DASAR-DASAR ANALISIS MATEMATIKA

Ukuran: px
Mulai penontonan dengan halaman:

Download "DASAR-DASAR ANALISIS MATEMATIKA"

Transkripsi

1 (Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB hgunawan@math.itb.ac.id. December 26, 2007

2

3 Misalkan f kontinu pada interval [a, b]. Apakah masuk akal untuk membahas luas daerah di bawah kurva y = f (x)? Jika ya, bagaimanakah kita menghitungnya?

4 Gambar 12.1 Daerah di bawah kurva y = f (x)

5 Jika memang masuk akal untuk membahas luas daerah di bawah kurva y = f (x), maka luas daerah ini setidaknya mestilah lebih besar daripada S, yang menyatakan luas daerah yang diarsir pada gambar Berikut.

6 Gambar 12.2 Luas daerah S

7 Misalkan S menyatakan himpunan semua bilangan S yang dapat diperoleh sebagai jumlah luas daerah persegi-panjang kecil sebagaimana dalam Gambar Maka luas daerah di bawah kurva y = f (x) mestilah lebih besar daripada setiap anggota S. Tampaknya masuk akal untuk mendefinisikan luas daerah di bawah kurva y = f (x) sebagai bilangan terkecil yang lebih besar daripada setiap anggota S, yakni sup S.

8 Contoh 1 Daftar Isi Misalkan f (x) = x 2, x [0, 1]. Maka, dengan membagi interval [0, 1] atas n interval bagian yang sama panjang dan menghitung jumlah luas daerah persegi-panjang yang terbentuk, luas daerah di bawah kurva y = f (x) mestilah lebih besar daripada Jumlah deret ini sama dengan 1 [ n n (n ] 1)2 + + n2 n 2. (n 1)n(2n 1) 6n 3.

9 Mengingat (n 1)n(2n 1) 6n untuk tiap n N dan (n 1)n(2n 1) 6n untuk n, maka bilangan terkecil yang lebih besar daripada (n 1)n(2n 1) 6n 3 untuk tiap n N adalah 1 3. Jadi, luas daerah di bawah kurva y = f (x) adalah 1 3.

10 Soal Latihan Daftar Isi 1 Buktikan bahwa (n 1)n(2n 1) simpulkan bahwa sup n N 6n (n 1)n(2n 1) 6n 3 = 1 3. untuk tiap n N, dan 2 Tentukan luas daerah di bawah kurva y = 1 + x, x [0, 1], dengan cara seperti pada Contoh 1. Apakah hasil yang diperoleh sesuai dengan pengetahuan geometri kita?

11 Misalkan f kontinu pada interval [a, b]. Definisikan partisi dari [a, b] sebagai himpunan P := {x 0, x 1,..., x n } dengan a = x 0 < x 1 < < x n 1 < x n = b. Karena f kontinu pada [a, b], maka f terbatas pada [a, b]. Jadi, diberikan sembarang partisi P := {x 0, x 1,..., x n } dari [a, b], kita dapat mendefinisikan untuk k = 1, 2,..., n. m k := inf f (x), x k 1 x x k

12 Dengan demikian, untuk tiap partisi P, kita dapat membentuk deret n S(P, f ) := m k (x k x k 1 ). k=1 (Buatlah suatu ilustrasi yang menyatakan nilai S(P, f ).)

13 Misalkan f terbatas di atas pada [a, b], katakanlah f (x) M, x [a, b]. Maka S(P, f ) M n (x k x k 1 ) = M(b a). k=1 Jadi himpunan bilangan {S(P, f ) : P partisi dari [a, b]} terbatas di atas oleh M(b a), dan karena itu ia mempunyai supremum.

14 Definisi Integral Daftar Isi Jika f kontinu pada interval [a, b], maka kita definisikan integral f pada [a, b] sebagai b a f (x) dx := sup S(P, f ), P dengan nilai supremum diambil atas semua partisi P dari [a, b]. Dalam hal f (x) 0 untuk setiap x [a, b], maka b a f (x) dx dapat diinterpretasikan sebagai luas daerah di bawah kurva y = f (x). Jika a < b, maka kita definisikan a b f (x) dx := f (x) dx. b a

15 Proposisi 2 Daftar Isi Misalkan f kontinu pada [a, b] dengan nilai maksimum M dan nilai minimum m. Maka m(b a) b a f (x) dx M(b a).

16 Soal Latihan Daftar Isi 1 Buktikan Proposisi 2. 2 Buktikan bahwa b c dx = c(b a). a 3 Diketahui f (x) = x, x [a, b]. Buktikan bahwa S(P, f ) 1 2 (b2 a 2 ) untuk sebarang partisi P dari [a, b]. Selanjutnya, dengan menggunakan definisi integral, buktikan bahwa b a f (x) dx = 1 2 (b2 a 2 ).

17 Misalkan f terdefinisi pada (a, b). Misalkan F kontinu pada [a, b] dan mempunyai turunan pada (a, b) dengan F (x) = f (x) untuk tiap x (a, b). Maka F disebut sebagai anti turunan dari f pada [a, b].

18 Contoh 3 Daftar Isi Jika f (x) = x 3, maka fungsi F yang didefinisikan sebagai F (x) = 1 4 x merupakan suatu anti turunan dari f. Secara umum, fungsi G yang didefinisikan sebagai G(x) = 1 4 x 4 + C, dengan C konstanta, merupakan anti turunan dari f.

19 Apa urusannya anti turunan dengan integral? Untuk menjawab pertanyaan ini, misalkan f kontinu pada [a, b]. Definisikan F pada [a, b] sebagai F (x) := x a f (t) dt, x [a, b]. Dalam teorema berikut, kita akan menunjukkan bahwa F merupakan suatu anti turunan dari f pada [a, b].

20 Teorema 4 (Teorema Dasar Kalkulus I) Misalkan f kontinu pada [a, b] dan F didefinisikan pada [a, b] sebagai F (x) := x a f (t) dt, x [a, b]. Maka, F merupakan suatu anti turunan dari f pada [a, b]; yakni, F kontinu pada [a, b], mempunyai turunan pada (a, b), dan F (x) = f (x) untuk tiap x (a, b).

21 Teorema 5 (Teorema Dasar Kalkulus II) Setiap fungsi f yang kontinu pada [a, b] mempunyai anti turunan pada [a, b]. Jika G adalah anti turunan dari f pada [a, b], maka b a f (t) dt = G(b) G(a).

22 Soal Latihan Daftar Isi 1 Buktikan Teorema 5 dengan menggunakan Teorema 4. 2 Buktikan bahwa 1 0 x 2 dx = Misalkan r Q, r 1. Buktikan bahwa 1 0 x r dx = 1 r+1.

DASAR-DASAR ANALISIS MATEMATIKA

DASAR-DASAR ANALISIS MATEMATIKA (Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. December 11, 2007 Misalkan f terdefinisi pada suatu himpunan H. Kita katakan bahwa f naik pada H apabila

Lebih terperinci

DASAR-DASAR ANALISIS MATEMATIKA

DASAR-DASAR ANALISIS MATEMATIKA (Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. November 19, 2007 Secara geometris, f kontinu di suatu titik berarti bahwa grafiknya tidak terputus

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

DASAR-DASAR ANALISIS MATEMATIKA

DASAR-DASAR ANALISIS MATEMATIKA (Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. December 6, 2007 Misalkan f terdefinisi pada suatu interval terbuka (a, b) dan c (a, b). Kita katakan

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. August 18, Dosen FMIPA - ITB

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. August 18, Dosen FMIPA - ITB (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. August 18, 2011 Kita telah mencatat sebelumnya bahwa supremum dan infimum suatu himpunan tidak harus merupakan anggota himpunan

Lebih terperinci

DASAR-DASAR ANALISIS MATEMATIKA

DASAR-DASAR ANALISIS MATEMATIKA (Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. December 1, 2007 Diberikan sebuah fungsi yang terdefinisi pada interval (a, b) kecuali mungkin di

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

II. LANDASAN TEORI ( ) =

II. LANDASAN TEORI ( ) = II. LANDASAN TEORI 2.1 Fungsi Definisi 2.1.1 Fungsi Bernilai Real Fungsi bernilai real adalah fungsi yang domain dan rangenya adalah himpunan bagian dari real. Definisi 2.1.2 Limit Fungsi Jika adalah suatu

Lebih terperinci

5. Sifat Kelengkapan Bilangan Real

5. Sifat Kelengkapan Bilangan Real 5. Sifat Kelengkapan Bilangan Real Sifat aljabar dan sifat urutan bilangan real telah dibahas sebelumnya. Selanjutnya, akan dijelaskan sifat kelengkapan bilangan real. Bilangan rasional ℚ juga memenuhi

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

11. FUNGSI MONOTON (DAN FUNGSI KONVEKS)

11. FUNGSI MONOTON (DAN FUNGSI KONVEKS) 11. FUNGSI MONOTON (DAN FUNGSI KONVEKS) 11.1 Definisi dan Limit Fungsi Monoton Misalkan f terdefinisi pada suatu himpunan H. Kita katakan bahwa f naik pada H apabila untuk setiap x, y H dengan x < y berlaku

Lebih terperinci

KALKULUS MULTIVARIABEL II

KALKULUS MULTIVARIABEL II Pada Bidang Bentuk Vektor dari KALKULUS MULTIVARIABEL II (Minggu ke-9) Andradi Jurusan Matematika FMIPA UGM Yogyakarta, Indonesia Pada Bidang Bentuk Vektor dari 1 Definisi Daerah Sederhana x 2 Pada Bidang

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

BAGIAN KEDUA. Fungsi, Limit dan Kekontinuan, Turunan

BAGIAN KEDUA. Fungsi, Limit dan Kekontinuan, Turunan BAGIAN KEDUA Fungsi, Limit dan Kekontinuan, Turunan 51 52 Hendra Gunawan Pengantar Analisis Real 53 6. FUNGSI 6.1 Fungsi dan Grafiknya Konsep fungsi telah dipelajari oleh Gottfried Wilhelm von Leibniz

Lebih terperinci

MA5032 ANALISIS REAL

MA5032 ANALISIS REAL (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. August 17, 2011 Zeno, seorang filsuf dan matematikawan Yunani Kuno (490-435 SM), mengemukakan sebuah paradoks tentang suatu

Lebih terperinci

BAB V KEKONVERGENAN BARISAN PADA DAN KETERKAITAN DENGAN. Pada subbab 4.1 telah dibahas beberapa sifat dasar yang berlaku pada koleksi

BAB V KEKONVERGENAN BARISAN PADA DAN KETERKAITAN DENGAN. Pada subbab 4.1 telah dibahas beberapa sifat dasar yang berlaku pada koleksi BAB V KEKONVERGENAN BARISAN PADA DAN KETERKAITAN DENGAN Pada subbab 4.1 telah dibahas beberapa sifat dasar yang berlaku pada koleksi semua fungsi yang terintegralkan Lebesgue, 1. Sebagaimana telah dirumuskan

Lebih terperinci

PENGANTAR ANALISIS REAL

PENGANTAR ANALISIS REAL Seri Analisis dan Geometri No. 1 (2009), -15 158 (173 hlm.) PENGANTAR ANALISIS REAL Oleh Hendra Gunawan Edisi Pertama Bandung, Januari 2009 2000 Dewey Classification: 515-xx. Kata Kunci: Analisis matematika,

Lebih terperinci

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan 4.2 Sifat-Sifat Fungsi Kontinu Diberikan f dan g, keduanya terdefinisi pada himpunan A, kita definisikan f + g, f g, fg, f/g secara

Lebih terperinci

BAB III INTEGRAL LEBESGUE. Pada bab sebelumnya telah disebutkan bahwa ruang dibangun oleh

BAB III INTEGRAL LEBESGUE. Pada bab sebelumnya telah disebutkan bahwa ruang dibangun oleh BAB III INTEGRAL LEBESGUE Pada bab sebelumnya telah disebutkan bahwa ruang dibangun oleh fungsi-fungsi terukur dan memenuhi sifat yang berkaitan dengan integral Lebesgue. Kajian mengenai keterukuran suatu

Lebih terperinci

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. October 3, Dosen FMIPA - ITB

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. October 3, Dosen FMIPA - ITB (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. October 3, 2011 6.3 Limit Sepihak, Limit di Tak Hingga, dan Limit Tak Hingga Bila sebelumnya kita mempelajari limit barisan,

Lebih terperinci

BAB III FUNGSI TERUKUR LEBESGUE. Setelah dibahas mengenai ukuran Lebesgue dan beberapa sifatnya pada

BAB III FUNGSI TERUKUR LEBESGUE. Setelah dibahas mengenai ukuran Lebesgue dan beberapa sifatnya pada BAB III FUNGSI TERUKUR LEBESGUE Setelah dibahas mengenai ukuran Lebesgue dan beberapa sifatnya pada Bab II, selanjutnya pada bab ini akan dipelajari gagasan mengenai fungsi terukur Lebesgue. Gagasan mengenai

Lebih terperinci

Catatan Kuliah KALKULUS II BAB V. INTEGRAL

Catatan Kuliah KALKULUS II BAB V. INTEGRAL BAB V. INTEGRAL Anti-turunan dan Integral TakTentu Persamaan Diferensial Sederhana Notasi Sigma dan Luas Daerah di Bawah Kurva Integral Tentu Teorema Dasar Kalkulus Sifat-sifat Integral Tentu Lebih Lanjut

Lebih terperinci

DEFINISI TIPE RIEMANN UNTUK INTEGRAL LEBESGUE 1. Drajad Maknawi 2 dan Muslich 3 Jurusan Matematika FMIPA UNS. Abstrak

DEFINISI TIPE RIEMANN UNTUK INTEGRAL LEBESGUE 1. Drajad Maknawi 2 dan Muslich 3 Jurusan Matematika FMIPA UNS. Abstrak DEFINISI TIPE RIEMANN UNTUK INTEGRAL LEBESGUE 1 An-2 1. PENDAHULUAN Drajad Maknawi 2 dan Muslich 3 Jurusan Matematika FMIPA UNS Abstrak Tujuan dari tulisan ini adalah membahas tentang integral Lebesgue

Lebih terperinci

BAB 1 PENDAHULUAN 1.1. Latar Belakang Permasalahan

BAB 1 PENDAHULUAN 1.1. Latar Belakang Permasalahan BAB 1 PENDAHULUAN 1.1. Latar Belakang Permasalahan Ilmu pengetahuan merupakan hal yang mengalami perkembangan secara terus-menerus. Diantaranya teori integral yaitu ilmu bidang matematika analisis yang

Lebih terperinci

BAB I INTEGRAL TAK TENTU

BAB I INTEGRAL TAK TENTU BAB I INTEGRAL TAK TENTU TUJUAN PEMBELAJARAN: 1. Setelah mempelajari materi ini mahasiswa dapat menentukan pengertian integral sebagai anti turunan. 2. Setelah mempelajari materi ini mahasiswa dapat menyelesaikan

Lebih terperinci

MA3231. Pengantar Analisis Real. Hendra Gunawan, Ph.D. Semester II, Tahun

MA3231. Pengantar Analisis Real. Hendra Gunawan, Ph.D. Semester II, Tahun MA3231 Pengantar Analisis Real Semester II, Tahun 2016-2017 Hendra Gunawan, Ph.D. Bab 1 Sifat Kelengkapan Bilangan Real 2 1.1 Paradoks Zeno ACHILLES TORTOISE 0 1 1½ Sumber: skeptic.com 1 1 1... 1 2 4 8?

Lebih terperinci

KALKULUS MULTIVARIABEL II

KALKULUS MULTIVARIABEL II KALKULUS MULTIVARIABEL II Integral Garis Medan Vektor dan (Minggu ke-8) Andradi Jurusan Matematika FMIPA UGM Yogyakarta, Indonesia 1 Integral Garis Medan Vektor 2 Terkait Lintasan Teorema Fundamental untuk

Lebih terperinci

Daftar Isi 5. DERET ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. Dosen FMIPA - ITB September 26, 2011

Daftar Isi 5. DERET ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. Dosen FMIPA - ITB   September 26, 2011 (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. September 26, 2011 Diberikan sejumlah terhingga bilangan a 1,..., a N, kita dapat menghitung jumlah a 1 + + a N. Namun,

Lebih terperinci

asimtot.wordpress.com BAB I PENDAHULUAN

asimtot.wordpress.com BAB I PENDAHULUAN BAB I PENDAHULUAN. Latar Belakang Kalkulus Differensial dan Integral sangat luas penggunaannya dalam berbagai bidang seperti penentuan maksimum dan minimum. Suatu fungsi yang sering digunakan mahasiswa

Lebih terperinci

PENYELESAIAN INTEGRAL DIMENSI-n DENGAN MENGGUNAKAN TEOREMA FUBINI

PENYELESAIAN INTEGRAL DIMENSI-n DENGAN MENGGUNAKAN TEOREMA FUBINI PENYELESAIAN INTEGRAL DIMENSI-n DENGAN MENGGUNAKAN TEOREMA FUBINI SKRIPSI Diajukan untuk Memenuhi Sebagian dari Syarat untuk Memperoleh Gelar Sarjana Pendidikan S-1 Program Studi Pendidikan Matematika

Lebih terperinci

Integral lipat dua BAB V INTEGRAL LIPAT 5.1. DEFINISI INTEGRAL LIPAT DUA. gambar 5.1 Luasan di bawah permukaan

Integral lipat dua BAB V INTEGRAL LIPAT 5.1. DEFINISI INTEGRAL LIPAT DUA. gambar 5.1 Luasan di bawah permukaan BAB V INTEGRAL LIPAT 5.1. DEFINISI INTEGRAL LIPAT DUA gambar 5.1 Luasan di bawah permukaan 61 Pada Matematika Dasar I telah dipelajari integral tertentu b f ( x) dx yang dapat didefinisikan, apabila f

Lebih terperinci

BAB II KAJIAN TEORI. memahami sifat-sifat dari barisan fungsi. Pada bab ini akan diuraikan materimateri

BAB II KAJIAN TEORI. memahami sifat-sifat dari barisan fungsi. Pada bab ini akan diuraikan materimateri BAB II KAJIAN TEORI Analisis kekonvergenan pada barisan fungsi, apakah barisan fungsi itu? Apakah berbeda dengan barisan pada umumnya? Tentunya sebelum membahas mengenai barisan fungsi, apa saja jenis

Lebih terperinci

Daftar Isi 3. BARISAN ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. Dosen FMIPA - ITB

Daftar Isi 3. BARISAN ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. Dosen FMIPA - ITB (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. August 29, 2011 Dalam kisah Zeno tentang perlombaan lari antara Achilles dan seekor kura-kura, ketika Achilles mencapai

Lebih terperinci

TERAPAN INTEGRAL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 22

TERAPAN INTEGRAL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 22 TERAPAN INTEGRAL Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 22 Topik Bahasan 1 Luas Daerah Bidang Rata 2 Nilai Rataan Fungsi (Departemen Matematika

Lebih terperinci

Memahami definisi barisan tak hingga dan deret tak hingga, dan juga dapat menentukan

Memahami definisi barisan tak hingga dan deret tak hingga, dan juga dapat menentukan 4 BARISAN TAK HINGGA DAN DERET TAK HINGGA JUMLAH PERTEMUAN : 5 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS : Memahami definisi barisan tak hingga dan deret tak hingga, dan juga dapat menentukan kekonvergenan

Lebih terperinci

Ayundyah Kesumawati. April 29, Prodi Statistika FMIPA-UII. Deret Tak Terhingga. Ayundyah. Barisan Tak Hingga. Deret Tak Terhingga

Ayundyah Kesumawati. April 29, Prodi Statistika FMIPA-UII. Deret Tak Terhingga. Ayundyah. Barisan Tak Hingga. Deret Tak Terhingga Kesumawati Prodi Statistika FMIPA-UII April 29, 2015 Akar Barisan a 1, a 2, a 3, a 4,... adalah susunan bilangan-bilangan real yang teratur, satu untuk setiap bilangan bulat positif. adalah fungsi yang

Lebih terperinci

LIMIT DAN KEKONTINUAN

LIMIT DAN KEKONTINUAN LIMIT DAN KEKONTINUAN Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 37 Topik Bahasan 1 Limit Fungsi 2 Hukum Limit 3 Kekontinuan Fungsi (Departemen

Lebih terperinci

Matematika I: APLIKASI TURUNAN. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 70

Matematika I: APLIKASI TURUNAN. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 70 Matematika I: APLIKASI TURUNAN Dadang Amir Hamzah 2015 Dadang Amir Hamzah Matematika I Semester I 2015 1 / 70 Outline 1 Maksimum dan Minimum Dadang Amir Hamzah Matematika I Semester I 2015 2 / 70 Outline

Lebih terperinci

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. September 12, Dosen FMIPA - ITB

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. September 12, Dosen FMIPA - ITB (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. September 12, 2011 Teorema 11 pada Bab 3 memberi kita cara untuk menyelidiki kekonvergenan sebuah barisan tanpa harus mengetahui

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK

UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK UJI KONVERGENSI Januari 208 Tim Dosen Kalkulus 2 TPB ITK Uji Integral Teorema 3 Jika + k= u k adalah deret dengan suku-suku tak negatif, dan jika ada suatu konstanta M sedemikian hingga s n = u + u 2 +

Lebih terperinci

Hendra Gunawan. 16 Oktober 2013

Hendra Gunawan. 16 Oktober 2013 MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 16 Oktober 2013 Latihan (Kuliah yang Lalu) 1. Diketahui g(x) = x 3 /3, x є [ 2,2]. Hitung nilai rata rata g pada [ 2,2] dan tentukan c є ( 2,2)

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan 3. Topologi Garis Bilangan Real 3.1 Teori Limit Limit, supremum, dan infimum Titik limit 3.2 Himpunan Buka dan Himpunan Tutup 3.3

Lebih terperinci

MAKALAH. Bantuan dalam Penghitungan Integral Tentu KALKULUS LANJUT Dosen Pengampu: Sugeng Riyadi S.Si M.Pd DISUSUN OLEH: Kelompok V

MAKALAH. Bantuan dalam Penghitungan Integral Tentu KALKULUS LANJUT Dosen Pengampu: Sugeng Riyadi S.Si M.Pd DISUSUN OLEH: Kelompok V MAKALAH Bantuan dalam Penghitungan Integral Tentu KALKULUS LANJUT Dosen Pengampu: Sugeng Riyadi S.Si M.Pd DISUSUN OLEH: Kelompok V 1. NURVITA 2. ROSI LUSIANA 3. PUJI ASTUTI 4. SURTA MD PANGGABEAN 5. SUTRISNO

Lebih terperinci

ANALISIS VARIABEL REAL 2

ANALISIS VARIABEL REAL 2 2012 ANALISIS VARIABEL REAL 2 www.alfirosyadi.wordpress.com UNIVERSITAS MUHAMMADIYAH MALANG 1/1/2012 IDENTITAS MAHASISWA NAMA : NIM : KELAS : KELOMPOK : 2 PENDAHULUAN Modul ini disusun untuk membantu mahasiswa

Lebih terperinci

muhammadamien.wordpress.com

muhammadamien.wordpress.com 1. 2. Gradien garis singgung di setiap titik dapat dinyatakan sebagai 34 maka nilai minimumnya 1 3 5 7 9. Jika nilai maksimum 3. Jika maka 4. 5. 1 3 4 5 6 1 6. 7. Luas daerah yang dibatasi oleh parabola

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB I PENDAHULUAN 1.1 Latar Belakang Matematika sebagai salah satu ilmu dasar, semakin dirasakan interaksinya dengan bidangbidang ilmu lainnya, seperti ekonomi dan teknologi. Peran matematika dalam interaksi

Lebih terperinci

SISTEM BILANGAN REAL

SISTEM BILANGAN REAL DAFTAR ISI 1 SISTEM BILANGAN REAL 1 1.1 Sifat Aljabar Bilangan Real..................... 1 1.2 Sifat Urutan Bilangan Real..................... 6 1.3 Nilai Mutlak dan Jarak Pada Bilangan Real............

Lebih terperinci

, maka., maka 1 = 1 +1 <3 1 < = 10 3 =1

, maka., maka 1 = 1 +1 <3 1 < = 10 3 =1 LATIHAN 4.1 1. Tentukan sebuah kondisi pada 1 yang akan menjamin bahwa : a. 1 < Penyelesaian: Kita perhatikan 1 = 1 +1

Lebih terperinci

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1 Ringkasan Kalkulus 2, Untuk dipakai di ITB Deret Tak Hingga Pada bagian ini akan dibicarakan penjumlahan berbentuk a +a 2 + +a n + dengan a n R Sebelumnya akan dibahas terlebih dahulu pengertian barisan

Lebih terperinci

Kalkulus Multivariabel I

Kalkulus Multivariabel I atas Persegi Panjang Integral dalam uang Berdimensi n: atas Persegi Panjang Statistika FMIPA Universitas Islam Indonesia 2014 atas Persegi Panjang Sifat-Sifat Perhitungan pada Masalah-masalah yang dipecahkan

Lebih terperinci

KALKULUS MULTIVARIABEL II

KALKULUS MULTIVARIABEL II Definisi KALKULUS MULTIVARIABEL II (Minggu ke-7) Andradi Jurusan Matematika FMIPA UGM Yogyakarta, Indonesia Definisi 1 Definisi 2 ontoh Soal Definisi Integral Garis Fungsi f K R 2 R di Sepanjang Kurva

Lebih terperinci

4 DIFERENSIAL. 4.1 Pengertian derivatif

4 DIFERENSIAL. 4.1 Pengertian derivatif Diferensial merupakan topik yang cukup 'baru' dalam matematika. Dimulai sekitar tahun 1630 an oleh Fermat ketika menghadapi masalah menentukan garis singgung kurva, dan juga masalah menentukan maksimum

Lebih terperinci

10. TEOREMA NILAI RATA-RATA

10. TEOREMA NILAI RATA-RATA 10. TEOREMA NILAI RATA-RATA 10.1 Maksimum dan Minimum Lokal Misalkan f terdefinisi pada suatu interval terbuka (a, b) dan c (a, b). Kita katakan bahwa f mencapai nilai maksimum lokal di c apabila f(x)

Lebih terperinci

BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT

BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT 29 BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT 4.1 Perumusan Penduga Misalkan adalah proses Poisson nonhomogen

Lebih terperinci

Integral Tak Tentu. Modul 1 PENDAHULUAN

Integral Tak Tentu. Modul 1 PENDAHULUAN Modul 1 Integral Tak Tentu M PENDAHULUAN Drs. Hidayat Sardi, M.Si odul ini akan membahas operasi balikan dari penurunan (pendiferensialan) yang disebut anti turunan (antipendiferensialan). Dengan mengikuti

Lebih terperinci

MA1201 KALKULUS 2A Do maths and you see the world

MA1201 KALKULUS 2A Do maths and you see the world Catatan Kuliah MA20 KALKULUS 2A Do maths and you see the world disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 203 Catatan kuliah ini ditulis

Lebih terperinci

Nughthoh Arfawi Kurdhi, M.Sc Department of Mathematics FMIPA UNS

Nughthoh Arfawi Kurdhi, M.Sc Department of Mathematics FMIPA UNS Lecture 5. Integral A. Masalah Luas (The Area Problem) Sebelumnya kita pernah mempelajari rumus-rumus luas dari beberapa bentuk geometri. Misalnya, luas daerah persegi panjang adalah panjang kali lebar,

Lebih terperinci

BAB II TEOREMA NILAI RATA-RATA (TNR)

BAB II TEOREMA NILAI RATA-RATA (TNR) BAB II TEOREMA NILAI RATA-RATA (TNR) Teorema nilai rata-rata menghubungkan nilai suatu fungsi dengan nilai derivatifnya (turunannya), dimana TNR merupakan salah satu bagian penting dalam kuliah analisis

Lebih terperinci

Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada,

Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada, Lecture 4. Limit B A. Continuity Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada, (2) lim f(x) ada, (3) lim f(x) =

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

MODUL RESPONSI MAM 4222 KALKULUS IV

MODUL RESPONSI MAM 4222 KALKULUS IV MODUL RESPONSI MAM 4222 KALKULUS IV Mata Kuliah Wajib 2 sks untuk mahasiswa Program Studi Matematika Oleh Dr. WURYANSARI MUHARINI KUSUMAWINAHYU, M.Si. PROGRAM STUDI MATEMATIKA JURUSAN MATEMATIKA FAKULTAS

Lebih terperinci

INTISARI KALKULUS 2. Penyusun: Drs. Warsoma Djohan M.Si. Open Source. Not For Commercial Use

INTISARI KALKULUS 2. Penyusun: Drs. Warsoma Djohan M.Si. Open Source. Not For Commercial Use INTISARI KALKULUS 2 Penyusun: Drs. Warsoma Djohan M.Si. Program Studi Matematika - FMIPA Institut Teknologi Bandung Januari 200 Pengantar Kalkulus & 2 merupakan matakuliah wajib tingkat pertama bagi semua

Lebih terperinci

IPS. Untuk Sekolah Menengah Atas. þ Program Tahunan (Prota) þ Program Semester (Promes) þ Silabus. þ Rencana Pelaksanaan Pembelajaran (RPP)

IPS. Untuk Sekolah Menengah Atas. þ Program Tahunan (Prota) þ Program Semester (Promes) þ Silabus. þ Rencana Pelaksanaan Pembelajaran (RPP) PEMBELAJARAN STANDAR ISI 2006 þ Program Tahunan (Prota) þ Program Semester (Promes) þ Silabus þ Rencana Pelaksanaan Pembelajaran (RP MATEMATIKA Untuk Menengah Atas 12 IPS CV. SINDHUNATA Matematika 12 A

Lebih terperinci

Misal, dan diberikan sebarang, terdapat sehingga untuk setiap

Misal, dan diberikan sebarang, terdapat sehingga untuk setiap PROGRAM STUDI PENDIDIKAN MATEMATIKA FKIP UNMUH PONOROGO PENYELESAIAN SOAL UJIAN AKHIR SEMESTER GENAP TA 2012/2013 Mata Ujian : Analisis Real 1 Tipe Soal : Reguler Dosen : Dr. Julan HERNADI Waktu : 90 menit

Lebih terperinci

-LIMIT- -KONTINUITAS- -BARISAN- Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ

-LIMIT- -KONTINUITAS- -BARISAN- Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ -LIMIT- -KONTINUITAS- -BARISAN- Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ agustina.mipa@unej.ac.id Konsep Limit Fungsi mendasari pembentukan kalkulus dierensial dan integral. Konsep ini

Lebih terperinci

= F (x)= f(x)untuk semua x dalam I. Misalnya F(x) =

= F (x)= f(x)untuk semua x dalam I. Misalnya F(x) = Nama : Deami Astenia Purtisari Nim : 125100300111014 Kelas : L / TIP A. Integral Integral merupakan konsep yang bermanfaat, kegunaan integral terdapat dalam berbagai bidang. Misalnya dibidang ekonomi,

Lebih terperinci

TINJAUAN SINGKAT KALKULUS

TINJAUAN SINGKAT KALKULUS A TINJAUAN SINGKAT KALKULUS Salah satu syarat yang diperlukan untuk mempelajari komputasi numerik adalah pengetahuan dasar tentang kalkulus, termasuk pengenalan beberapa notasi dalam kalkulus, sifat-sifat

Lebih terperinci

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang 1. SIFAT KELENGKAPAN BILANGAN REAL

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang 1. SIFAT KELENGKAPAN BILANGAN REAL Pertemuan 4. BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang 1.1 Paradoks 1. SIFAT KELENGKAPAN BILANGAN REAL Bila kita menjumlahkan 1 2 + 1 4 + 1 8 +... Apabila kita ambil contoh

Lebih terperinci

Nilai mutlak pada definisi tersebut di interpretasikan untuk mengukur jarak dua

Nilai mutlak pada definisi tersebut di interpretasikan untuk mengukur jarak dua II. LANDASAN TEORI 2.1 Limit Fungsi Definisi 2.1.1(Edwin J, 1987) Misalkan I interval terbuka pada R dan f: I R fungsi bernilai real. Secara matematis ditulis lim f(x) = l untuk suatu a I, yaitu nilai

Lebih terperinci

Pengantar : Induksi Matematika

Pengantar : Induksi Matematika Pengantar : Induksi Matematika Analisis Real /2 SKS/ Ega Gradini, M.Sc Induksi Matematika adalah cara standar dalam membuktikan bahwa sebuah pernyataan tertentu berlaku untuk setiap bilangan asli. Pembuktian

Lebih terperinci

CNH2B4 / KOMPUTASI NUMERIK

CNH2B4 / KOMPUTASI NUMERIK CNH2B4 / KOMPUTASI NUMERIK TIM DOSEN KK MODELING AND COMPUTATIONAL EXPERIMENT 1 REVIEW KALKULUS & KONSEP ERROR Fungsi Misalkan A adalah himpunan bilangan. Fungsi f dengan domain A adalah sebuah aturan

Lebih terperinci

Open Source. Not For Commercial Use

Open Source. Not For Commercial Use Ringkasan Kalkulus 2, Untuk dipakai di ITB 1 Limit dan Kekontinuan Misalkan z = f(, y) fungsi dua peubah dan (a, b) R 2. Seperti pada limit fungsi satu peubah, limit fungsi dua peubah bertujuan untuk mengamati

Lebih terperinci

1 SISTEM BILANGAN REAL

1 SISTEM BILANGAN REAL 1 SISTEM BILANGAN REAL Bilangan real sudah dikenal dengan baik sejak masih di sekolah menengah, bahkan sejak dari sekolah dasar. Namun untuk memulai mempelajari materi pada BAB ini anggaplah diri kita

Lebih terperinci

BAB II DASAR TEORI. Di dalam BAB II ini akan dibahas materi yang menjadi dasar teori pada

BAB II DASAR TEORI. Di dalam BAB II ini akan dibahas materi yang menjadi dasar teori pada BAB II DASAR TEORI Di dalam BAB II ini akan dibahas materi yang menjadi dasar teori pada pembahasan BAB III, mulai dari definisi sampai sifat-sifat yang merupakan konsep dasar untuk mempelajari Fungsi

Lebih terperinci

Sistem Bilangan Real

Sistem Bilangan Real TUGAS I ANALISIS REAL I Sistem Bilangan Real Tugas 1 Analisis Real I Disusun oleh : Nariswari Setya D. Kartini Marvina Puspito M0108022 M0108050 M0108056 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU

Lebih terperinci

Kalkulus Multivariabel I

Kalkulus Multivariabel I atas Persegi Panjang Integral dalam uang Berdimensi n: atas Persegi Panjang Statistika FMIPA Universitas Islam Indonesia atas Persegi Panjang Masalah-masalah yang dipecahkan dengan menggunakan integral

Lebih terperinci

F. RANCANGAN KEGIATAN BELAJAR MENGAJAR

F. RANCANGAN KEGIATAN BELAJAR MENGAJAR F. RANCANGAN KEGIATAN BELAJAR MENGAJAR No. (TIU) 1. Limit Fungsi Mahasiswa dapar memahami secara mendalam (deduktif) pengertian limit fungsi, definisi dan te-orema-teorema serta mampu menga-plikasikannya

Lebih terperinci

INTEGRAL. disebut integral tak tentu dan f(x) disebut integran. = X n+1 + C, a = konstanta

INTEGRAL. disebut integral tak tentu dan f(x) disebut integran. = X n+1 + C, a = konstanta INTEGRAL Jika f(x) = F (x) adalah turunan pertama dari fungsi F(x) maka F(x) adalah antiturunan dari f(x)dan ditulis dengan F(x) = (dibaca integral f(x) terhadap x) = lambang integral, f(x) = integran.

Lebih terperinci

BAGIAN PERTAMA. Bilangan Real, Barisan, Deret

BAGIAN PERTAMA. Bilangan Real, Barisan, Deret BAGIAN PERTAMA Bilangan Real, Barisan, Deret 2 Hendra Gunawan Pengantar Analisis Real 3 0. BILANGAN REAL 0. Bilangan Real sebagai Bentuk Desimal Dalam buku ini pembaca diasumsikan telah mengenal dengan

Lebih terperinci

PENGGUNAAN INTEGRAL. 1. Menghitung luas suatu daerah yang dibatasi oleh kurva dan sumbu-sumbu koordinat. 2. Menghitung volume benda putar.

PENGGUNAAN INTEGRAL. 1. Menghitung luas suatu daerah yang dibatasi oleh kurva dan sumbu-sumbu koordinat. 2. Menghitung volume benda putar. PENGGUNAAN INTEGRA 1. Menghitung luas suatu daerah ang dibatasi oleh kurva dan sumbu-sumbu koordinat.. Menghitung volume benda putar. 9 uas daerah di bawah kurva Volume benda putar ang diputar mengelilingi

Lebih terperinci

Muhafzan TURUNAN. Muhafzan, Ph.D

Muhafzan TURUNAN. Muhafzan, Ph.D 1 TURUNAN, Ph.D TURUNAN 3 1 Turunan Kita mulai diskusi ini dengan memperkenalkan denisi turunan suatu fungsi Denisi 1. Misalkan I R; f : I! R dan c 2 I: Bilangan L 2 R dikatakan merupakan turunan dari

Lebih terperinci

Barisan dan Deret Agus Yodi Gunawan

Barisan dan Deret Agus Yodi Gunawan Barisan dan Deret Agus Yodi Gunawan Barisan. Definisi. Barisan tak hingga adalah suatu fungsi dengan daerah asalnya himpunan bilangan bulat positif dan daerah kawannya himpunan bilangan real. Notasi untuk

Lebih terperinci

Kalkulus Diferensial week 09. W. Rofianto, ST, MSi

Kalkulus Diferensial week 09. W. Rofianto, ST, MSi Kalkulus Diferensial week 09 W. Rofianto, ST, MSi Tingkat Perubahan Rata-rata Jakarta Km 0 jam Bandung Km 140 Kecepatan rata-rata s t 140Km jam 70Km / jam Konsep Diferensiasi Bentuk y/ disebut difference

Lebih terperinci

B. y = 1 x 2 1 UN-SMK-TEK Jika A = 2 0

B. y = 1 x 2 1 UN-SMK-TEK Jika A = 2 0 UN-SMK-TEK-04-0 Jarak kota A ke kota B pada peta 0 cm. Jika skala peta : 0.000, maka jarak kedua kota sebenarnya adalah..., km km 0 km.00 km.000 km UN-SMK-TEK-04-0 Hasil perkalian dari (4a) - (a) =...

Lebih terperinci

KALKULUS (IT 131) Fakultas Teknologi Informasi - Universitas Kristen Satya Wacana. Bagian 4. Derivatif ALZ DANNY WOWOR

KALKULUS (IT 131) Fakultas Teknologi Informasi - Universitas Kristen Satya Wacana. Bagian 4. Derivatif ALZ DANNY WOWOR KALKULUS (IT 131) Fakultas Teknologi Informasi - Universitas Kristen Satya Wacana Bagian 4 Derivatif ALZ DANNY WOWOR Cakupan Materi A. Defenisi Derivatif B. Rumus-rumus Derivatif C. Aplikasi Derivatif

Lebih terperinci

F. RANCANGAN KEGIATAN BELAJAR MENGAJAR

F. RANCANGAN KEGIATAN BELAJAR MENGAJAR F. RANCANGAN KEGIATAN BELAJAR MENGAJAR No. (TIU) : 1. Pendahuluan Mahasiswa dapat memahami pengertian dan konsep himpunan, fungsi dan induksi matematik, mampu menerapkannya dalam penyelesaian soal dan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Latar Belakang Historis Fondasi dari integral pertama kali dideklarasikan oleh Cavalieri, seorang ahli matematika berkebangsaan Italia pada tahun 1635. Cavalieri menemukan bahwa

Lebih terperinci

Luas daerah yang dibatasi oleh beberapa kurva dapat ditentukan dengan menghitung integral tertentu.

Luas daerah yang dibatasi oleh beberapa kurva dapat ditentukan dengan menghitung integral tertentu. IKA ARFIANI,S.T. Luas daerah yang dibatasi oleh beberapa kurva dapat ditentukan dengan menghitung integral tertentu. Andaikan kurva y = f(x) dan kurva y = g(x) kontinu pada interval a x b, dan kurva y

Lebih terperinci

Variabel Banyak Bernilai Real 1 / 1

Variabel Banyak Bernilai Real 1 / 1 Fungsi Variabel Banyak Bernilai Real Turunan Parsial dan Turunan Wono Setya Budhi KK Analisis dan Geometri, FMIPA ITB Variabel Banyak Bernilai Real 1 / 1 Turunan Parsial dan Turunan Usaha pertama untuk

Lebih terperinci

FUNGSI KONTINU. sedemikian sehingga jika x adalah titik dari A (c), maka f (x) berada pada Vg (f (c)). (Lihat Gambar 5.1.1).

FUNGSI KONTINU. sedemikian sehingga jika x adalah titik dari A (c), maka f (x) berada pada Vg (f (c)). (Lihat Gambar 5.1.1). FUNGSI KONTINU 51 FUNGSI KONTINU 511 Definisi A R, f: A R, dan c A Kita mengatakan bahwa f kontinu di c jika, diberi persekitaran Vg (f (c)) dari f (c) terdapat persekitaran (c) dari c sedemikian sehingga

Lebih terperinci

PROGRAM LINEAR. sudir15mks

PROGRAM LINEAR. sudir15mks PROGRAM LINEAR A. Sistem Pertidaksamaan Linear Dua Variabel Suatu garis dalam bidang koordinat dapat dinyatakan dengan persamaan yang berbentuk: x a x b a1 1 2 2 Persamaan semacam ini dinamakan persamaan

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Konsep integral sering digunakan untuk menentukan luas daerah di bawah kurva. Selain itu, integral juga sering digunakan untuk mencari penyelesaian dari suatu

Lebih terperinci

Pertemuan ke-10: UJI PERBANDINGAN, DERET BERGANTI TANDA, KEKONVERGENAN MUTLAK, UJI RASIO, DAN UJI AKAR

Pertemuan ke-10: UJI PERBANDINGAN, DERET BERGANTI TANDA, KEKONVERGENAN MUTLAK, UJI RASIO, DAN UJI AKAR Pertemuan ke-0: UJI PERBANDINGAN, DERET BERGANTI TANDA, KEKONVERGENAN MUTLAK, UJI RASIO, DAN UJI AKAR Departemen Matematika FMIPA IPB Bogor, 205 (Departemen Matematika FMIPA IPB) Kalkulus II Bogor, 205

Lebih terperinci

CARA LAIN PEMBUKTIAN TEOEMA ARZELA-ASCOLI DAN HUBUNGANNYA DENGAN EKSISTENSI PENYELESAIAN PERSAMAAN DIFERENSIAL (SUATU KAJIAN TEORITIS)

CARA LAIN PEMBUKTIAN TEOEMA ARZELA-ASCOLI DAN HUBUNGANNYA DENGAN EKSISTENSI PENYELESAIAN PERSAMAAN DIFERENSIAL (SUATU KAJIAN TEORITIS) CARA LAIN PEMBUKTIAN TEOEMA ARZELA-ASCOLI DAN HUBUNGANNYA DENGAN EKSISTENSI PENYELESAIAN PERSAMAAN DIFERENSIAL SUATU KAJIAN TEORITIS) Sufri Program Studi Pendidikan Matematika FKIP Universitas Jambi Kampus

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bagian ini diberikan beberapa konsep dasar yang menjadi landasan berpikir dalam penelitian ini, seperti fungsi nonlinier, fungsi smooth, fungsi nonsmooth, turunan fungsi smooth,

Lebih terperinci

LUAS DAERAH DI BAWAH KURVA SUATU FUNGSI

LUAS DAERAH DI BAWAH KURVA SUATU FUNGSI LUAS DAERAH DI BAWAH KURVA SUATU FUNGSI Afrizal, S.Pd, M.PMat Matematika MAN Kampar Juli 2010 Afrizal, S.Pd, M.PMat (Matematika) Luas Daerah Dibawah Kurva Juli 2010 1 / 29 Outline Outline 1 Limit dan Turunan

Lebih terperinci

Implementasi Metode Jumlah Riemann untuk Mendekati Luas Daerah di Bawah Kurva Suatu Fungsi Polinom dengan Divide and Conquer

Implementasi Metode Jumlah Riemann untuk Mendekati Luas Daerah di Bawah Kurva Suatu Fungsi Polinom dengan Divide and Conquer Implementasi Metode Jumlah Riemann untuk Mendekati Luas Daerah di Bawah Kurva Suatu Fungsi Polinom dengan Divide and Conquer Dewita Sonya Tarabunga - 13515021 Program Studi Tenik Informatika Sekolah Teknik

Lebih terperinci