Teorema Dasar Integral Garis

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Teorema Dasar Integral Garis"

Transkripsi

1 ISBN: Teorem Dsr Integrl Gris Erdwti Nurdin Progrm Studi Pendidikn Mtemtik FKIP UIR Abstrk Slh stu generlissi integrl tentu (definite integrl) f x dx diperoleh dengn menggnti himpunn [,b] dengn kurv pd bidng xy (R ). Integrl yng dihsilkn F dx disebut dengn integrl gris (line integrl), jug sering disebut integrl kurv (curve integrl). Seperti hlny pd integrl bis, pd integrl gris jug terdpt teorem yng mendsr dlm perhitungn integrl gris. Teorem tersebut sering disebut Teorem Dsr untuk Integrl Gris. Dlm mklh ini dibuktikn teorem dsr untuk integrl gris tersebut. Kt kunci: Integrl tentu, teorem dsr integrl, integrl gris. 1 Pendhulun Slh stu jenis generlissi integrl tentu (definite integrl) f x dx diperoleh dengn menggnti himpunn [,b] yng diintegrlkn menjdi himpunn berdimensi du dn berdimensi tig. Hl ini menuntun ke integrl lipt-du tu integrl lipt-tig. Generlissi yng benr-benr berbed diperoleh dengn menggntikn [,b] dengn kurv pd bidng xy (R ). Integrl yng dihsilkn F. dx disebut dengn integrl gris (line integrl), jug sering disebut integrl kurv (curve integrl). r yng pling mendsr dlm menghitung integrl tentu bis dlh teorem dsr klkulus du. Dlm bentuk simbol dpt dinytkn dengn b b b f ( x) dx = f(b) f() Anlog dengn hl tesebut, pd integrl gris jug terdpt teorem yng mendsr dlm perhitungn integrl gris. Teorem tersebut sering disebut Teorem Dsr untuk Integrl Gris, yng berbunyi : Mislkn dlh sebuh kurv mulus sepotong-sepotong yng dinytkn dengn (x( t)) untuk t [, b], yng berwl di dn berkhir di b. FMIPA Universits Riu, Nopember 014 6

2 ISBN: mislkn f(x, y) : R R terdiferensil secr kontinu pd himpunn terbuk yng mengndung, mk f. dx = f(b) f() Dlm mklh ini kn dibuktikn Teorem Dsr untuk Integrl Gris. Nmun sebelum itu, kn dibhs beberp hl yng mendukung pembuktin tersebut, dintrny fungsi vektor, hsil kli titik (dot produc medn vektor, fungsi vektor yng kontinu, opertor diferensil vektor dn turn rnti. Definisi.1. Mislkn f dn g dlh du fungsi bernili rill dengn peubh t. Mk untuk setip bilngn t dlm derh definisi bersm dri f dn g terdpt sutu vektor F yng didefinisikn oleh Dn F dinmkn fungsi vektor. F(t) = f(t) i + g(t) j Definisi.. Jik A = ( 1, ) dn B = (b 1,b ) dlh du vektor di V, mk hsil kli titik dri A dn B dinytkn dengn A.B = ( 1, ).(b 1,b ) = 1 b 1 + b Definisi.. Jik F sutu fungsi vektor yng didefinisikn di R sehingg F(x,y) = P(x,y)i + Q(x,y)j mk F mengitkn setip titik (x,y) dengn sutu vektor. F disebut medn vektor. Definisi.4. Opertor diferensil vektor dilmbngkn dengn (dibc: del), didefinisikn dengn = i x y j Opertor diferensil vektor jug disebut nbl. Definisi.5. Fungsi F(t) = f(t)i + g(t)j diktkn kontinu di titik t = c, jik memenuhi ketig syrt berikut: 1. F(t) terdefinisi di t = c (F(c) d). lim F( t) d tc. F(c) = lim F( t) tc FMIPA Universits Riu, Nopember 014 7

3 ISBN: Teorem.6. Mislkn x = x(t) dn y = t) dpt didiferensilkn di t, dn mislkn z = f(x,y) dpt didiferensilkn di (x(t)), mk z = f(x(t)) dpt didiferensilkn di t, dn dz z x dx z y dy Bukti: Mislkn p = (x,y) p = ( x, y) z = f(p + p) f(p) Kren f dpt terdiferensilkn mk, z = f(p + p) f(p) = f(p). p + ( p). p = f x (p) x + f y (p) y + ( p). p Dengn ( p) 0 dn p 0 Jik kedu rus dibgi dengn t, mk diperoleh z x y x y = f x ( p) f p) ( p)., t t t t t x y dx dy Selnjutny,, mendekti, ketik t 0. dn ketik t 0, x dn t t y mendekti 0 (kren x(t) dn t) kontinu, dpt didiferensilkn). Jdi p 0, sehingg ( p)0 ketik t 0. Dengn demikin, ketik t 0 diperoleh : dz = dx fx ( p) f p) dy dz z dx z dy x y Pembhsn Definisi.1. Mislkn F(x, y) = (P(x, y), Q(x, y)) : R R sebuh medn vektor yng kontinu dn mislkn kurv dinytkn dengn (x( t)) untuk t [,b]. Mk integrl gris F sepnjng dinotsikn dengn : dn dinytkn dengn F. dx tu P dx Qdy FMIPA Universits Riu, Nopember 014 8

4 ISBN: F. dx = b ' ' ( P ( x( t)), Q( x( t)).( x ( y )) b ' ' = P ( x( t)) x ( t) Q( x( t)) y ( t) (1) ontoh.1. Hitunglh integrl gris (P(x, y), Q(x, y)) = (x + y, xy) sepnjng prbol seperti pd Gmbr. 1, dimn x(t) = t dn t) = t, t [0, ]. Gmbr.1. Prbol t) = t Penyelesin : Kren x(t) = t mk x (t) = 1 t) = t mk y (t) = t t [0, ]. sehingg 1 t = 0 4 t = P dx Qdy = ( t t, t ).(1, t) 0 4 = t t t = 0 1 t 1 t 1 t 5 5 = 1 1 () () () 5 (0) 5 7 = Definisi.. Mislkn dlh kurv mulus sepotong-sepotong, yitu terdiri dri beberp kurv mulus 1,,, n. Mk integrl gris F(x, y) sepnjng didefinisikn sebgi jumlh dri integrl-integrl pd msing-msing kurv. Dpt dinotsikn dengn F. dx = F. dx + 1 F. dx + + F. dx n n = i1 i F. dx FMIPA Universits Riu, Nopember 014 9

5 ISBN: Teorem.1. Mislkn dlh sebuh kurv mulus sepotong-sepotong yng dinytkn dengn (x( t)) untuk t [, b], yng berwl di dn berkhir di b. mislkn f(x, y) : R R terdiferensil secr kontinu pd himpunn terbuk yng mengndung, mk f. dx = f(b) f() Teorem ini bis disebut sebgi teorem dsr untuk integrl gris. Bukti: Kren dlh kurv yng dinytkn dengn (x( t)) untuk t [, b] mk f. dx = b ' ' f ( x( t).( x ( y )) (1) Berdsrkn Teorem.6, kren f dn fungsi yng terdiferensil, mk f(x( t)) jug terdiferensil, mk d ' ' f ( x( t)) = f ( x( t)).( x ( y ( t) () Berdsrkn persmn (1) dn () diperoleh f. dx = b d f ( x( t) = f(x(b), b)) f(x(), )) = f(b) f(), kren berwl di = (x(), )) dn berkhir di b = (x(b), b)). Ini merupkn pembuktin untuk kurv tunggl. Selnjutny mislkn merupkn kurv mulus sepotong-sepotong yng terdiri ts kurv-kurv 1,,, n, dimn 1 bergerk dri = 0 ke 1, bergerk dri 1 ke,, dn n bergerk dri n-1 ke n = b. Berdsrkn Definisi. untuk kurv mulus sepotong-sepotong dn hsil yng diperoleh untuk msing-msing kurv i, mk f. dx = n i1 n i f. dx = f ( ) f ( i1 i ) i 1 = ( f( 1 ) + f( ) + + f( n-1 ) + f( n )) (f( 0 ) + f( 1 ) + f( ) + + f( n-1 ) ) = f( n ) f( 0 ) = f(b) f() FMIPA Universits Riu, Nopember

6 ISBN: ontoh.. Mislkn f(x,y) = xy dinytkn dengn t 5 t t, 4 x. hitunglh 9, untuk t [0, 4]. f. dx untuk kurv yng 5(0) Penyelesin: Kren t [0, 4] mk =, (0) 9 = (0,) (0) 4 f. dx 5(4) b =, (4) 9 = (1,5) (4) 4 = f(b) f() = f(1,5) f(0,) = (1(5) (5)) (0() ()) = Kesimpuln Berdsrkn pembhsn yng telh dilkukn dpt disimpulkn bhw untuk sebuh kurv yng mulus sepotong-sepotong yng dinytkn dengn (x( t)) dimn t [, b], yng berwl di dn berkhir di b. mislkn f(x, y) : R R terdiferensil secr kontinu pd himpunn terbuk yng mengndung, berlku Dftr Pustk f. dx = f(b) f() [1] Belding, D. F & Kevin, J Foundtion of Anlysis. Prentice Hll, New Jersey. [] Leithold, L Klkulus dn Ilmu Anlitik, terj. S. M. Nbbn. Erlngg, Jkrt. [] Mrsden, J. E & Anthony, J. T Vector lculus. W.H. Freemn nd ompny, New York. [4] Mursit, D Mtemtik Dsr untuk Pergurun Tinggi. Rekys Sins, Bndung. [5] Prcell, E. J & Steven E. R Klkulus. Erlngg, Jkrt. FMIPA Universits Riu, Nopember

Skew- Semifield dan Beberapa Sifatnya 1

Skew- Semifield dan Beberapa Sifatnya 1 Skew- Semifield dn Beberp Siftny K r y t i Jurusn Pendidikn Mtemtik Fkults Mtemtik dn Ilmu Pengethun Alm Universits Negeri Yogykrt E-mil: ytiuny@yhoo.com Abstrk Sutu field ( lpngn ) F dlh struktur ljbr

Lebih terperinci

INTEGRAL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 45

INTEGRAL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 45 INTEGRAL Deprtemen Mtemtik FMIPA IPB Bogor, 2012 (Deprtemen Mtemtik FMIPA IPB) Klkulus I Bogor, 2012 1 / 45 Topik Bhsn 1 Pendhulun 2 Anti-turunn 3 Lus di Bwh Kurv 4 Integrl Tentu 5 Teorem Dsr Klkulus 6

Lebih terperinci

SISTEM BILANGAN REAL. 1. Sifat Aljabar Bilangan Real

SISTEM BILANGAN REAL. 1. Sifat Aljabar Bilangan Real SISTEM BILANGAN REAL Dlm terminologi Aljbr Abstrk, sistem bilngn rel disebut dengn field (lpngn) pd opersi penjumlhn dn perklin. Sutu opersi biner bis ditulis dengn sutu psngn terurut (, b) yng unik dri

Lebih terperinci

DETERMINAN. Misalkan A adalah suatu matriks persegi. a) Jika A memiliki satu baris atau satu kolom bilangan nol, maka det(a) = 0.

DETERMINAN. Misalkan A adalah suatu matriks persegi. a) Jika A memiliki satu baris atau satu kolom bilangan nol, maka det(a) = 0. DETERMINAN Fungsi determinn dri sutu mtriks persegi A (dinotsikn dengn det(a) tu A ) didefinisikn sebgi jumlh dri semu hsil kli elementer bertnd dri A. Sementr, ngk tu bilngn dri det(a) disebut determinn

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Anlisis Rel Hendr Gunwn* *http://hgunwn82.wordpress.com Anlysis nd Geometry Group Bndung Institute of Technology Bndung, INDONESIA Progrm Studi S1 Mtemtik ITB, Semester II 2016/2017 HG* (*ITB Bndung)

Lebih terperinci

Integral Tak Wajar. Ayundyah Kesumawati. March 25, Prodi Statistika FMIPA-UII

Integral Tak Wajar. Ayundyah Kesumawati. March 25, Prodi Statistika FMIPA-UII Kesumwti Prodi Sttistik FMIPA-UII Mrch 25, 205 Sutu integrl tertentu b f (x)dx () diktkn wjr jik i memenuhi du syrt berikut: i. Bts integrsi dn b merupkn bilngn berhingg ii. fungsi f (x) terbts pd intervl

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Anlisis Rel Hendr Gunwn* *http://hgunwn82.wordpress.com Anlysis nd Geometry Group Bndung Institute of Technology Bndung, INDONESIA Progrm Studi S1 Mtemtik ITB, Semester II 2016/2017 HG* (*ITB Bndung)

Lebih terperinci

Integral Kompleks (Bagian Kesatu)

Integral Kompleks (Bagian Kesatu) Integrl Kompleks (Bgin Kestu) Supm Jurusn Mtemtik, FMIPA UGM Yogykrt 55281, INDONESIA Emil:mspomo@yhoo.com, supm@ugm.c.id (Pertemun Minggu XI) Outline 1 Fungsi Bernili Kompleks 2 Lintsn tu Kontur 3 Integrl

Lebih terperinci

15. INTEGRAL SEBAGAI LIMIT

15. INTEGRAL SEBAGAI LIMIT 15. INTEGRAL SEBAGAI LIMIT 15.1 Jumlh Riemnn Dlm kulih Klkulus pd thun pertm, integrl Riemnn bisny diperkenlkn sebgi limit dri jumlh Riemnn, tidk mellui integrl Riemnn ts dn integrl Riemnn bwh. Hl ini

Lebih terperinci

INTEGRAL FOURIER KED. Diasumsikan syarat-syarat berikut pada f(x): 1. f x memenuhi syarat Dirichlet pada setiap interval terhingga L, L.

INTEGRAL FOURIER KED. Diasumsikan syarat-syarat berikut pada f(x): 1. f x memenuhi syarat Dirichlet pada setiap interval terhingga L, L. INTEGRAL FOURIER Disumsikn syrt-syrt berikut pd f(x):. f x memenuhi syrt Dirichlet pd setip intervl terhingg L, L.. f x dx konvergen, yitu f(x) dpt diintegrsikn secr mutlk dlm (, ). Selnjutny, Teorem integrl

Lebih terperinci

14. SIFAT-SIFAT INTEGRAL RIEMANN

14. SIFAT-SIFAT INTEGRAL RIEMANN 4. SIFAT-SIFAT INTEGRAL RIEMANN 4. Sift-sift Dsr Integrl Riemnn Pd bb ini kit kn mempeljri sift-sift dsr integrl Riemnn. Sift pertm dlh sift kelinern, yng dinytkn dlm Proposisi. Sepnjng bb ini, I menytkn

Lebih terperinci

12. LUAS DAERAH DAN INTEGRAL

12. LUAS DAERAH DAN INTEGRAL 12. LUAS DAERAH DAN INTEGRAL 12.1 Lus Derh di Bwh Kurv Mslh menentukn lus derh (dn volume rung) telh dipeljri sejk er Pythgors dn Zeno, pd thun 500-n SM. Konsep integrl (yng terkit ert dengn lus derh)

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Bb berikut ini kn disjikn mteri pendukung yng dpt membntu penulis untuk menyelesikn permslhn yng kn dibhs pd bb selnjutny. Adpun mteri pendukungny dlh pengertin mtriks, jenis-jenis

Lebih terperinci

APLIKASI INTEGRAL PENERAPAN INTEGRAL. Luas daerah kelengkungan

APLIKASI INTEGRAL PENERAPAN INTEGRAL. Luas daerah kelengkungan APLIKASI INTEGRAL APLIKASI INTEGRAL PENERAPAN INTEGRAL Lus derh kelengkungn PENERAPAN INTEGRAL Indiktor 1 Indiktor 9 Lus derh di bwh kurv berdsr prinsip Riemn Volume bend putr, jik kurv diputr mengelilingi

Lebih terperinci

7. Ruang L 2 (a, b) f(x) 2 dx < }.

7. Ruang L 2 (a, b) f(x) 2 dx < }. 7. Rung L (, b) Rung L (, b) didefinisikn sebgi rung semu fungsi f yng kudrtny terintegrlkn pd [, b], ykni L (, b) := {f : b f(x) dx < }. Rung ini menckup fungsi-fungsi f yng tk terbts pd [, b] tetpi f

Lebih terperinci

MENENTUKAN AKAR-AKAR PERSAMAAN PANGKAT EMPAT. Supriyono Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo.

MENENTUKAN AKAR-AKAR PERSAMAAN PANGKAT EMPAT. Supriyono Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo. MENENTUKAN AKAR-AKAR PERSAMAAN PANGKAT EMPAT Supriyono Jurusn Pendidikn Mtemtik FKIP Universits Muhmmdiyh Purworejo Abstrk Tulisn ini terdiri bgin yitu () bgin pendhulun yng membhs bentuk umum persmn pngkt

Lebih terperinci

PERSAMAAN DAN PERTIDAKSAMAAN LOGARITMA

PERSAMAAN DAN PERTIDAKSAMAAN LOGARITMA K- Kels X mtemtik PEMINATAN PERSAMAAN DAN PERTIDAKSAMAAN LOGARITMA Tujun Pembeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi definisi persmn dn pertidksmn logritm.. Dpt

Lebih terperinci

1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini:

1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini: ) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persmn kudrt dlh seperti di bwh ini: b c dengn, b, c bilngn dn riil Dimn, disebut sebgi koefisien dri b disebut sebgi koefisien dri c disebut

Lebih terperinci

Deret Fourier. (Pertemuan X) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

Deret Fourier. (Pertemuan X) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya TKS 47 Mtemtik III Deret Fourier (Pertemun X) Dr. AZ Jurusn Teknik Sipil Fkults Teknik Universits Brwijy Pendhulun Deret Fourier ditemukn oleh ilmun Perncis, Jen Bptiste Joseph Fourier (768-83) yng menytkn

Lebih terperinci

APLIKASI INTEGRAL PENERAPAN INTEGRAL. Luas daerah kelengkungan

APLIKASI INTEGRAL PENERAPAN INTEGRAL. Luas daerah kelengkungan APLIKASI INTEGRAL APLIKASI INTEGRAL PENERAPAN INTEGRAL Lus derh kelengkungn Integrl digunkn pd design Menr Petrons di Kul lumpur, untuk perhitungn kekutn menr. Sdne Oper House di design berdsrkn irisn-irisn

Lebih terperinci

CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. 3. Untuk k 2 didefinisikan bahwa a

CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. 3. Untuk k 2 didefinisikan bahwa a CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. Dikethui bhw,. Untuk k didefinisikn bhw k k k. Tentukn jumlh tk hingg dri. Kit mislkn S S. Dengn demikin kit dpt menuliskn Kedu

Lebih terperinci

SIMAK UI 2011 Matematika Dasar

SIMAK UI 2011 Matematika Dasar SIMAK UI 0 Mtemtik Dsr Kode Sol Doc. Nme: SIMAKUI0MATDAS999 Version: 0-0 hlmn 0. Sebuh segitig sm kki mempunyi ls 0 cm dn tinggi 5 cm. Jik dlm segitig tersebut dibut persegi pnjng dengn ls terletk pd ls

Lebih terperinci

BAB 1 PERSAMAAN DAN PERTIDAKSAMAAN. Standar Kompetensi Mahasiswa memahami konsep dasar sistem bilangan real (R)

BAB 1 PERSAMAAN DAN PERTIDAKSAMAAN. Standar Kompetensi Mahasiswa memahami konsep dasar sistem bilangan real (R) BAB PERSAMAAN DAN PERTIDAKSAMAAN Stndr Kompetensi Mhsisw memhmi konsep dsr sistem bilngn rel (R) sebgi semest untuk menentukn selesin persmn dn pertidksmn, dpt mengembngkn bentuk persmn dn pertidksmn yng

Lebih terperinci

LIMIT FUNGSI DAN KEKONTINUAN

LIMIT FUNGSI DAN KEKONTINUAN LIMIT FUNGSI DAN KEKONTINUAN RANGKUMAN MATERI Sebelum memsuki mteri, perhtikn himpunn-himpunn berikut: ) Himpunn bilngn sli:,,,4,5,.... b) Himpunn bilngn bult:...,,,0,,,.... p c) Himpunn bilngn rsionl:

Lebih terperinci

PROSIDING ISBN : RUANG LINEAR BERNORMA CESS. Muslim Ansori

PROSIDING ISBN : RUANG LINEAR BERNORMA CESS. Muslim Ansori PROSIDING ISBN : 978 979 16353 3 RUANG LINEAR BERNORMA C (, L ([, b ] An-1 Muslim Ansori Jurusn Mtemtik FMIPA Universits Lmpung Almt : Jln. Soemtri Brodjonegoro No.1 Bndr Lmpung E-mil: nsomth@yhoo.com

Lebih terperinci

GEOMETRI PADA BIDANG: VEKTOR

GEOMETRI PADA BIDANG: VEKTOR GEOMETRI PADA BIDANG: VEKTOR A. Kurv Bidng: Representsi Prmetrik Sutu kurv bidng ditentukn oleh sepsng persmn prmetrik: x f () t, y f () t t dlm intervl I dengn f dn g kontinu pd intervl I. Secr umum,

Lebih terperinci

r x = 0. Koefisien-koefisien persamaan yang dihasilkan adalah analitik pada x = 0. Jadi dapat kita gunakan metode deret pangkat.

r x = 0. Koefisien-koefisien persamaan yang dihasilkan adalah analitik pada x = 0. Jadi dapat kita gunakan metode deret pangkat. Husn Arifh,M.Sc : Persmn Legendre Emil : husnrifh@uny.c.id Persmn diferensil Legendre (1) 1 x 2 y 2xy + n n + 1 y = 0 Prmeter n pd (1) dlh bilngn rill yng diberikn. Setip penyelesin dri (1) dinmkn fungsi

Lebih terperinci

6. Himpunan Fungsi Ortogonal

6. Himpunan Fungsi Ortogonal 6. Himpunn Fungsi Ortogonl Mislkn f periodik dengn periode, dn mulus bgin demi bgin pd [ π, π]. Jik S f N (θ) = N n= N c ne inθ, n =,, 2,..., dlh jumlh prsil dri deret Fourier f, mk kit telh menunjukkn

Lebih terperinci

Pertemuan : 1 Materi : Vektor Pada Bidang ( R 2 ), Bab I. Pendahuluan

Pertemuan : 1 Materi : Vektor Pada Bidang ( R 2 ), Bab I. Pendahuluan Pertemun : 1 Mteri : Vektor Pd Bidng ( R 2 ), Bb I. Pendhulun Stndr Kompetensi : Setelh mengikuti perkulihn ini mhsisw dihrpkn dpt : 1. Memhmi kembli pengertin vektor, opersi pd vektor, dn sift-sift opersi

Lebih terperinci

DETERMINAN DAN INVERS MATRIKS BLOK 2 2

DETERMINAN DAN INVERS MATRIKS BLOK 2 2 Buletin Ilmih Mth. Stt. dn Terpnny (Bimster) Volume 06, No. 3(2017), hl 193 202. DETERMINAN DAN INVERS MATRIKS BLOK 2 2 Ilhmsyh, Helmi, Frnsiskus Frn INTISARI Mtriks blok merupkn mtriks persegi yng diblok

Lebih terperinci

Aljabar Linear. Pertemuan 12_14 Aljabar Vektor (Perkalian vektor)

Aljabar Linear. Pertemuan 12_14 Aljabar Vektor (Perkalian vektor) Aljbr Liner Pertemun 12_14 Aljbr Vektor (Perklin vektor) Pembhsn Perklin vektor dengn sklr Rung vektor Perklin Vektor dengn Vektor: Dot Product - Model dot product - Sift dot product Pendhulun Penmbhn

Lebih terperinci

VEKTOR. Adri Priadana. ilkomadri.com

VEKTOR. Adri Priadana. ilkomadri.com VEKTOR Adri Pridn ilkomdri.com Pengertin Dlm Fisik dikenl du buh besrn, yitu 1. Besrn Sklr. Besrn Vektor Pengertin Besrn Sklr dlh sutu besrn yng hny mempunyi nili dn dinytkn dengn sutu bilngn tunggl diserti

Lebih terperinci

(1) Pertemuan I: Fungsi bernilai kompleks, lintasan, dan integral lintasan. (2) Pertemuan II: Antiderivatif dan Teorema Cauchy-Goursat.

(1) Pertemuan I: Fungsi bernilai kompleks, lintasan, dan integral lintasan. (2) Pertemuan II: Antiderivatif dan Teorema Cauchy-Goursat. Bb 4 Integrl Bb 4 ini direncnkn kn dismpikn dlm 4 kli pertemun, dengn perincin sebgi berikut: (1) Pertemun I: Fungsi bernili kompleks, lintsn, dn integrl lintsn. (2) Pertemun II: Antiderivtif dn Teorem

Lebih terperinci

INTEGRAL TAK TENTU. x x x

INTEGRAL TAK TENTU. x x x INTEGRAL TAK TENTU Definisi : Fungsi F diktkn nti turunn dri fungsi f pd selng I jik F () = f() untuk semu di I. Notsi : F() = f() Integrl tk tentu dlh Anti/Invers/Kelikn turunn. c c Integrl tk tentu dlh

Lebih terperinci

Kerjakan di buku tugas. Tentukan hasil operasi berikut. a. A 2 d. (A B) (A + B) b. B 2 e. A (B + B t ) c. A B f. A t (A t + B t ) Tes Mandiri

Kerjakan di buku tugas. Tentukan hasil operasi berikut. a. A 2 d. (A B) (A + B) b. B 2 e. A (B + B t ) c. A B f. A t (A t + B t ) Tes Mandiri Mmt Apliksi SMA Bhs Dikethui A = Tentukn hsil opersi berikut A c A A b A A d A Dikethui A = Tentukn hsil opersi berikut (A + B) c (B A) b A + AB + B d B BA + A Sol Terbuk Kerjkn di buku tugs Jik X = dn

Lebih terperinci

Minggu ke 6 LIMIT FUNGSI (LIMITS OF FINCTIONS) 2,1, 2,01, 2,001, 2,0001,, 2 + 1/10 n maka :

Minggu ke 6 LIMIT FUNGSI (LIMITS OF FINCTIONS) 2,1, 2,01, 2,001, 2,0001,, 2 + 1/10 n maka : Minggu ke 6 Modul Mtemtik LIMIT FUNGSI LIMITS OF FINCTIONS). BRISN SEQUENCES) VS. LIMIT FUNGSI LIMITS OF FUNCTIONS) Contoh : Sequence : fn) = + / n,,,,,,,,, + / n mk : Limit dri fungsi f) =, dimn vribel

Lebih terperinci

INTEGRAL. Misalkan suatu fungsi f(x) diintegralkan terhadap x maka di tulis sebagai berikut:

INTEGRAL. Misalkan suatu fungsi f(x) diintegralkan terhadap x maka di tulis sebagai berikut: INTEGRAL.PENGERTIAN INTEGRAL Integrl dlh cr mencri sutu fungsi jik turunnn di kethui tu kelikn dri diferensil (turunn) ng diseut jug nti derivtif tu nti diferensil. Untuk menentukn integrl tidk semudh

Lebih terperinci

LUAS DAERAH APLIKASI INTEGRAL TENTU. Indikator Pencapaian Hasil Belajar. Ringkasan Materi Perkuliahan

LUAS DAERAH APLIKASI INTEGRAL TENTU. Indikator Pencapaian Hasil Belajar. Ringkasan Materi Perkuliahan LUAS DAERAH APLIKASI INTEGRAL TENTU Indiktor Pencpin Hsil Beljr Mhsisw menunjukkn kemmpun dlm :. Menghitung lus pd idng dtr Ringksn Mteri Perkulihn Jik sutu derh ditsi oleh kurv f(), g(), gris dn dengn

Lebih terperinci

Bab a. maka notasi determinan dari matriks A ditulis : det (A) atau. atau A.

Bab a. maka notasi determinan dari matriks A ditulis : det (A) atau. atau A. Bb DETERMINAN MATRIKS Determinn sutu mtriks dlh sutu fungsi sklr dengn domin mtriks bujur sngkr. Dengn kt lin, determinn merupkn pemetn dengn domin berup mtriks bujur sngkr, sementr kodomin berup sutu

Lebih terperinci

IRISAN KERUCUT: PERSAMAAN ELIPS. Tujuan Pembelajaran

IRISAN KERUCUT: PERSAMAAN ELIPS. Tujuan Pembelajaran K-13 mtemtik K e l s I IRISAN KERUCUT: PERSAMAAN ELIPS Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi definisi elips.. Memhmi unsur-unsur elips. 3. Memhmi eksentrisits

Lebih terperinci

SUKU BANYAK ( POLINOM)

SUKU BANYAK ( POLINOM) SUKU BANYAK ( POLINOM) Bb 16 Skl 8.Menyelesikn mslh yng berkitn dengn teorem sis tu teorem fktor A. PENGERTIAN SUKU BANYAK. Bentuk x x x... x x, dengn 0 dn n { bil. cch} 1 0 disebut dengn Suku bnyk (Polinomil)

Lebih terperinci

Hendra Gunawan. 30 Oktober 2013

Hendra Gunawan. 30 Oktober 2013 MA MATEMATIKA A Hendr Gunwn Semester I, 2/24 Oktoer 2 Ltihn. Fungsi g =,, terintegrlkn pd [, ]. Nytkn integrl tentu g pd [, ] segi limit jumlh Riemnn dengn prtisi reguler, dn hitunglh niliny. //2 c Hendr

Lebih terperinci

matematika PEMINATAN Kelas X FUNGSI LOGARITMA K-13 A. Definisi Fungsi Logaritma

matematika PEMINATAN Kelas X FUNGSI LOGARITMA K-13 A. Definisi Fungsi Logaritma K-3 Kels mtemtik PEMINATAN FUNGSI LOGARITMA Tujun Pembeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi definisi fungsi logritm.. Dpt menggunkn konsep fungsi logritm dlm menyelesikn

Lebih terperinci

didefinisikan sebagai bilangan yang dapat ditulis dengan b

didefinisikan sebagai bilangan yang dapat ditulis dengan b 1 PENDAHULUAN 1.1 Sistem Bilngn Rel Untuk mempeljri klkulus perlu memhmi hsn tentng system ilngn rel, kren klkulus didsrkn pd system ilngn rel dn siftsiftny. Sistem ilngn yng pling sederhn dlh ilngn sli,

Lebih terperinci

Catatan Kuliah 2 Matematika Ekonomi Memahami dan Menganalisa Aljabar Matriks (2)

Catatan Kuliah 2 Matematika Ekonomi Memahami dan Menganalisa Aljabar Matriks (2) Cttn Kulih Mtemtik Ekonomi Memhmi dn Mengnlis ljbr Mtriks (). Vektor dn kr Krkteristik pbil dlh mtriks berordo n n dn X dlh vector n, kn dicri sklr λ R yng memenuhi persmn : X λ X tu ( λi) X gr X (solusiny

Lebih terperinci

METODE ALTERNATIF BARU UNTUK MENGHITUNG DETERMINAN MATRIKS ORDE 3 X 3

METODE ALTERNATIF BARU UNTUK MENGHITUNG DETERMINAN MATRIKS ORDE 3 X 3 METODE ALTERNATIF BARU UNTUK MENGHITUNG DETERMINAN MATRIKS ORDE 3 X 3 Glng Ismu Hndoko 1, M Ntsir 2, Sigit Sugirto 2 1 Mhsisw Progrm S1 Mtemtik 2 Dosen Jurusn Mtemtik Fkults Mtemtik dn Ilmu Pengethun Alm

Lebih terperinci

3. LIMIT DAN KEKONTINUAN

3. LIMIT DAN KEKONTINUAN 3. LIMIT DAN KEKONTINUAN 1 3.1 Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi 1 1 Fungsi dits tidk terdeinisi di =1, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp

Lebih terperinci

PAM 252 Metode Numerik Bab 6 Pengintegralan Numerik

PAM 252 Metode Numerik Bab 6 Pengintegralan Numerik PAM 252 Metode Numerik Bb 6 Pengintegrln Numerik Mhdhivn Syfwn Jurusn Mtemtik FMIPA Universits Andls Semester Genp 2013/2014 1 Mhdhivn Syfwn Metode Numerik: Pengintegrln Numerik Motivsi Pendhulun Motivsi

Lebih terperinci

M A T R I K S. Oleh: Dimas Rahadian AM, S.TP. M.Sc.

M A T R I K S. Oleh: Dimas Rahadian AM, S.TP. M.Sc. M T R I K S Oleh Dims Rhdin M, S.TP. M.Sc Emil rhdindims@yhoo.com JURUSN ILMU DN TEKNOLOGI PNGN UNIVERSITS SEBELS MRET SURKRT DEFINISI... Mtriks dlh susunn bilngn berbentuk jjrn segi empt siku-siku yng

Lebih terperinci

Sistem Persamaan Linear Bagian 1

Sistem Persamaan Linear Bagian 1 Sistem Persmn Liner Bgin. SISTEM PERSAMAAN LINEAR PENGANTAR Dlm bgin ini kn kit perkenlkn istilh dsr dn kit bhs sebuh metode untuk memechkn sistem-sistem persmn liner. Sebuh gris dlm bidng xy secr ljbr

Lebih terperinci

NFA. Teori Bahasa dan Automata. Viska Mutiawani - Informatika FMIPA Unsyiah

NFA. Teori Bahasa dan Automata. Viska Mutiawani - Informatika FMIPA Unsyiah NFA Teori Bhs dn Automt Visk Mutiwni - Informtik FMIPA Unsyih 1 NFA NFA: Nondeterministic Finite Automt Atu Automt Hingg NonDeterministik (AHND) Slh stu bentuk dri Finite Automt NFA memiliki kemmpun untuk

Lebih terperinci

3. LIMIT DAN KEKONTINUAN. INF228 Kalkulus Dasar

3. LIMIT DAN KEKONTINUAN. INF228 Kalkulus Dasar . LIMIT DAN KEKONTINUAN INF8 Klkulus Dsr . Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di =, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer ljbr Liner Elementer M3 3 SKS Silbus : Bb I Mtriks dn Opersiny Bb II Determinn Mtriks Bb III Sistem Persmn Liner Bb IV Vektor di Bidng dn di Rung Bb V Rung Vektor Bb VI Rung Hsil Kli Dlm Bb VII Trnsformsi

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer ljbr Liner Elementer M SKS Silbus : Bb I Mtriks dn Opersiny Bb II Determinn Mtriks Bb III Sistem Persmn Liner Bb IV Vektor di Bidng dn di Rung Bb V Rung Vektor Bb VI Rung Hsil Kli Dlm Bb VII Trnsformsi

Lebih terperinci

Integral Tak Tentu dan Integral Tertentu

Integral Tak Tentu dan Integral Tertentu Integrl Tk Tentu dn Integrl Tertentu Pengertin Integrl Jik F dlh fungsi umum yng ersift F = f, mk F merupkn ntiturunn tu integrl dri f. Pengintegrln fungsi f terhdp dinotsikn segi erikut : f d F c notsi

Lebih terperinci

Jarak Titik, Garis dan Bidang dalam Ruang

Jarak Titik, Garis dan Bidang dalam Ruang Pge of Kegitn eljr. Tujun Pembeljrn Setelh mempeljri kegitn beljr, dihrpkn sisw dpt :. Menentukn jrk titik dn gris dlm rung b. Menentukn jrk titik dn bidng dlm rung c. Menentukn jrk ntr du gris dlm rung.

Lebih terperinci

SOLUSI POLINOMIAL PERSAMAAN INTEGRO-DIFERENSIAL FREDHOLM LINEAR DENGAN KOEFISIEN KONSTAN ABSTRACT

SOLUSI POLINOMIAL PERSAMAAN INTEGRO-DIFERENSIAL FREDHOLM LINEAR DENGAN KOEFISIEN KONSTAN ABSTRACT SOLUSI POLINOMIAL PERSAMAAN INTEGRO-DIFERENSIAL FREDHOLM LINEAR DENGAN KOEFISIEN KONSTAN Imm Tufik 1, Symsudhuh, Zulkrnin 1 Mhsisw Progrm Studi S1 Mtemtik Dosen Jurusn Mtemtik Fkults Mtemtik dn Ilmu Pengethun

Lebih terperinci

1. HUKUM SAMBUNGAN KIRCHOFF (HUKUM KIRCHOFF I) 2. HUKUM CABANG KIRCHOFF (HUKUM KIRCHOFF II)

1. HUKUM SAMBUNGAN KIRCHOFF (HUKUM KIRCHOFF I) 2. HUKUM CABANG KIRCHOFF (HUKUM KIRCHOFF II) MATA KULIAH KODE MK Dosen : FISIKA DASAR II : EL-22 : Dr. Budi Mulynti, MSi Pertemun ke-6 CAKUPAN MATERI. HUKUM SAMBUNGAN KIRCHOFF (HUKUM KIRCHOFF I) 2. HUKUM CABANG KIRCHOFF (HUKUM KIRCHOFF II) SUMBER-SUMBER:.

Lebih terperinci

AUTOMATA SEBAGAI MODEL PENGENAL BAHASA

AUTOMATA SEBAGAI MODEL PENGENAL BAHASA JMP : Volume Nomor Oktober 9 AUTOMATA SEBAGAI MODEL PENGENAL BAHASA Eddy Mrynto Fkults Sins dn Teknik Universits Jenderl Soedirmn Purwokerto Indonesi emil: eddy_mrynto@unsoed.c.id Abstrct. A deterministic

Lebih terperinci

METODE TRAPESIUM TERKOREKSI KOMPOSIT UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA LINEAR JENIS KEDUA. Fitra Anugrah 1, Zulkarnain 2 ABSTRACT

METODE TRAPESIUM TERKOREKSI KOMPOSIT UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA LINEAR JENIS KEDUA. Fitra Anugrah 1, Zulkarnain 2 ABSTRACT METODE TRAPESIUM TERKOREKSI KOMPOSIT UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA LINEAR JENIS KEDUA Fitr Anugrh 1, Zulkrnin 2 1 Mhsisw Progrm Studi S1 Mtemtik 2 Dosen Jurusn Mtemtik Fkults Mtemtik

Lebih terperinci

RUMUS HERON DAN RUMUS BRAHMAGUPTA

RUMUS HERON DAN RUMUS BRAHMAGUPTA RUMUS HERON DAN RUMUS BRAHMAGUPTA Sumrdyono, M.Pd. Topik lus bngun dtr telh dipeljri sejk di Sekolh Dsr hingg SMA. Bil di SD, dipeljri lus segitig dn beberp bngun segiempt mk di SMP dipeljri lebih lnjut

Lebih terperinci

MENAKSIR NILAI INTEGRAL BESAR ABSTRACT. This article discusses a new method to estimate the value of the integral of the form.

MENAKSIR NILAI INTEGRAL BESAR ABSTRACT. This article discusses a new method to estimate the value of the integral of the form. MENAKSIR NILAI INTEGRAL BESAR Muty Prtmi 1, M.Ntsir, Agusni 1 Mhsisw Progrm Studi S1 Mtemtik Dosen Jurusn Mtemtik Fkults Mtemtik dn Ilmu Pengethun Alm Universits Riu Kmpus Binwidy Peknbru (893), Indonesi

Lebih terperinci

matematika K-13 TEOREMA FAKTOR DAN OPERASI AKAR K e l a s

matematika K-13 TEOREMA FAKTOR DAN OPERASI AKAR K e l a s K-3 mtemtik K e l s XI TEOREMA FAKTOR DAN OPERASI AKAR Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Memhmi teorem fktor.. Menentukn kr dn fktor liner suku nyk dengn

Lebih terperinci

Two-Stage Nested Design

Two-Stage Nested Design Mteri #13 TIN309 DESAIN EKSPERIMEN Two-Stge Nested Design Nested design dlh slh stu ksus dri desin multi fktor dimn level dri slh stu fktor (misl: fktor B) serup tpi tidk identik untuk setip level yng

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI. Mtriks Definisi. (Anton, Howrd. ). Mtriks dlh sutu susunn bilngn berbentuk segi empt. Bilngn-bilngn dlm susunn itu disebut nggot dlm mtriks tersebut. Ukurn (size) sutu mtriks dinytkn

Lebih terperinci

PEMANTAPAN BELAJAR SMA BBS INTEGRAL

PEMANTAPAN BELAJAR SMA BBS INTEGRAL BAB I PEMANTAPAN BELAJAR SMA BBS INTEGRAL I A RANGKUMAN INTEGRAL. Pengertin Apil terdpt fungsi F() yng dpt didiferensilkn pd selng I sedemikin hingg F () = f(), mk nti turunn (integrl) dri f() dlh F()

Lebih terperinci

PENGAYAAN MATEMATIKA SOLUSI SOAL-SOAL LATIHAN 1

PENGAYAAN MATEMATIKA SOLUSI SOAL-SOAL LATIHAN 1 PENGAYAAN MATEMATIKA SOLUSI SOAL-SOAL LATIHAN 6y y 8y. Dikethui R dn. Temukn nili y. y y 8y 6 Solusi: 6y y 8y y y 8y 6 6y y 8y 8y y 6 y 8 0 y y y 0 y y y 0 ( y ) ( y ) 0 y y 8y 6 ( y )(y ) 0 y 0tu y 0

Lebih terperinci

RUANG VEKTOR UMUM. Dosen Pengampu : Darmadi S.Si M.Pd. Disusun oleh :

RUANG VEKTOR UMUM. Dosen Pengampu : Darmadi S.Si M.Pd. Disusun oleh : RUNG VEKTOR UMUM Dosen Pengmpu : Drmdi S.Si M.Pd Disusun oleh : 1. gung Dwi Chyono (84.56) 2. rdie Kusum (84.73) 3. Heri Chyono (84.145) 4. Lingg Nio Prdn (84.18) 5. Yudh Sofyn Mhmudi (84.293) PROGRM STUDI

Lebih terperinci

ANALISIS NUMERIK. Inter polasi. SPL simultan. Akar Persama. linear

ANALISIS NUMERIK. Inter polasi. SPL simultan. Akar Persama. linear ANALISIS NUMERIK Inter polsi SPL simultn Akr Persm n Non liner INTERPOLASI Tujun Interpolsi bergun untuk menksir hrg-hrg tengh ntr titik dt yng sudh tept. Interpolsi mempunyi orde tu derjt. Mcm Interpolsi

Lebih terperinci

Penyelesaian Persamaan Kuadrat 1. Rumus abc Rumus menentukan akar persamaan kuadrat ax 2 bx c 0; a, b, c R dan a 0

Penyelesaian Persamaan Kuadrat 1. Rumus abc Rumus menentukan akar persamaan kuadrat ax 2 bx c 0; a, b, c R dan a 0 PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT PERSAMAAN KUADRAT Bentuk umum persmn kudrt dlh c 0,,,c R, 0 Penyelesin Persmn Kudrt. Rumus c Rumus menentukn kr persmn kudrt c 0;,, c R dn 0, = ± 4c. Memfktorkn

Lebih terperinci

3.1 Permutasi. Secara umum, bilangan-bilangan pada {1, 2,, n} akan mempunyai n! permutasi

3.1 Permutasi. Secara umum, bilangan-bilangan pada {1, 2,, n} akan mempunyai n! permutasi BB Determinn . Permutsi Definisi Permutsi: (i) Sutu permutsi dri bilngn-bilngn bult {,,,, n} dlh penyusunn bilngn-bilngn tersebut dengn urutn tnp pengulngn. (ii) Brisn bilngn ( j, j,.., j n ) dimn j i

Lebih terperinci

FUNGSI TRANSENDEN. Definisi 1 Fungsi logaritma natural, ditulis sebagai ln, didefenisikan dengan

FUNGSI TRANSENDEN. Definisi 1 Fungsi logaritma natural, ditulis sebagai ln, didefenisikan dengan 2 FUNGSI TRANSENDEN Fungsi trnsenen tu fungsi non-ljbr lh fungsi yng tik pt inytkn lm sejumlh berhingg opersi ljbr. Fungsi trnsenen yng bis ijumpi lm hl ini teriri ri fungsi eksponensil, fungsi logritmik,

Lebih terperinci

PERLUASAN METODE INTEGRASI HASIL-KALI BERTIPE TRAPESIUM. Eko Budiansyah 1 ABSTRACT

PERLUASAN METODE INTEGRASI HASIL-KALI BERTIPE TRAPESIUM. Eko Budiansyah 1 ABSTRACT PERLUASAN METODE INTEGRASI HASIL-KALI BERTIPE TRAPESIUM Eko Budinsyh Mhsisw Progrm Studi S Mtemtik Fkults Mtemtik dn Ilmu Pengethun Alm Universits Riu Kmpus Binwidy Peknbru (28293), Indonesi eko budinsyh@yhoo.com

Lebih terperinci

Kegiatan Belajar 5. Aturan Sinus. Kegiatan 5.1

Kegiatan Belajar 5. Aturan Sinus. Kegiatan 5.1 Pge of 8 Kegitn eljr 5. Tujun Pembeljrn Setelh mempeljri kegitn beljr 5, dihrpkn sisw dpt. Menentukn unsur-unsur segitig dengn turn sinus b. Menentukn unsur-unsur segitig dengn turn kosinus. Menghitung

Lebih terperinci

MODUL 6. Materi Kuliah New_S1

MODUL 6. Materi Kuliah New_S1 MODUL 6 Mteri Kulih New_S1 KULIAH 10 Spnning tree dn minimum spnning tree - Definisi spnning tree T diktkn spnning tree dri grph terhubung G bil T dlh sutu tree yng vertexvertexny sm dengn vertexny G dn

Lebih terperinci

PROBLEM SOLVING TERKAIT DENGAN KELAS X SEMESTER 1 PADA STANDAR KOMPETENSI (SK) 1.

PROBLEM SOLVING TERKAIT DENGAN KELAS X SEMESTER 1 PADA STANDAR KOMPETENSI (SK) 1. PROLEM SOLVING TERKIT DENGN KELS X SEMESTER PD STNDR KOMPETENSI (SK). LJR Memechkn mslh yng berkitn dengn bentuk pngkt, kr, dn logritm Oleh: Sigit Tri Guntoro. Du orng berselisih mengeni bnykny psngn bilngn

Lebih terperinci

BAB III METODE METODE DEFUZZYFIKASI

BAB III METODE METODE DEFUZZYFIKASI Fuy Logi Metode Metode Deuyiksi BAB III METODE METODE DEFUYFIKASI Seperti yng telh dihs dlm, hw untuk meruh kelurn uy menjdi nili risp mk diperlukn sutu proses yng leih dikenl dengn istilh deuyiksi Dlm

Lebih terperinci

FISIKA BESARAN VEKTOR

FISIKA BESARAN VEKTOR K-3 Kels X FISIKA BESARAN VEKTOR TUJUAN PEMBELAJARAN Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi pengertin besrn vektor.. Mengusi konsep penjumlhn vektor dengn berbgi metode.

Lebih terperinci

MODEL POTENSIAL 1 DIMENSI

MODEL POTENSIAL 1 DIMENSI MODEL POTENSIAL 1 DIMENSI 1. Sumur Potensil Tk Berhingg Kit tinju prtikel bermss m dengn energi positif, berd dlm sumur potensil stu dimensi dengn dinding potensil tk berhingg dn potensil didlmny nol,

Lebih terperinci

BAB VI PEWARNAAN GRAF

BAB VI PEWARNAAN GRAF 85 BAB VI PEWARNAAN GRAF 6.1 Pewrnn Simpul Pewrnn dri sutu grf G merupkn sutu pemetn dri sekumpuln wrn ke eerp simpul (vertex) yng d pd grf G sedemikin sehingg simpul yng ertetngg memiliki wrn yng ered.

Lebih terperinci

BAB IV BILANGAN BERPANGKAT DAN BENTUK AKAR

BAB IV BILANGAN BERPANGKAT DAN BENTUK AKAR BAB IV BILANGAN BERPANGKAT DAN BENTUK AKAR Pet Konsep Bilngn Berpngkt dn Bentuk Akr mempeljri Bilngn berpngkt meliputi Bentuk kr meliputi Sift Opersi Mersionlkn Opersi Sift Kt Kunci. Pngkt 2. Akr 3. Sift

Lebih terperinci

Hubungan integral garis yang umum antara ke dua kuantitas tersebut,

Hubungan integral garis yang umum antara ke dua kuantitas tersebut, 6 GRADIN PONSIAL Grdien ptensil dlh sutu metde ng sederhn untuk mencri intensits medn listrik dri ptensil. Hubungn integrl gris ng umum ntr ke du kuntits tersebut,. dl Dengn mengmbil N sebgi vektr stun

Lebih terperinci

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB IV PERSAMAAN DAN PERTIDAKSAMAAN

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB IV PERSAMAAN DAN PERTIDAKSAMAAN SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB IV PERSAMAAN DAN PERTIDAKSAMAAN Dr. Djdir, M.Pd. Dr. Ilhm Minggi, M.Si J fruddin,s.pd.,m.pd. Ahmd Zki, S.Si.,M.Si Shln Sidjr,

Lebih terperinci

RUANG VEKTOR (lanjut..)

RUANG VEKTOR (lanjut..) RUANG VEKTOR (Vector Spce) dn Rung Bgin (Subspce) 8/0/009 budi murtiys ums surkrt RUANG VEKTOR (VECTOR SPACE) Dikethui himpunn V dengn u, v, w V dn opersi i(+)b berlku dintr nggot-nggot t V. Dikethui Field

Lebih terperinci

PEMERINTAH KABUPATEN TANAH DATAR DINAS PENDIDIKAN SMA NEGERI 1 SUNGAI TARAB

PEMERINTAH KABUPATEN TANAH DATAR DINAS PENDIDIKAN SMA NEGERI 1 SUNGAI TARAB PEMERINTAH KABUPATEN TANAH DATAR DINAS PENDIDIKAN SMA NEGERI SUNGAI TARAB Jln Ldng Koto Sungi Trb Telp.07790 PAKET A b c. Bentuk sederhn dri : - bc bc b c dlh... bc 9 bc c b. Bentuk sederhn dlh. b c c

Lebih terperinci

1. Identitas Trigonometri. 1. Identitas trigonometri dasar berikut ini merupakan hubungan kebalikan.

1. Identitas Trigonometri. 1. Identitas trigonometri dasar berikut ini merupakan hubungan kebalikan. 1. Identits Trigonometri Pengertin Identits Trigonometri dlh kesmn yng memut entuk trigonometri dn erlku untuk semrng sudut yng dierikn. Jenis Identits Trigonometri 1. Identits trigonometri dsr erikut

Lebih terperinci

INTEGRAL. Integral Tak Tentu Dan Integral Tertentu Dari Fungsi Aljabar

INTEGRAL. Integral Tak Tentu Dan Integral Tertentu Dari Fungsi Aljabar INTEGRAL Integrl Tk Tentu Dn Integrl Tertentu Dri Fungsi Aljr A. Integrl Tk Tentu Hitung integrl dlh kelikn dri hitung differensil. Pd hitung differensil yng dicri dlh fungsi turunnny, sedngkn pd hitung

Lebih terperinci

INTEGRAL PARSIAL PADA INTEGRAL DESKRIPTIF RIEMANN Oleh : Muslich Jurusan Matematika FMIPA UNS

INTEGRAL PARSIAL PADA INTEGRAL DESKRIPTIF RIEMANN Oleh : Muslich Jurusan Matematika FMIPA UNS INTEGRAL PARSIAL PADA INTEGRAL DESKRIPTIF RIEMANN Oleh : Muslich Jurusn Mtemtik FMIPA UNS e-mil: muslich_mus@yhoo.com ABSTRAK: Pernytn fungsi f :[, terintegrl Riemnn pd [, jik dn hny jik f kontinu hmpir

Lebih terperinci

Integral Numerik. Sunkar E. Gautama, 2013

Integral Numerik. Sunkar E. Gautama, 2013 Integrl Numerik Sunkr E. Gutm, 2013 http://prdoks77.logspot.com Integrl numerik ilh metode untuk menghitung nili integrsi sutu fungsi dlm sutu selng tnp mempedulikn fungsi hsil integrlny dengn menggunkn

Lebih terperinci

Suku banyak. Akar-akar rasional dari

Suku banyak. Akar-akar rasional dari Suku nyk Algoritm pemgin suku nyk menentukn Teorem sis dn teorem fktor terdiri dri Pengertin dn nili suku nyk Hsil gi dn sis pemgin suku nyk Penggunn teorem sis Penggunn teorem fktor Derjd suku nyk pd

Lebih terperinci

KALKULUS I Dr. Wuryansari Muharini Kusumawinahyu Program Sarjana Matematika Universitas Brawijaya

KALKULUS I Dr. Wuryansari Muharini Kusumawinahyu Program Sarjana Matematika Universitas Brawijaya KALKULUS I Dr. Wurnsri Muhrini Kusumwinhu Progrm Srjn Mtemtik Universits Brwij Deinisi: Mislkn A dn B dlh himpunn tk kosong. Fungsi dri A ke B dlh sutu ATURAN ng MEMADANKAN SETIAP ELEMEN di A dengn tept

Lebih terperinci

MUH1G3/ MATRIKS DAN RUANG VEKTOR

MUH1G3/ MATRIKS DAN RUANG VEKTOR MUHG3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN 3 Sistem Persmn Liner Sistem Persmn Liner Su Pokok Bhsn Pendhulun Solusi SPL dengn OBE Solusi SPL dengn Invers mtriks dn Aturn Crmmer SPL Homogen Beerp Apliksi

Lebih terperinci

LIMIT DAN KONTINUITAS

LIMIT DAN KONTINUITAS LIMIT DAN KONTINUITAS Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di =, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp nili jik mendekti

Lebih terperinci

POSET ( Partially Ordered Set ) Himpunan Terurut Parsial

POSET ( Partially Ordered Set ) Himpunan Terurut Parsial POSET ( Prtilly Ordered Set ) Himpunn Terurut Prsil Definisi Sutu relsi biner dinmkn sebgi sutu relsi pengurutn tk lengkp tu relsi pengurutn prsil ( prtil ordering reltion ) jik i bersift reflexive, ntisymmetric,

Lebih terperinci

BAB 10. MATRIKS DAN DETERMINAN

BAB 10. MATRIKS DAN DETERMINAN Dessy Dwiynti, S.Si, MBA Mtemtik Ekonomi 1 BAB 10. MATRIKS DAN DETERMINAN 1. Pengertin mtriks Mtriks kumpuln bilngn yng disjikn secr tertur dlm bris dn kolom yng membentuk sutu persegi pnjng, sert termut

Lebih terperinci

3. LIMIT DAN KEKONTINUAN

3. LIMIT DAN KEKONTINUAN . LIMIT DAN KEKONTINUAN . Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp nili jik mendekti

Lebih terperinci

Solusi Pengayaan Matematika Edisi 4 Januari Pekan Ke-4, 2007 Nomor Soal: 31-40

Solusi Pengayaan Matematika Edisi 4 Januari Pekan Ke-4, 2007 Nomor Soal: 31-40 Solusi Pengn Mtemtik Edisi 4 Jnuri Pekn Ke-4, 007 Nomor Sol: -40. Diberikn persmn 8 9 4 8 007 dn b, dengn b. Angk stun dri b dlh. A. B. C. D. 7 E. 9 Persmn 8 9 4 8 8 9 4 8 9 4 8 8 8 9 8 4 8 8 8 0 0 b tu

Lebih terperinci

BAHAN AJAR MATEMATIKA UMUM KELAS XI MATERI POKOK : OPERASI MATRIKS

BAHAN AJAR MATEMATIKA UMUM KELAS XI MATERI POKOK : OPERASI MATRIKS BAHAN AJAR MATEMATIKA UMUM KELAS XI MATERI POKOK : OPERASI MATRIKS Mtriks A dn mtriks B diktkn sm (A = B), jik dn hny jik: 1. Ordo mtriks A sm dengn ordo mtriks B 2. Setip elemen yng seletk pd mtriks A

Lebih terperinci

11. PROGRAM LINEAR. A. Persamaan Garis Lurus. (x 2, y 2 ) (0, a) y 2. y 1. (x 1, y 1 ) (b, 0) X. x 1

11. PROGRAM LINEAR. A. Persamaan Garis Lurus. (x 2, y 2 ) (0, a) y 2. y 1. (x 1, y 1 ) (b, 0) X. x 1 11. PROGRAM LINEAR A. Persmn Gris Lurus y 1 (x 1, y 1 ) y 2 y 1 (x 1, y 1 ) (x 2, y 2 ) (, ) x 1 x 1 x 2 (b, ) b. Persmn gris yng bergrdien m dn mellui titik (x 1, y 1 ) dlh: y y 1 = m(x x 1 ) b. Persmn

Lebih terperinci

RANGKUMAN MATERI ' maupun F(x) = Pengerjaan f(x) sehingga memperoleh F(x) + c disebut mengintegralkan f(x) ke x dengan notasi:

RANGKUMAN MATERI ' maupun F(x) = Pengerjaan f(x) sehingga memperoleh F(x) + c disebut mengintegralkan f(x) ke x dengan notasi: INTEGRAL RANGKUMAN MATERI A. ANTIDERIVATIF DAN INTEGRAL TAK TENTU Jik kit mengmil uku dri temptny mk kit dpt mengemliknny lgi ke tempt semul. Opersi yng kedu menghpus opersi yng pertm. Kit ktkn hw du opersi

Lebih terperinci