya bisa di mana saja asalkan besar dan arahnya sama. -1- VEKTOR PENGERTIAN VEKTOR dlh sutu esrn yng mempunyi nili (esr) dn rh. Sutu vektor dpt digmrkn segi rus gris errh. Nili (esr) vektor dinytkn dengn pnjng gris dn rhny dinytkn dengn tnd pnh. Notsi vektor

Lebih terperinci

PEMBAHASAN PERSIAPAN UAS X MATEMATIKA PEMINATAN

PEMBAHASAN PERSIAPAN UAS X MATEMATIKA PEMINATAN PEMBAHASAN PERSIAPAN UAS X MATEMATIKA PEMINATAN Sol Dierikn du vektor segi erikut: Grkn vektor ) ) Jw: ) Untuk enggr vektor, gr dhulu vektor, llu disung dengn vektor Vektor dlh vektor yng pnjngny kli vektor

Lebih terperinci

VEKTOR. 1. Pengertian Vektor adalah besaran yang memiliki besar (nilai) dan arah. Vektor merupakan sebuah ruas garis yang

VEKTOR. 1. Pengertian Vektor adalah besaran yang memiliki besar (nilai) dan arah. Vektor merupakan sebuah ruas garis yang VEKTOR 1. Pengertin Vektor dlh besrn yng memiliki besr (nili dn rh. Vektor merupkn sebuh rus gris yng P berrh dn memiliki pnjng. Pnjng rus gris tersebut dlh pnjng vektor. Rus gris dri titik P dn berujung

Lebih terperinci

Matematika EBTANAS Tahun 1992

Matematika EBTANAS Tahun 1992 Mtemtik EBTANAS Thun 99 EBT-SMA-9-0 Grfik fungsi kudrt yng persmnny y = x 5x memotong sumu x. Slh stu titik potongny dlh (, 0), mk nili sm dengn EBT-SMA-9-0 Persmn x px + 5 = 0 kr-krny sm. Nili p 0 tu

Lebih terperinci

UJIAN BERSAMA SMA KABUPATEN TANAH DATAR SEMESTER 1 TAHUN PELAJARAN 2008/2009. Mata Pelajaran : MATEMATIKA Kelas/jurusan : XII/IPS Hari/Tanggal :

UJIAN BERSAMA SMA KABUPATEN TANAH DATAR SEMESTER 1 TAHUN PELAJARAN 2008/2009. Mata Pelajaran : MATEMATIKA Kelas/jurusan : XII/IPS Hari/Tanggal : UJIN ERSM SM KUPTEN TNH DTR SEMESTER THUN PELJRN / Mt Peljrn : MTEMTIK Kels/jurusn : XII/IPS Hri/Tnggl : Wktu : menit Pilihlh slh stu jwn ng dinggp pling enr dn tept!. d c c c c. Jik F '( ) dn F () mk

Lebih terperinci

ω = kecepatan sudut poros engkol

ω = kecepatan sudut poros engkol Kerj Untuk Mengtsi Gesekn 1. Pomp Tnp Bejn Udr Telh dijelskn pd bgin muk bhw pd wl dn khir lngkh hisp mupun lngkh tekn, tidk terjdi kerugin hed kibt gesekn. Kerugin hed mksimum hny terjdi pd pertenghn

Lebih terperinci