Bab 7 Penyelesaian Persamaan Differensial

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Bab 7 Penyelesaian Persamaan Differensial"

Transkripsi

1 Bab 7 Peelesaia Persamaa Differesial Persamaa differesial merupaka persamaa ag meghubugka suatu besara dega perubahaa. Persamaa differesial diataka sebagai persamaa ag megadug suatu besara da differesiala da dituliska dega : d d d... t 0 dt dt dt Persamaa differesial mempuai baak ragam da jeis mulai dari ag mudah diselesaika higga ag sulit diselesaika mulai dari ag sederhaa sampai ag sagat kompleks. Salah satu persamaa differesial ag baak diguaka dalam peerapaa adalah Persamaa Differesial Liier ag dituliska dega: d d d a a.. a a0 f t dt dt dt Persamaa differesial liier umuma dapat diselesaika dega megguaka cara aalitik seperti pemakaia Trasformasi Laplace tetapi pada betuk ag kompleks persamaa differesial liier ii mejadi sulit diselesaika. Metode umerik dapat diguaka utuk meelesaika persamaa differesial dega megguaka batua komputer sebagai alat hitug ketika metode aalitik sulit diguaka. Pada beberapa betuk persamaa differesial khususa pada differesial o-liier peelesaia aalitik sulit sekali dilakuka sehigga metode umerik dapat mejadi metode peelesaia ag disaraka. Sebagai cotoh perhatika betuk persamaa differesial ag sederhaa berikut ii: d d d d Persamaa diffresial di atas tampaka sederhaa tetapi utuk meelesaika persamaa diffresial di atas bukalah sesuatu ag mudah bahka dapat dikataka dega megguaka cara aalitik tidak dapat ditemuka peelesaia. Sehigga pemakaia metode-metode pedekata dega metode umerik mejadi suatu alteratif ag dapat diguaka. Ada beberapa metode ag dapat diguaka utuk meelesaika persamaa differesial atara lai: metode Euler metode pedekata dega deret Talor metode ruge-kutta da metode-metode prediktor-korektor seperti metode Adam Moulto. Haa saja metode-metode pedekata ii meebabka peelesaia ag dihasilka bukalah peelesaia umum dari persamaa differesial tetapi peelesaia khusus dega ilai awal da ilai batas ag ditetuka. Permasalaha persamaa differesial ii merupaka permasalaha ag baak ditemui ketika aalisa ag dilakuka tergatug pada waktu da ilaia megalami perubaha-perubaha berdasarka waktu. Hampir baak model matematis di dalam ilmu tekik megguaka perataa dalam persamaa differesial. Metode Numerik Sebagai Algoritma Komputasi 65

2 7.. Metode Euler Perhatika betuk persamaa differesial berikut: f Dega megguaka pedekata ilai awal 0 0 maka ilai-ilai berikuta daat diperoleh dega: h. f Cotoh: Diketahui persamaa differesial berikut: d d Maka : atau f Bila ditetuka ilai awala adalah 00 da h0. maka diperoleh : Bila ditigkatka utuk sampai dega 0 kemudia diambil grafika diperoleh : Metode Numerik Sebagai Algoritma Komputasi 66

3 7.. Metode Talor Metode Talor adalah suatu metode pedekata ag megguaka deret Talor sebagai betuk perbaika ilai utuk ilai fugsi secara keseluruha pada peelesaia persamaa differesial. Perhatika fugsi dari persamaa differesial berikut: f Dega memberika ilai pedekata awal 0 0 peelesaia dapat diperoleh dega: k 0 0 k " ! k! Cotoh: Diketahui persamaa differesial : d si d Maka : si atau f si " f f f cos si cos si 3 si cos si cos Dega pedekata awal 00 maka utuk ilai dapat dihitug dega: 0 0 [ si0 0] [ cos0 si0 0] [ cos0 0] Catata: Pemakaia metode Talor tidak baak digemari karea diperluka perhituga ag cukup rumit dalam peelesaiaa. Tetapi metode ii dapat meujukka hasil ag bagus pada beberapa permasalaha peelesaia persamaa differesial Metode Ruge Kutta Metode Ruge-Kutta merupaka pegembaga dari metode Euler dimaa perhituga peelesaia dilakuka step demi step. Utuk fugsi dari persamaa differesial : f Dega titik pedekata awal 0 0 berdasarka metode Euler ilai fugsi peelesaia diperoleh dega : h. f atau d dimaa d adalah ilai perubaha ilai fugsi setiap step Metode Numerik Sebagai Algoritma Komputasi 67

4 Metode Ruge-Kutta : Metode Ruge-Kutta membuat step ag lebih kecil dari perubaha ilai dega membagi ilai perubaha tiap step mejadi sejumlah bagia ag ditetuka betuk palig sederhaa dari metode Ruge Kutta ii adalah membagi bagia perubaha mejadi dua bagia sehigga : h. f h. f d dimaa f da f adalah ilai fugsi step ag diambil dari betuk fugsi persamaa differesial pada step tegaha. Sehigga diperoleh formulasi dari Metode Ruge-Kutta sebagai berikut: k k dimaa: k h. f k h f h. k Cotoh: Selesaika persamaa differesial berikut: d d ugsi persamaa differesial adalah : f Dega ilai pedekata awal 00 diperoleh: k k Bila hasila diteruska sampai 0 da digambarka aka diperoleh: Metode Numerik Sebagai Algoritma Komputasi 68

5 Metode Ruge Kutta 4 Bila pada metode Ruge-Kutta ilai koefisie perbaikaa adalah buah maka pada metode ii megguaka 4 ilai koefisie perbaika aitu k k k 3 k 4 ag diberika sebagai berikut: k k k3 k4 6 dimaa : k h. f k k k 3 h k h. f h k h. f h. f h k 4 Cotoh: Hitug peelesaia persamaa differesial berikut: d e d ugsi persamaa differesial: 3 f e Bila ditetuka pedekata awal 00 da step h0. dega megguaka metode Euler 4 diperoleh: k k k3 k Persamaa Differesial Tigkat Tiggi Pada baak peerapa persamaa differesial ag diguaka adalah persamaa differesial tigkat tiggi baik itu tigkat 3 da seterusa. Sedagka pembahasa di depa adalah peelesaia persamaa differesial tigkat satu ag diataka dega fugsi : f Utuk meelesaika persamaa differesial tigkat tiggi diperluka pegembaga model persamaa differesial ag aka meghasilka pegembaga betuk metode Metode Numerik Sebagai Algoritma Komputasi 69

6 Metode Numerik Sebagai Algoritma Komputasi 70 ag diguaka. Pada buku ii dibahas pemakaia metode Euler da Ruge Kutta utuk meelesaika persamaa differesial tigkat tiggi ii. Perhatika persamaa differesial tigkat berikut ii: "... 0 a a a a a Ubah variabel-variabel differesial dega variabel-variabel ide sebagai berikut: 3... " Dega medifferesialka setiap variabel di atas diperoleh: f Setiap differesial meataka suatu fugsi persamaa differesial tigkat satu sehigga utuk meelesaiaka persamaa differesial tigkat diperluka fugsi persamaa differesial tigkat satu ag bekerja secara bersama-sama Peelesaia Persamaa Differesial Tigkat Dega Metode Euler Perhatika persamaa differesial tigkat berikut: d d d d Ubah variabel: da sehigga diperoleh persamaa differesial tigkat satu berikut: ii berarti diperoleh fugsi masig-masig: g f Dega megguaka metode Euler diperoleh:.. h g f h Cotoh: Selesaiaka persamaa differesial: 3 d d d d

7 Maka diperoleh dua fugsi f da g berikut: f g 3 Bila ditetuka pedekata awal da step h0. maka dega metode euler diperoleh: Peelesaia Persamaa Differesial Tigkat Dega Metode Ruge-Kutta Perhatika persamaa differesial tigkat berikut: d d d d Ubah variabel: da sehigga diperoleh persamaa differesial tigkat satu berikut: ii berarti diperoleh fugsi masig-masig: f g Dega megguaka metode Ruge-Kutta diperoleh: k k l l dimaa: k h. f l h. g k h. f h k l l h g h k. l Metode Numerik Sebagai Algoritma Komputasi 7

8 Cotoh: Selesaiaka persamaa differesial: d d 3 d d Maka diperoleh dua fugsi f da g berikut: f g 3 Bila ditetuka pedekata awal da step h0. maka dega metode euler diperoleh: k l k l Beberapa Peerapa Persamaa Differesial Pada sub bab ii aka dibahas beberapa peerapa persamaa differesial pada sistem mekais da sistem listrik serta peelesaiaa secara umerik Peerapa Persamaa Differesial Pada Sistem Mekais Perhatika gambar sistem pegas berikut ii: k k m Model matematik utuk sistem pegas di atas adalah: d m k k dt dimaa adalah besara simpaga. Metode Numerik Sebagai Algoritma Komputasi 7

9 Bila ditetuka misala 0 N maka diperoleh persamaa differesial tigkat sebagai berikut: d [ k k 0] dt m Dega megguaka pegubaha variabel da diperoleh dua fugsi persamaa differesial aitu: f g [ k k 0] m Bila ditetuka m0 k da k 5 diperoleh: g Dega step h 0.5 pedekata awal 00 dega metode Euler aka meghasilka : Peerapa Persamaa Differesial Pada Sistem Listrik Perhatika gambar ragkaia listrik berikut ii: L C ~ Vt R Model matematis utuk ragkaia listrik di atas adalah: t dv C V L V u du E dt R 0 Betuk persamaa di atas adalah persamaa differesial itegral persamaa tersebut dapat diubah mejadi persamaa differesial tigkat sebagai berikut: Metode Numerik Sebagai Algoritma Komputasi 73

10 d V dv C LV E dt R dt Karea E berupa kostata maka dapat dituliska sebagai E saja. Bila ilai-ilai L R C da E ditetuka misalka C0-5 R0K L0-4 da E maka diperoleh persamaa differesial tigkat : d V dv 0 0V dt dt dega megambil variabel t V da V diperoleh dua fugsi : f g 0 0 Dega meetuka pedekata awal t0 V00 V 0 da h0. da dega megguaka metode Euler diperoleh peelesaia: Tugas Selesaika persamaa differesial berikut: d 0 d megguaka metode Euler Ruge-Kutta da Ruge-Kutta 4 dega h0. da titik pedekata awal 0. Persamaa differesial di atas secara aalitik mempuai peelesaia umum: e Badigka hasil ketiga metode dega ilai peelesaia umuma. Selesaika persamaa differesial berikut: d e d megguaka metode Euler Ruge-Kutta da Ruge-Kutta 4 dega h0. da titik pedekata awal 00. Metode Numerik Sebagai Algoritma Komputasi 74

11 3 Perhatika sistem mekais berikut ii: k k m Model matematis dari sistem di atas adalah: d k m k dt Bila ditetuka ilai 0 m0 k da k3 da titik pedekata awal 00 da 0. Tetuka peelesaia persamaa differesial di atas. Metode Numerik Sebagai Algoritma Komputasi 75

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI. Persamaa Diferesial Defiisi. Persamaa diferesial adalah suatu persamaa diatara derivatif-derivatif ag dispesifikasika pada suatu fugsi ag tidak diketahui, ilaia, da diketahui jumlah

Lebih terperinci

Penyelesaian Persamaan Non Linier

Penyelesaian Persamaan Non Linier Peyelesaia Persamaa No Liier Metode Iterasi Sederhaa Metode Newto Raphso Permasalaha Titik Kritis pada Newto Raphso Metode Secat Metode Numerik Iterasi/NewtoRaphso/Secat - Metode Iterasi Sederhaa- Metode

Lebih terperinci

METODE NUMERIK UNTUK SIMULASI. Pemodelan & Simulasi TM07

METODE NUMERIK UNTUK SIMULASI. Pemodelan & Simulasi TM07 METODE NUMERIK UNTUK SIMULASI Pemodela & Simulasi TM07 Metode Numerik ( Metode umerik dpt diklasiikasika mjd:. Metode satu-lagka atau sigle-step. Metode multistep Metode sigle-step Pd metode ii, utuk meetuka

Lebih terperinci

METODE NUMERIK UNTUK SIMULASI. Pemodelan & Simulasi TM09

METODE NUMERIK UNTUK SIMULASI. Pemodelan & Simulasi TM09 METODE NUMERIK UNTUK SIMULASI Pemodela & Simulasi TM09 Metode Numerik ( Metode umerik dpt diklasiikasika mjd:. Metode satu-lagka atau sigle-step. Metode multistep Metode sigle-step Pada metode ii, utuk

Lebih terperinci

III PEMBAHASAN. λ = 0. Ly = 0, maka solusi umum dari persamaan diferensial (3.3) adalah

III PEMBAHASAN. λ = 0. Ly = 0, maka solusi umum dari persamaan diferensial (3.3) adalah III PEMBAHASAN Pada bagia ii aka diformulasika masalah yag aka dibahas. Solusi masalah aka diselesaika dega Metode Dekomposisi Adomia. Selajutya metode ii aka diguaka utuk meyelesaika model yag diyataka

Lebih terperinci

Persamaan Non-Linear

Persamaan Non-Linear Persamaa No-Liear Peyelesaia persamaa o-liear adalah meghitug akar suatu persamaa o-liear dega satu variabel,, atau secara umum dituliska : = 0 Cotoh: 2 5. 5 4 9 2 0 2 5 5 4 9 2 2. 2 0 2 5. e 0 Metode

Lebih terperinci

METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc.

METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc. METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/0 SUGENG00 Copyright 996-98 Dale Caregie & Associates, Ic. Kesalaha ERROR: Selisih atara ilai perkiraa dega ilai eksakilai

Lebih terperinci

B A B 7 DIFERENSIASI DAN INTEGRASI NUMERIK

B A B 7 DIFERENSIASI DAN INTEGRASI NUMERIK 8 B A B 7 DIFERENSIASI DAN INTEGRASI NUMERIK A. D I F E R E N S I A S I N U M E R I K Misal diberika set data Diketaui set data (, ), (, ), (, ),., (, ) ag memeui relasi = f() Aka ditetuka d/d dalam iterval,

Lebih terperinci

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL Defiisi Persamaa diferesial adalah persamaa yag melibatka variabelvariabel tak bebas da derivatif-derivatifya terhadap variabel-variabel bebas. Berikut ii adalah

Lebih terperinci

Aplikasi Interpolasi Bilinier pada Pengolahan Citra Digital

Aplikasi Interpolasi Bilinier pada Pengolahan Citra Digital Aplikasi Iterpolasi Biliier pada Pegolaha Citra Digital Veriskt Mega Jaa - 35408 Program Studi Iformatika Sekolah Tekik Elektro da Iformatika Istitut Tekologi Badug, Jl. Gaesha 0 Badug 403, Idoesia veriskmj@s.itb.ac.id

Lebih terperinci

I. DERET TAKHINGGA, DERET PANGKAT

I. DERET TAKHINGGA, DERET PANGKAT I. DERET TAKHINGGA, DERET PANGKAT. Pedahulua Pembahasa tetag deret takhigga sebagai betuk pejumlaha suku-suku takhigga memegag peraa petig dalam fisika. Pada bab ii aka dibahas megeai pegertia deret da

Lebih terperinci

KALKULUS 4. Dra. D. L. Crispina Pardede, DEA. SARMAG TEKNIK MESIN

KALKULUS 4. Dra. D. L. Crispina Pardede, DEA. SARMAG TEKNIK MESIN KALKULUS Dra. D. L. Crispia Pardede DEA. SARMAG TEKNIK MESIN KALKULUS - SILABUS. Deret Fourier.. Fugsi Periodik.2. Fugsi Geap da Gajil.3. Deret Trigoometri.. Betuk umum Deret Fourier.. Kodisi Dirichlet.6.

Lebih terperinci

Bab IV. Penderetan Fungsi Kompleks

Bab IV. Penderetan Fungsi Kompleks Bab IV Pedereta Fugsi Kompleks Sebagaimaa pada fugsi real, fugsi kompleks juga dapat dideretka pada daerah kovergesiya. Semua watak kajia kovergesi pada fugsi real berlaku pula pada fugsi kompleks. Secara

Lebih terperinci

1 Persamaan rekursif linier non homogen koefisien konstan tingkat satu

1 Persamaan rekursif linier non homogen koefisien konstan tingkat satu Secara umum persamaa rekursif liier tigkat-k bisa dituliska dalam betuk: dega C 0 0. C 0 x + C 1 x 1 + C 2 x 2 + + C k x k = b, Jika b = 0 maka persamaa rekursif tersebut diamaka persamaa rekursif liier

Lebih terperinci

Probabilitas dan Statistika Korelasi dan Regresi. Adam Hendra Brata

Probabilitas dan Statistika Korelasi dan Regresi. Adam Hendra Brata Probabilitas da Statistika da Adam Hedra Brata Dua Peubah Acak dua perubah acah X da Y dega rata-rata da diberika oleh rumus : E(XY) - - - Sifat Sifat Sifat kovariasi utuk X da Y diskrit : f(, ) f(, )

Lebih terperinci

BAB IV PERSAMAAN TINGKAT SATU DERAJAT TI NGGI (1-n)

BAB IV PERSAMAAN TINGKAT SATU DERAJAT TI NGGI (1-n) BAB IV ERSAMAAN TINGKAT SATU DERAJAT TI NGGI 1- Stadar Kometesi Setelah memelajari okok bahasa ii diharaka mahasiswa daat memahami ara-ara meetuka selesaia umum ersamaa dieresial tigkat satu derajat tiggi.

Lebih terperinci

FUNGSI BANYAK VARIABEL DAN PENERAPANNYA

FUNGSI BANYAK VARIABEL DAN PENERAPANNYA FUNGSI BANYAK VAIABEL DAN PENEAPANNYA KATA PENGANTA Segala puji sukur peulis pajatka haa utuk Allah SWT ag telah memberika rahmat da hidaaha, sehigga atas izi Allah, Alhamdulillah buku ag cukup sederhaa

Lebih terperinci

BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP. Permasalahan dalam tugas akhir ini dibatasi hanya pada penaksiran

BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP. Permasalahan dalam tugas akhir ini dibatasi hanya pada penaksiran BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP Permasalaha dalam tugas akhir ii dibatasi haya pada peaksira besarya koefisie korelasi polychoric da tidak dilakuka peguia terhadap koefisie korelasi

Lebih terperinci

PENGARUH JENIS TUMPUAN TERHADAP FREKUENSI PRIBADI PADA GETARAN BALOK LENTUR

PENGARUH JENIS TUMPUAN TERHADAP FREKUENSI PRIBADI PADA GETARAN BALOK LENTUR PENGARUH JENIS TUMPUAN TERHADAP FREKUENSI PRIBADI PADA GETARAN BALOK LENTUR Naharuddi 1 1 Staf Pegajar Jurusa Tekik Mesi, Utad Abstrak. Tujua peelitia ii adalah utuk meetuka ilai frekuesi pribadi getara

Lebih terperinci

METODE ADAMS-BASHFORTH-MOULTON DALAM PENYELESAIAN PERSAMAAN DIFERENSIAL NON LINEAR

METODE ADAMS-BASHFORTH-MOULTON DALAM PENYELESAIAN PERSAMAAN DIFERENSIAL NON LINEAR Buleti Ilmia Mat. Stat. da Terapaa (Bimaster) Volume 0, No. (0), al 07 6. METODE ADAMS-BASHFORTH-MOULTON DALAM PENYELESAIAN PERSAMAAN DIFERENSIAL NON LINEAR Apriadi, Bau Priadoo, Evi Noviai INTISARI Metode

Lebih terperinci

BAB VI DERET TAYLOR DAN DERET LAURENT

BAB VI DERET TAYLOR DAN DERET LAURENT BAB VI DERET TAYLOR DAN DERET LAURENT. Deret Taylor Misal fugsi f() aalitik pada - < R ( ligkara dega pusat di da jari-jari R ). Maka utuk setiap titik pada ligkara itu, f() dapat diyataka sebagai : f

Lebih terperinci

B a b 1 I s y a r a t

B a b 1 I s y a r a t 34 TKE 315 ISYARAT DAN SISTEM B a b 1 I s y a r a t (bagia 3) Idah Susilawati, S.T., M.Eg. Program Studi Tekik Elektro Fakultas Tekik da Ilmu Komputer Uiversitas Mercu Buaa Yogyakarta 29 35 1.5.2. Isyarat

Lebih terperinci

POSITRON, Vol. II, No. 2 (2012), Hal. 1-5 ISSN : Penentuan Energi Osilator Kuantum Anharmonik Menggunakan Teori Gangguan

POSITRON, Vol. II, No. 2 (2012), Hal. 1-5 ISSN : Penentuan Energi Osilator Kuantum Anharmonik Menggunakan Teori Gangguan POSITRON, Vol. II, No. (0), Hal. -5 ISSN : 30-4970 Peetua Eergi Osilator Kuatum Aharmoik Megguaka Teori Gaggua Iklas Saubary ), Yudha Arma ), Azrul Azwar ) )Program Studi Fisika Fakultas Matematika da

Lebih terperinci

PENYELESAIAN PERSAMAAN RICCATI DENGAN MENGGUNAKAN METODE DEKOMPOSISI ADOMIAN TUGAS AKHIR

PENYELESAIAN PERSAMAAN RICCATI DENGAN MENGGUNAKAN METODE DEKOMPOSISI ADOMIAN TUGAS AKHIR PENYEESAIAN PERSAMAAN RICCATI DENGAN MENGGUNAKAN METODE DEKOMPOSISI ADOMIAN TUGAS AKHIR Diajuka Sebagai Salah Satu Sarat Utuk Memperoleh Gelar Sarjaa Sais Pada Jurusa Matematika oleh : U K M A N 5565 FAKUTAS

Lebih terperinci

Solusi Numerik PDP. ( Metode Beda Hingga ) December 9, 2013. Solusi Numerik PDP

Solusi Numerik PDP. ( Metode Beda Hingga ) December 9, 2013. Solusi Numerik PDP ( Metode Beda Higga ) December 9, 2013 Sebuah persamaa differesial apabila didiskritisasi dega metode beda higga aka mejadi sebuah persamaa beda. Jika persamaa differesial parsial mempuyai solusi eksak

Lebih terperinci

Karakteristik Dinamik Elemen Sistem Pengukuran

Karakteristik Dinamik Elemen Sistem Pengukuran Karakteristik Diamik Eleme Sistem Pegukura Kompetesi, RP, Materi Kompetesi yag diharapka: Mahasiswa mampu merumuskaka karakteristik diamik eleme sistem pegukura Racaga Pembelajara: Miggu ke Kemampua Akhir

Lebih terperinci

BAB I BILANGAN KOMPLEKS

BAB I BILANGAN KOMPLEKS BAB I BILANGAN KOMPLEKS Di dalam bab ii, kita aka meelidiki struktur aljabar da geometri dari sistim bilaga kompleks. Kita aggap bahwa berbagai sifat ag berhubuga dega bilaga real sudah diketahui.. PENJUMLAHAN

Lebih terperinci

h h h n 2! 3! n! h h h 2! 3! n!

h h h n 2! 3! n! h h h 2! 3! n! Dieresiasi Numerik Sala satu perituga kalkulus yag serig diguaka adala turua/ dieresial. Coto pegguaa dieresial adala utuk meetuka ilai optimum (maksimum atau miimum) suatu ugsi y x mesyaratka ilai turua

Lebih terperinci

Analisa Komputasi Metode Dua Langkah Bebas Turunan Untuk Menyelesaikan Persamaan Nonlinear

Analisa Komputasi Metode Dua Langkah Bebas Turunan Untuk Menyelesaikan Persamaan Nonlinear Prosidig Semirata FMIPA Uiversitas Lampug 03 Aalisa Komputasi Metode Dua Lagkah Bebas Turua Utuk Meelesaika Persamaa Noliear Supriadi Putra MSi Jurusa Matematika FMIPA Uiversitas Riau E-mail:sputra@uriacid

Lebih terperinci

x = 16 Jadi, banyak pekerja yang harus ditambahkan = = 4 orang.

x = 16 Jadi, banyak pekerja yang harus ditambahkan = = 4 orang. SOAL N MATEMATIKA SMK KELOMPOK PARIWISATA, SENI DAN KERAJINAN, TEKNOLOGI KERMAHTANGGAAN, PEKERJAAN SOSIAL, DAN ADMINISTRASI PERKANTORAN PAKET KC-F TAHN PELAJARAN /. Ekstrakurikuler pramuka suatu SMK aka

Lebih terperinci

Contoh Produksi dua jenis sepatu A dan B memberikan fungsi keuntungan bulanan sebagai berikut :

Contoh Produksi dua jenis sepatu A dan B memberikan fungsi keuntungan bulanan sebagai berikut : I. OPTIMISASI FUNGSI TANPA KENDALA Utuk fugsi dua peubah ) f ag terdiferesial dua kali. Jika di titik ) P dipeuhi :. sarat stasioer)... > maka mecapai ekstrim di ) P. Jika : ekstrim maksimum mecapai maka

Lebih terperinci

Institut Teknologi Sepuluh Nopember Surabaya. Model Sistem dalam Persamaan Keadaan

Institut Teknologi Sepuluh Nopember Surabaya. Model Sistem dalam Persamaan Keadaan Istitut Tekologi Sepuluh Nopember Surabaya Model Sistem dalam Persamaa Keadaa Pegatar Materi Cotoh Soal Rigkasa Latiha Pegatar Materi Cotoh Soal Rigkasa Istilah-istilah Dalam Persamaa Keadaa Aalisis Sistem

Lebih terperinci

TINJAUAN PUSTAKA Pengertian

TINJAUAN PUSTAKA Pengertian TINJAUAN PUSTAKA Pegertia Racaga peelitia kasus-kotrol di bidag epidemiologi didefiisika sebagai racaga epidemiologi yag mempelajari hubuga atara faktor peelitia dega peyakit, dega cara membadigka kelompok

Lebih terperinci

4.7 TRANSFORMASI UNTUK MENDEKATI KENORMALAN

4.7 TRANSFORMASI UNTUK MENDEKATI KENORMALAN 4.7 TRANSFORMASI UNTUK MENDEKATI KENORMALAN Saat asumsi keormala tidak dipuhi maka kesimpula yag kita buat berdasarka suatu metod statistik yag mesyaratka asumsi keormala meadi tidak baik, sehigga mucul

Lebih terperinci

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya 5 BAB II LANDASAN TEORI Dalam tugas akhir ii aka dibahas megeai peaksira besarya koefisie korelasi atara dua variabel radom kotiu jika data yag teramati berupa data kategorik yag terbetuk dari kedua variabel

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret Program Perkuliaha Dasar Umum Sekolah Tiggi Tekologi Telkom Barisa da Deret Barisa Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) a Fugsi tersebut

Lebih terperinci

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi 6. Pecacaha Lajut Relasi Rekuresi Relasi rekuresi utuk dereta {a } adalah persamaa yag meyataka a kedalam satu atau lebih suku sebelumya, yaitu a 0, a,, a -, utuk seluruh bilaga bulat, dega 0, dimaa 0

Lebih terperinci

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP STATISTICS Haug N. Prasetyo Week 11 PENDAHULUAN Regresi da korelasi diguaka utuk megetahui hubuga dua atau lebih kejadia (variabel) yag dapat diukur secara matematis. Ada dua hal yag diukur atau diaalisis,

Lebih terperinci

Bab 3 Metode Interpolasi

Bab 3 Metode Interpolasi Baha Kuliah 03 Bab 3 Metode Iterpolasi Pedahulua Iterpolasi serig diartika sebagai mecari ilai variabel tergatug tertetu, misalya y, pada ilai variabel bebas, misalya, diatara dua atau lebih ilai yag diketahui

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 5. No. 1, 39-46, April 2002, ISSN :

JURNAL MATEMATIKA DAN KOMPUTER Vol. 5. No. 1, 39-46, April 2002, ISSN : JURNAL MATEMATKA DAN KOMPUTER Vol 5 No, 39-46, April 22, SSN : 4-858 MENCAR SOLUS PENAKSR PARAMETER PADA ANALSS VARANS DENGAN PENDEKATAN GENERAL NVERS Sukestiaro Jurusa Matematika FMPA Uiversitas Negeri

Lebih terperinci

BAB II TEORI MOTOR LANGKAH

BAB II TEORI MOTOR LANGKAH BAB II TEORI MOTOR LANGKAH II. Dasar-Dasar Motor Lagkah Motor lagkah adalah peralata elektromagetik yag megubah pulsa digital mejadi perputara mekais. Rotor pada motor lagkah berputar dega perubaha yag

Lebih terperinci

i adalah indeks penjumlahan, 1 adalah batas bawah, dan n adalah batas atas.

i adalah indeks penjumlahan, 1 adalah batas bawah, dan n adalah batas atas. 4 D E R E T Kosep deret merupaka kosep matematika yag cukup populer da aplikatif khusuya dalam kasus-kasus yag meyagkut perkembaga da pertumbuha suatu gejala tertetu. Apabila perkembaga atau pertumbuha

Lebih terperinci

MASALAH NILAI AWAL PERSAMAAN DIFERENSIAL BIASA

MASALAH NILAI AWAL PERSAMAAN DIFERENSIAL BIASA 5 MASALAH NILAI AWAL PERSAMAAN DIFERENSIAL BIASA Pada bab ii dibahas tetag persamaa diferesial biasa, ordiar differetial equatios (ODE) ag diklasifikasika kedalam masalah ilai awal (iitial value) da masalah

Lebih terperinci

Distribusi Pendekatan (Limiting Distributions)

Distribusi Pendekatan (Limiting Distributions) Distribusi Pedekata (Limitig Distributios) Ada 3 tekik utuk meetuka distribusi pedekata: 1. Tekik Fugsi Distribusi Cotoh 2. Tekik Fugsi Pembagkit Mome Cotoh 3. Tekik Teorema Limit Pusat Cotoh Fitriai Agustia,

Lebih terperinci

METODE NUMERIK TKM4104. Kuliah ke-2 DERET TAYLOR DAN ANALISIS GALAT

METODE NUMERIK TKM4104. Kuliah ke-2 DERET TAYLOR DAN ANALISIS GALAT METODE NUMERIK TKM4104 Kuliah ke- DERET TAYLOR DAN ANALISIS GALAT DERET TAYLOR o Deret Taylor adalah alat yag utama utuk meuruka suatu metode umerik. o Deret Taylor bergua utuk meghampiri ugsi ke dalam

Lebih terperinci

Galat dan Perambatannya

Galat dan Perambatannya Modul 1 Galat da Perambataya Prof. Dr. Bambag Soedijoo P PENDHULUN ada Modul 1 ii dibahas masalah galat atau derajat kesalaha da perambataya, dega demikia para peggua modul ii diharapka telah memahami

Lebih terperinci

Bab 8 Teknik Pengintegralan

Bab 8 Teknik Pengintegralan Catata Kuliah MA3 Kalkulus Elemeter II Oki Neswa,Ph.D., Departeme Matematika-ITB Bab 8 Tekik Pegitegrala Metoda Substitusi Itegral Fugsi Trigoometrik Substitusi Merasioalka Itegral Parsial Itegral Fugsi

Lebih terperinci

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan REGRESI LINIER DAN KORELASI Variabel dibedaka dalam dua jeis dalam aalisis regresi: Variabel bebas atau variabel prediktor -> variabel yag mudah didapat atau tersedia. Dapat diyataka dega X 1, X,, X k

Lebih terperinci

BARISAN DAN DERET. Nurdinintya Athari (NDT)

BARISAN DAN DERET. Nurdinintya Athari (NDT) BARISAN DAN DERET Nurdiitya Athari (NDT) BARISAN Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) = a Fugsi tersebut dikeal sebagai barisa bilaga

Lebih terperinci

DISTRIBUSI SAMPLING. Oleh : Dewi Rachmatin

DISTRIBUSI SAMPLING. Oleh : Dewi Rachmatin DISTRIBUSI SAMPLING Oleh : Dewi Rachmati Distribusi Rata-rata Misalka sebuah populasi berukura higga N dega parameter rata-rata µ da simpaga baku. Dari populasi ii diambil sampel acak berukura, jika tapa

Lebih terperinci

PERSAMAAN DIFERENSIAL PARSIAL (PDP) MATEMATIKA FISIKA II JURDIK FISIKA FPMIPA UPI BANDUNG

PERSAMAAN DIFERENSIAL PARSIAL (PDP) MATEMATIKA FISIKA II JURDIK FISIKA FPMIPA UPI BANDUNG PERSAMAAN DIFERENSIAL PARSIAL PDP MATEMATIKA FISIKA II JURDIK FISIKA FPMIPA UPI BANDUNG PDP: Persamaa ag pada suku-sukua megadug betuk turua diferesia parsia aitu turua terhadap ebih dari satu variabe

Lebih terperinci

Kestabilan Rangkaian Tertutup Waktu Kontinu Menggunakan Metode Transformasi Ke Bentuk Kanonik Terkendali

Kestabilan Rangkaian Tertutup Waktu Kontinu Menggunakan Metode Transformasi Ke Bentuk Kanonik Terkendali Jural Tekika ISSN : 285-859 Fakultas Tekik Uiversitas Islam Lamoga Volume No.2 Tahu 29 Kestabila Ragkaia Tertutup Waktu Kotiu Megguaka Metode Trasformasi Ke Betuk Kaoik Terkedali Suhariyato ) Dose Fakultas

Lebih terperinci

REGRESI DAN KORELASI SEDERHANA

REGRESI DAN KORELASI SEDERHANA REGRESI DAN KORELASI SEDERHANA Apa yag disebut Regresi? Korelasi? Aalisa regresi da korelasi sederhaa membahas tetag keterkaita atara sebuah variabel (variabel terikat/depede) dega (sebuah) variabel lai

Lebih terperinci

BAB 3 METODE PENELITIAN

BAB 3 METODE PENELITIAN Sedagka itegrasi ruas kaa utuk ersamaa (3b) diperoleh ds / = S... (36) Dega demikia pesamaa yag harus dipecahka adalah l 1 1 u u = S (37) Dari ersamaa (37) diperoleh persamaa utuk u u S = exp S 1exp S...

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di SMA Negeri 1 Way Jepara Kabupaten Lampung Timur

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di SMA Negeri 1 Way Jepara Kabupaten Lampung Timur III. METODOLOGI PENELITIAN A. Lokasi da Waktu Peelitia Peelitia ii dilakuka di SMA Negeri Way Jepara Kabupate Lampug Timur pada bula Desember 0 sampai dega Mei 03. B. Populasi da Sampel Populasi dalam

Lebih terperinci

METODE DEKOMPOSISI LAPLACE UNTUK MENENTUKAN SOLUSI PERSAMAAN DIFERENSIAL PARSIAL NONLINIER

METODE DEKOMPOSISI LAPLACE UNTUK MENENTUKAN SOLUSI PERSAMAAN DIFERENSIAL PARSIAL NONLINIER Vol.1 No.1 (16) Hal. 38-45 METODE DEKOMPOSISI LAPLACE UNTUK MENENTUKAN SOLUSI PERSAMAAN DIFERENSIAL PARSIAL NONLINIER Siar Ismaya, Yui Yulida *, Na imah Hijriati Program Studi Matematika Fakultas MIPA

Lebih terperinci

UKURAN PEMUSATAN DATA

UKURAN PEMUSATAN DATA Malim Muhammad, M.Sc. UKURAN PEMUSATAN DATA J U R U S A N A G R O T E K N O L O G I F A K U L T A S P E R T A N I A N U N I V E R S I T A S M U H A M M A D I Y A H P U R W O K E R T O DEFINISI UKURAN PEMUSATAN

Lebih terperinci

Distribusi Sampling (Distribusi Penarikan Sampel)

Distribusi Sampling (Distribusi Penarikan Sampel) Distribusi Samplig (Distribusi Pearika Sampel) 1. Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

APLIKASI STATISTIK EKSTRIM DAN SIMULASI MONTE CARLO DALAM PENENTUAN BEBAN RENCANA PADA STRUKTUR DENGAN UMUR GUNA TERTENTU

APLIKASI STATISTIK EKSTRIM DAN SIMULASI MONTE CARLO DALAM PENENTUAN BEBAN RENCANA PADA STRUKTUR DENGAN UMUR GUNA TERTENTU Dimesi Tekik Sipil, Vol. 3, No., September 00, 84-88 ISSN 40-9530 Techical Note APLIKASI STATISTIK EKSTRIM DAN SIMULASI MONTE CARLO DALAM PENENTUAN BEBAN RENCANA PADA STRUKTUR DENGAN UMUR GUNA TERTENTU

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakag Dalam keadaa dimaa meghadapi persoala program liier yag besar, maka aka berusaha utuk mecari peyelesaia optimal dega megguaka algoritma komputasi, seperti algoritma

Lebih terperinci

Formulasi Numerik Arus Sejajar Pantai (Kasus Pantai Lurus)

Formulasi Numerik Arus Sejajar Pantai (Kasus Pantai Lurus) Formulasi Numerik Arus Seaar Patai (Kasus Patai Lurus) Ichsa Setiawa Jurusa Ilmu Kelauta Koordiatorat Kelauta da Perikaa Uiversitas Siah Kuala ichsa.setiawa@usiah.et Abstrak. Feomea arus seaar patai diselesaika

Lebih terperinci

Deret Fourier. Modul 1 PENDAHULUAN

Deret Fourier. Modul 1 PENDAHULUAN Modul Deret Fourier Prof. Dr. Bambag Soedijoo P PENDAHULUAN ada modul ii dibahas masalah ekspasi deret Fourier Sius osius utuk suatu fugsi periodik ataupu yag diaggap periodik, da dibahas pula trasformasi

Lebih terperinci

BAB IV METODE PENELITIAN

BAB IV METODE PENELITIAN BAB IV METODE PENELITIAN 4.1 Lokasi da Waktu Peelitia Peelitia sikap kosume terhadap kopi ista Kopiko Brow Coffee ii dilakuka di Wilaah Depok. Pemiliha dilakuka secara segaja (Purposive) dega pertimbaga

Lebih terperinci

BAB IV PEMECAHAN MASALAH

BAB IV PEMECAHAN MASALAH BAB IV PEMECAHAN MASALAH 4.1 Metodologi Pemecaha Masalah Dalam ragka peigkata keakurata rekomedasi yag aka diberika kepada ivestor, maka dicoba diguaka Movig Average Mometum Oscillator (MAMO). MAMO ii

Lebih terperinci

Analisis dan Visualisasi Representasi Deret Fourier Gelombang Sinyal Periodik Menggunakan MATLAB

Analisis dan Visualisasi Representasi Deret Fourier Gelombang Sinyal Periodik Menggunakan MATLAB ELECRICIAN Jural Rekayasa da ekologi Elektro Aalisis da Visualisasi Represetasi Deret Fourier Gelombag Siyal Periodik Megguaka MALAB Ahmad Saudi Samosir Jurusa ekik Elektro Uiversitas Lampug, Badar Lampug

Lebih terperinci

5. KARAKTERISTIK RESPON

5. KARAKTERISTIK RESPON 5. ARATERISTI RESPON Adalah ciri-ciri khusus perilaku diamik (spesifikasi performasi) Taggapa (respo) output sistem yag mucul akibat diberikaya suatu siyal masuka tertetu yag khas betukya (disebut sebagai

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Aalisis Regresi Istilah regresi pertama kali diperkealka oleh seorag ahli yag berama Facis Galto pada tahu 1886. Meurut Galto, aalisis regresi berkeaa dega studi ketergatuga dari suatu

Lebih terperinci

PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT

PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT Prosidig Semiar Nasioal Matematika da Terapaya 06 p-issn : 0-0384; e-issn : 0-039 PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT Liatus

Lebih terperinci

BARISAN DAN DERET. 05/12/2016 Matematika Teknik 1 1

BARISAN DAN DERET. 05/12/2016 Matematika Teknik 1 1 BARISAN DAN DERET 05//06 Matematika Tekik BARISAN Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 05//06 Matematika Tekik Barisa Tak Higga Secara sederhaa, barisa merupaka

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 31-41, April 2004, ISSN :

JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 31-41, April 2004, ISSN : Vol. 7. No. 1, 31-41, April 24, ISSN : 141-8518 Peetua Kestabila Sistem Kotrol Lup Tertutup Waktu Kotiu dega Metode Trasformasi ke Betuk Kaoik Terkotrol Robertus Heri Jurusa Matematika FMIPA UNDIP Abstrak

Lebih terperinci

DISTRIBUSI SAMPLING (Distribusi Penarikan Sampel)

DISTRIBUSI SAMPLING (Distribusi Penarikan Sampel) DISTRIBUSI SAMPLING (Distribusi Pearika Sampel) I. PENDAHULUAN Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1

Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1 Barisa Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 9/0/06 Matematika Barisa Tak Higga Secara sederhaa, barisa merupaka susua dari bilaga bilaga yag urutaya berdasarka bilaga

Lebih terperinci

DERET TAK HINGGA (INFITITE SERIES)

DERET TAK HINGGA (INFITITE SERIES) MATEMATIKA II DERET TAK HINGGA (INFITITE SERIES) sugegpb.lecture.ub.ac.id aada.lecture.ub.ac.id BARISAN Barisa merupaka kumpula suatu bilaga (atau betuk aljabar) yag disusu sehigga membetuk suku-suku yag

Lebih terperinci

BAB 2 ANAVA 2 JALAN. Merupakan pengembangan dari ANAVA 1 Jalan Jika pada ANAVA 1 jalan 1 Faktor Jika pada ANAVA 2 jalan 2 Faktor

BAB 2 ANAVA 2 JALAN. Merupakan pengembangan dari ANAVA 1 Jalan Jika pada ANAVA 1 jalan 1 Faktor Jika pada ANAVA 2 jalan 2 Faktor BAB ANAVA JALAN Merupaka pegembaga dari ANAVA 1 Jala Jika pada ANAVA 1 jala 1 Faktor Jika pada ANAVA jala Faktor Model Liier i i 1,..., a j 1,..., Satu faktor ag diteliti Aava 1 jala k i j k i 1,,...,

Lebih terperinci

BAB 4 LIMIT FUNGSI Standar Kompetensi Menggunakan konsep limit fungsi dan turunan fungsi dalam pemecahan masalah

BAB 4 LIMIT FUNGSI Standar Kompetensi Menggunakan konsep limit fungsi dan turunan fungsi dalam pemecahan masalah BAB LIMIT FUNGSI Stadar Kompetesi Megguaka kosep it ugsi da turua ugsi dalam pemecaha masalah Kompetesi Dasar. Meghitug it ugsi aljabar sederhaa di suatu titik. Megguaka siat it ugsi utuk meghitug betuk

Lebih terperinci

Barisan Dan Deret Arimatika

Barisan Dan Deret Arimatika Barisa Da Deret Arimatika A. Barisa Aritmatika Niko etera memiliki sebuah peggaris ukura 0 cm. Ia megamati bilaga-bilaga pada peggarisya ii. Bilaga-bilaga tersebut beruruta 0, 1,, 3,, 0. etiap bilaga beruruta

Lebih terperinci

LOGO MATEMATIKA BISNIS (Deret)

LOGO MATEMATIKA BISNIS (Deret) LOGO MATEMATIKA BISNIS (Deret) DOSEN FEBRIYANTO, SE., MM. www.febriyato79.wordpress.com 1 MATEMATIKA BISNIS Matematika Bisis memberika pemahama ilmu megeai kosep matematika dalam bidag bisis. Sehigga suatu

Lebih terperinci

Hendra Gunawan. 12 Februari 2014

Hendra Gunawan. 12 Februari 2014 MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2013/2014 12 Februari 2014 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 82 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg

Lebih terperinci

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak:

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak: PENGUJIAN HIPOTESIS A. Lagkah-lagkah pegujia hipotesis Hipotesis adalah asumsi atau dugaa megeai sesuatu. Jika hipotesis tersebut tetag ilai-ilai parameter maka hipotesis itu disebut hipotesis statistik.

Lebih terperinci

Dalam kehidupan sehari-hari terdapat banyak benda yang bergetar.

Dalam kehidupan sehari-hari terdapat banyak benda yang bergetar. Getara (Vibratio) Dalam kehidupa sehari-hari terdapat bayak beda yag bergetar. Sear gitar yag serig ada maika, Soud system, Garpu tala, Demikia juga rumah ada yag bergetar dasyat higga rusak ketika terjadi

Lebih terperinci

Definisi Integral Tentu

Definisi Integral Tentu Defiisi Itegral Tetu Bila kita megedarai kedaraa bermotor (sepeda motor atau mobil) selama 4 jam dega kecepata 50 km / jam, berapa jarak yag ditempuh? Tetu saja jawabya sagat mudah yaitu 50 x 4 = 200 km.

Lebih terperinci

BAB III METODE PENELITIAN. penelitian yaitu PT. Sinar Gorontalo Berlian Motor, Jl. H. B Yassin no 28

BAB III METODE PENELITIAN. penelitian yaitu PT. Sinar Gorontalo Berlian Motor, Jl. H. B Yassin no 28 5 BAB III METODE PENELITIAN 3.1 Lokasi Peelitia da Waktu Peelitia Sehubuga dega peelitia ii, lokasi yag dijadika tempat peelitia yaitu PT. Siar Gorotalo Berlia Motor, Jl. H. B Yassi o 8 Kota Gorotalo.

Lebih terperinci

CATATAN KULIAH #12&13 Bunga Majemuk

CATATAN KULIAH #12&13 Bunga Majemuk CATATAN KULIAH #12&13 Buga Majemuk 10.1 Pedahulua Pada pembahasa sebelumya diasumsika bahwa P atau ilai pokok pembayara tidak megalami perubaha dari awal higga akhir sehigga ilai buga selalu dihitug dari

Lebih terperinci

III. METODE PENELITIAN. Subjek dari penelitian adalah siswa kelas X.B SMA Muhammadiyah 2 Bandar

III. METODE PENELITIAN. Subjek dari penelitian adalah siswa kelas X.B SMA Muhammadiyah 2 Bandar III. METODE PENELITIAN A. Subjek da Tempat Peelitia Subjek dari peelitia adalah siswa kelas.b SMA Muhammadiyah 2 Badar Lampug Tahu Ajara 2011-2012 dega jumlah siswa 40 orag yag terdiri dari 15 siswa laki-laki

Lebih terperinci

Gambar 1. Partisi P dari empat persegi panjang R = [a, b] x [c, d] adalah dua himpunan i i

Gambar 1. Partisi P dari empat persegi panjang R = [a, b] x [c, d] adalah dua himpunan i i INTEGAL LIPAT. Itegral Lipat Dua dalam Koordiat Kartesius Pada bagia ii, dipelajari itegral lipat dua dalam. Misalka diketahui dua iterval tertutup [a, b] da [c, d]. Hasil kali kartesius dari kedua iterval

Lebih terperinci

PENYELESAIAN PERSAMAAN GELOMBANG DENGAN METODE D ALEMBERT

PENYELESAIAN PERSAMAAN GELOMBANG DENGAN METODE D ALEMBERT Buleti Ilmiah Math. Stat. da Terapaya (Bimaster) Volume 02, No. 1(2013), hal 1-6. PENYELESAIAN PERSAMAAN GELOMBANG DENGAN METODE D ALEMBERT Demag, Helmi, Evi Noviai INTISARI Permasalaha di bidag tekik

Lebih terperinci

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian BAB I PENDAHULUAN A. Latar Belakag Masalah Matematika merupaka suatu ilmu yag mempuyai obyek kajia abstrak, uiversal, medasari perkembaga tekologi moder, da mempuyai pera petig dalam berbagai disipli,

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Variabel-variabel yang digunakan pada penelitian ini adalah:

BAB III METODOLOGI PENELITIAN. Variabel-variabel yang digunakan pada penelitian ini adalah: BAB III METODOLOGI PENELITIAN 3. Variabel da Defiisi Operasioal Variabel-variabel yag diguaka pada peelitia ii adalah: a. Teaga kerja, yaitu kotribusi terhadap aktivitas produksi yag diberika oleh para

Lebih terperinci

Pendekatan Nilai Logaritma dan Inversnya Secara Manual

Pendekatan Nilai Logaritma dan Inversnya Secara Manual Pedekata Nilai Logaritma da Iversya Secara Maual Moh. Affaf Program Studi Pedidika Matematika, STKIP PGRI BANGKALAN affafs.theorem@yahoo.com Abstrak Pada pegaplikasiaya, bayak peggua yag meggatugka masalah

Lebih terperinci

PENGARUH JARI-JARI LINGKARAN SYARAT BATAS PADA PENDEKATAN POLAR UNTUK SISTEM POTENSIAL LISTRIK GEOMETRI KARTESIAN

PENGARUH JARI-JARI LINGKARAN SYARAT BATAS PADA PENDEKATAN POLAR UNTUK SISTEM POTENSIAL LISTRIK GEOMETRI KARTESIAN PENGARUH JARIJARI LINGKARAN SYARAT BATAS PADA PENDEKATAN POLAR UNTUK SISTEM POTENSIAL LISTRIK GEOMETRI KARTESIAN Aji Wira Tama, M. Arief Bustomi, M.Si. Jurusa Fisika Fakultas Matematika da Ilmu Pegetahua

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1. Lokasi da Waktu Pegambila Data Pegambila data poho Pius (Pius merkusii) dilakuka di Huta Pedidika Guug Walat, Kabupate Sukabumi, Jawa Barat pada bula September 2011.

Lebih terperinci

BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL)

BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) Setiap peelitia selalu berkeaa dega sekelompok data. Yag dimaksud kelompok disii adalah: Satu orag mempuyai sekelompok data, atau sekelompok orag mempuyai satu

Lebih terperinci

PENAKSIR RASIO DAN PRODUK YANG EFISIEN UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SISTEMATIK

PENAKSIR RASIO DAN PRODUK YANG EFISIEN UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SISTEMATIK PENAKI AIO DAN PODUK ANG EFIIEN UNTUK ATA-ATA POPULAI PADA AMPLING AAK ITEMATIK D. L. Pratiwi *, A. Ada,. ugiarto Mahasiswa Program Matematika Dose Jurusa Matematika Fakultas Matematika da Ilmu Pegetahua

Lebih terperinci

II. LANDASAN TEORI. Sampling adalah proses pengambilan atau memilih n buah elemen dari populasi yang

II. LANDASAN TEORI. Sampling adalah proses pengambilan atau memilih n buah elemen dari populasi yang II. LANDASAN TEORI Defiisi 2.1 Samplig Samplig adalah proses pegambila atau memilih buah eleme dari populasi yag berukura N (Lohr, 1999). Dalam melakuka samplig, terdapat teori dasar yag disebut teori

Lebih terperinci

III. METODE PENELITIAN. Pembangunan Daerah (BAPPEDA) Provinsi NTB, BPS pusat, dan instansi lain

III. METODE PENELITIAN. Pembangunan Daerah (BAPPEDA) Provinsi NTB, BPS pusat, dan instansi lain III. METODE PENELITIAN 3.1 Jeis da Sumber Data Data yag diguaka pada peelitia ii merupaka data sekuder yag diperoleh dari Bada Pusat Statistik (BPS) Provisi NTB, Bada Perecaaa Pembagua Daerah (BAPPEDA)

Lebih terperinci

Selang Kepercayaan (Confidence Interval) Pengantar Penduga titik (point estimator) telah dibahas pada kuliah-kuliah sebelumnya. Walau statistikawan

Selang Kepercayaan (Confidence Interval) Pengantar Penduga titik (point estimator) telah dibahas pada kuliah-kuliah sebelumnya. Walau statistikawan Selag Kepercayaa (Cofidece Iterval) Pegatar Peduga titik (poit estimator) telah dibahas pada kuliah-kuliah sebelumya. Walau statistikawa telah berusaha memperoleh peduga titik yag baik, amu hampir bisa

Lebih terperinci

BAB 1 PENDAHULUAN. Analisis regresi menjadi salah satu bagian statistika yang paling banyak aplikasinya.

BAB 1 PENDAHULUAN. Analisis regresi menjadi salah satu bagian statistika yang paling banyak aplikasinya. BAB 1 PENDAHULUAN 1.1 Latar Belakag Aalisis regresi mejadi salah satu bagia statistika yag palig bayak aplikasiya. Aalisis regresi memberika keleluasaa kepada peeliti utuk meyusu model hubuga atau pegaruh

Lebih terperinci

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI Utuk lebih memahami megeai etropi, pada bab ii aka diberika perhituga etropi utuk beberapa distribusi diskrit da kotiu. 3. Distribusi Diskrit Pada sub bab ii dibahas

Lebih terperinci

Materi 5 DATA MINING 3 SKS Semester 6 S1 Sistem Informasi UNIKOM 2016 Nizar Rabbi Radliya

Materi 5 DATA MINING 3 SKS Semester 6 S1 Sistem Informasi UNIKOM 2016 Nizar Rabbi Radliya Materi 5 DATA MINING 3 SKS Semester 6 S1 Sistem Iformasi UNIKOM 2016 Nizar Rabbi Radliya izar.radliya@yahoo.com Nama Mahasiswa NIM Kelas Kompetesi Dasar Memahami tekik data miig klasifikasi da mampu meerapka

Lebih terperinci

Deret Bolak-balik (Alternating Series) Deret bolak-balik adalah deret yang suku-sukunya berganti tanda. Sebagai contoh,

Deret Bolak-balik (Alternating Series) Deret bolak-balik adalah deret yang suku-sukunya berganti tanda. Sebagai contoh, Deet Bolak-balik Alteatig Seies Deet bolak-balik adalah deet yag suku-sukuya begati tada. Sebagai cotoh, + 4 + + + Deet bolak-balik beikut: = + a, dega a positif, kovege jika memeuhi dua syaat i. Setiap

Lebih terperinci