LANDASAN TEORI. Pada bab ini akan diberikan beberapa konsep dasar (pengertian) yang akan digunakan dalam. pembahasan penelitian. 2.

Ukuran: px
Mulai penontonan dengan halaman:

Download "LANDASAN TEORI. Pada bab ini akan diberikan beberapa konsep dasar (pengertian) yang akan digunakan dalam. pembahasan penelitian. 2."

Transkripsi

1 II. LANDASAN TEORI Pada bab ii aka diberika beberapa kosep dasar (pegertia) yag aka diguaka dalam pembahasa peelitia 2.1 Ruag Vektor Defiisi (Darmawijaya, 2007) Diketahui (V, +) grup komutatif da (F,,. ) lapaga dega eleme idetitas 1. V disebut ruag vektor (vector space) atas F jika ada operasi luar * atara keduaya sehigga utuk setiap x Vda α F meetuka dega tuggal α x V yag memeuhi sifat sifat : (i) α (x + y) = α x + α y, (ii) (α β) x = α x + β x, (iii) (α. β) x = α (β x), (iv) 1 x = x, utuk setiap x, y V da α, β F. 2.2 Ruag Vektor Bagia da Bebas Liear Defiisi (Darmawijaya, 2007)

2 Diketahui V ruag vektor atas lapaga F da W V. Jika himpua W terhadap operasi operasi yag sama dega operasi operasi di bagia V juga merupaka ruag vektor atas F, maka W disebut ruag vektor bagia (vector sub-space) dari V. Teorema (Darmawijaya, 2007) Diketahui V ruag vektor atas lapaga F da W θ. Himpua W merupaka ruag vektor bagia V jika da haya jika utuk setiap x, y W da α, β F berlaku αx + βy W. Teorema (Darmawijaya, 2007) Jika V ruag vektor terhadap lapaga F da X, Y masig masig ruag vektor bagia V maka X + Y = {m + m X, Y}, Juga merupaka ruag vektor bagia V yag memuat X da Y sebagai ruag vektor bagiaya. Teorema (Darmawijaya, 2007) Jika V ruag vektor terhadap lapaga F da X, Y V masig masig ruag vektor bagia da X Y = {θ}, maka utuk setiap x X + Y terdapat dega tuggal m 1 X da 1 Y sehigga x = m Teorema (Darmawijaya, 2007) Diberika ruag vektor V atas lapaga F. Jika x, x k V da λ, α k, β k F utuk setiap k = 1,2,, maka bear bahwa, (i) α k x k + β k x k = (α k + β k )x k, (ii) λ( α k x k ) = (λα k )x k (iii) ( α k )x = α k x, da m m. (iv) ( α k )( j=1 x j ) = j=1 α k x j

3 Teorema (Darmawijaya, 2007) Diberika ruag vektor V atas lapaga F. Jika x 1, x 2, x V, maka W = [x 1, x 2,, x ] merupaka ruag vektor bagia V. Teorema (Darmawijaya, 2007 Jika V ruag vektor atas lapaga F da M V, maka [M] merupaka ruag vektor bagia V. Lebih lajut, [M] merupaka ruag vektor terkecil yag memuat M. Defiisi (Darmawijaya, 2007) Diberika ruag vektor V atas lapaga F. Vektor vektor x 1, x 2,, x V atau {x 1, x 2,, x } V dikataka bebas liier (liiearly idepedet) jika α 1, α 2,, α F da α 1 x 1 + α 2 x α x = θ berakibat α 1 = α 2 = = α = 0. Teorema (Darmawijaya, 2007) Diberika ruag vektor V atas lapaga F. Vektor vektor x 1, x 2,, x V tak bebas liier jika da haya jika terdapat k dega 1 k sehigga vektor x k merupaka kombiasi liier 1 vektor vektor laiya. Akibat (Darmawijaya, 2007) Diberika ruag vektor V atas lapaga F. Vektor vektor x 1, x 2,, x V bebas liier jika da haya jika utuk setiap k, 1 k. Vektor x k buka merupaka kombiasi liier 1 vektor vektor laiya. Teorema (Darmawijaya, 2007)

4 Diketahui V ruag vektor atas lapaga F. Vektor vektor x 1, x 2,, x bebas liier jika da haya jika setiap persamaa α k x k = β k x k berakibat α k = β k utuk setiap k. 2.3 Basis da Dimesi Defiisi (Darmawijaya, 2007) Ruag vektor V dikataka terbagkitka secara higga(fiitely geerated) jika ada vektor vektor x 1, x 2,, x V sehiggga V = [x 1, x 2,, x ]. Dalam keadaa seperti itu, {x 1, x 2,, x } disebut pembagkit (geerator) ruag vektor V. Defiisi (Darmawijaya, 2007) Diberika ruag vektor V. Himpua B V dikataka bebas liier jika setiap himpua bagia higga di dalam B bebas liier. Defiisi (Darmawijaya, 2007) Diberika ruag vektor V atas lapaga F. Himpua B V disebut basis (base) V jika B bebas liier da V = [B]. Teorema (Darmawijaya, 2007)

5 Ruag vektor V terbagkitka secara higga jika da haya jika V mempuyai basis higga. Teorema (Darmawijaya, 2007) Diketahui V ruag vektor da B V basis. Bayakya aggota B disebut dimesi ruag vektor V,ditulis dim (V). Jika bayakya aggota B higga maka dikataka V berdimesi higga da jika bayakya aggota B tak higga maka dikataka V berdimesi tak higga. Teorema (Darmawijaya, 2007) Jika ruag vektor V berdimesi, maka setiap ( + 1) vektor di dalam V tak bebas liier. Akibat (Darmawijaya, 2007) Jika {x 1, x 2,, x } da {y 1, y 2,, y m } masig masig basis utuk ruag vektor V, maka m =. 2.4 Fugsi Liear Fugsi dari suatu ruag vektor ke ruag vektor lai yag bayak diguaka da mudah dalam memahamiya adalah fugsi liear, yaitu fugsi yag bersifat aditif da homoge. Defiisi (Darmawijaya, 2007) Diberika dua ruag vektor V da W, masig masig atas lapaga F yag sama. Fugsi f: V W disebut fugsi liear jika

6 (i) f fugsi aditif (additive) f(x + y) = f(x) + f(y) utuk setiap x, y V, da (ii) f fugsi homoge (homogeeous) f(αx) = αf(x) utuk setiap α da vektor x V. Teorema (Darmawijaya, 2007) Diberika dua ruag vektor V da W masig masig atas lapaga F yag sama (R atau C). Fugsi f: V W merupaka fugsi liear jika da haya jika utuk sebarag skalar α, β da vektor x, y V, berlaku f(αx + βy) = αf(x) + βf(y) Teorema (Darmawijaya, 2007) Diketahui V da W, masig masig ruag vektor atas lapaga F yag sama. Jika f: V W merupaka fugsi liear maka (i) (ii) f( x) = f(x) utuk setiap x V. f(x y) = f(x) f(y) utuk setiap x, y V. (iii) f(θ) = θ, dega θ V da θ W masig masig meyataka vektor ol. (iv) f( α k x k ) = α k f(x k ) utuk setiap skalar α 1, α 2,, α da vektor vektor x 1, x 2,, x V. Teorema (Darmawijaya, 2007) Diketahui V da W, masig masig ruag vektor. Jika f: V W merupaka fugsi liear da g: V W sehigga g(x) = f(x) utuk setiap x V, maka g liear da g = f. Teorema (Darmawijaya, 2007)

7 Diketahui V da W, masig masig ruag vektor da S Vgeerator utuk V. Jika f: V W merupaka fugsi liear da g: V W sehigga g(x) = f(x) utuk setiap x S, maka fugsi g liear da g = f; lebih lajut f(s) merupaka geerator f(v). Teorema (Darmawijaya, 2007) Diketahui V da W, masig masig ruag vektor. Jika f: V W merupaka fugsi liear, maka Rf = f(v) merupaka ruag bagia di dalam W. Himpua Rf disebut ruag jelajah (rage space) fugsi f. Teorema (Darmawijaya, 2007) Diketahui V da W, masig masig ruag vektor. Jika f: V W merupaka fugsi liear, maka Nf = {x V: f(x) = θ } da S = (V Nf) {θ} masig masig merupaka ruag bagia di dalam V. Selajutya, himpua Nf disebut ruag ol (ull space) fugsi f. Teorema (Darmawijaya, 2007) Diketahui V da W, masig masig ruag vektor.jika V berdimesi da f: V W merupaka fugsi liear, maka dim(f(v)). Teorema (Darmawijaya, 2007) Diketahui V da W, masig masig ruag vektor. Jika Jika V berdimesi da f: V W merupaka fugsi liear, maka

8 + p = 2.5 Operator Liear Defiisi (Amato, 2008) Suatu pemetaa T dega daerah asal D(T) da daerah hasil R(T)adalah suatu operator liear jika memeuhi: 1. D(T) da R(T) berada pada ruag vektor atas lapaga yag sama; 2. Utuk semua x, y D(T) da skalar α berlaku T(x + y) = T(x) + T(y) da T(αx) = αt(x). 2.6 Fugsi Liear da Matriks Teorema (Darmawijaya, 2007) Jika V merupaka ruag vektor real (kompleks) berdimesi, maka V isomorfis dega R (C ), yaitu terdapat fugsi liear da bijektif dari V ke R (C ). Akibat (Darmawijaya, 2007) Jika V da W, masig masig ruag vektor (atas lapaga yag sama), dim(v) dim (W), da fugsi f: V W liear da ijektif, maka V isomorfis dega Rf = f(v). Teorema (Darmawijaya, 2007) Diketahui V da W, masig masig ruag vektor (atas lapaga yag sama), dim(v) = da dim(w) = m. Setiap fugsi liear f: V W meetuka matriks A berukura m :

9 β 11 β 12 β 1 α 1 β A = (β ik ) = ( 21 β 22 β 2 α 2 ) ( ) β m1 β m2 β m α sebalikya juga berlaku. Defiisi (Darmawijaya, 2007) Dua ruag vektor V da W dikataka isomorfik (isomorphic) jika ada fugsi liear bijektif f: V W. Dalam hal ii, fugsi f tersebut diamaka isomorfisma ruag vektor (vector space isomorphism) atara V da W. Teorema (Darmawijaya, 2007) Jika U, V da W masig masig adalah ruag vektor ruag vektor atas lapaga yag sama, maka peryataa peryataa di bawah ii bear : (i) Utuk setiap f L(U, V) da g L(V, W), maka g f L(U, W). (ii) L(U, V) merupaka ruag vektor. (iii) L(U) = L(U, U) merupaka aljabar assosiatif yag mempuyai eleme satua. 2.7 Ruag Berorma Defiisi (Darmawijaya, 2007) Diberika ruag liier K. Fugsi x K x R, yag mempuyai sifat-sifat: (N1) x 0, utuk setiap x K x = 0, jika da haya jika x = θ, (θ vektor ol) (N2) αx = α. x, utuk setiap skalar α da x K

10 (N3) x + y x + y, utuk setiap x, y K, Disebut orma (orm) pada K da bilaga oegatif x disebut orma vektor x. Ruag liear K yag dilegkapi dega suatu orma. disebut ruag berorma (orma space) da dituliska sigkat dega (K,. ) atau K saja asalka ormaya telah diketahui. 2.8 Ruag Baach Defiisi (Darmawijaya, 2007) Ruag Baach (Baach Space) adalah ruag berorma yag legkap (sebagai ruag metrik yag legkap) 2.9 Ruag Hilbert Defiisi (Darmawijaya, 2007) Ruag Hilbert (Hilbert Space) adalah ruag pre-hilbert yag legkap Defiisi (Darmawijaya, 2007) Diketahui H ruag liier (i) Fugsi H H dega rumus yag memeuhi sifat-sifat (I1) x, y = y,, x (I2) αx, y = α x, y, (x, y) H H x, y (I3) x, y, z = x, z + y, z

11 Utuk setiap x, y, z H da skalar α, da (I4) x, x > 0 jika da haya jika x θ, disebut ier-product atau dot product, atau scalar product pada H. (ii) Ruag liier H yag dilegkapi dega suatu ier-product disebut ruag pre-hilbert (pre-hilbert space) atau ruag ier-product (ier-product space) Di bawah ii aka diberika cotoh - cotoh Ruag Hilbert : 1. Ruag liier C da R masig-masig merupaka ruag pre-hilbert terhadap ierproduct : x, y = x k y k utuk setiap x = (x 1, x 2,, x ), y = (y 1, y 2,, y ) (R ). Catata: Jika x, y R maka x, y = x k y k = x k y k Karea y k = y k (kompoe-kompoe aggota R merupaka bilaga real). 2. Cotoh yag lebih umum dari pada cotoh 1 adalah ruag liier l 2. l 2 merupaka ruag pre-hilbert terhadap ier-product: x, y = x k y k Utuk setiap x = {x k }, y = {y k } l C[a, b] merupaka ruag pre-hilbert terhadap ier-product:

12 b f, g = (R) f(x)g (x)dx a utuk setiap f, g C[a, b]. C[a, b] dapat diaggap sebagai koleksi semua fugsi kotiu berilai bilaga kompleks. Jadi, g C[a, b] jika da haya jika g = g 1 + ig 2 dega g 1 da g 2 masig-masig fugsi kotiu pada [a, b] berilai bilaga real. Mudah dipahami bahwa jika g = g 1 + ig 2 C[a, b] maka g = g 1 ig 2 C[a, b] 2.10 Basis Orthoormal Defiisi (Darmawijaya, 2007) (i) Basis ortogoal (ortogoal basis) di dalam ruag pre-hilbert adalah basis yag setiap dua vektorya salig tegak lurus. (ii) Basis ortoormal (orthoormal basis) di dalam suatu ruag pre-hilbert adalah basis ortogoal da setiap aggotaya merupaka vektor satua (ormaya sama dega 1). Teorema (Darmawijaya, 2007) Diketahui ruag Hilbert H mempuyai basis orthoormal {x }. Diperoleh peryataa x H jika da haya jika ada {α } l 2 sehigga x = α k x k

13 2.11 Operator pada Ruag Hilbert Teorema (Darmawijaya, 2007) Diketahui H da K masig masig ruag Hilbert. Utuk setiap T L c (K, H) terdapat T L c (K, H) tuggal sehigga utuk setiap x H da y K berakibat Tx, y = x, T y Defiisi (Darmawijaya, 2007) Diberika dua rag Hilbert Hda K. Meurut Teorema 5.1.1, utuk setiap operator T L c (K, H) terdapat T L c (K, H) sehigga Tx, y = x, T y Utuk setiap x H da y K. Operator T disebut operator adjoit atau operator pedampig terhadap operator T. Teorema (Darmawijaya, 2007) Ii adalah sifat sifat operator pedampig. Diberika dua ruag Hilbert Hda K. Jika T, S L c (H, K) da α sebarag skalar maka (i) (T + S) = T + S (ii) (αt) = α T (iii) T = (T ) = T (iv) TT = T T = T 2 = T 2 (v) TT = O T = O (O operator ol). Teorema (Darmawijaya, 2007)

14 Diketahui H, K da X masig masig ruag Hilbert. Jika T L c (H, K) da S L c (K, X) maka (ST) L c (X, H) da (ST) = T S Teorema (Darmawijaya, 2007) Diketahui H da K masig masig ruag Hilbert. T L c (H, K), A H da B K. Jika T(A) B, maka T (B ) A. Teorema (Darmawijaya, 2007) Diketahui M da N berturut-turut merupaka ruag bagia yag tertutup di dalam ruag Hilbert H da K. Utuk setiap T L c (H, K) diperoleh T(M) N jika da haya jika T (N ) M. Teorema (Darmawijaya, 2007) Diketahui H da K masig masig ruag Hilbert. Jika T L c (H, K) maka (i) (ii) {x: x H da Tx = θ } = {T (K)} {x: x H da Tx = θ } = T (K) (iii) {y: y K da T y = θ} = {T(H)} (iv) {y: y K da T y = θ} = T(H) Defiisi (Darmawijaya, 2007) Diketahui H suatu ruag Hilbert T L c (H) disebut : 1. Operator isometrik (isometric operator) jika T T = I ; 2. Operator uiter (uitary operator) jika T T = TT = I; 3. Operator madiri (self adjoit operator) jika T = T ;

15 4. Operator proyeksi (projectio operator) jikat = T da TT = T ; 5. Operator ormal (ormal operator) jika T T = TT Ruag ukura Jika Ω adalah himpua tak kosog, koleksi semua himpuaya disebut himpua kuasa ( power set) da biasa dituliska dega P(Ω) atau 2 Ω Defiisi ( Darmawijaya, 2007) (a). Jika Ω θ, koleksi semua A 2 Ω disebut aljabar-σ himpua pada Ω jika memeuhi sifat: 1. θ A 2. A A A c A 3. {A } A =1 A A (b). jika A aljabar-σ himpua pada Ω, maka setiap aggota A disebut himpua terukur da (Ω, A) pasaga berurut Ω dega A disebut ruag ukura (c). jika (Ω, A) ruag terukur, fugsi μ : A R disebut ukura pada (Ω, A ) jika μ memeuhi sifat- sifat berikut: 1. μ(a) 0 utuk setiap A A 2. μ(ø) = 0 3. μ( =1 A )= =1 μ(a ) utuk setiap barisa {A } A yag salig asig

16 (d). Ruag terukur (Ω, A) yag dilegkapi dega suatu ukura μ padaya disebut ruag ukura da ditulis dega (Ω, A,μ) Defiisi ( Darmawijaya, 2007) Diberika Ω Ø, fugsi μ * : 2 Ω R disebut ukura luar pada Ω jika fugsi tersebut mempuyai sifat : (a). μ * (A) 0 utuk setiap A 2 Ω da μ * (Ø) = 0 (b). μ * (A) μ * (B) uuk setiap A,B 2 Ω dega A B (c). μ * ( =1 A ) =1 μ (A ) Utuk setiap { A} 2 Ω Defiisi ( Darmawijaya, 2007) Jika μ * ukura luar pada himpua Ω Ø, maka E Ω dikataka terukur μ * jika μ * (A)= μ * (A E) + μ (A E c ) utuk setiap A Ω Defiisi (Darmawijaya, 2007) Jika (Ω, A) ruag ukura da E A, maka fugsi f : Ω R dikataka terukur pada E jika salah satu peryataa (i),(ii),(iii) atau (iv) terpeuhi: (i). {x:x & f(x) < α} A E (ii). {x:x & f(x) α} A E

17 (iii). {x:x & f(x) > α} A E (iv). {x:x & f(x) α} A E Utuk setiap α R Itegral Lebesgue Pada tahu 1902 Lebesgue, seorag matematikawa Peracis mecermati adaya fugsi yag tidak teritegral Riema yaitu fugsi yag ilaiya 0 da 1. Selajutya Lebesgue meyusu teori ukura yag terkeal dega ukura Lebesgue. Lebesgue meyusu teori itegral baru yag merupaka perluasa dari itegral Riema karea jika fugsi f teritegral Riema pada [a, b] maka fugsi f juga teritegral Lebesgue pada [a, b]. Defiisi (Darmawijaya. 2007) Diketahui (Ω, A, μ) ruag ukura legkap da higga σ. jika f: Ω R (berbetuk kaoik): φ = α k χ Ek da E ЄA, bilaga E φ dμ = α k μ (E E k )

18 disebut ilai itegral μ / itegral Lebesgue umum fugsi sederhaa μ pada E. Jika bilaga E φ dμ < Maka fugsi sederhaa φ dikataka teritegral μ pada

TINJAUAN PUSTAKA. 2.1 Ruang Vektor. Definisi (Darmawijaya, 2007) Diketahui (V, +) grup komutatif dan (F,,. ) lapangan dengan elemen identitas

TINJAUAN PUSTAKA. 2.1 Ruang Vektor. Definisi (Darmawijaya, 2007) Diketahui (V, +) grup komutatif dan (F,,. ) lapangan dengan elemen identitas II. TINJAUAN PUSTAKA 2.1 Ruag Vektor Defiisi 2.1.1 (Darmawijaya, 2007) Diketahui (V, +) grup komutatif da (F,,. ) lapaga dega eleme idetitas 1. V disebut ruag vektor (vector space) atas F jika ada operasi

Lebih terperinci

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR Nur Aei Prodi Matematika, FST-UINAM uraeiatullah@gmail.com Ifo: Jural MSA Vol. 3 No. 2 Edisi: Juli Desember

Lebih terperinci

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR Nur Aei Prodi Matematika, FST-UINAM uraeiatullah@gmail.com Ifo: Jural MSA Vol. 3 No. 2 Edisi: Juli Desember

Lebih terperinci

BAB II TEORI DASAR. Definisi Grup G disebut grup komutatif atau grup abel jika berlaku hukum

BAB II TEORI DASAR. Definisi Grup G disebut grup komutatif atau grup abel jika berlaku hukum BAB II TEORI DASAR 2.1 Aljabar Liier Defiisi 2. 1. 1 Grup Himpua tak kosog G disebut grup (G, ) jika pada G terdefiisi operasi, sedemikia rupa sehigga berlaku : a. Jika a, b eleme dari G, maka a b eleme

Lebih terperinci

LANDASAN TEORI. Secara umum, himpunan kejadian A i ; i I dikatakan saling bebas jika: Ruang Contoh, Kejadian, dan Peluang

LANDASAN TEORI. Secara umum, himpunan kejadian A i ; i I dikatakan saling bebas jika: Ruang Contoh, Kejadian, dan Peluang 2 LANDASAN TEORI Ruag Cotoh, Kejadia, da Peluag Percobaa acak adalah suatu percobaa yag dapat diulag dalam kodisi yag sama, yag hasilya tidak dapat diprediksi secara tepat tetapi dapat diketahui semua

Lebih terperinci

PERTEMUAN 13. VEKTOR dalam R 3

PERTEMUAN 13. VEKTOR dalam R 3 PERTEMUAN VEKTOR dalam R Pegertia Ruag Vektor Defiisi R Jika adalah sebuah bilaga bulat positif, maka tupel - - terorde (ordered--tuple) adalah sebuah uruta bilaga riil ( a ),a,..., a. Semua tupel - -terorde

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang Masalah

BAB I PENDAHULUAN. A. Latar Belakang Masalah BAB I PENDAHULUAN A. Latar Belakag Masalah Struktur alabar adalah suatu himpua yag di dalamya didefiisika suatu operasi bier yag memeuhi aksioma-aksioma tertetu. Gelaggag ( Rig ) merupaka suatu struktur

Lebih terperinci

TEOREMA WEYL UNTUK OPERATOR HYPONORMAL

TEOREMA WEYL UNTUK OPERATOR HYPONORMAL Jural UJMC, Volume 3, Nomor, Hal. - 6 pissn : 460-3333 eissn : 579-907X TEOREMA WEYL UNTUK OPERATOR HYPONORMAL Guawa Uiversitas Muhammadiyah Purwokerto, gu.oge@gmail.com Abstract This paper aims at describig

Lebih terperinci

Homomorfisma Pada Semimodul Atas Aljabar Max-Plus

Homomorfisma Pada Semimodul Atas Aljabar Max-Plus Homomorfisma Pada Semimodul Atas Aljabar Max-Plus A 14 Oleh : Musthofa Jurusa Pedidika Matematika FMIPA UNY Abstrak Kosep homorfisma telah bayak dibahas pada beberapa struktur aljabar yaitu pada ruag vektor

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 71-76, Agustus 2003, ISSN :

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 71-76, Agustus 2003, ISSN : JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 71-76, Agustus 2003, ISSN : 1410-8518 SYARAT CUKUP AGAR SUATU FUNGSI TERINTEGRAL HENSTOCK MUTLAK DI DALAM RUANG METRIK KOMPAK LOKAL Mauharawati Jurusa Matematika

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 3 BAB II TINJAUAN PUSTAKA Pada bab ii aka dituliska beberapa aspek teoritis berupa defiisi, teorema da sifat-sifat yag berhubuga dega aljabar liear, struktur aljabar da teori kodig yag diguaka sebagai

Lebih terperinci

KEKONVERGENAN BARISAN DI DALAM RUANG

KEKONVERGENAN BARISAN DI DALAM RUANG KEKONVERGENAN BARISAN DI DALAM RUANG FUNGSI KONTINU C[a, b] Firdaus Ubaidillah 1, Soepara Darmawijaya, Ch. Rii Idrati 1 Jurusa Matematika FMIPA Uiversitas Gadjah Mada Yogyakarta e-mail: irdaus_u@yahoo.com

Lebih terperinci

MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR. Dosen Pengampu : Darmadi, S.Si, M.Pd

MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR. Dosen Pengampu : Darmadi, S.Si, M.Pd MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR Dose Pegampu : Darmadi, S.Si, M.Pd Disusu : Kelas 5A / Kelompok 5 : Dia Dwi Rahayu (084. 06) Hefetamala (084. 4) Khoiril Haafi (084. 70) Liaatul Nihayah (084. 74)

Lebih terperinci

BAB III RUANG HAUSDORFF. Pada bab ini akan dibahas mengenai ruang Hausdorff, kekompakan pada

BAB III RUANG HAUSDORFF. Pada bab ini akan dibahas mengenai ruang Hausdorff, kekompakan pada 8 BAB III RUANG HAUSDORFF Pada bab ii aka dibahas megeai ruag Hausdorff, kekompaka pada ruag Hausdorff da ruag regular legkap. Pembahasa diawali dega medefiisika Ruag Hausdorff da beberapa sifatya kemudia

Lebih terperinci

SIFAT-SIFAT SEMIGRUP SIMETRIS INTERVAL

SIFAT-SIFAT SEMIGRUP SIMETRIS INTERVAL SIFAT-SIFAT SEMIGRUP SIMETRIS INTERVAL Riza Febri Yusma Sri Gemawati Asli Sirait *riza_febri@yahoo.com Mahasiswa Program S Matematika Dose Jurusa Matematika Fakultas Matematika da Ilmu Pegetahua Alam Uiveritas

Lebih terperinci

Mariatul Kiftiah. JurusanMatematika FMIPA Universitas Tanjungpura, Pontianak Jl. A Yani Pontianak ABSTRACT

Mariatul Kiftiah. JurusanMatematika FMIPA Universitas Tanjungpura, Pontianak Jl. A Yani Pontianak ABSTRACT Prosidig Semirata2015 bidag MIPA BKS-PTN Barat Uiversitas Tajugpura Potiaak EKSISTENSI DAN KETUNGGALAN TITIK TETAP DARI PEMETAAN KANNAN DI RUANG MODULAR (THE EXISTENCE AND UNIQUENESS OF A FIXED POINT FOR

Lebih terperinci

DASAR-DASAR TEORI RUANG HILBERT

DASAR-DASAR TEORI RUANG HILBERT DASAR-DASAR TEORI RUANG HILBERT Herry P. Suryawa 1 Geometri Ruag Hilbert Defiisi 1.1 Ruag vektor V atas lapaga K {R, C} disebut ruag hasilkali dalam jika ada fugsi (, : V V K sehigga utuk setiap x, y,

Lebih terperinci

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa istilah, definisi serta konsep-konsep yang

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa istilah, definisi serta konsep-konsep yang II. LANDASAN TEORI Pada bab ii aka diberika beberapa istilah, defiisi serta kosep-kosep yag medukug dalam peelitia ii. 2.1 Kosep Dasar Teori Graf Berikut ii aka diberika kosep dasar teori graf yag bersumber

Lebih terperinci

KETERKAITAN ANTARA MODUL BEBAS DENGAN MODUL DILIHAT DARI SIFAT-SIFAT HOMOMORFISME MODUL

KETERKAITAN ANTARA MODUL BEBAS DENGAN MODUL DILIHAT DARI SIFAT-SIFAT HOMOMORFISME MODUL KETERKAITAN ANTARA MODUL BEBAS DENGAN MODUL DILIHAT DARI SIFAT-SIFAT HOMOMORFISME MODUL Khusul Afifa 1, Abdussakir 2 1 Mahasiswa Jurusa Matematika UIN Maulaa Malik Ibrahim Malag 2 Dose Jurusa Matematika

Lebih terperinci

II. TINJAUAN PUSTAKA. Secara umum apabila a bilangan bulat dan b bilangan bulat positif, maka ada tepat = +, 0 <

II. TINJAUAN PUSTAKA. Secara umum apabila a bilangan bulat dan b bilangan bulat positif, maka ada tepat = +, 0 < II. TINJAUAN PUSTAKA 2.1 Keterbagia Secara umum apabila a bilaga bulat da b bilaga bulat positif, maka ada tepat satu bilaga bulat q da r sedemikia sehigga : = +, 0 < dalam hal ii b disebut hasil bagi

Lebih terperinci

II LANDASAN TEORI. Sebuah bilangan kompleks dapat dinyatakan dalam bentuk. z = x jy. (2.4)

II LANDASAN TEORI. Sebuah bilangan kompleks dapat dinyatakan dalam bentuk. z = x jy. (2.4) 3 II LANDASAN TEORI 2.1 Peubah Kompleks da Fugsi Kompleks Sebuah bilaga kompleks dapat diyataka dalam betuk z = x + jy, (2.1) dega x da y adalah bilaga-bilaga real da j = 1. Bilaga x disebut bagia real

Lebih terperinci

SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS

SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS Prosidig Semiar Nasioal Peelitia, Pedidika da Peerapa MIPA, Fakultas MIPA, Uiversitas Negeri Yogyakarta, 4 Mei 0 SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS Musthofa Jurusa Pedidika Matematika FMIPA

Lebih terperinci

,n N. Jelas barisan ini terbatas pada dengan batas M =: 1, dan. barisan ini kovergen ke 0.

,n N. Jelas barisan ini terbatas pada dengan batas M =: 1, dan. barisan ini kovergen ke 0. PROGRAM STUDI PENDIDIKAN MATEMATIKA FKIP UNMUH PONOROGO SOAL UJIAN TENGAH SEMESTER GENAP TA 03/04 Mata Ujia : Aalisis Real Tipe Soal : REGULER Dose : Dr. Jula HERNADI Waktu : 90 meit Hari, Taggal : Selasa,

Lebih terperinci

KELUARGA EKSPONENSIAL Untuk Memenuhi Tugas Mata Kuliah Statistika Inferensial Dosen Pengampu: Nendra Mursetya Somasih Dwipa, M.Pd

KELUARGA EKSPONENSIAL Untuk Memenuhi Tugas Mata Kuliah Statistika Inferensial Dosen Pengampu: Nendra Mursetya Somasih Dwipa, M.Pd KELUARGA EKSPONENSIAL Utuk Memeuhi Tugas Mata Kuliah Statistika Iferesial Dose Pegampu: Nedra Mursetya Somasih Dwipa, M.Pd Disusu Oleh : V A4 Kelompok. Nuuk Rohaigsih (444009). Rochayati (444000) 3. Siam

Lebih terperinci

TUGAS ANALISIS REAL LANJUT. a b < a + A. b + B < A B.

TUGAS ANALISIS REAL LANJUT. a b < a + A. b + B < A B. TUGAS ANALISIS REAL LANJUT NOVEMBER 207 () (a) Jika b > 0, B > 0, da a b < A, buktika ab < ba. Kemudia buktika B a b < a + A b + B < A B. (b) Buktika [ 2 (a + b)] 2 2 (a2 + b 2 ). Kemudia tujukka bahwa

Lebih terperinci

BAB II LANDASAN TEORI. Pada bagian ini akan dibahas tentang teori-teori dasar yang. digunakan untuk dalam mengestimasi parameter model.

BAB II LANDASAN TEORI. Pada bagian ini akan dibahas tentang teori-teori dasar yang. digunakan untuk dalam mengestimasi parameter model. BAB II LANDASAN TEORI Pada bagia ii aka dibahas tetag teori-teori dasar yag diguaka utuk dalam megestimasi parameter model.. MATRIKS DAN VEKTOR Defiisi : Trace dari matriks bujur sagkar A a adalah pejumlaha

Lebih terperinci

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang 5. DERET

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang 5. DERET Pertemua 7. BAHAN AJAR ANALISIS REAL Matematika STKIP Tuaku Tambusai Bagkiag 5. da kekovergeaya 5. DERET Diberika sebuah barisa a, dapat didefeisika barisa bilaga real S N dega S N := N a = a + a 2 +...

Lebih terperinci

I. DERET TAKHINGGA, DERET PANGKAT

I. DERET TAKHINGGA, DERET PANGKAT I. DERET TAKHINGGA, DERET PANGKAT. Pedahulua Pembahasa tetag deret takhigga sebagai betuk pejumlaha suku-suku takhigga memegag peraa petig dalam fisika. Pada bab ii aka dibahas megeai pegertia deret da

Lebih terperinci

SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS. Abstrak

SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS. Abstrak Prosidig Semiar Nasioal Peelitia, Pedidika da Peerapa MIPA, Fakultas MIPA, Uiversitas Negeri Yogyakarta, 4 Mei 0 SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS Musthofa Jurusa Pedidika Matematika FMIPA

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 3 BAB II TINJAUAN PUSTAKA.1 Ruag Cotoh, Kejadia da Peluag Defiisi.1 (Ruag cotoh da kejadia) Suatu percobaa yag dapat diulag dalam kodisi yag sama, yag hasilya tidak bisa diprediksi secara tepat tetapi

Lebih terperinci

CATATAN KULIAH Pertemuan I: Pengenalan Matematika Ekonomi dan Bisnis

CATATAN KULIAH Pertemuan I: Pengenalan Matematika Ekonomi dan Bisnis CATATAN KULIAH Pertemua I: Pegeala Matematika Ekoomi da Bisis A. Sifat-sifat Matematika Ekoomi 1. Perbedaa Matematika vs. Nomamatematika Ekoomi Keutuga pedekata matematika dalam ilmu ekoomi Ketepata (Precise),

Lebih terperinci

RUANG VEKTOR MATRIKS FUZZY

RUANG VEKTOR MATRIKS FUZZY RUANG VEKTOR MATRIKS FUZZY Siti Robiatul Adawiyah 1, Rade Sulaima 2 1 Jurusa Matematika, Fakultas Matematika da Ilmu Pegetahua Alam, Uiversitas Negeri Surabaya, 60231 2 Jurusa Matematika, Fakultas Matematika

Lebih terperinci

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian BAB I PENDAHULUAN A. Latar Belakag Masalah Matematika merupaka suatu ilmu yag mempuyai obyek kajia abstrak, uiversal, medasari perkembaga tekologi moder, da mempuyai pera petig dalam berbagai disipli,

Lebih terperinci

SIFAT-SIFAT FUNGSI YANG TERINTEGRAL MCSHANE DALAM RUANG EUCLIDE BERDIMENSI N UNTUK FUNGSI-FUNGSI BERNILAI BANACH

SIFAT-SIFAT FUNGSI YANG TERINTEGRAL MCSHANE DALAM RUANG EUCLIDE BERDIMENSI N UNTUK FUNGSI-FUNGSI BERNILAI BANACH βeta p-issn: 2085-5893 / e-issn: 2541-0458 http://juralbeta.ac.id Vol. 5 No. 1 (Mei) 2012, Hal. 21-29 βeta 2012 SIFAT-SIFAT FUNGSI YANG TRINTGRAL MCSHAN DALAM RUANG UCLID BRDIMNSI N UNTUK FUNGSI-FUNGSI

Lebih terperinci

PEMBUKTIAN SIFAT RUANG BANACH PADA B 1/4 (K) Malahayati

PEMBUKTIAN SIFAT RUANG BANACH PADA B 1/4 (K) Malahayati Jural Matematika Muri da Terapa εpsilo Vol. 07, No.01, (2013), Hal. 33 44 PEMBUKTIAN SIFAT RUANG BANACH PADA B 1/4 (K) Malahayati Program Studi Matematika Fakultas Sais da Tekologi UIN Sua Kalijaga Yogyakarta

Lebih terperinci

InfinityJurnal Ilmiah Program Studi Matematika STKIP Siliwangi Bandung, Vol 2, No.1, Februari 2013

InfinityJurnal Ilmiah Program Studi Matematika STKIP Siliwangi Bandung, Vol 2, No.1, Februari 2013 IfiityJural Ilmiah Program Studi Matematika STKIP Siliwagi Badug, Vol 2, No.1, Februari 2013 KEKONTINUAN FUNGSI PADA RUANG METRIK Oleh: Cece Kustiawa Jurusa Pedidika Matematika FPMIPA UPI, cecekustiawa@yahoo.com

Lebih terperinci

Bab 2. Sistem Bilangan Real Aksioma Bilangan Real Misalkan adalah himpunan bilangan real, P himpunan bilangan positif dan fungsi + dan.

Bab 2. Sistem Bilangan Real Aksioma Bilangan Real Misalkan adalah himpunan bilangan real, P himpunan bilangan positif dan fungsi + dan. Bab Sistem Bilaga Real.. Aksioma Bilaga Real Misalka adalah himpua bilaga real, P himpua bilaga positif da fugsi + da. dari ke da asumsika memeuhi aksioma-aksioma berikut: Aksioma Lapaga Utuk semua bilaga

Lebih terperinci

Definisi Integral Tentu

Definisi Integral Tentu Defiisi Itegral Tetu Bila kita megedarai kedaraa bermotor (sepeda motor atau mobil) selama 4 jam dega kecepata 50 km / jam, berapa jarak yag ditempuh? Tetu saja jawabya sagat mudah yaitu 50 x 4 = 200 km.

Lebih terperinci

Setelah mempelajari modul ini Anda diharapkan dapat: a. memeriksa apakah suatu pemetaan merupakan operasi;

Setelah mempelajari modul ini Anda diharapkan dapat: a. memeriksa apakah suatu pemetaan merupakan operasi; Modul 1 Operasi Dr. Ahmad Muchlis B PENDAHULUAN erapakah 97531 86042? Kalau Ada megguaka kalkulator, jawabaya amat bergatug pada tipe kalkulator yag Ada pakai. 9 Kalkulator ilmiah Casio fx-250 memberika

Lebih terperinci

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi 6. Pecacaha Lajut Relasi Rekuresi Relasi rekuresi utuk dereta {a } adalah persamaa yag meyataka a kedalam satu atau lebih suku sebelumya, yaitu a 0, a,, a -, utuk seluruh bilaga bulat, dega 0, dimaa 0

Lebih terperinci

BAB I PENDAHULUAN. , membentuk struktur ring terhadap operasi penjumlahan matriks dan operasi pergandaan matriks baku. Himpunan bagian dari

BAB I PENDAHULUAN. , membentuk struktur ring terhadap operasi penjumlahan matriks dan operasi pergandaan matriks baku. Himpunan bagian dari BB I PENDHULUN. Latar Belakag Masalah Struktur rig (gelaggag) R adalah suatu himpua R yag kepadaya didefiisika dua operasi bier yag disebut pejumlaha da pergadaa yag memeuhi aksioma-aksioma tertetu, yaitu:

Lebih terperinci

Supriyadi Wibowo Jurusan Matematika F MIPA UNS

Supriyadi Wibowo Jurusan Matematika F MIPA UNS Prosidig Semiar Nasioal Peelitia, Pedidika da Peerapa MIPA akultas MIPA, Uiversitas Negeri Yogyakarta, 16 Mei 29 HUBUNGAN ANTARA ORDER DERIVATI- DARI UNGSI f : DENGAN DIMENSI-γ DARI HIMPUNAN RAKTAL Supriyadi

Lebih terperinci

SIFAT-SIFAT DASAR MATRIKS SKEW HERMITIAN Basic Properties of Skew Hermitian Matrices

SIFAT-SIFAT DASAR MATRIKS SKEW HERMITIAN Basic Properties of Skew Hermitian Matrices Jural Barekeg Vol. 7 No. 2 Hal. 19 26 (2013) SIFAT-SIFAT DASAR MATRIKS SKEW HERMITIAN Basic Properties of Skew Hermitia Matrices LIDIA SALAKA 1, HENRY W. M. PATTY 2, MOZART WINSTON TALAKUA 3 1 Mahasiswa

Lebih terperinci

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n LIMIT 4.. FUNGSI LIMIT Defiisi 4.. A R Titik c R adalah titik limit dari A, jika utuk setiap δ > 0 ada palig sedikit satu titik di A, c sedemikia sehigga c < δ. Defiisi diatas dapat disimpulka dega cara

Lebih terperinci

Jurnal Matematika Murni dan Terapan Vol. 6 No.1 Juni 2012: 9-16 KRITERIA KEKONVERGENAN CAUCHY PADA RUANG METRIK KABUR INTUITIONISTIC

Jurnal Matematika Murni dan Terapan Vol. 6 No.1 Juni 2012: 9-16 KRITERIA KEKONVERGENAN CAUCHY PADA RUANG METRIK KABUR INTUITIONISTIC Jural Matematika Muri da Teraa Vol. 6 No.1 Jui 01: 9-16 KRITERIA KEKONVERGENAN CAUCHY PADA RUANG METRIK KABUR INTUITIONISTIC Muhammad Ahsar Karim 1 Faisal Yui Yulida 3 [1,,3] PS Matematika FMIPA Uiversitas

Lebih terperinci

Distribusi Pendekatan (Limiting Distributions)

Distribusi Pendekatan (Limiting Distributions) Distribusi Pedekata (Limitig Distributios) Ada 3 tekik utuk meetuka distribusi pedekata: 1. Tekik Fugsi Distribusi Cotoh 2. Tekik Fugsi Pembagkit Mome Cotoh 3. Tekik Teorema Limit Pusat Cotoh Fitriai Agustia,

Lebih terperinci

BAB I PENDAHULUAN. Integral adalah salah satu konsep penting dalam Matematika yang

BAB I PENDAHULUAN. Integral adalah salah satu konsep penting dalam Matematika yang BAB I PENDAHULUAN 1.1 Latar Belakag Masalah Itegral adalah salah satu kosep petig dalam Matematika yag dikemukaka pertama kali oleh Isac Newto da Gottfried Wilhelm Leibiz pada akhir abad ke-17. Selajutya

Lebih terperinci

1 Persamaan rekursif linier non homogen koefisien konstan tingkat satu

1 Persamaan rekursif linier non homogen koefisien konstan tingkat satu Secara umum persamaa rekursif liier tigkat-k bisa dituliska dalam betuk: dega C 0 0. C 0 x + C 1 x 1 + C 2 x 2 + + C k x k = b, Jika b = 0 maka persamaa rekursif tersebut diamaka persamaa rekursif liier

Lebih terperinci

Secara umum, suatu barisan dapat dinyatakan sebagai susunan terurut dari bilangan-bilangan real:

Secara umum, suatu barisan dapat dinyatakan sebagai susunan terurut dari bilangan-bilangan real: BARISAN TAK HINGGA Secara umum, suatu barisa dapat diyataka sebagai susua terurut dari bilaga-bilaga real: u 1, u 2, u 3, Barisa tak higga merupaka suatu fugsi dega domai berupa himpua bilaga bulat positif

Lebih terperinci

) didefinisikan sebagai persamaan yang dapat dinyatakan dalam bentuk: a x a x a x b... b adalah suatu urutan bilangan dari bilangan s1, s2,...

) didefinisikan sebagai persamaan yang dapat dinyatakan dalam bentuk: a x a x a x b... b adalah suatu urutan bilangan dari bilangan s1, s2,... SISEM PERSAMAAN LINIER DAN MARIKS. SISEM PERSAMAAN LINIER Secara umum, persamaa liier dega variabel ( x, x,..., x ) didefiisika sebagai persamaa yag dapat diyataka dalam betuk: a x a x a x b... dega a,

Lebih terperinci

PEMETAAN KONTRAKTIF PADA RUANG b-metrik CONE R BERNILAI R 2

PEMETAAN KONTRAKTIF PADA RUANG b-metrik CONE R BERNILAI R 2 J. Math. ad Its Appl. ISSN: 829-605X Vol. 3, No. 2, Nopember 206, -0 PEMETAAN KONTRAKTIF PADA RUANG b-metrik CONE R BERNILAI R 2 Suarsii, Mahmud Yuus 2, Sadjido 3, Auda Nuril Z 4,2,3,4 Jurusa Matematika,

Lebih terperinci

INVERS TERGENERALISASI MATRIKS ATAS ALJABAR MAXPLUS Musthofa Jurusan Pendidikan Matematika FMIPA UNY

INVERS TERGENERALISASI MATRIKS ATAS ALJABAR MAXPLUS Musthofa Jurusan Pendidikan Matematika FMIPA UNY INVERS TERGENERALISASI MATRIKS ATAS ALJABAR MAXPLUS Musthofa Jurusa Pedidika Matematika FMIPA UNY musthofa@uy.ac.id Abstrak Jika A matriks atas lapaga, maka pasti terdapat dega tuggal suatu matriks B yag

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Bicriteria Liear Programmig (BLP) Pesoala optimisasi dega beberapa fugsi tujua memperhitugka beberapa tujua yag koflik secara simulta, secara umum Multi objective programmig (MOP)

Lebih terperinci

SIFAT SIFAT RUANG VEKTOR ATAS LAPANGAN

SIFAT SIFAT RUANG VEKTOR ATAS LAPANGAN SIFAT SIFAT RUANG VEKTOR ATAS LAPANGAN Dose Pegampu : Pof. D. Si Wahyui DISUSUN OLEH: Nama : Muh. Zaki Riyato Nim : 02/156792/PA/08944 Pogam Studi : Matematika JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN

Lebih terperinci

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan REGRESI LINIER DAN KORELASI Variabel dibedaka dalam dua jeis dalam aalisis regresi: Variabel bebas atau variabel prediktor -> variabel yag mudah didapat atau tersedia. Dapat diyataka dega X 1, X,, X k

Lebih terperinci

BARISAN PANGKAT TERURUT MATRIKS PADA ALJABAR MAX PLUS

BARISAN PANGKAT TERURUT MATRIKS PADA ALJABAR MAX PLUS BRISN PNGKT TERURUT MTRIKS PD LJBR MX PLUS Nurwa Jurusa Matematika FMIP Uiversitas Negeri Gorotalo E-mail: urwa_mat@ug.ac.id bstrak Diberika matriks R yag memeuhi = λ. Matriks adalah k + c c k taktereduksi

Lebih terperinci

Semigrup Matriks Admitting Struktur Ring

Semigrup Matriks Admitting Struktur Ring Semigrup Matriks dmittig Struktur ig K a r y a t i Jurusa Pedidika Matematika FMIP, Uiversitas Negeri Yogyakarta Email: yatiuy@yahoo.com bstrak Diberika adalah rig komutatif dega eleme satua da adalah

Lebih terperinci

SIFAT SIFAT RUANG VEKTOR ATAS LAPANGAN (FIELD)

SIFAT SIFAT RUANG VEKTOR ATAS LAPANGAN (FIELD) SIFAT SIFAT RUANG VEKTOR ATAS LAPANGAN (FIELD) Muhamad Zaki Riyato NIM: 02/156792/PA/08944 E-mail: zaki@mail.ugm.ac.id http://zaki.math.web.id Dose Pembimbig: Pof. D. Si Wahyui Pedahulua Sebelum melagkah

Lebih terperinci

Jurnal Matematika Murni dan Terapan Vol. 4 No.2 Desember 2010: 1-13 TEOREMA TITIK TETAP BANACH PADA RUANG METRIK-D

Jurnal Matematika Murni dan Terapan Vol. 4 No.2 Desember 2010: 1-13 TEOREMA TITIK TETAP BANACH PADA RUANG METRIK-D Jural Mateatika Muri da Terapa Vol 4 No Deseber : - 3 TEOREMA TITIK TETAP BANACH PADA RUANG METRIK-D Muhaad Ahsar Kari, Dewi Sri Susati, da Nurul Huda Progra Studi Mateatika Uiversitas Labug Magkurat Jl

Lebih terperinci

Hendra Gunawan. 12 Februari 2014

Hendra Gunawan. 12 Februari 2014 MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2013/2014 12 Februari 2014 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 82 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg

Lebih terperinci

MATEMATIKA DISKRIT FUNGSI

MATEMATIKA DISKRIT FUNGSI 1 MATEMATIKA DISKRIT FUNGSI Fugsi Misalka A da B himpua. Relasi bier f dari A ke B merupaka suatu fugsi jika setiap eleme di dalam A dihubugka dega tepat satu eleme di dalam B. Jika f adalah fugsi dari

Lebih terperinci

BARISAN TAK HINGGA DAN DERET TAK HINGGA

BARISAN TAK HINGGA DAN DERET TAK HINGGA BARIAN TAK HINGGA DAN DERET TAK HINGGA Bajar/Barisa Tak Higga Barisa tak higga { } adalah suatu fugsi dari dimaa daerah domaiya adalah himpua bilaga bulat positif (bilaga asli). Cotoh: Bila.. maka fugsi

Lebih terperinci

Pengaruh Kenon-Unitalan Modul Terhadap Hasil Kali Tensor

Pengaruh Kenon-Unitalan Modul Terhadap Hasil Kali Tensor 6 : Pegaruh Keo Uitala odul. Pegaruh Keo-Uitala odul Terhadap Hasil Kali Tesor Oleh : Jurusa atetika FIP UNDIP Jl. Prof. H. Soedarto, S.H., Serag 5075 eil : ikkepri@yahoo.com BSTK. Pembahasa tetag teori

Lebih terperinci

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak:

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak: PENGUJIAN HIPOTESIS A. Lagkah-lagkah pegujia hipotesis Hipotesis adalah asumsi atau dugaa megeai sesuatu. Jika hipotesis tersebut tetag ilai-ilai parameter maka hipotesis itu disebut hipotesis statistik.

Lebih terperinci

Sistem Bilangan Kompleks (Bagian Ketiga)

Sistem Bilangan Kompleks (Bagian Ketiga) Sistem Bilaga Kompleks (Bagia Ketiga) Supama Jurusa Matematika, FMIPA UGM Yogyakarta 55281, INDONESIA Email:maspomo@yahoo.com, supama@ugm.ac.id (Pertemua Miggu III) Outlie 1 Akar Bilaga Kompleks 2 Akar

Lebih terperinci

oleh hasil kali Jika dan keduanya fungsi yang dapat didiferensialkan, maka

oleh hasil kali Jika dan keduanya fungsi yang dapat didiferensialkan, maka Itegral etu Jika fugsi kotiu yag didefiisika utuk, kita bagi selag mejadi selag bagia berlebar sama Misalka berupa titik ujug selag bagia ii da pilih titik sampel di dalam selag bagia ii, sehigga terletak

Lebih terperinci

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3 BAB XII. SUKU BANYAK A = a Pegertia: f(x) = a x + a x + a x + + a x +a adalah suku bayak (poliom) dega : - a, a, a,.,a, a, a 0 adalah koefisiekoefisie suku bayak yag merupaka kostata real dega a 0 - a

Lebih terperinci

SEMI MODUL POLINOMIAL FUZZY ATAS ALJABAR MAX-PLUS FUZZY

SEMI MODUL POLINOMIAL FUZZY ATAS ALJABAR MAX-PLUS FUZZY JMP : Volume 3 Nomor 1, Jui 2011 SEMI MODUL POLINOMIAL FUZZY ATAS ALJABAR MAX-PLUS FUZZY Ari Wardayai da Suroto Prodi Matematika, Jurusa MIPA, Fakultas Sais da Tekik Uiversitas Jederal Soedirma (email

Lebih terperinci

TEOREMA REPRESENTASI RIESZ FRECHET PADA RUANG HILBERT (Riesz Frechet Representation Theorem in Hilbert Space)

TEOREMA REPRESENTASI RIESZ FRECHET PADA RUANG HILBERT (Riesz Frechet Representation Theorem in Hilbert Space) Jural Barekeg Vol. 5 No. Hal. 8 (0) TEOREMA REPRESENTASI RIESZ FRECHET PADA RUANG HILBERT (Ries Frechet Represetatio Theorem i Hilbert Space) MOZART W TALAKUA, STENLY JONDRY NANURU Staf Jurusa Matematika

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, , Agustus 2003, ISSN : METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, , Agustus 2003, ISSN : METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT Vol. 6. No., 97-09, Agustus 003, ISSN : 40-858 METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT Robertus Heri Jurusa Matematika FMIPA UNDIP Abstrak Tulisa ii membahas peetua persamaa ruag

Lebih terperinci

RING MATRIKS ATAS RING KOMUTATIF. Achmad Abdurrazzaq, Ari Wardayani, Suroto Universitas Jenderal Soedirman

RING MATRIKS ATAS RING KOMUTATIF. Achmad Abdurrazzaq, Ari Wardayani, Suroto Universitas Jenderal Soedirman JMP : Volume 7 Nomor 1, Jui 2015, hal 11-18 RING MATRIKS ATAS RING KOMUTATIF Achmad Abdurrazzaq, Ari Wardayai, Suroto razzaqgaesha@gmailcom Uiversitas Jederal Soedirma ABSTRACT This paper discusses a matrices

Lebih terperinci

1 4 A. 1 D. 4 B. 2 E. -5 C. 3 A.

1 4 A. 1 D. 4 B. 2 E. -5 C. 3 A. . Seorag pedagag membeli barag utuk dijual seharga Rp. 0.000,00. Bila pedagag tersebut meghedaki utug 0 %, maka barag tersebut harus dijual dega harga A. Rp. 00.000,00 D. Rp. 600.000,00 B. Rp. 00.000,00

Lebih terperinci

B a b 1 I s y a r a t

B a b 1 I s y a r a t 34 TKE 315 ISYARAT DAN SISTEM B a b 1 I s y a r a t (bagia 3) Idah Susilawati, S.T., M.Eg. Program Studi Tekik Elektro Fakultas Tekik da Ilmu Komputer Uiversitas Mercu Buaa Yogyakarta 29 35 1.5.2. Isyarat

Lebih terperinci

BARISAN DAN DERET. Nurdinintya Athari (NDT)

BARISAN DAN DERET. Nurdinintya Athari (NDT) BARISAN DAN DERET Nurdiitya Athari (NDT) BARISAN Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) = a Fugsi tersebut dikeal sebagai barisa bilaga

Lebih terperinci

Fungsi. Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B.

Fungsi. Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B. Fugsi Misalka A da B himpua. Relasi bier f dari A ke B merupaka suatu fugsi jika setiap eleme di dalam A dihubugka dega tepat satu eleme di dalam B. Jika f adalah fugsi dari A ke B kita meuliska f : A

Lebih terperinci

2 BARISAN BILANGAN REAL

2 BARISAN BILANGAN REAL 2 BARISAN BILANGAN REAL Di sekolah meegah barisa diperkealka sebagai kumpula bilaga yag disusu meurut "pola" tertetu, misalya barisa aritmatika da barisa geometri. Biasaya barisa da deret merupaka satu

Lebih terperinci

Modul 1. (Pertemuan 1 s/d 3) Deret Takhingga

Modul 1. (Pertemuan 1 s/d 3) Deret Takhingga Modul. (Pertemua s/d ) Deret Takhigga. Deret Tidak Terhigga. Pembicaraa kita sekarag deret pada umumya. Deret yag bayakya suku tak terbatas disebut deret tak higga, otasi : Masalah pokok pada deret tak

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret Program Perkuliaha Dasar Umum Sekolah Tiggi Tekologi Telkom Barisa da Deret Barisa Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) a Fugsi tersebut

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 1, 41-48, April 2003, ISSN : MATRIKS STOKASTIK GANDA DAN SIFAT-SIFATNYA

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 1, 41-48, April 2003, ISSN : MATRIKS STOKASTIK GANDA DAN SIFAT-SIFATNYA JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No., 4-48, April 00, ISSN : 40-858 MATRIKS STOKASTIK GANDA DAN SIFAT-SIFATNYA Suryoto Jurusa Matematika F-MIPA Uiversas Dipoegoro Semarag Abstrak Suatu matriks tak

Lebih terperinci

Ruang Vektor. Modul 1 PENDAHULUAN

Ruang Vektor. Modul 1 PENDAHULUAN Modul Ruag Vektor Dr. Irawati D PENDAHULUAN alam buku materi okok Aljabar II ii kita secara erlaha-laha mulai megubah edekata kita dari edekata secara komutasi mejadi edekata yag lebih umum. Yag dimaksud

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2016/2017 3 Februari 2017 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg Batas

Lebih terperinci

RUANG BASIS SOLUSI. Ini disusun untuk memenuhi tugas mata kuliah. Aljabar Linier DISUSUN OLEH : DONNA SEPTIAN CAHYA RINI (08411.

RUANG BASIS SOLUSI. Ini disusun untuk memenuhi tugas mata kuliah. Aljabar Linier DISUSUN OLEH : DONNA SEPTIAN CAHYA RINI (08411. RUANG BASIS SOLUSI Ii disusu utuk memeuhi tugas mata kuliah Aljabar Liier DISUSUN OLEH : DONNA SEPIAN CAHYA RINI (08411.114) FIRIA ASUI (08411.133) NURUL AISYAH (08411.211) SULIS SEYOWAI (08411.260) SULISIANI

Lebih terperinci

ANALISIS REAL I PENGANTAR. (Introduction to Real Analysis I) M. Zaki Riyanto, S.Si DIKTAT KULIAH ANALISIS

ANALISIS REAL I PENGANTAR. (Introduction to Real Analysis I) M. Zaki Riyanto, S.Si DIKTAT KULIAH ANALISIS DIKTAT KULIAH ANALISIS PENGANTAR ANALISIS REAL I (Itroductio to Real Aalysis I) M Zaki Riyato, SSi e-mail: zaki@mailugmacid http://zakimathwebid COPYRIGHT 008-009 Pegatar Aalisis Real I HALAMAN PERSEMBAHAN

Lebih terperinci

KEKONVERGENAN PADA RUANG BERNORMA DAN RUANG HASIL KALI DALAM WINA DIANA

KEKONVERGENAN PADA RUANG BERNORMA DAN RUANG HASIL KALI DALAM WINA DIANA KEKONVERGENAN PADA RUANG BERNORMA DAN RUANG HASIL KALI DALAM WINA DIANA 055400597 Taggal Sidag: 04 Februari 0 Periode Wisuda: Februari 0 Jurusa Matematika Fakultas Sais da Tekologi Uiversitas Islam Negeri

Lebih terperinci

Konvolusi pada Distribusi dengan Support Kompak

Konvolusi pada Distribusi dengan Support Kompak Prosidig SI MaNIs (Semiar Nasioal Itegrasi Matematia da Nilai Islami) Vol1, No1, Juli 2017, Hal 453-457 p-issn: 2580-4596; e-issn: 2580-460X Halama 453 Kovolusi pada Distribusi dega Support Kompa Cythia

Lebih terperinci

Fungsi Kompleks. (Pertemuan XXVII - XXX) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

Fungsi Kompleks. (Pertemuan XXVII - XXX) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya TKS 4007 Matematika III Fugsi Kompleks (Pertemua XXVII - XXX) Dr. AZ Jurusa Tekik Sipil Fakultas Tekik Uiversitas Brawijaya Pedahulua Persamaa x + 1 = 0 tidak memiliki akar dalam himpua bilaga real. Pertayaaya,

Lebih terperinci

Fungsi. Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B.

Fungsi. Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B. Fugsi Misalka A da B himpua. Relasi bier f dari A ke B merupaka suatu fugsi jika setiap eleme di dalam A dihubugka dega tepat satu eleme di dalam B. Jika f adalah fugsi dari A ke B kita meuliska f : A

Lebih terperinci

terurut dari bilangan bulat, misalnya (7,2) (notasi lain 2

terurut dari bilangan bulat, misalnya (7,2) (notasi lain 2 Bab Bilaga kompleks BAB BILANGAN KOMPLEKS Defiisi Bilaga Kompleks Sebelum medefiisika bilaga kompleks, pembaca diigatka kembali pada permasalah dalam sistem bilaga yag telah dikeal sebelumya Yag pertama

Lebih terperinci

TINJAUAN PUSTAKA Pengertian

TINJAUAN PUSTAKA Pengertian TINJAUAN PUSTAKA Pegertia Racaga peelitia kasus-kotrol di bidag epidemiologi didefiisika sebagai racaga epidemiologi yag mempelajari hubuga atara faktor peelitia dega peyakit, dega cara membadigka kelompok

Lebih terperinci

Kalkulus Rekayasa Hayati DERET

Kalkulus Rekayasa Hayati DERET Kalkulus Rekayasa Hayati DERET 1 Isi Bab Pedahulua Barisa tak-higga Deret tak-higga Deret Positif : Uji kekovergea Deret Gati Tada Deret Pagkat Deret Taylor da Maclauri 2 Kompetesi Dasar Setelah megikuti

Lebih terperinci

RUANG METRIK DENGAN SIFAT BOLA TERTUTUPNYA KOMPAK

RUANG METRIK DENGAN SIFAT BOLA TERTUTUPNYA KOMPAK Rahmawati Y. Ruag Metrik dega Sifat RUANG METRIK DENGAN SIFAT BOLA TERTUTUPNYA KOMPAK RAHMAWATI YULIYANI rahmawatiyuliyai @yahoo.co.id 08561299991 Program studi Tekik Iformatika, Fakultas Tekik, Matematika,

Lebih terperinci

Beberapa Sifat Semigrup Matriks Atas Daerah Integral Admitting Struktur Ring 1

Beberapa Sifat Semigrup Matriks Atas Daerah Integral Admitting Struktur Ring 1 Beberapa Sifat Semigrup Matriks Atas Daerah Itegral Admittig Struktur ig K a r y a t i Jurusa Pedidika Matematika FMIPA, Uiversitas Negeri Yogyakarta Email: yatiuy@yahoo.com Abstrak Diberika adalah daerah

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Optimasi 2.1.1. Pegertia Optimasi Optimasi (Optimizatio) adalah aktivitas utuk medapatka hasil terbaik di bawah keadaa yag diberika. Tujua akhir dari semua aktivitas tersebut

Lebih terperinci

Institut Teknologi Sepuluh Nopember Surabaya. Model Sistem dalam Persamaan Keadaan

Institut Teknologi Sepuluh Nopember Surabaya. Model Sistem dalam Persamaan Keadaan Istitut Tekologi Sepuluh Nopember Surabaya Model Sistem dalam Persamaa Keadaa Pegatar Materi Cotoh Soal Rigkasa Latiha Pegatar Materi Cotoh Soal Rigkasa Istilah-istilah Dalam Persamaa Keadaa Aalisis Sistem

Lebih terperinci

HALAMAN Dengan definisi limit barisan buktikan limit berikut ini : = 0. a. lim PENYELESAIAN : jadi terbukti bahwa lim = 0 = 5. b.

HALAMAN Dengan definisi limit barisan buktikan limit berikut ini : = 0. a. lim PENYELESAIAN : jadi terbukti bahwa lim = 0 = 5. b. Didowload dari ririez.blog.us.ac.id HALAMAN 36 37 5. Dega defiisi limit barisa buktika limit berikut ii : a. lim = 0 lim 1 2 + 3 = 0 > 0 h 1 = 2 + 3 0 = 1 2 + 3 1 2 1 2 1 2 < jadi terbukti bahwa lim =

Lebih terperinci

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya 5 BAB II LANDASAN TEORI Dalam tugas akhir ii aka dibahas megeai peaksira besarya koefisie korelasi atara dua variabel radom kotiu jika data yag teramati berupa data kategorik yag terbetuk dari kedua variabel

Lebih terperinci

Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1

Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1 Barisa Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 9/0/06 Matematika Barisa Tak Higga Secara sederhaa, barisa merupaka susua dari bilaga bilaga yag urutaya berdasarka bilaga

Lebih terperinci

Himpunan Kritis Pada Graph Caterpillar

Himpunan Kritis Pada Graph Caterpillar 1 0 Himpua Kritis Pada Graph Caterpillar Chairul Imro, Budi Setiyoo, R. Simajutak, Edy T. Baskoro {imro-its,budi}@matematika.its.ac.id, {rio,ebaskoro}@ds.math.itb.ac.id Ues, Semarag, 4 7 Juli 006 Abstrak

Lebih terperinci

HUBUNGAN ANTARA KONVERGEN HAMPIR PASTI, KONVERGEN DALAM PELUANG, DAN KONVERGEN DALAM SEBARAN

HUBUNGAN ANTARA KONVERGEN HAMPIR PASTI, KONVERGEN DALAM PELUANG, DAN KONVERGEN DALAM SEBARAN Jural Matematika UNAND Vol. 2 No. 2 Hal. 0 6 ISSN : 2303 290 c Jurusa Matematika FMIPA UNAND HUBUNGAN ANTARA KONVERGEN HAMPIR PASTI, KONVERGEN DALAM PELUANG, DAN KONVERGEN DALAM SEBARAN VIRA AGUSTA, DODI

Lebih terperinci

I. PENDAHULUAN II. LANDASAN TEORI

I. PENDAHULUAN II. LANDASAN TEORI I PENDAHULUAN 1 Latar belakag Model pertumbuha Solow-Swa (the Solow-Swa growth model) atau disebut juga model eoklasik (the eo-classical model) pertama kali dikembagka pada tahu 195 oleh Robert Solow da

Lebih terperinci