BAB IV KONSTRUKSI FUNGSI

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB IV KONSTRUKSI FUNGSI"

Transkripsi

1 BAB IV FUNGSI REGULAR KONSTRUKSI FUNGSI REGULAR

2 Proposisi IV. Hal. 55 c dx a x e e x x dt t x t x y x v iv y x x y a x,,,, da. Dimaa pada Relar Maka secara lokal,. pada real berilai paharmoik si Misalka

3 Akibat IV. Hal. 56 Misalka paharmoik berilai real. iv iv relar relar v v ke x, k

4 Akibat IV. Hal. 56 Misalka iv iw da si relar. x ike, k.

5 Proposisi IV. Hal. 56 c dx a x v e e x x dt t x v t x v y x iv v y x x y a x,,,, da. Dimaa pada Relar Maka secara lokal,. pada real berilai paharmoik si Misalka

6 Akibat IV.3 Hal. 57 Misalka v paharmoik berilai real. iv iv relar relar ke x, k

7 Akibat IV.4 Hal. 57 Misalka da si relar. w iv iv ke x, k

8 Proposisi IV.3 Hal. 58 Fsi relar kosta adalah si ol

9 Proposisi IV.4,5,6 Hal Misalka si berilai real relar pada ke x, k.. berilai imaier ike x, k relar Ae x ibe x, A, B

10 Pedeiisia Sekawa Paharmoik Hal. 59 Fsi v disebt sekawa paharmoik dea jika da v memehi persamaa Cachy-Riema ya dipermm C-R-P, yait x = v y + y = - v x - v

11 Akibat IV.5 Hal 59 v sekawa paharmoik dea -v sekawa paharmoik dea -

12 Proposisi IV.7 Hal. 59 Misalka Fsi da iv si Relar. v sali sekawa paharmoik i si relar

13 Akibat IV.6 Hal. 6 Misalka iv si i si relar relar. A i e y B i e y, A, B R

14 Akibat IV.7 Hal. 6 Misalka iv si relar. da v sali sekawa paharmoik A i e y B i e y, A, B R

15 Akibat IV.8 Hal. 6 Misalka relar. Jika i relar si ol

16 PENYAJIAN INTEGRAL FUNGSI Lihat [] REGULAR Misalka sembara litasa terttp sederhaa pada da si relar pada. Jika r a maka a rk ' r d i a i asalka a di dalam. Jika a di lar K r d maka ras kaa ol..

17 Lema IV. Hal. 6 lihat [] Misalka h C. Re L h Im h d.

18 Lema IV. Hal. 6 Misalka h C. Im L h Re h d.

19 Proposisi IV.8 Hal. 6 da masi - masi si relar pada Re d

20 Akibat IV.9, Hal. 6 relar pada Re d d d

21 Akibat IV. Hal. 6 da masi - masi si relar pada d d

22 Akibat IV. Hal. 6 iv iv si si relar relar Im d

23 Akibat IV.3 Hal. 6 iv iv si si relar relar Re d

24 Lema IV.3,4,5 Hal. 63 Misalka paharmoi k L relar Di L relar i L relar

25 Proposisi IV.9 Hal.63 paharmoi k pada relar pada Ld L d tk sembara litasa t erttp sederhaa dalam

26 Lema IV.6,7 Hal.65 Misalka h C. Re L h Im h d Im L h Re h d

27 Proposisi IV. Hal. 66 da masi - masi si relar Re d

28 Akibat IV.4 Hal.66 relar Re d

29 Akibat IV.5-8 Hal.66 Misalka relar. Im L d d Im L d d iv d d vda Re L d d

30 Akibat IV.9 Hal. 67 relar d d

31 Akibat IV., Hal. 67 iv iv relar relar Im d Im -d Γ

32 Akibat IV.,3 Hal. 67 iv iv relar relar Re d Im d Γ

33 Proposisi IV. Hal. 7,, da maka, - pada cakram relar Misalka R D R D d R i d R i R

34 Proposisi IV.3, 4 Hal. 7 Misalka relar pada, maka d i dxdy D i d dxdy,

35 PRINSIP REFLEKSI FUNGSI REGULAR D D D I NOTASI adalah domai pada bida ya simetri D Im, D D R terhadap smb real.

36 Proposisi IV.5 Hal. 7 Misalka si koti pada sat domai. Jika tk masi- masi x terdapat bilaa demikai sehia tk r berlak x I r x maka paharmoik pada. re i d

37 Proposisi IV.6 Hal. 73.,,. D D I D D da perlasaya memehi pada paharmoik Maka da tk sehia pada real berilai paharmoik si Misalka

38 Proposisi IV.7 Ketala Hal. 74 Misalka da da bah si relar pada Maka jika da haya jika himpa iiit Ω: pya titik limit di..

39 Proposisi IV. 8 Hal. 74 Misalka si relar pada D + da berilai real pada smb real, maka dapat diperlas atas daerah D. Pedeiisia si ya diaka F,, D D

40 Proposisi IV.9 Hal. 74 Misalka si, D relar pada D. berilai real pada I.

41 Proposisi IV. Hal. 75 Misalka si relar pada D + da berilai imaier pada smb real, maka dapat diperlas atas daerah D. Pedeiisia si ya diaka F -,, D D

42 Proposisi IV. Hal. 75 Misalka si relar pada D., D berilai imaier pada I.

43 Prisip Maksimm Modls Fsi Proposisi IV., Hal. 76 Relar Jika si relar pada, maka mecapai ilai maksimm di pada batasya.

44 S { a :, ' aalitik ivale pada } D, Kojektr Bieberbach 96 a Bkti Lois de Braes 984

45 J.L. Schi & Walker 99,,,3,...,.,.., : a a r a r a D F r a r a F S F S S F dea Selajtya kita pada, relar pada si

46 Kelas si Aalitik Bieberbach- Eileber B { a : tk tiap pasa titik da di D,} Roiski 939:Kojektr a, Bkti oleh Lebedev da Mili 95. Aharoov da Nehari 97mejkka a.

47 Fsi Relar Diba dari Kelas Fsi Bieberbach-Eileber a a,,,3,... a 6

48 Komposisi Da Fsi Hal. 79, C Maka berlak,. pada terdeiisi da di da Misalka

49 Akibat IV.3 Hal. 79 Maka berlak,. pada terdeiisi relar da da aalitik Misalka

50 Proposisi IV.3 Hal. 8 Misalka si relar disetiap titik pada sat daerah ya memiliki batas sejmlah hia kotr - kotr ttp sederhaa. Misalka pla Φw si aalitik di w, maka Re Γ x Im d.

51 Proposisi IV.4 Hal. 8 Misalka si ttp sederhaa N Γ Re i Maka jmlah total bilaa ol dari relar di dalam da pada kotr ttp da x tk setiap titik pada Γ. di dalam d. Γ adalah

52 TERIMAKASIH

PRINSIP MAKSIMUM DAN MINIMUM FUNGSI PANHARMONIK

PRINSIP MAKSIMUM DAN MINIMUM FUNGSI PANHARMONIK PRINSIP MAKSIMUM DAN MINIMUM FUNGSI PANHARMONIK Oleh, Edag Cahya M.A. Jrsa Pedidia Matematia FPMIPA UPI Badg Jl. Dr. Setiabdi 9 Badg E-mail ecma@ds.math.itb.ac.id Abstra Tlisa ii mejelasa prisip masimm

Lebih terperinci

BAB II KEGIATAN PEMBELAJARAN

BAB II KEGIATAN PEMBELAJARAN Page o BAB II KEGIATAN PEMBELAJARAN A. TURUNAN FUNGSI ALJABAR. Deiisi Tra Fgsi Deiisi Fgsi : ata mempai tra ag diotasika d d ata di deiisika : d d d d d d lim h 0 h h lim 0 ata Cotoh Soal :. Tetka tra

Lebih terperinci

BAB I PENDAHULUAN. Masalah menarik yang terkait dengan masalah nilai eigen adalah masalah yang muncul sebagai persamaan Yukawa,

BAB I PENDAHULUAN. Masalah menarik yang terkait dengan masalah nilai eigen adalah masalah yang muncul sebagai persamaan Yukawa, 1. Latar Belakag Masalah dimaa Padag persamaa diferesial BAB I PENDAHULUAN (1) parameter. Persamaa di atas dapat dipadag sebagai masalah ilai eige tk operator Laplace, da persamaa tersebt merpaka persamaa

Lebih terperinci

FUNGSI REGULAR. Endang Cahya M.A 1 Jurusan Matematika FMIPA ITB Jl. Ganesa 10, Bandung, Indonesia

FUNGSI REGULAR. Endang Cahya M.A 1 Jurusan Matematika FMIPA ITB Jl. Ganesa 10, Bandung, Indonesia FUNGSI REGULAR Endang Cahya M.A Jurusan Matematika FMIPA ITB Jl. Ganesa 0, Bandung, 403-Indonesia Abstrak Tulisan ini membahas bagaimana mengkonstruksi sebuah fungsi Regular dari suatu fungsi panharmonik,

Lebih terperinci

PANJANG DAN JARAK VEKTOR PADA RUANG HASIL KALI DALAM. V, yang selanjutnya dinotasikan dengan v, didefinisikan:

PANJANG DAN JARAK VEKTOR PADA RUANG HASIL KALI DALAM. V, yang selanjutnya dinotasikan dengan v, didefinisikan: PANJANG DAN JARAK VEKTOR PADA RUANG HASIL KALI DALAM Perl diingat kembali definisi panjang dan jarak sat ektor pada rang hasil kali dalam Eclid, yait rnag ektor yang hasil kali dlamnya didefinisikan sebagai

Lebih terperinci

Sistem Bilangan Kompleks (Bagian Ketiga)

Sistem Bilangan Kompleks (Bagian Ketiga) Sistem Bilaga Kompleks (Bagia Ketiga) Supama Jurusa Matematika, FMIPA UGM Yogyakarta 55281, INDONESIA Email:maspomo@yahoo.com, supama@ugm.ac.id (Pertemua Miggu III) Outlie 1 Akar Bilaga Kompleks 2 Akar

Lebih terperinci

BARISAN DAN DERET TAK HINGGA

BARISAN DAN DERET TAK HINGGA Bab 5 BARISAN DAN DERET TAK HINGGA A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR Kompetesi Dasar. Memiliki motivasi iteral, kemampa bekerjasama, kosiste, sikap disipli, rasa percaya diri da sikap tolerasi

Lebih terperinci

Pengertian Secara Intuisi

Pengertian Secara Intuisi Pegertia Secara Ituisi Coba Gambarka grafik fugsi-fugsi berikut.. f ( ) +, pada [0,].. ) pada [0, ] da.. Dari grafik fugsi yag kamu peroleh, apa yag dapat kamu kataka tetag ilai-ilai ketiga fugsi tersebut

Lebih terperinci

Definisi Integral Tentu

Definisi Integral Tentu Defiisi Itegral Tetu Bila kita megedarai kedaraa bermotor (sepeda motor atau mobil) selama 4 jam dega kecepata 50 km / jam, berapa jarak yag ditempuh? Tetu saja jawabya sagat mudah yaitu 50 x 4 = 200 km.

Lebih terperinci

II LANDASAN TEORI. Sebuah bilangan kompleks dapat dinyatakan dalam bentuk. z = x jy. (2.4)

II LANDASAN TEORI. Sebuah bilangan kompleks dapat dinyatakan dalam bentuk. z = x jy. (2.4) 3 II LANDASAN TEORI 2.1 Peubah Kompleks da Fugsi Kompleks Sebuah bilaga kompleks dapat diyataka dalam betuk z = x + jy, (2.1) dega x da y adalah bilaga-bilaga real da j = 1. Bilaga x disebut bagia real

Lebih terperinci

MATRIKS HANKEL Hankel Matrices. R. Heru Tjahjana Jurusan Matematika FMIPA UNDIP. Abstract

MATRIKS HANKEL Hankel Matrices. R. Heru Tjahjana Jurusan Matematika FMIPA UNDIP. Abstract Vol. 4. No., 8-9, Austus, ISSN : 4-858 MATRIKS HANKEL Hakel Matrices R. Heru Tahaa Jurusa Matematika FMIPA UNDIP Abstract I this paper, we talk about Hakel Operator ad Hakel Matrix. Operator H :F[] - F[[

Lebih terperinci

Oleh : Bambang Supraptono, M.Si. Referensi : Kalkulus Edisi 9 Jilid 1 (Varberg, Purcell, Rigdom) Hal

Oleh : Bambang Supraptono, M.Si. Referensi : Kalkulus Edisi 9 Jilid 1 (Varberg, Purcell, Rigdom) Hal BAB. Limit Fugsi Ole : Bambag Supraptoo, M.Si. Referesi : Kalkulus Edisi 9 Jilid (Varberg, Purcell, Rigdom) Hal 56 - Defiisi: Pegertia presisi tetag it Megataka bawa f ( ) L berarti bawa utuk tiap yag

Lebih terperinci

PENERAPAN JARINGAN SYARAF TIRUAN GAO PADA PENYELESAIAN PERSOALAN VARIATIONAL INEQUALITY DENGAN FUNGSI BATASAN LINIER DAN NONLINIER

PENERAPAN JARINGAN SYARAF TIRUAN GAO PADA PENYELESAIAN PERSOALAN VARIATIONAL INEQUALITY DENGAN FUNGSI BATASAN LINIER DAN NONLINIER PENERAPAN JARINGAN SYARAF TIRUAN GAO PADA PENYELESAIAN PERSOALAN VARIATIONAL INEQUALITY DENGAN FUNGSI BATASAN LINIER DAN NONLINIER Rully Soelaima, Yudhi Puwaato, Erika Purawati Fakultas Tekoloi Iformasi,

Lebih terperinci

HASIL KALI TITIK DAN PROYEKSI ORTOGONAL SUATU VEKTOR (Aljabar Linear) Oleh: H. Karso FPMIPA UPI

HASIL KALI TITIK DAN PROYEKSI ORTOGONAL SUATU VEKTOR (Aljabar Linear) Oleh: H. Karso FPMIPA UPI HASIL KALI TITIK DAN PROYEKSI ORTOGONAL SUATU VEKTOR (Aljabar Linear) Oleh: H. Karso FPMIPA UPI A. Hasil Kali Titik (Hasil Kali Skalar) Da Vektor. Hasil Kali Skalar Da Vektor di R Perkalian diantara da

Lebih terperinci

Bab 5 RUANG HASIL KALI DALAM

Bab 5 RUANG HASIL KALI DALAM Bab 5 RUANG HASIL KALI DALAM 5 Hasil Kali Dalam Untk memotiasi konsep hasil kali dalam diambil ektor di R dan R sebagai anak panah dengan titik awal di titik asal O = ( ) Panjang sat ektor x di R dan R

Lebih terperinci

Fungsi Kompleks. (Pertemuan XXVII - XXX) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

Fungsi Kompleks. (Pertemuan XXVII - XXX) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya TKS 4007 Matematika III Fugsi Kompleks (Pertemua XXVII - XXX) Dr. AZ Jurusa Tekik Sipil Fakultas Tekik Uiversitas Brawijaya Pedahulua Persamaa x + 1 = 0 tidak memiliki akar dalam himpua bilaga real. Pertayaaya,

Lebih terperinci

Optimasi Non-Linier. Metode Analitik

Optimasi Non-Linier. Metode Analitik Optimasi No-iier Metode Aalitik Pedahulua Suatu permasalaha optimasi disebut oliier ika fusi tuua da kedalaya mempuyai betuk oliier pada salah satu atau keduaya, cotohya adalah sebaai berikut: Metode Optimasi

Lebih terperinci

Multi Variabel Tanpa Kendala Multi Variabel dengan Kendala

Multi Variabel Tanpa Kendala Multi Variabel dengan Kendala Optimasi No-iier Pedahulua Suatu permasalaha optimasi disebut oliier ika fusi tuua da kedalaya mempuyai betuk oliier pada salah satu atau keduaya, cotohya adalah sebaai berikut: Metode Optimasi Aalitis

Lebih terperinci

BAB III PERUMUSAN PENDUGA DAN SIFAT SIFAT STATISTIKNYA

BAB III PERUMUSAN PENDUGA DAN SIFAT SIFAT STATISTIKNYA BAB III PERUMUSAN PENDUGA DAN SIFAT SIFAT STATISTIKNYA 3. Perumusa Peduga Misalka N adala proses Poisso o omoge pada iterval [, dega fugsi itesitas yag tidak diketaui. Fugsi ii diasumsika teritegralka

Lebih terperinci

BAB 6. DERET TAYLOR DAN DERET LAURENT Deret Taylor

BAB 6. DERET TAYLOR DAN DERET LAURENT Deret Taylor Bab 6 Deret Taylor da Deret Lauret BAB 6 DERET TAYLOR DAN DERET LAURENT 6 Deret Taylor Misal fugsi f aalitik pada - < R ligkara dega pusat di da jari-jari R Maka utuk setiap titik pada ligkara itu f dapat

Lebih terperinci

Bab IV. Penderetan Fungsi Kompleks

Bab IV. Penderetan Fungsi Kompleks Bab IV Pedereta Fugsi Kompleks Sebagaimaa pada fugsi real, fugsi kompleks juga dapat dideretka pada daerah kovergesiya. Semua watak kajia kovergesi pada fugsi real berlaku pula pada fugsi kompleks. Secara

Lebih terperinci

C (z m) = C + C (z m) + C (z m) +...

C (z m) = C + C (z m) + C (z m) +... 4.. DERET PANGKAT Deret pagkat dari (x-m) merupaka deret tak higga yag betuk umumya adalah : i= i i C (z m) = C + C (z m) + C (z m) +... ( 4- ) C, C,... = kostata disebut koefisie deret m = kostata disebut

Lebih terperinci

terurut dari bilangan bulat, misalnya (7,2) (notasi lain 2

terurut dari bilangan bulat, misalnya (7,2) (notasi lain 2 Bab Bilaga kompleks BAB BILANGAN KOMPLEKS Defiisi Bilaga Kompleks Sebelum medefiisika bilaga kompleks, pembaca diigatka kembali pada permasalah dalam sistem bilaga yag telah dikeal sebelumya Yag pertama

Lebih terperinci

lim 0 h Jadi f (x) = k maka f (x)= 0 lim lim lim TURUNAN/DIFERENSIAL Definisi : Laju perubahan nilai f terhadap variabelnya adalah :

lim 0 h Jadi f (x) = k maka f (x)= 0 lim lim lim TURUNAN/DIFERENSIAL Definisi : Laju perubahan nilai f terhadap variabelnya adalah : TURUNAN/DIFERENSIAL Deinisi : Laj perbaan nilai teradap ariabelnya adala : y dy d lim = lim = 0 0 d d merpakan ngsi bar disebt trnan ngsi ata perbandingan dierensial, proses mencarinya disebt menrnkan

Lebih terperinci

BAB V TURUNAN FUNGSI. Standar Kompetensi Menggunakan konsep limit fungsi dan turunan fungsi dalam pemecahan masalah

BAB V TURUNAN FUNGSI. Standar Kompetensi Menggunakan konsep limit fungsi dan turunan fungsi dalam pemecahan masalah BAB V TURUNAN FUNGSI Stadar Kompetesi Meggaka kosep it gsi da tra gsi dalam pemecaa masala Kompetesi Dasar Meggaka siat da atra tra dalam peritga tra gsi aljabar Meggaka tra tk meetka karakteristik sat

Lebih terperinci

NAMA : KELAS : theresiaveni.wordpress.com

NAMA : KELAS : theresiaveni.wordpress.com 1 NAMA : KELAS : teresiaeni.wordpress.com TURUNAN/DIFERENSIAL Deinisi : Laj perbaan nilai teradap ariabelnya adala : y dy d ' = = d d merpakan ngsi bar disebt trnan ngsi ata perbandingan dierensial, proses

Lebih terperinci

2 BARISAN BILANGAN REAL

2 BARISAN BILANGAN REAL 2 BARISAN BILANGAN REAL Di sekolah meegah barisa diperkealka sebagai kumpula bilaga yag disusu meurut "pola" tertetu, misalya barisa aritmatika da barisa geometri. Biasaya barisa da deret merupaka satu

Lebih terperinci

BAB IV METODE BINOMIAL UNTUK PENENTUAN HARGA OPSI ASIA

BAB IV METODE BINOMIAL UNTUK PENENTUAN HARGA OPSI ASIA BAB IV : METODE BIOMIAL UTUK PEETUA HARGA OPSI ASIA 35 BAB IV METODE BIOMIAL UTUK PEETUA HARGA OPSI ASIA Pada bab ii aka dibahas sat pedekata merik tk peeta harga opsi Asia, khssya opsi Asia dega rata-rata

Lebih terperinci

TURUNAN FUNGSI. Definisi. 3.1 Pengertian Turunan Fungsi. Turunan fungsi f adalah fungsi f yang nilainya di c adalah. asalkan limit ini ada.

TURUNAN FUNGSI. Definisi. 3.1 Pengertian Turunan Fungsi. Turunan fungsi f adalah fungsi f yang nilainya di c adalah. asalkan limit ini ada. 3 TURUNAN FUNGSI 3. Pegertia Turua Fugsi Defiisi Turua fugsi f adala fugsi f yag ilaiya di c adala f c f c f c 0 asalka it ii ada. Coto Jika f 3 + +4, maka turua f di adala f f f 0 3 4 3.. 4 0 34 4 4 4

Lebih terperinci

Hendra Gunawan. 12 Februari 2014

Hendra Gunawan. 12 Februari 2014 MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2013/2014 12 Februari 2014 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 82 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg

Lebih terperinci

Bab II Sistem Dengan Fase Nonminimum Dan Iterative Learning Control

Bab II Sistem Dengan Fase Nonminimum Dan Iterative Learning Control Bab II Sistem Dea Fase Nomiimum Da Iterative Leari Cotrol Paa baia ii, aka ibahas sistem plat oliear ea ase o miimum a hal-hal ya terkait ea plat oliear. Pembahasa teta iversi stabil a iterative leari

Lebih terperinci

Kalkulus Rekayasa Hayati DERET

Kalkulus Rekayasa Hayati DERET Kalkulus Rekayasa Hayati DERET 1 Isi Bab Pedahulua Barisa tak-higga Deret tak-higga Deret Positif : Uji kekovergea Deret Gati Tada Deret Pagkat Deret Taylor da Maclauri 2 Kompetesi Dasar Setelah megikuti

Lebih terperinci

METODA ITERATIF PADA PERMASALAHAN MENARA HANOI

METODA ITERATIF PADA PERMASALAHAN MENARA HANOI Jural Matematika Vol.6 No.1 November 2006 [ 19 : 23 ] METODA ITERATIF PADA PERMASALAHAN MENARA HANOI Erwi Harahap, Farid H Badruzzama, M. Yusuf Fajar Jurusa Matematika, Uiversitas Islam Badu, Jala Tamasari

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2016/2017 3 Februari 2017 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg Batas

Lebih terperinci

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR Nur Aei Prodi Matematika, FST-UINAM uraeiatullah@gmail.com Ifo: Jural MSA Vol. 3 No. 2 Edisi: Juli Desember

Lebih terperinci

III PEMBAHASAN. 2 2x. K dy dx dy dx, (3.2) h2 2 ( x) P g y dydx g y dydx

III PEMBAHASAN. 2 2x. K dy dx dy dx, (3.2) h2 2 ( x) P g y dydx g y dydx III PEMBAHASAN Pada peeliia ii aa dibaas formlasi Hamiloia bai era elomba ierfacial Pembaasa dibai dalam da ass yai ass perama dea baas aas berpa permaa raa da ass eda dea baas aas berpa permaa bebas Hamiloia

Lebih terperinci

Himpunan/Selang Kekonvergenan

Himpunan/Selang Kekonvergenan oki eswa (fmipa-itb) Deret Pagkat Kita aka mempelajari beberapa tehik utuk meyajika suatu fugsi f (x) dalam betuk deret pagkat (power series), yaitu meetuka derat pagkat c (x a) sehigga f (x) = c (x a)

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Model Pertumbuha Betuk ugsi pertumbuha satu jeis spesies pada umumya megguaka otasi ugsi aalitik yag diyataka dalam satu persamaa. Secara umum ugsi pertumbuha meyataka hubuga

Lebih terperinci

INTEGRAL TAK TENTU (pecahan rasional) Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ

INTEGRAL TAK TENTU (pecahan rasional) Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ INTEGRL TK TENTU pecaha rasioal gusia Pradjaigsih, M.Si. Jurusa Maemaika FMIP UNEJ agusia.fmipa@uej.ac.id DEFINISI Fugsi suku bayak derajad dega bula o egaif 0 dimaa, 0 a a a a a P Fugsi kosa dipadag sbg

Lebih terperinci

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR Nur Aei Prodi Matematika, FST-UINAM uraeiatullah@gmail.com Ifo: Jural MSA Vol. 3 No. 2 Edisi: Juli Desember

Lebih terperinci

BAB VI DERET TAYLOR DAN DERET LAURENT

BAB VI DERET TAYLOR DAN DERET LAURENT BAB VI DERET TAYLOR DAN DERET LAURENT. Deret Taylor Misal fugsi f() aalitik pada - < R ( ligkara dega pusat di da jari-jari R ). Maka utuk setiap titik pada ligkara itu, f() dapat diyataka sebagai : f

Lebih terperinci

Solusi Numerik PDP. ( Metode Beda Hingga ) December 9, 2013. Solusi Numerik PDP

Solusi Numerik PDP. ( Metode Beda Hingga ) December 9, 2013. Solusi Numerik PDP ( Metode Beda Higga ) December 9, 2013 Sebuah persamaa differesial apabila didiskritisasi dega metode beda higga aka mejadi sebuah persamaa beda. Jika persamaa differesial parsial mempuyai solusi eksak

Lebih terperinci

SOAL-SOAL SPMB 2007 MATEMATIKA DASAR (MAT DAS) 1. SPMB, MAT DAS, Regional I, 2007 Suku ke-n suatu barisan aritmatika adalah

SOAL-SOAL SPMB 2007 MATEMATIKA DASAR (MAT DAS) 1. SPMB, MAT DAS, Regional I, 2007 Suku ke-n suatu barisan aritmatika adalah SOAL-SOAL SPMB 00 MATEMATIKA DASAR (MAT DAS). SPMB, MAT DAS, Regioal I, 00 Sk ke- sat barisa aritmatika adalah 0 p,da 6, maka.... Jika A. B. 3 C. D. 3 E.. SPMB, MAT DAS, Regioal I, 00 Jika p 0, q 0 q...

Lebih terperinci

BAB 4 LIMIT FUNGSI Standar Kompetensi Menggunakan konsep limit fungsi dan turunan fungsi dalam pemecahan masalah

BAB 4 LIMIT FUNGSI Standar Kompetensi Menggunakan konsep limit fungsi dan turunan fungsi dalam pemecahan masalah BAB LIMIT FUNGSI Stadar Kompetesi Megguaka kosep it ugsi da turua ugsi dalam pemecaha masalah Kompetesi Dasar. Meghitug it ugsi aljabar sederhaa di suatu titik. Megguaka siat it ugsi utuk meghitug betuk

Lebih terperinci

LANDASAN TEORI. Secara umum, himpunan kejadian A i ; i I dikatakan saling bebas jika: Ruang Contoh, Kejadian, dan Peluang

LANDASAN TEORI. Secara umum, himpunan kejadian A i ; i I dikatakan saling bebas jika: Ruang Contoh, Kejadian, dan Peluang 2 LANDASAN TEORI Ruag Cotoh, Kejadia, da Peluag Percobaa acak adalah suatu percobaa yag dapat diulag dalam kodisi yag sama, yag hasilya tidak dapat diprediksi secara tepat tetapi dapat diketahui semua

Lebih terperinci

Solusi Numerik Persamaan Transport

Solusi Numerik Persamaan Transport Solusi Numerik Persamaa Trasport M. Jamhuri December 16, 2013 Diberika persamaa Trasport u t + 2u x = 0 1) Diberika persamaa Trasport u t + 2u x = 0 1) Diskretka persamaa trasport 1) dega megguaka persamaa

Lebih terperinci

HALAMAN Dengan definisi limit barisan buktikan limit berikut ini : = 0. a. lim PENYELESAIAN : jadi terbukti bahwa lim = 0 = 5. b.

HALAMAN Dengan definisi limit barisan buktikan limit berikut ini : = 0. a. lim PENYELESAIAN : jadi terbukti bahwa lim = 0 = 5. b. Didowload dari ririez.blog.us.ac.id HALAMAN 36 37 5. Dega defiisi limit barisa buktika limit berikut ii : a. lim = 0 lim 1 2 + 3 = 0 > 0 h 1 = 2 + 3 0 = 1 2 + 3 1 2 1 2 1 2 < jadi terbukti bahwa lim =

Lebih terperinci

Bab 5 RUANG HASIL KALI DALAM

Bab 5 RUANG HASIL KALI DALAM Bab 5 RUANG HASIL KALI DALAM 5 Hasil Kali Dalam Untk memotiasi konsep hasil kali dalam diambil ektor di R dan R sebagai anak panah dengan titik awal di titik asal O ( ) Panjang sat ektor x di R dan R dinamakan

Lebih terperinci

= = =

= = = = + + + = + + + = + +.. + + + + + + + + = + + + + ( ) + ( ) + + = + + + = + = 1,2,, = + + + + = + + + =, + + = 1,, ; = 1,, =, + = 1,, ; = 1,, = 0 0 0 0 0 0 0...... 0 0 0, =, + + + = 0 0 0 0 0 0 0 0 0....

Lebih terperinci

TURUNAN FUNGSI. Definisi. 3.1 Pengertian Turunan Fungsi. Turunan fungsi f adalah fungsi f yang nilainya di c adalah. h asalkan limit ini ada.

TURUNAN FUNGSI. Definisi. 3.1 Pengertian Turunan Fungsi. Turunan fungsi f adalah fungsi f yang nilainya di c adalah. h asalkan limit ini ada. 3 TURUNAN FUNGSI 3. Pgrtia Turua Fugsi Diisi Turua ugsi adala ugsi yag ilaiya di c adala c c c asalka it ii ada. Coto Jika 3 4, maka turua di adala 3 4 3.. 4 3 4 4 4 4 4 4 3 3 3 4 Jika mmpuyai turua di

Lebih terperinci

B a b 1 I s y a r a t

B a b 1 I s y a r a t 34 TKE 315 ISYARAT DAN SISTEM B a b 1 I s y a r a t (bagia 3) Idah Susilawati, S.T., M.Eg. Program Studi Tekik Elektro Fakultas Tekik da Ilmu Komputer Uiversitas Mercu Buaa Yogyakarta 29 35 1.5.2. Isyarat

Lebih terperinci

Bab 7 Penyelesaian Persamaan Differensial

Bab 7 Penyelesaian Persamaan Differensial Bab 7 Peelesaia Persamaa Differesial Persamaa differesial merupaka persamaa ag meghubugka suatu besara dega perubahaa. Persamaa differesial diataka sebagai persamaa ag megadug suatu besara da differesiala

Lebih terperinci

Supriyadi Wibowo Jurusan Matematika F MIPA UNS

Supriyadi Wibowo Jurusan Matematika F MIPA UNS Prosidig Semiar Nasioal Peelitia, Pedidika da Peerapa MIPA akultas MIPA, Uiversitas Negeri Yogyakarta, 16 Mei 29 HUBUNGAN ANTARA ORDER DERIVATI- DARI UNGSI f : DENGAN DIMENSI-γ DARI HIMPUNAN RAKTAL Supriyadi

Lebih terperinci

Deret Fourier. Modul 1 PENDAHULUAN

Deret Fourier. Modul 1 PENDAHULUAN Modul Deret Fourier Prof. Dr. Bambag Soedijoo P PENDAHULUAN ada modul ii dibahas masalah ekspasi deret Fourier Sius osius utuk suatu fugsi periodik ataupu yag diaggap periodik, da dibahas pula trasformasi

Lebih terperinci

BAB 1 PENDAHULUAN. dimana f(x) adalah fungsi tujuan dan h(x) adalah fungsi pembatas.

BAB 1 PENDAHULUAN. dimana f(x) adalah fungsi tujuan dan h(x) adalah fungsi pembatas. BAB 1 PENDAHUUAN 1.1 atar Belakag Pada dasarya masalah optimisasi adalah suatu masalah utuk membuat ilai fugsi tujua mejadi maksimum atau miimum dega memperhatika pembatas pembatas yag ada. Dalam aplikasi

Lebih terperinci

LANDASAN TEORI. Pada bab ini akan diberikan beberapa konsep dasar (pengertian) yang akan digunakan dalam. pembahasan penelitian. 2.

LANDASAN TEORI. Pada bab ini akan diberikan beberapa konsep dasar (pengertian) yang akan digunakan dalam. pembahasan penelitian. 2. II. LANDASAN TEORI Pada bab ii aka diberika beberapa kosep dasar (pegertia) yag aka diguaka dalam pembahasa peelitia 2.1 Ruag Vektor Defiisi 3.1.1 (Darmawijaya, 2007) Diketahui (V, +) grup komutatif da

Lebih terperinci

I. DERET TAKHINGGA, DERET PANGKAT

I. DERET TAKHINGGA, DERET PANGKAT I. DERET TAKHINGGA, DERET PANGKAT. Pedahulua Pembahasa tetag deret takhigga sebagai betuk pejumlaha suku-suku takhigga memegag peraa petig dalam fisika. Pada bab ii aka dibahas megeai pegertia deret da

Lebih terperinci

BEBERAPA IDENTITAS PADA GENERALISASI BARISAN FIBONACCI ABSTRACT

BEBERAPA IDENTITAS PADA GENERALISASI BARISAN FIBONACCI ABSTRACT BEBERP IDENTITS PD GENERLISSI BRISN FIBONCCI Sri Melati 1, Mashadi, Msraini M 1 Mahasiswa Program Stdi S1 Matematika Dosen Jrsan Matematika Fakltas Matematika dan Ilm Pengetahan lam Universitas Ria Kamps

Lebih terperinci

MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR. Dosen Pengampu : Darmadi, S.Si, M.Pd

MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR. Dosen Pengampu : Darmadi, S.Si, M.Pd MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR Dose Pegampu : Darmadi, S.Si, M.Pd Disusu : Kelas 5A / Kelompok 5 : Dia Dwi Rahayu (084. 06) Hefetamala (084. 4) Khoiril Haafi (084. 70) Liaatul Nihayah (084. 74)

Lebih terperinci

V. METODE PENELITIAN. Alam Universitas Lampung. Metode yang digunakan dalam penelitian ini adalah

V. METODE PENELITIAN. Alam Universitas Lampung. Metode yang digunakan dalam penelitian ini adalah V. METODE PENELITIAN Peelitia ii dilakuka pada Semester IV Tahu Akademik 4/5, bertempat di Jurusa Matematika Fakultas Matematika da Ilmu Pegetahua Alam Uiversitas Lampug. Metode yag diguaka dalam peelitia

Lebih terperinci

Distribusi Sampel, Likelihood dan Penaksir

Distribusi Sampel, Likelihood dan Penaksir BAB 1 Distribusi Sampel, Likelihood da Peaksir 1.1 Sampel Acak Misalka X 1, X 2,..., X sampel acak berukura (radom sample of size ). Fugsi peluag -variat ya adalah f X1,X 2,,X (x 1, x 2,..., x ) = f Xi

Lebih terperinci

SISTEM LINIER. Oleh : Kholistianingsih, S.T., M.Eng. lts 1

SISTEM LINIER. Oleh : Kholistianingsih, S.T., M.Eng. lts 1 SISTEM LINIER Oleh : Kholistiaigsih, S.T., M.Eg. lts 1 2 Isyarat Waktu Diskrit di kawasa waktu. 2.1 Represetasi Isyarat Waktu Diskrit 2.2 Klasifikasi Rutu 2.3 Rutu rutu Dasar 2.4 Operasi di kawasa waktu

Lebih terperinci

BAB I PENDAHULUAN. Integral adalah salah satu konsep penting dalam Matematika yang

BAB I PENDAHULUAN. Integral adalah salah satu konsep penting dalam Matematika yang BAB I PENDAHULUAN 1.1 Latar Belakag Masalah Itegral adalah salah satu kosep petig dalam Matematika yag dikemukaka pertama kali oleh Isac Newto da Gottfried Wilhelm Leibiz pada akhir abad ke-17. Selajutya

Lebih terperinci

SOAL PENYISIHAN =. a. 11 b. 12 c. 13 d. 14 e. 15

SOAL PENYISIHAN =. a. 11 b. 12 c. 13 d. 14 e. 15 SOAL PENYISIHAN Petujuk pegerjaa soal : Jumlah soal 0 soal Piliha Gada da Uraia Utuk piliha gada diberi peilaia bear +, salah -, tidak diisi 0 Lama pegerjaa soal adalah 0 meit Kalau berai, silaka pilih

Lebih terperinci

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan REGRESI LINIER DAN KORELASI Variabel dibedaka dalam dua jeis dalam aalisis regresi: Variabel bebas atau variabel prediktor -> variabel yag mudah didapat atau tersedia. Dapat diyataka dega X 1, X,, X k

Lebih terperinci

Fungsi Gamma. Pengantar Matematika Teknik Kimia. Muthia Elma

Fungsi Gamma. Pengantar Matematika Teknik Kimia. Muthia Elma Fungsi Gamma Pengantar Matematika Teknik Kimia Muthia Elma Fungsi Gamma Defenisi Merupakan salah satu fungsi khusus yang biasanya disajikan dalam pembahasan kalkulus tingkat lanjut Dalam aplikasinya fungsi

Lebih terperinci

MODIFIKASI METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERSAMAAN GELOMBANG NONLINEAR

MODIFIKASI METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERSAMAAN GELOMBANG NONLINEAR MODIFIKSI METODE DEKOMPOSISI DOMIN UNTUK MENYEESIKN PERSMN GEOMBNG NONINER Wiiya Firia Sari * eli Deswia Ea ily Mahasiswa Proram S Maemaika Dose Jrsa Maemaika Faklas Maemaika a Ilm Peeaha lam Uiversias

Lebih terperinci

EKSISTENSI BAGIAN IMAJINER PADA INTEGRAL FORMULA INVERSI FUNGSI KARAKTERISTIK

EKSISTENSI BAGIAN IMAJINER PADA INTEGRAL FORMULA INVERSI FUNGSI KARAKTERISTIK Jrnal Matematika UNAND Vol. No. 2 Hal. 39 43 ISSN : 233 29 c Jrsan Matematika FMIPA UNAND EKSISTENSI BAGIAN IMAJINER PADA INTEGRAL FORMULA INVERSI FUNGSI KARAKTERISTIK YULIANA PERMATASARI Program Stdi

Lebih terperinci

(The Method of Separation of Variables). Metode ini dapat digunakan pada PDP linier, khususnya PDP dengan koefisien konstan.

(The Method of Separation of Variables). Metode ini dapat digunakan pada PDP linier, khususnya PDP dengan koefisien konstan. METODE PEMISAHAN PEUBAH (The Method of Separatio of Variales) Metode ii dapat diguaka pada PDP liier, khususya PDP dega koefisie kosta Tujua Istruksioal : Setelah megikuti perkuliaha mahasiswa dapat: 1

Lebih terperinci

DEFERENSIAL Bab 13. u u. u 2

DEFERENSIAL Bab 13. u u. u 2 DEFERENSIAL Bab Laj perbahan nilai f : f() pada = a ata trnan f pada = a adalah Limit ini disebt deriatif ata trnan f pada = a dan dinyatakan dengan f (a) f (a) = f ( a h) f ( a ) lim it h 0 h secara mm

Lebih terperinci

Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1

Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1 Barisa Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 9/0/06 Matematika Barisa Tak Higga Secara sederhaa, barisa merupaka susua dari bilaga bilaga yag urutaya berdasarka bilaga

Lebih terperinci

DASAR-DASAR ANALISIS MATEMATIKA

DASAR-DASAR ANALISIS MATEMATIKA (Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. December 26, 2007 Misalkan f kontinu pada interval [a, b]. Apakah masuk akal untuk membahas luas daerah

Lebih terperinci

TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL HENSTOCK- KURZWEIL SERENTAK DAN FUNGSI BERSIFAT LOCALLY SMALL RIEMANN SUMS (LSRS) DARI RUANG EUCLIDE

TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL HENSTOCK- KURZWEIL SERENTAK DAN FUNGSI BERSIFAT LOCALLY SMALL RIEMANN SUMS (LSRS) DARI RUANG EUCLIDE Teorema Keovergea Fugsi Teritegral Hestoc(Aiswita) TORMA KKONVRGNAN FUNGSI TRINTGRAL HNSTOCK- KURZWIL SRNTAK DAN FUNGSI BRSIFAT LOCALLY SMALL RIMANN SUMS (LSRS) DARI RUANG UCLID K RUANG BARISAN Aiswita,

Lebih terperinci

FUNCTIONALLY SMALL RIEMANN SUMS (FSRS) DAN ESSENTIALLY SMALL RIEMANN SUMS (ESRS) FUNGSI TERINTEGRAL HENSTOCKn. p )

FUNCTIONALLY SMALL RIEMANN SUMS (FSRS) DAN ESSENTIALLY SMALL RIEMANN SUMS (ESRS) FUNGSI TERINTEGRAL HENSTOCKn. p ) βeta -ISSN: 85-5893 e-issn: 54-458 Vol. 3 No. (Noember), Hal. 79-89 βeta DOI: htt://dx.doi.org/.44/betajtm.v9i.7 FUNCTIONALLY SMALL RIMANN SUMS (FSRS) DAN SSNTIALLY SMALL RIMANN SUMS (SRS) FUNGSI TRINTGRAL

Lebih terperinci

Fisika Ebtanas

Fisika Ebtanas isika Ebtanas 1996 1 1. Di bawah ini yang merpakan kelompok besaran trnan adalah A. momentm, wakt, kat ars B. kecepatan, saha, massa C. energi, saha, wakt ptar D. wakt ptar, panjang, massa E. momen gaya,

Lebih terperinci

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang 5. DERET

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang 5. DERET Pertemua 7. BAHAN AJAR ANALISIS REAL Matematika STKIP Tuaku Tambusai Bagkiag 5. da kekovergeaya 5. DERET Diberika sebuah barisa a, dapat didefeisika barisa bilaga real S N dega S N := N a = a + a 2 +...

Lebih terperinci

Bab 1 PENDAHULUAN Latar Belakang

Bab 1 PENDAHULUAN Latar Belakang Bab PENDAHULUAN.. Latar Belakag Bayak peelitia yag bertja mecari dasar-dasar tk megadaka prediksi sat variabel dari iormasi-iormasi yag diperoleh dari variablel tersebt. Misalya apakah keadaa caca dapat

Lebih terperinci

BINOVATIF LISTRIK DAN MAGNET. Hani Nurbiantoro Santosa, PhD.

BINOVATIF LISTRIK DAN MAGNET. Hani Nurbiantoro Santosa, PhD. BINOVATIF LISTRIK DAN MAGNET Hani Nurbiantoro Santosa, PhD hanisantosa@gmail.com 2 BAB 2 MEDAN LISTRIK DAN HUKUM GAUSS Pendahuluan, Distribusi Muatan Kontinu, Mencari Medan Listrik Menggunakan Integral,

Lebih terperinci

CATATAN KULIAH Pertemuan I: Pengenalan Matematika Ekonomi dan Bisnis

CATATAN KULIAH Pertemuan I: Pengenalan Matematika Ekonomi dan Bisnis CATATAN KULIAH Pertemua I: Pegeala Matematika Ekoomi da Bisis A. Sifat-sifat Matematika Ekoomi 1. Perbedaa Matematika vs. Nomamatematika Ekoomi Keutuga pedekata matematika dalam ilmu ekoomi Ketepata (Precise),

Lebih terperinci

1. Ubahlah bentuk kuadrat di bawah ini menjadi bentuk

1. Ubahlah bentuk kuadrat di bawah ini menjadi bentuk OPERASI ALJABAR. Ubahlah betuk kuadrat di bawah ii mejadi betuk ( a b) c 4 8 4 4 0 4. Uraika betuk di bawah ii ( 5)( ) [ ]( )( )( ) [ ]( ) ( ) ( ). Tetuka ilai a, b, da c, jika ( )( 4 )( ) = a b c 6 (

Lebih terperinci

MENENTUKAN PELUANG RUIN DENGAN METODE KOMBINASI EKSPONENSIAL

MENENTUKAN PELUANG RUIN DENGAN METODE KOMBINASI EKSPONENSIAL MENENTUKAN PELUANG RUIN DENGAN METODE KOMBINASI EKSPONENSIAL Karmila 1*, Hasriati 2, Haposa Sirait 2 1 Mahasiswa Program S1 Matematika 2 Dose Jurusa Matematika Fakultas Matematika da Ilmu Pegetahua Alam

Lebih terperinci

KONTRUKSI RUMUS NORMA ALTERNATIF UNTUK 1 ABSTRAK

KONTRUKSI RUMUS NORMA ALTERNATIF UNTUK 1 ABSTRAK KONTRUKSI RUMUS NORMA ALTERNATIF UNTUK RUANG FUNGSI L ([ 0,]) Wayuiati, Era Ariliai, Eridai ABSTRAK Rua usi L (X ) meruaa rua berorma utu Semua rua asil ali dalam adala rua berorma, tetai tida selalu berlau

Lebih terperinci

Mata Kuliah: Aljabar Linier Dosen Pengampu: Darmadi, S. Si, M. Pd

Mata Kuliah: Aljabar Linier Dosen Pengampu: Darmadi, S. Si, M. Pd . RUANG BERDIMENSI n EUCLIDIS Mata Kliah: Aljabar Linier Dosen Pengamp: Darmadi S. Si M. Pd Dissn oleh: Kelompok Pendidikan Matematika VA. Abdl Fajar Sidiq (8.). Lilies Prwanti (8.76). Ristinawati (8.)

Lebih terperinci

Koleksi Soal dan. Pembahasan MaG-D. Oleh: Arini Soesatyo Putri. Universitas Islam Negeri Sunan Gunung Djati Bandung [Date]

Koleksi Soal dan. Pembahasan MaG-D. Oleh: Arini Soesatyo Putri. Universitas Islam Negeri Sunan Gunung Djati Bandung [Date] Koleksi Soal da Pembahasa MaG-D Oleh: Arii Soesatyo Putri Uiversitas Islam Negeri Sua Guug Djati Badug 06 [Date] Kata Pegatar Bismillahirrahmaairrahiim... Mathematical Aalysis ad Geometry Day (MaG-D) merupaka

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

BEBERAPA SIFAT JARAK ROTASI PADA POHON BINER TERURUT DAN TERORIENTASI

BEBERAPA SIFAT JARAK ROTASI PADA POHON BINER TERURUT DAN TERORIENTASI JRISE, Vol.1, No.1, Febrari 2014, pp. 28~40 ISSN: 2355-3677 BEBERAPA SIFA JARAK ROASI PADA POHON BINER ERURU DAN ERORIENASI Oleh: Hasniati SMIK KHARISMA Makassar hasniati@kharisma.ac.id Abstrak Andaikan

Lebih terperinci

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI Utuk lebih memahami megeai etropi, pada bab ii aka diberika perhituga etropi utuk beberapa distribusi diskrit da kotiu. 3. Distribusi Diskrit Pada sub bab ii dibahas

Lebih terperinci

BUKU AJAR METODE ELEMEN HINGGA

BUKU AJAR METODE ELEMEN HINGGA BUKU AJA ETODE EEEN HINGGA Diringkas oleh : JUUSAN TEKNIK ESIN FAKUTAS TEKNIK STUKTU TUSS.. Deinisi Umm Trss adalah strktr yang terdiri atas batang-batang lrs yang disambng pada titik perpotongan dengan

Lebih terperinci

TUGAS ANALISIS REAL LANJUT. a b < a + A. b + B < A B.

TUGAS ANALISIS REAL LANJUT. a b < a + A. b + B < A B. TUGAS ANALISIS REAL LANJUT NOVEMBER 207 () (a) Jika b > 0, B > 0, da a b < A, buktika ab < ba. Kemudia buktika B a b < a + A b + B < A B. (b) Buktika [ 2 (a + b)] 2 2 (a2 + b 2 ). Kemudia tujukka bahwa

Lebih terperinci

MASALAH SYARAT BATAS (MSB)

MASALAH SYARAT BATAS (MSB) Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo PENDAHULUAN MODEL KABEL MENGGANTUNG DEFINISI MSB Persamaan diferensial (PD) dikatakan berdimensi 1 jika domainnya berupa himpunan bagian pada R 1.

Lebih terperinci

BAB III LIMIT DAN FUNGSI KONTINU

BAB III LIMIT DAN FUNGSI KONTINU BAB III LIMIT DAN FUNGSI KONTINU Konsep it mempnyai peranan yang sangat penting di dalam kalkls dan berbagai bidang matematika. Oleh karena it, konsep ini sangat perl ntk dipahami. Meskipn pada awalnya

Lebih terperinci

Trihastuti Agustinah

Trihastuti Agustinah TE 9467 Teknik Nmerik Sistem Linear Trihastti Agstinah Bidang Stdi Teknik Sistem Pengatran Jrsan Teknik Elektro - FTI Institt Teknologi Seplh Nopember O U T L I N E OBJEKTIF TEORI CONTOH 4 SIMPULAN 5 LATIHAN

Lebih terperinci

Pelabelan E-cordial pada Graf Hasil Cartesian Product

Pelabelan E-cordial pada Graf Hasil Cartesian Product Pelabela E-cordial pada Gra Hasil Cartesia Product Kholis Widyasmedi, R. Heri Soelistyo Program Studi Matematika Jurusa Matematika Fakultas Sais da Matematika Uiversitas Dipoegoro Email: widyasmedi@gmail.com

Lebih terperinci

SIFAT-SIFAT FUNGSI EKSPONENSIAL BERBASIS BILANGAN NATURAL YANG DIDEFINISIKAN SEBAGAI LIMIT

SIFAT-SIFAT FUNGSI EKSPONENSIAL BERBASIS BILANGAN NATURAL YANG DIDEFINISIKAN SEBAGAI LIMIT Jural Matematika UNAND Vol. 4 No. 1 Hal. 12 22 ISSN : 2303 2910 c Jurusa Matematika FMIPA UNAND SIFAT-SIFAT FUNGSI EKSPONENSIAL BERBASIS BILANGAN NATURAL YANG DIDEFINISIKAN SEBAGAI LIMIT ENIVA RAMADANI

Lebih terperinci

h h h n 2! 3! n! h h h 2! 3! n!

h h h n 2! 3! n! h h h 2! 3! n! Dieresiasi Numerik Sala satu perituga kalkulus yag serig diguaka adala turua/ dieresial. Coto pegguaa dieresial adala utuk meetuka ilai optimum (maksimum atau miimum) suatu ugsi y x mesyaratka ilai turua

Lebih terperinci

Prediksi Kurva S-N berdasarkan Hukum Kekekalan Energi pada Pembebanan Dinamis Kombinasi Aksial-Torsional

Prediksi Kurva S-N berdasarkan Hukum Kekekalan Energi pada Pembebanan Dinamis Kombinasi Aksial-Torsional Prediksi rva S- berdasarka Hkm ekekala ergi pada Pembebaa Diamis ombiasi Aksial-Torsioal Waja Berata Program Stdi Metalrgi Tekik Mesi ITS Srabaya Abstrak Sat material dapat megalami patah lelah yag disebabka

Lebih terperinci

HUBUNGAN ANTARA KONVERGEN HAMPIR PASTI, KONVERGEN DALAM PELUANG, DAN KONVERGEN DALAM SEBARAN

HUBUNGAN ANTARA KONVERGEN HAMPIR PASTI, KONVERGEN DALAM PELUANG, DAN KONVERGEN DALAM SEBARAN Jural Matematika UNAND Vol. 2 No. 2 Hal. 0 6 ISSN : 2303 290 c Jurusa Matematika FMIPA UNAND HUBUNGAN ANTARA KONVERGEN HAMPIR PASTI, KONVERGEN DALAM PELUANG, DAN KONVERGEN DALAM SEBARAN VIRA AGUSTA, DODI

Lebih terperinci

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n LIMIT 4.. FUNGSI LIMIT Defiisi 4.. A R Titik c R adalah titik limit dari A, jika utuk setiap δ > 0 ada palig sedikit satu titik di A, c sedemikia sehigga c < δ. Defiisi diatas dapat disimpulka dega cara

Lebih terperinci

B. DESKRIPSI SINGKAT MATA KULIAH

B. DESKRIPSI SINGKAT MATA KULIAH A. IDENTITAS MATA KULIAH Nama Maa Kuliah : Kalkulus 1 Kode Maa Kuliah : MUG1A4 SKS : 4 (empa) Jeis : Maa kuliah wajib Jam pelaksaaa : Taap muka di kelas = 4 jam per peka Tuorial/ resposi Semeser / Tigka

Lebih terperinci

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa istilah, definisi serta konsep-konsep yang

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa istilah, definisi serta konsep-konsep yang II. LANDASAN TEORI Pada bab ii aka diberika beberapa istilah, defiisi serta kosep-kosep yag medukug dalam peelitia ii. 2.1 Kosep Dasar Teori Graf Berikut ii aka diberika kosep dasar teori graf yag bersumber

Lebih terperinci