REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan"

Transkripsi

1 REGRESI LINIER DAN KORELASI Variabel dibedaka dalam dua jeis dalam aalisis regresi: Variabel bebas atau variabel prediktor -> variabel yag mudah didapat atau tersedia. Dapat diyataka dega X 1, X,, X k Dega k 1 Variabel tak bebas atau variabel respo -> variabel yag terjadi karea variabel bebas. Dapat diyataka dega Y. Cotoh: feomea yag meliputi hasil pae padi dega volume pupuk yag diguaka, sebaikya diambil variabel bebas X = volume pupuk da variabel takbebas Y = hasil pae padi. Persamaa regresi secara umum: μ y,x1,x,..,x k = f X 1, X,, X k θ 1, θ,, θ m Dega θ 1, θ,, θ m parameter-parameter yag ada dalam regresi itu. Jeis-jeis regresi adalah 1. Regresi liier: regresi liier sederhaa da regresi liier bergada. Regresi o liier: regresi ekspoesial, regresi parabola kuadratik, regresi parabola kubik, regresi logistik, regresi geometrik 1. Regresi Liier A. Regresi Liier Sederhaa Merupaka regresi dega satu variabel bebas, regresi dega variabel bebas X da variabel takbebasya Y atau diamaka juga regresi Y atas X, betuk persamaaya: μ y.x = θ 1 + θ X Regresi liear sederhaa berdasarka sampel, maka θ 1 ditaksir dega a da θ ditaksir dega b diperoleh: Y = a + bx Cara peetua ilai a da b dapat dilakuka dega dua cara: 1. Metode taga bebas Metode Taga Bebas adalah metode peetua persamaa regresi kira-kira megguaka diagram pecar. Jika feomea meliputi sebuah variabel bebas X da variabel tak bebas Y, maka data yag didapat digambarka pada diagram dega sumbu datar meyataka X da sumbu tegak meyataka Y.

2 Jika letak titik-titik sekitar garis lurus maka utuk meetuka persamaa regresiya, dapat dicari dega megguaka dua titik yag dilalui garis tersebut, kemudia dicari persamaa garisya, yaitu jika garis melewati titik-titik x 1, y 1 da x, y maka: y y 1 y y 1 = x x 1 x x 1 Peetua regresi dega cara ii bersifat tidak tuggal, artiya tiap orag aka memberika perkiraa yag berbeda bergatug pada pertimbaga pribadi masig-masig.. Metode kuadrat terkecil Seperti dikataka sebelumya regresi dega variabel bebas X da variabel takbebas Y dimaa model regresi liier utuk populasi yaitu μ y.x = θ 1 + θ X aka ditaksir harga-harga θ 1 da θ oleh a da b sehigga didapat persamaa regresi megguaka data sampel: Dega Y = a + bx a = Y i Y i b = Y i Y i Dimaa adalah jumlah sampel, adalah data variabel bebas ke i da Y i adalah data variabel takbebas ke i. Jika terlebih dahulu dihitug koefisie b, maka koefisie a dapat pula ditetuka oleh rumus: a = Y bx dimaa X da Y adalah rata-rata utuk masig-masig variabel X da Y. Koefisie b diamaka koefisie arah regresi liier da meyataka perubaha rata-rata variabel Y utuk setiap perubaha variabel X sebesar satu uit. Perubaha ii merupaka pertambaha jika b bertada positif da peurua atau peguraga jika bertada egatif.

3 Belaja (Y) Cotoh: Data berikut melukiska hasil pegamata megeai bayak orag yag datag (X) da bayak orag yag berbelaja (Y) di sebuah toko selama hari. Daftar.1 Bayak Pegujug da yag Berbelaja Di Sebuah Toko Selama Hari Pegujug Berbelaja Pegujug Berbelaja Y i Y i y = 0.68x R² = Pegujug (X) Gambar.1

4 Jawab: Y i Y i Y i Y i Setelah dijumlahka didapat: = 1105, Y i = 1001, Y i = 094 da = 4109 Maka diperoleh: a = = 8,4 b = Sehigga persamaa liier Y atas X adalah = 0,681 Y = 8,4 + 0,681X Artiya utuk setiap X bertambah dega seorag maka rata-rata pembeli Y bertambah dega 0,68 orag. Berbagai Varias Sehubuga Dega Regresi Liear Sederhaa Utuk aalisis selajutya tetag regresi liier sederhaa, beberapa asumsi harus diambil. Pertama, megigat hasil pegamata variabel takbebas Y belum tetu sama besarya dega harga diharapka, yaki Y yag didapat dari regresi hasil pegamata, maka terjadi perbedaa e = Y Y, biasa disebut kekelirua prediksi atau galat prediksi. Dalam populasi, galat prediksi ii dimisalka berbetuk variabel acak yag megikuti distribusi ormal dega rata-rata ol da varias σ ε.

5 Kedua, utuk setiap harga X yag diberika, variabel tak bebas Y idepede da berdistribusi ormal dega rata-rata θ 1 + θ X da varias σ Y.X. Varias σ Y.X dimisalka sama utuk setiap X da kareaya dapat diyataka oleh σ ε yag biasa pula diamaka varias kekelirua taksira sedagka σ y.x dikeal dega kekelirua baku taksira. Berpegag kedua asumsi di atas, maka varias σ ε ditaksir oleh rata-rata kuadrat peyimpaga sekitar regresi atau disebut juga rata-rata kuadrat residu, diyataka oleh varias s e yaitu s Y.X = s e = Y i Y i Dega Y = variabel tak bebas hasil pegamata da Y = didapat dari regresi berdasarka sampel, da = ukura sampel. Dapat ditulis juga s Y.X = 1 s Y b s X Dega s Y da s X masig-masig meyataka varias utuk variabel-variabel Y da X. Varias koefisie b: s b = s Y.X X Varias koefisie a: s a = s 1 Y.X + X X Varias ramala rata-rata Y utuk X 0 yag diketahui: s Y = s 1 Y.X + X 0 X X Varias ramala idividu Y utuk X 0 yag diketahui s Y = s Y.X X 0 X X Utuk rumus-rumus di atas X dapat digati oleh x i

6 Cotoh: Utuk dega data dalam daftar.1, kita dapat meghitug varias-varias di atas. Kita perlu X =,8; s x = 11,3; s y = 6,86 da X = 38,, diperoleh b = 0,68 da = didapat Varias ramala rata-rata Y utuk X 0 = adalah s Y.X = 1 6,86 0,68 11,3 = 1,684 s b = 1,684 = 5, , s a = 1, ,8 38, = 7,005 s Y = 1,684 1,8 + 38, = 0,1087 Varias ramala idividu Y utuk X 0 = adalah s Y = 1, ,8 + 38, = 1,797 Korelasi Koefisie korelasi (r): ukura hubuga liier peubah X da Y Nilai r berkisar atara -1 da 1. r = 1 Hubuga liier sempura tak lagsug. Titik-titik yag ditetuka oleh, Y i seluruhya terletak pada garis regresi da harga X besar berpasaga dega Y kecil da X kecil berpasaga dega Y besar r = +1 Hubuga liier sempura lagsug. Titik-titik yag ditetuka oleh, Y i seluruhya terletak pada garis regresi da harga X besar berpasaga dega Y besar da X kecil berpasaga dega Y kecil r < 1 Korelasi tak lagsug atau korelasi egatif r > 1 Korelasi lagsug atau korelasi positif r = 0 Tidak terdapat hubuga liier atara variabel X da Y Utuk keperlua perhituga koefisie korelasi r berdasarka sekumpula data, Y i berukura dapat diguaka rumus: r = Y i Y i Y i Y i

7 Betuk lai dapat pula diguaka: r = 1 s y.x s y dega s y.x = kekelirua baku taksira da s y = simpaga baku utuk variabel Y. Jika persamaa regresi liier Y atas X telah ditetuka da sudah didapat koefisie arah,b, maka koefisie determiasi, r, dapat ditetuka oleh rumus: atau dapat juga megguaka formula: r = b Y i Y i Y i Y i r = bs x s y dega s x simpaga baku utuk variabel X da s y simpaga baku utuk variabel Y. Jika b 1 adalah koefisie arah regresi Y atas X da b adalah koefisie arah regresi X atas Y utuk data yag sama, maka r = b 1 b Rumus ii meyataka bahwa koefisie korelasi r adalah rata-rata ukur daripada koefisie-koefisie arah b 1 da b. Cotoh: Utuk dega data dalam daftar.1, utuk meetuka korelasi diperlu X =,8; s x = 11,3; s y = 6,86 da X = 38,, diperoleh b = 0,68 da = didapat r = = 0.87 B. Regresi Liier Bergada Bayak data pegamata yag terjadi sebagai akibat lebih dari dua variabel. Misalya, rata-rata pertambaha berat dagig sapi (Y) bergatug pada berat permulaa X 1, umur sapi ketika pegamata dimulai dilakuka X, berat makaa yag diberika setiap hari X 3 da mugki masih ada faktor lai.

8 Aka ditetuka hubuga atara Y da X 1, X,, X k sehigga didapat regresi Y atas X 1, X,, X k. Yag aka ditijau di sii hayalah garis regresi sederhaa ialah yag dikeal dega regresi liier gada. Model tersebut ditaksir oleh: Y = a 0 + a 1 X 1 + a X + + +a k X k Koefisie-koefisie a 0, a 1,, a k ditetuka dega megguaka metode kuadrat terkecil. Utuk regresi liier gada dua variabel bebas: Y = a 0 + a 1 X 1 + a X maka utuk megetahui koefisie-koefisieya harus meyelesaika persamaa-persamaa berikut: Y i = a 0 + a 1 X 1 i + a X i Y i X 1 i = a 0 X 1 i + a 1 X 1 i + a X 1 i persamaa (*) Y i X i = a 0 X i + a 1 X 1 i + a X i a 0 = Y a 1 X 1 a X a 1 = a = x 1 i x 1i y i x 1 i x i x i y i x 1 i x i x 1i x i x 1 i x i y i x 1 i x i x 1i y i x 1 i x i x 1i x i Koefisie a 1 merupaka perubaha rata-rata Y uutuk setiap perubaha satua dalam variabel X 1 apabila X, X 3,, X k semua diaggap tetap, begitu juga a merupaka perubaha rata-rata Y uutuk setiap perubaha satua dalam variabel X apabila X 1, X 3,, X k semua diaggap tetap da begitu seterusya. Jelas bahwa di sii setiap koefisie haya memberika gambara parsial apa yag terjadi pada Y utuk perubaha X yag berhubuga dega koefisie dimaksud. Kareaya, koefisiekoevisie a 1, a,, a k disebut pula koefisie regresi parsil. Utuk regresi liier gada variabel, maka ukura kekelirua yag diguaka adalah: s y.1,,,k = Y i Y i k 1 dimaa Y i = ilai data hasil pegamata da Y i = ilai harapa yag didapat dari persamaa regresi. Korelasi Liier Bergada Koefisie Determiasi Sampel utuk Regresi Liier Bergada diberi otasi sebagai berikut R y.1

9 Sedagka Koefisie korelasi adalah akar positif koefisie determiasi atau r y.1 = R y.1 Rumus: Keteraga: JKG: Jumlah Kuadrat Galat s y : Jumlah Kuadrat y (terkoreksi) Dimaa: (sumber: thomasyuiguarto) R y.1 = 1 JKG 1 s y s y = y y 1 JKG = y a 0 y a 1 x 1 y a x y Berikut adalah data Volume Pejuala (juta uit) Mobil dihubugka dega variable biaya promosi (X 1 dalam juta rupiah/tahu) da variable biaya peambaha asesoris (X dalam ratusa ribu rupiah/uit) x 1 x y x 1 x x 1 y x y x 1 x y x 1 x y x 1 x x 1 y x y = 31 = = 50 = 39 = 96 = 9 Tetapka persamaa regresi liier bergada: a 0 + a 1 X 1 + a X Substitusi kedalam persamaa: (i) 6a a 1 + a = 50 (ii) 31a a a = 96 (iii) a a 1 + 6a = 9 Guaka elimiasi da substitusi utuk medapatka ilai a 0, a 1, a yaitu: x 1 = 187 x = 6 y = 470

10 Sehigga diperoleh: a 0 = 3 4, a 1 = 1, a 3 = 3 4 Maka betuk regresi liier bergada: Y = X X Koefisie korelasi adalah s y = = JKG = = 0.5 R y.1 = = Regresi No Liier 1. Parabola kuadratik: Y = a + bx + cx Dega megguaka metode kuadrat terkecil, maka a, b, da c dapat dihitug dari sistem persamaa: Y i = a + b + c Y i = a + b + c 3 Y i = a + b 3 + c 4. Parabolik kubik: Y = a + bx + cx + dx 3 Utuk meetuka ilai a, b, c, da d guaka sistem persamaa berikut: Y i = a + b + c + d 3 Y i = a + b + c 3 + d 4 Y i = a + b 3 + c 4 + d 5 3 Y i = a 3 + b 4 + c 5 + d 6 3. Ekspoe : Y = ab X Besar ilai a da b ditetuka megguaka persamaa: log a = log Y i log b log b = log Y i log Y i X i X i 4. Geometrik: Y = ax b Besar ilai a da b ditetuka megguaka persamaa:

11 5. Logistik: Y = 1 ab X +c log a = log Y i b log b = log log Y i log log Y i log log log a = log 1 Y i log b log 1 X Y i log 1 log b = i Y i X i X i 6. Hiperbola: Y = 1 a+bx Jika Y tidak ada yag berilai ol, maka a da b adalah 1 X Y 1 i a = i Y i X i X i b = 1 Y i 1 Y i

ANALISIS REGRESI DAN KORELASI SEDERHANA

ANALISIS REGRESI DAN KORELASI SEDERHANA LATAR BELAKANG DAN KORELASI SEDERHANA Aalisis regresi da korelasi megkaji da megukur keterkaita seara statistik atara dua atau lebih variabel. Keterkaita atara dua variabel regresi da korelasi sederhaa.

Lebih terperinci

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP STATISTICS Haug N. Prasetyo Week 11 PENDAHULUAN Regresi da korelasi diguaka utuk megetahui hubuga dua atau lebih kejadia (variabel) yag dapat diukur secara matematis. Ada dua hal yag diukur atau diaalisis,

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Aalisis Regresi Istilah regresi pertama kali diperkealka oleh seorag ahli yag berama Facis Galto pada tahu 1886. Meurut Galto, aalisis regresi berkeaa dega studi ketergatuga dari suatu

Lebih terperinci

REGRESI DAN KORELASI

REGRESI DAN KORELASI REGRESI DAN KORELASI Pedahulua Dalam kehidupa sehari-hari serig ditemuka masalah/kejadia yagg salig berkaita satu sama lai. Kita memerluka aalisis hubuga atara kejadia tersebut Dalam bab ii kita aka membahas

Lebih terperinci

REGRESI DAN KORELASI SEDERHANA

REGRESI DAN KORELASI SEDERHANA REGRESI DAN KORELASI SEDERHANA Apa yag disebut Regresi? Korelasi? Aalisa regresi da korelasi sederhaa membahas tetag keterkaita atara sebuah variabel (variabel terikat/depede) dega (sebuah) variabel lai

Lebih terperinci

TINJAUAN PUSTAKA Pengertian

TINJAUAN PUSTAKA Pengertian TINJAUAN PUSTAKA Pegertia Racaga peelitia kasus-kotrol di bidag epidemiologi didefiisika sebagai racaga epidemiologi yag mempelajari hubuga atara faktor peelitia dega peyakit, dega cara membadigka kelompok

Lebih terperinci

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak:

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak: PENGUJIAN HIPOTESIS A. Lagkah-lagkah pegujia hipotesis Hipotesis adalah asumsi atau dugaa megeai sesuatu. Jika hipotesis tersebut tetag ilai-ilai parameter maka hipotesis itu disebut hipotesis statistik.

Lebih terperinci

Probabilitas dan Statistika Korelasi dan Regresi. Adam Hendra Brata

Probabilitas dan Statistika Korelasi dan Regresi. Adam Hendra Brata Probabilitas da Statistika da Adam Hedra Brata Dua Peubah Acak dua perubah acah X da Y dega rata-rata da diberika oleh rumus : E(XY) - - - Sifat Sifat Sifat kovariasi utuk X da Y diskrit : f(, ) f(, )

Lebih terperinci

REGRESI LINIER. b. Variabel tak bebas atau variabel respon -> variabel yang terjadi karena variabel bebas. Dapat dinyatakan dengan Y.

REGRESI LINIER. b. Variabel tak bebas atau variabel respon -> variabel yang terjadi karena variabel bebas. Dapat dinyatakan dengan Y. REGRESI LINIER 1. Hubungan Fungsional Antara Variabel Variabel dibedakan dalam dua jenis dalam analisis regresi: a. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia.

Lebih terperinci

Pengenalan Pola. Regresi Linier

Pengenalan Pola. Regresi Linier Pegeala Pola Regresi Liier PTIIK - 014 Course Cotets 1 Defiisi Regresi Liier Model Regresi Liear 3 Estimasi Regresi Liear 4 Studi Kasus da Latiha Defiisi Regresi Liier Regresi adalah membagu model utuk

Lebih terperinci

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya 5 BAB II LANDASAN TEORI Dalam tugas akhir ii aka dibahas megeai peaksira besarya koefisie korelasi atara dua variabel radom kotiu jika data yag teramati berupa data kategorik yag terbetuk dari kedua variabel

Lebih terperinci

REGRESI LINIER SEDERHANA

REGRESI LINIER SEDERHANA REGRESI LINIER SEDERHANA REGRESI, KAUSALITAS DAN KORELASI DALAM EKONOMETRIKA Regresi adalah salah satu metode aalisis statistik yag diguaka utuk melihat pegaruh atara dua atau lebih variabel Kausalitas

Lebih terperinci

III BAHAN DAN METODE PENELITIAN. Ternak yang digunakan dalam penelitian ini adalah kuda berjumlah 25

III BAHAN DAN METODE PENELITIAN. Ternak yang digunakan dalam penelitian ini adalah kuda berjumlah 25 18 III BAHAN DAN METODE PENELITIAN 3.1 Baha Peelitia 3.1.1 Objek Peelitia Terak yag diguaka dalam peelitia ii adalah kuda berjumlah 25 ekor terdiri dari 5 jata da 20 betia dega umur berkisar atara 10 15

Lebih terperinci

Uji apakah ada perbedaan signifikan antara mean masing-masing laboratorium. Gunakan α=0.05.

Uji apakah ada perbedaan signifikan antara mean masing-masing laboratorium. Gunakan α=0.05. MA 8 STATISTIKA DASAR SEMESTER I /3 KK STATISTIKA, FMIPA ITB UJIAN AKHIR SEMESTER (UAS) Sei, Desember, 9.3.3 WIB ( MENIT) Kelas. Pegajar: Utriwei Mukhaiyar, Kelas. Pegajar: Sumato Wiotoharjo Jawablah pertayaa

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Metode Peelitia Peelitia ii megguaka metode peelitia Korelasioal. Peelitia korelasioaal yaitu suatu metode yag meggambarka secara sistematis da obyektif tetag hubuga atara

Lebih terperinci

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL BAB VIII MASAAH ESTIMASI SAT DAN DA SAMPE 8.1 Statistik iferesial Statistik iferesial suatu metode megambil kesimpula dari suatu populasi. Ada dua pedekata yag diguaka dalam statistik iferesial. Pertama,

Lebih terperinci

DISTRIBUSI SAMPLING. Oleh : Dewi Rachmatin

DISTRIBUSI SAMPLING. Oleh : Dewi Rachmatin DISTRIBUSI SAMPLING Oleh : Dewi Rachmati Distribusi Rata-rata Misalka sebuah populasi berukura higga N dega parameter rata-rata µ da simpaga baku. Dari populasi ii diambil sampel acak berukura, jika tapa

Lebih terperinci

REGRESI LINIER GANDA

REGRESI LINIER GANDA REGRESI LINIER GANDA Secara umum, data hasil pegamata Y bisa terjadi karea akibat variabelvariabel bebas,,, k. Aka ditetuka hubuga atara Y da,,, k sehigga didapat regresi Y atas,,, k amu masih meujukka

Lebih terperinci

Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya PENS. Probability and Random Process. Topik 10. Regresi

Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya PENS. Probability and Random Process. Topik 10. Regresi Program Pasca Sarjaa Terapa Politekik Elektroika Negeri Surabaya Probability ad Radom Process Topik 10. Regresi Prima Kristalia Jui 015 1 Outlie 1. Kosep Regresi Sederhaa. Persamaa Regresi Sederhaa 3.

Lebih terperinci

MANAJEMEN RISIKO INVESTASI

MANAJEMEN RISIKO INVESTASI MANAJEMEN RISIKO INVESTASI A. PENGERTIAN RISIKO Resiko adalah peyimpaga hasil yag diperoleh dari recaa hasil yag diharapka Besarya tigkat resiko yag dimasukka dalam peilaia ivestasi aka mempegaruhi besarya

Lebih terperinci

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu BAB 4 UKURAN PENYEBARAN DATA Pada Bab sebelumya kita telah mempelajari beberapa ukura pemusata data, yaitu ukura yag memberika iformasi tetag bagaimaa data-data ii megumpul atau memusat Pada bagia Bab

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Didalam melakuka kegiata suatu alat atau mesi yag bekerja, kita megeal adaya waktu hidup atau life time. Waktu hidup adalah lamaya waktu hidup suatu kompoe atau uit pada

Lebih terperinci

I. DERET TAKHINGGA, DERET PANGKAT

I. DERET TAKHINGGA, DERET PANGKAT I. DERET TAKHINGGA, DERET PANGKAT. Pedahulua Pembahasa tetag deret takhigga sebagai betuk pejumlaha suku-suku takhigga memegag peraa petig dalam fisika. Pada bab ii aka dibahas megeai pegertia deret da

Lebih terperinci

STATISTIKA ANALISIS REGRESI ANALISIS REGRESI LINIER LEKTION ACHT(#8) ANALISIS REGRESI

STATISTIKA ANALISIS REGRESI ANALISIS REGRESI LINIER LEKTION ACHT(#8) ANALISIS REGRESI ANALISIS REGRESI STATISTIKA LEKTION ACHT(#8) ANALISIS REGRESI Regresi: kembali ke tahap perkembaga sebelumya (psi.). Aalisis regresi: aalisis yag diguaka utuk megetahui relasi depedesi (pegaruh) dari satu

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di SMA Negeri 1 Way Jepara Kabupaten Lampung Timur

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di SMA Negeri 1 Way Jepara Kabupaten Lampung Timur III. METODOLOGI PENELITIAN A. Lokasi da Waktu Peelitia Peelitia ii dilakuka di SMA Negeri Way Jepara Kabupate Lampug Timur pada bula Desember 0 sampai dega Mei 03. B. Populasi da Sampel Populasi dalam

Lebih terperinci

BAB V ANALISA PEMECAHAN MASALAH

BAB V ANALISA PEMECAHAN MASALAH 89 BAB V ANALISA PEMECAHAN MASALAH Dalam upaya mearik kesimpula da megambil keputusa, diperluka asumsi-asumsi da perkiraa-perkiraa. Secara umum hipotesis statistik merupaka peryataa megeai distribusi probabilitas

Lebih terperinci

Ukuran Pemusatan. Pertemuan 3. Median. Quartil. 17-Mar-17. Modus

Ukuran Pemusatan. Pertemuan 3. Median. Quartil. 17-Mar-17. Modus -Mar- Ukura Pemusata Pertemua STATISTIKA DESKRIPTIF Statistik deskripti adalah pegolaha data utuk tujua medeskripsika atau memberika gambara terhadap obyek yag diteliti dega megguaka sampel atau populasi.

Lebih terperinci

BAB III METODE PENELITIAN. Metode yang digunakan dalam penelitian ini adalah penelitian korelasi,

BAB III METODE PENELITIAN. Metode yang digunakan dalam penelitian ini adalah penelitian korelasi, BAB III METODE PENELITIAN 3.1 Metode Peelitia Metode yag diguaka dalam peelitia ii adalah peelitia korelasi, yaitu suatu metode yag secara sistematis meggambarka tetag hubuga pola asuh orag tua dega kosep

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di SMA Negeri 1 Way Jepara Kabupaten Lampung Timur

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di SMA Negeri 1 Way Jepara Kabupaten Lampung Timur 0 III. METODOLOGI PENELITIAN A. Lokasi da Waktu Peelitia Peelitia ii dilakuka di SMA Negeri Way Jepara Kabupate Lampug Timur pada bula Desember 0 sampai Mei 03. B. Populasi da Sampel Populasi dalam peelitia

Lebih terperinci

Makalah ANALISIS REGRESI DAN REGRESI GANDA

Makalah ANALISIS REGRESI DAN REGRESI GANDA 1 Makalah ANALISIS REGRESI DAN REGRESI GANDA Disusu oleh : 1. Rudii mulya ( 41610010035 ). Falle jatu awar try ( 41610010036 ) 3. Novia ( 41610010034 ) Tekik Idustri Uiversitas Mercu Buaa Jakarta 010 Rudii

Lebih terperinci

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi.

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi. Distribusi Samplig (Distribusi Pearika Sampel). Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

Distribusi Pendekatan (Limiting Distributions)

Distribusi Pendekatan (Limiting Distributions) Distribusi Pedekata (Limitig Distributios) Ada 3 tekik utuk meetuka distribusi pedekata: 1. Tekik Fugsi Distribusi Cotoh 2. Tekik Fugsi Pembagkit Mome Cotoh 3. Tekik Teorema Limit Pusat Cotoh Fitriai Agustia,

Lebih terperinci

BAB 3 METODE PENELITIAN

BAB 3 METODE PENELITIAN BAB 3 METODE PENELITIAN 3.1 Disai Peelitia Tujua Jeis Peelitia Uit Aalisis Time Horiso T-1 Assosiatif survey Orgaisasi Logitudial T-2 Assosiatif survey Orgaisasi Logitudial T-3 Assosiatif survey Orgaisasi

Lebih terperinci

IV. METODE PENELITIAN

IV. METODE PENELITIAN IV. METODE PENELITIAN 4.1 Lokasi da Waktu peelitia Peelitia dilakuka pada budidaya jamur tiram putih yag dimiliki oleh usaha Yayasa Paguyuba Ikhlas yag berada di Jl. Thamri No 1 Desa Cibeig, Kecamata Pamijaha,

Lebih terperinci

METODE PENELITIAN. dalam tujuh kelas dimana tingkat kemampuan belajar matematika siswa

METODE PENELITIAN. dalam tujuh kelas dimana tingkat kemampuan belajar matematika siswa 19 III. METODE PENELITIAN A. Populasi da Sampel Populasi dalam peelitia ii adalah seluruh siswa kelas VIII SMP Negeri 8 Badar Lampug tahu pelajara 2009/2010 sebayak 279 orag yag terdistribusi dalam tujuh

Lebih terperinci

BAB III METODE PENELITIAN. penelitian yaitu PT. Sinar Gorontalo Berlian Motor, Jl. H. B Yassin no 28

BAB III METODE PENELITIAN. penelitian yaitu PT. Sinar Gorontalo Berlian Motor, Jl. H. B Yassin no 28 5 BAB III METODE PENELITIAN 3.1 Lokasi Peelitia da Waktu Peelitia Sehubuga dega peelitia ii, lokasi yag dijadika tempat peelitia yaitu PT. Siar Gorotalo Berlia Motor, Jl. H. B Yassi o 8 Kota Gorotalo.

Lebih terperinci

PETA KONSEP RETURN dan RISIKO PORTOFOLIO

PETA KONSEP RETURN dan RISIKO PORTOFOLIO PETA KONSEP RETURN da RISIKO PORTOFOLIO RETURN PORTOFOLIO RISIKO PORTOFOLIO RISIKO TOTAL DIVERSIFIKASI PORTOFOLIO DENGAN DUA AKTIVA PORTOFOLIO DENGAN BANYAK AKTIVA DEVERSIFIKASI DENGAN BANYAK AKTIVA DEVERSIFIKASI

Lebih terperinci

PENAKSIRAN. Penaksiran Titik. Selang Kepercayaan untuk VARIANSI. MA2181 ANALISIS DATA Utriweni Mukhaiyar 17 Oktober 2011

PENAKSIRAN. Penaksiran Titik. Selang Kepercayaan untuk VARIANSI. MA2181 ANALISIS DATA Utriweni Mukhaiyar 17 Oktober 2011 PENAKSIRAN Peaksira Titik Peaksira Selag Selag Kepercayaa utuk RATAAN Selag Kepercayaa utuk VARIANSI MA8 ANALISIS DATA Utriwei Mukhaiyar 7 Oktober 0 Metode Peaksira Peaksira Titik Peaksira Selag Nilai

Lebih terperinci

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL Defiisi Persamaa diferesial adalah persamaa yag melibatka variabelvariabel tak bebas da derivatif-derivatifya terhadap variabel-variabel bebas. Berikut ii adalah

Lebih terperinci

IV METODE PENELITIAN 4.1 Lokasi dan waktu 4.2. Jenis dan Sumber Data 4.3 Metode Pengumpulan Data

IV METODE PENELITIAN 4.1 Lokasi dan waktu 4.2. Jenis dan Sumber Data 4.3 Metode Pengumpulan Data IV METODE PENELITIAN 4.1 Lokasi da waktu Peelitia ii dilakuka di PD Pacet Segar milik Alm Bapak H. Mastur Fuad yag beralamat di Jala Raya Ciherag o 48 Kecamata Cipaas, Kabupate Ciajur, Propisi Jawa Barat.

Lebih terperinci

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3 SUKU BANYAK A Pegertia: f(x) x + a 1 x 1 + a 2 x 2 + + a 2 +a 1 adalah suku bayak (poliom) dega : - a, a 1, a 2,.,a 2, a 1, a 0 adalah koefisiekoefisie suku bayak yag merupaka kostata real dega a 0 - a

Lebih terperinci

B a b 1 I s y a r a t

B a b 1 I s y a r a t 34 TKE 315 ISYARAT DAN SISTEM B a b 1 I s y a r a t (bagia 3) Idah Susilawati, S.T., M.Eg. Program Studi Tekik Elektro Fakultas Tekik da Ilmu Komputer Uiversitas Mercu Buaa Yogyakarta 29 35 1.5.2. Isyarat

Lebih terperinci

METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc.

METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc. METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/0 SUGENG00 Copyright 996-98 Dale Caregie & Associates, Ic. Kesalaha ERROR: Selisih atara ilai perkiraa dega ilai eksakilai

Lebih terperinci

b. Penyajian data kelompok Contoh: Berat badan 30 orang siswa tercatat sebagai berikut:

b. Penyajian data kelompok Contoh: Berat badan 30 orang siswa tercatat sebagai berikut: Statistik da Peluag A. Statistik Statistik adalah metode ilmiah yag mempelajari cara pegumpula, peyusua, pegolaha, da aalisis data, serta cara pegambila kesimpula berdasarka data-data tersebut. Data ialah

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini dilaksanakan di SMPN 20 Bandar Lampung, dengan populasi

III. METODE PENELITIAN. Penelitian ini dilaksanakan di SMPN 20 Bandar Lampung, dengan populasi 5 III. METODE PENELITIAN A. Populasi da Sampel Peelitia ii dilaksaaka di SMPN 0 Badar Lampug, dega populasi seluruh siswa kelas VII. Bayak kelas VII disekolah tersebut ada 7 kelas, da setiap kelas memiliki

Lebih terperinci

BAB 2 LANDASAN TEORI. 1. Menurut gejala yang dihadapi, data dapat dibagi dua: a. Data Dikotomi

BAB 2 LANDASAN TEORI. 1. Menurut gejala yang dihadapi, data dapat dibagi dua: a. Data Dikotomi 5 BAB LANDASAN TEORI. Data Data ialah suatu baha metah yag jika diolah dega baik melalui berbagai aalisis dapat melahirka berbagai iformasi, data dapat berupa agka da dapat berupa lambag atau sifat.. Meurut

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN 30 III. METODE PENELITIAN A. Metode Dasar Peelitia Metode yag diguaka dalam peelitia adalah metode deskriptif, yaitu peelitia yag didasarka pada pemecaha masalah-masalah aktual yag ada pada masa sekarag.

Lebih terperinci

Statistika dibagi menjadi dua, yaitu: 1. Statistika Deskriftif 2. Statistik Inferensial Penarikan kesimpulan dapat dilakukan dengan dua cara, yaitu:

Statistika dibagi menjadi dua, yaitu: 1. Statistika Deskriftif 2. Statistik Inferensial Penarikan kesimpulan dapat dilakukan dengan dua cara, yaitu: Peaksira Parameter Statistika dibagi mejadi dua yaitu:. Statistika Deskriftif 2. Statistik Iferesial Pearika kesimpula dapat dilakuka dega dua cara yaitu:. Peaksira Parameter 2. Pegujia Hipotesis Peaksira

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Distribusi Ekspoesial Fugsi ekspoesial adalah salah satu fugsi yag palig petig dalam matematika. Biasaya, fugsi ii ditulis dega otasi exp(x) atau e x, di maa e adalah basis logaritma

Lebih terperinci

PENAKSIRAN M A S T A T I S T I K A D A S A R 1 7 M A R E T 2014 U T R I W E N I M U K H A I Y A R

PENAKSIRAN M A S T A T I S T I K A D A S A R 1 7 M A R E T 2014 U T R I W E N I M U K H A I Y A R PENAKSIRAN P E N A K S I R A N T I T I K P E N A K S I R A N S E L A N G S E L A N G K E P E R C A Y A A N U N T U K R A T A A N S E L A N G K E P E R C A Y A A N U N T U K V A R I A N S I M A 0 8 S T

Lebih terperinci

BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL)

BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) Setiap peelitia selalu berkeaa dega sekelompok data. Yag dimaksud kelompok disii adalah: Satu orag mempuyai sekelompok data, atau sekelompok orag mempuyai satu

Lebih terperinci

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI Utuk lebih memahami megeai etropi, pada bab ii aka diberika perhituga etropi utuk beberapa distribusi diskrit da kotiu. 3. Distribusi Diskrit Pada sub bab ii dibahas

Lebih terperinci

BAB II LANDASAN TEORI. matematika secara numerik dan menggunakan alat bantu komputer, yaitu:

BAB II LANDASAN TEORI. matematika secara numerik dan menggunakan alat bantu komputer, yaitu: 4 BAB II LANDASAN TEORI 2.1 Model matematis da tahapa matematis Secara umum tahapa yag harus ditempuh dalam meyelesaika masalah matematika secara umerik da megguaka alat batu komputer, yaitu: 2.1.1 Tahap

Lebih terperinci

BAB 4. METODE ESTIMASI PARAMETER DARI DISTRIBUSI WAKTU KERUSAKAN

BAB 4. METODE ESTIMASI PARAMETER DARI DISTRIBUSI WAKTU KERUSAKAN BAB 4 METODE ESTIMASI PARAMETER DARI DISTRIBUSI WAKTU KERUSAKAN Estimasi reliabilitas membutuhka pegetahua distribusi waktu kerusaka yag medasari dari kompoe atau sistem yag dimodelka Utuk memprediksi

Lebih terperinci

BAB 6: ESTIMASI PARAMETER (2)

BAB 6: ESTIMASI PARAMETER (2) Bab 6: Estimasi Parameter () BAB 6: ESTIMASI PARAMETER (). ESTIMASI PROPORSI POPULASI Proporsi merupaka perbadiga atara terjadiya suatu peristiwa dega semua kemugkiaa peritiwa yag bisa terjadi. Besara

Lebih terperinci

PENGUJIAN HIPOTESIS. Pertemuan minggu ke 1 dan 2.

PENGUJIAN HIPOTESIS. Pertemuan minggu ke 1 dan 2. PENGUJIAN HIPOTESIS Tujua Istruksioal Umum :. Mahasiswa mampu memahami apa yag dimaksud dega Hipotesis atau dugaa semetara. Mahasiswa mampu memahami berbagai pegujia hipotesis 3. Mahasiswa mampu memahami

Lebih terperinci

Pendugaan Parameter. Debrina Puspita Andriani /

Pendugaan Parameter. Debrina Puspita Andriani    / Pedugaa Parameter 7 Debria Puspita Adriai E-mail : debria.ub@gmail.com / debria@ub.ac.id Outlie Pedahulua Pedugaa Titik Pedugaa Iterval Pedugaa Parameter: Kasus Sampel Rataa Populasi Pedugaa Parameter:

Lebih terperinci

PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT

PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT Prosidig Semiar Nasioal Matematika da Terapaya 06 p-issn : 0-0384; e-issn : 0-039 PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT Liatus

Lebih terperinci

Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai

Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai PENGUJIAN HIPOTESIS Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai ilai-ilai parameter populasi,

Lebih terperinci

BAB III METODE PENELITIAN Penelitian ini dilakukan di kelas X SMA Muhammadiyah 1 Pekanbaru. semester ganjil tahun ajaran 2013/2014.

BAB III METODE PENELITIAN Penelitian ini dilakukan di kelas X SMA Muhammadiyah 1 Pekanbaru. semester ganjil tahun ajaran 2013/2014. BAB III METODE PENELITIAN A. Waktu da Tempat Peelitia Peelitia dilaksaaka dari bula Agustus-September 03.Peelitia ii dilakuka di kelas X SMA Muhammadiyah Pekabaru semester gajil tahu ajara 03/04. B. Subjek

Lebih terperinci

DERET TAK HINGGA (INFITITE SERIES)

DERET TAK HINGGA (INFITITE SERIES) MATEMATIKA II DERET TAK HINGGA (INFITITE SERIES) sugegpb.lecture.ub.ac.id aada.lecture.ub.ac.id BARISAN Barisa merupaka kumpula suatu bilaga (atau betuk aljabar) yag disusu sehigga membetuk suku-suku yag

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Statistika iferesi merupaka salah satu cabag statistika yag bergua utuk meaksir parameter. Peaksira dapat diartika sebagai dugaa atau perkiraa atas sesuatu yag aka terjadi

Lebih terperinci

Penaksiran Titik Penaksiran Selang. Selang Kepercayaan untuk VARIANSI MA2081 STATISTIKA DASAR

Penaksiran Titik Penaksiran Selang. Selang Kepercayaan untuk VARIANSI MA2081 STATISTIKA DASAR PENAKSIRAN Peaksira Titik Peaksira Selag Selag Kepercayaa utuk RATAAN Selag Kepercayaa utuk VARIANSI MA08 STATISTIKA DASAR MA08 STATISTIKA DASAR Utriwei Mukhaiyar 5 Oktober 0 Metode Peaksira Peaksira Titik

Lebih terperinci

BAB V METODOLOGI PENELITIAN

BAB V METODOLOGI PENELITIAN BAB V METODOLOGI PEELITIA 5.1 Racaga Peelitia Peelitia ii merupaka peelitia kualitatif dega metode wawacara medalam (i depth iterview) utuk memperoleh gambara ketidaklegkapa pegisia berkas rekam medis

Lebih terperinci

Mata Kuliah: Statistik Inferensial

Mata Kuliah: Statistik Inferensial PENGUJIAN HIPOTESIS SAMPEL KECIL Prof. Dr. H. Almasdi Syahza, SE., MP Email: asyahza@yahoo.co.id DEFINISI Pegertia Sampel Kecil Sampel kecil yag jumlah sampel kurag dari 30, maka ilai stadar deviasi (s)

Lebih terperinci

STATISTIKA NON PARAMETRIK

STATISTIKA NON PARAMETRIK . PENDAHULUAN STATISTIKA NON PARAMETRIK Kelebiha Uji No Parametrik: - Perhituga sederhaa da cepat - Data dapat berupa data kualitatif (Nomial atau Ordial) - Distribusi data tidak harus Normal Kelemaha

Lebih terperinci

BAB II TINJAUAN TEORITIS

BAB II TINJAUAN TEORITIS BAB II TINJAUAN TEORITIS.1 Pegertia-pegertia Lapaga pekerjaa adalah bidag kegiata dari pekerjaa/usaha/ perusahaa/kator dimaa seseorag bekerja. Pekerjaa utama adalah jika seseorag haya mempuyai satu pekerjaa

Lebih terperinci

BAB 3 METODE PENELITIAN. Disini penerapan kriteria optimasi yang digunakan untuk menganalisis

BAB 3 METODE PENELITIAN. Disini penerapan kriteria optimasi yang digunakan untuk menganalisis BAB 3 METODE PENELITIAN 3.1 Peetapa Kriteria Optimasi Disii peerapa kriteria optimasi yag diguaka utuk megaalisis kebutuha pokok pada PT. Kusuma Kecaa Khatulistiwa yaitu : 1. Aalisis forecastig (peramala

Lebih terperinci

DISTRIBUSI SAMPLING (Distribusi Penarikan Sampel)

DISTRIBUSI SAMPLING (Distribusi Penarikan Sampel) DISTRIBUSI SAMPLING (Distribusi Pearika Sampel) I. PENDAHULUAN Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

BAB 2 LANDASAN TEORI. Statistika merupakan salah satu cabang penegtahuan yang paling banyak mendapatkan

BAB 2 LANDASAN TEORI. Statistika merupakan salah satu cabang penegtahuan yang paling banyak mendapatkan BAB LANDASAN TEORI. Pegertia Regresi Statistika merupaka salah satu cabag peegtahua yag palig bayak medapatka perhatia da dipelajari oleh ilmua dari hamper semua bidag ilmu peegtahua, terutama para peeliti

Lebih terperinci

ANALISIS RUNTUT WAKTU DAN PERAMALAN (Time Series and Forecasting) Analisis Tren

ANALISIS RUNTUT WAKTU DAN PERAMALAN (Time Series and Forecasting) Analisis Tren ANALISIS RUNTUT WAKTU DAN PERAMALAN (Time Series ad Forecastig) Aalisis Tre P.E.N.D.A.H.U.L.U.A.N Rutut waktu merupaka kumpula data yag tercatat sepajag periode waktu tertetu (cotohya: miggua, bulaa, atau

Lebih terperinci

STATISTIK PERTEMUAN VIII

STATISTIK PERTEMUAN VIII STATISTIK PERTEMUAN VIII Pegertia Estimasi Merupaka bagia dari statistik iferesi Estimasi = pedugaa, atau meaksir harga parameter populasi dega harga-harga statistik sampelya. Misal : suatu populasi yag

Lebih terperinci

Distribusi Sampling (Distribusi Penarikan Sampel)

Distribusi Sampling (Distribusi Penarikan Sampel) Distribusi Samplig (Distribusi Pearika Sampel) 1. Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

L A T I H A N S O A L A N R E G 1 Muhamad Ferdiansyah, S. Stat.

L A T I H A N S O A L A N R E G 1 Muhamad Ferdiansyah, S. Stat. L A T I H A N S O A L A N R E G Muhamad Ferdiasyah, S. Stat. *Saya saraka utuk mecoba sediri baru lihat jawabaya **Jawaba saya BELUM TENTU BENAR karea saya mausia biasa. Silaka dikosultasika jika ada jawaba

Lebih terperinci

BAB III METODE PENELITIAN. Penelitian ini merupakan jenis penelitian deskriptif-kuantitatif, karena

BAB III METODE PENELITIAN. Penelitian ini merupakan jenis penelitian deskriptif-kuantitatif, karena 7 BAB III METODE PENELITIAN A. Jeis Peelitia Peelitia ii merupaka jeis peelitia deskriptif-kuatitatif, karea melalui peelitia ii dapat dideskripsika fakta-fakta yag berupa kemampua siswa kelas VIII SMP

Lebih terperinci

Bab 3 Metode Interpolasi

Bab 3 Metode Interpolasi Baha Kuliah 03 Bab 3 Metode Iterpolasi Pedahulua Iterpolasi serig diartika sebagai mecari ilai variabel tergatug tertetu, misalya y, pada ilai variabel bebas, misalya, diatara dua atau lebih ilai yag diketahui

Lebih terperinci

BAB II METODOLOGI PENELITIAN. kualitatif. Kerangka acuan dalam penelitian ini adalah metode penelitian

BAB II METODOLOGI PENELITIAN. kualitatif. Kerangka acuan dalam penelitian ini adalah metode penelitian BAB II METODOLOGI PEELITIA 2.1. Betuk Peelitia Betuk peelitia dapat megacu pada peelitia kuatitatif atau kualitatif. Keragka acua dalam peelitia ii adalah metode peelitia kuatitatif yag aka megguaka baik

Lebih terperinci

UKURAN PEMUSATAN DATA

UKURAN PEMUSATAN DATA Malim Muhammad, M.Sc. UKURAN PEMUSATAN DATA J U R U S A N A G R O T E K N O L O G I F A K U L T A S P E R T A N I A N U N I V E R S I T A S M U H A M M A D I Y A H P U R W O K E R T O DEFINISI UKURAN PEMUSATAN

Lebih terperinci

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi 6. Pecacaha Lajut Relasi Rekuresi Relasi rekuresi utuk dereta {a } adalah persamaa yag meyataka a kedalam satu atau lebih suku sebelumya, yaitu a 0, a,, a -, utuk seluruh bilaga bulat, dega 0, dimaa 0

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Saham Saham adalah surat berharga yag dapat dibeli atau dijual oleh peroraga atau lembaga di pasar tempat surat tersebut diperjualbelika. Sebagai istrumet ivestasi, saham memiliki

Lebih terperinci

Pertemuan Ke-11. Teknik Analisis Komparasi (t-test)_m. Jainuri, M.Pd

Pertemuan Ke-11. Teknik Analisis Komparasi (t-test)_m. Jainuri, M.Pd Pertemua Ke- Komparasi berasal dari kata compariso (Eg) yag mempuyai arti perbadiga atau pembadiga. Tekik aalisis komparasi yaitu salah satu tekik aalisis kuatitatif yag diguaka utuk meguji hipotesis tetag

Lebih terperinci

Regresi & Korelasi Linier Sederhana. Gagasan perhitungan ditetapkan oleh Sir Francis Galton ( )

Regresi & Korelasi Linier Sederhana. Gagasan perhitungan ditetapkan oleh Sir Francis Galton ( ) Regres & Korelas Ler Sederhaa 1. Pedahulua Gagasa perhtuga dtetapka oleh Sr Fracs Galto (18-1911) Persamaa regres :Persamaa matematk yag memugkka peramala la suatu peubah takbebas (depedet varable) dar

Lebih terperinci

Barisan Aritmetika dan deret aritmetika

Barisan Aritmetika dan deret aritmetika BARISAN DAN DERET BILANGAN Peyusu: Atmii Dhoruri, MS Kode: Jejag: SMP T/P: / A. Kompetesi yag diharapka. Meetuka suku ke- barisa aritmatika da barisa geometri. Meetuka jumlah suku pertama deret aritmatika

Lebih terperinci

TUGAS ANALISIS REGRESI (HALAMAN

TUGAS ANALISIS REGRESI (HALAMAN TUGAS ANALISIS REGRESI (HALAMAN 85-88) 1. Tetuka depede da idepede variabel serta : a. Hitug Sum of Square for Regressio (X) b. Hitug Sum of Square for Residual c. Hitug Mea Sum of Square for Regresssio

Lebih terperinci

ARTIKEL. Menentukan rumus Jumlah Suatu Deret dengan Operator Beda. Markaban Maret 2015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN

ARTIKEL. Menentukan rumus Jumlah Suatu Deret dengan Operator Beda. Markaban Maret 2015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN ARTIKEL Meetuka rumus Jumlah Suatu Deret dega Operator Beda Markaba 191115198801005 Maret 015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN PUSAT PENGEMBANGAN DAN PEMBERDAYAAN PENDIDIK DAN TENAGA KEPENDIDIKAN

Lebih terperinci

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3 BAB XII. SUKU BANYAK A = a Pegertia: f(x) = a x + a x + a x + + a x +a adalah suku bayak (poliom) dega : - a, a, a,.,a, a, a 0 adalah koefisiekoefisie suku bayak yag merupaka kostata real dega a 0 - a

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN A. Subjek Peelitia Peelitia ii dilaksaaka di kawasa huta magrove, yag berada pada muara sugai Opak di Dusu Baros, Kecamata Kretek, Kabupate Batul. Populasi dalam peelitia ii adalah

Lebih terperinci

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X Pedugaa Selag: Metode Pivotal Lagkah-lagkahya 1. Adaika X1, X,..., X adalah cotoh acak dari populasi dega fugsi kepekata f( x; ), da parameter yag tidak diketahui ilaiya. Adaika T adalah peduga titik bagi..

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Variabel-variabel yang digunakan pada penelitian ini adalah:

BAB III METODOLOGI PENELITIAN. Variabel-variabel yang digunakan pada penelitian ini adalah: BAB III METODOLOGI PENELITIAN 3. Variabel da Defiisi Operasioal Variabel-variabel yag diguaka pada peelitia ii adalah: a. Teaga kerja, yaitu kotribusi terhadap aktivitas produksi yag diberika oleh para

Lebih terperinci

III BAHAN DAN METODE PENELITIAN. Bangkok dengan betina ras petelur strain lohman keturunan pertama, berumur satu

III BAHAN DAN METODE PENELITIAN. Bangkok dengan betina ras petelur strain lohman keturunan pertama, berumur satu III BAHAN DAN METODE PENELITIAN 3.1 Baha da Peralata Peelitia 3.1.1 Terak Peelitia Terak peelitia yag diguaka adalah ayam hasil persilaga pejata Bagkok dega betia ras petelur strai lohma keturua pertama,

Lebih terperinci

Yang biasa dinamakan test komposit lawan komposit. c. Hipotesis mengandung pengertian minimum. Perumusan H 0 dan H 1 berbentuk :

Yang biasa dinamakan test komposit lawan komposit. c. Hipotesis mengandung pengertian minimum. Perumusan H 0 dan H 1 berbentuk : PARAMETER PENGJIAN HIPOTESIS MODL PARAMETER PENGJIAN HIPOTESIS. Pedahulua Kalau yag sedag ditest atau diuji itu parameter θ dalam hal ii pegguaaya ati bias rata-rata µ prprsi p, simpaga baku σ da lai-lai,

Lebih terperinci

PERCOBAAN 4 VARIABEL ACAK DAN DISTRIBUSI PROBABILITASNYA

PERCOBAAN 4 VARIABEL ACAK DAN DISTRIBUSI PROBABILITASNYA PERCOBAAN 4 VARIABEL ACAK DAN DISTRIBUSI PROBABILITASNYA 4.. Tujua : Setelah melaksaaka praktikum ii mahasiswa diharapka mampu : Membedaka data berdasarka jeis variabelya Mapatka mea da varias dari distribusi

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1. Lokasi da Waktu Pegambila Data Pegambila data poho Pius (Pius merkusii) dilakuka di Huta Pedidika Guug Walat, Kabupate Sukabumi, Jawa Barat pada bula September 2011.

Lebih terperinci

Penyelesaian: Variables Entered/Removed a. a. Dependent Variable: Tulang b. All requested variables entered.

Penyelesaian: Variables Entered/Removed a. a. Dependent Variable: Tulang b. All requested variables entered. 2. Pelajari data dibawah ii, tetuka depede da idepede variabel serta : a) Hitug Sum of Square for Regressio (X) b) Hitug Sum of Square for Residual c) Hitug Meas Sum of Square for Regressio (X) d) Hitug

Lebih terperinci

BAB II CICILAN DAN BUNGA MAJEMUK

BAB II CICILAN DAN BUNGA MAJEMUK BAB II CICILAN DAN BUNGA MAJEMUK 2.1. Buga Majemuk Ada sedikit perbedaa atara suku buga tuggal da suku buga majemuk. Pada suku buga tuggal, besarya buga B = Mp tidak perah digabugka dega modal M. Sebalikya

Lebih terperinci

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI MIA SMA Negeri 5

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI MIA SMA Negeri 5 III. METODOLOGI PENELITIAN A. Populasi da Sampel Peelitia Populasi dalam peelitia ii adalah semua siswa kelas I MIA SMA Negeri 5 Badar Lampug Tahu Pelajara 04-05 yag berjumlah 48 siswa. Siswa tersebut

Lebih terperinci

PENAKSIRAN METODE PENAKSIRAN CONTOH. Kasus 1: taksiran titik IP = 3,5 Kasus 2: taksiran selang IP = [3,4]

PENAKSIRAN METODE PENAKSIRAN CONTOH. Kasus 1: taksiran titik IP = 3,5 Kasus 2: taksiran selang IP = [3,4] PENAKIRAN Peaksira Titik Peaksira elag elag Kepercayaa utuk µ elag Kepercayaa utuk σ MA 8 Aalisis Data Utriwei Mukhaiyar Oktober 00 008 by UP & UM METODE PENAKIRAN. Peaksira Titik Nilai tuggal dari suatu

Lebih terperinci

9 Departemen Statistika FMIPA IPB

9 Departemen Statistika FMIPA IPB Supleme Resposi Pertemua ANALISIS DATA KATEGORIK (STK351 9 Departeme Statistika FMIPA IPB Pokok Bahasa Sub Pokok Bahasa Referesi Waktu Pegatar Aalisis utuk Data Respo Kategorik Data respo kategorik Sebara

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah BAB ENDAHULUAN. Latar Belakag Masalah Dalam kehidupa yata, hampir seluruh feomea alam megadug ketidak pastia atau bersifat probabilistik, misalya pergeraka lempega bumi yag meyebabka gempa, aik turuya

Lebih terperinci

BAB III PENGGUNAAN METODE EMPIRICAL BEST LINEAR UNBIASED PREDICTION (EBLUP) PADA GENERAL LINEAR MIXED MODEL

BAB III PENGGUNAAN METODE EMPIRICAL BEST LINEAR UNBIASED PREDICTION (EBLUP) PADA GENERAL LINEAR MIXED MODEL BAB III PENGGUNAAN MEODE EMPIRICAL BES LINEAR UNBIASED PREDICION (EBLUP PADA GENERAL LINEAR MIXED MODEL Pada Bab III ii aka dibahas megeai taksira parameter pada Geeral Liear Mixed Model berdasarka asumsi

Lebih terperinci