Bab V Prosedur Numerik

Ukuran: px
Mulai penontonan dengan halaman:

Download "Bab V Prosedur Numerik"

Transkripsi

1 Bab V Prosedur Numerik Pada bab ini, metode numerik digunakan untuk menghitung medan kecepatan, yakni dengan menghitung batas dan domain integral. Tensor tegangan tak Newton melalui persamaan Maxwell Linear dan perubahan Evolution bentuk batas dari setiap permukaan S l, l,..., K melalui persamaan kinematik. V. Integral Batas Pada bab ini, kita akan membangun proses numerik dari persamaan integral batas melalui proses diskritisasi batas dan diskritisasi domain integral. Diskritisasi batas domain S yang mulus smooth boundary atau permukaan interface fluida menjadi Nb segmen S i, i,..., Nb sedemikian sehingga membentuk himpunan titik diskritisasi. Penghubung antar dua titik diskritisasi dinamakan elemen batas Boundary Elements dilambangkan dengan S i, i,..., Nb, dan titik-titik diskritisasi dinamakan titik-titik ekstrim Extreme Points atau node pada elemen batas. Pada daerah domain didiskritisasi menjadi Nr sel integral. Hasil jumlahan kecepatan u i pada masing-masing elemen batas menghampiri nilai kecepatan pada batas S dan hampiran batas S Nb S I i. Selisih antara nilai kecepatan pada batas S dengan nilai hampiran kecepatan S i dinamakan dengan error diskritisasi. Elemen batas dipilih sedemikian sehingga menghasilkan error dikritisasi yang minimum. Melalui persamaan integral batas pada bab V c l ik ul i dengan x K Ω l ijk ru l i yn l j ydω J η Ω l ik r j t τ l ij yds + η δ ij, x Ω; c ik x /2δ ij, x S dan mulus di x;, x Ω dan xdi luar domain S l J ik rπ l ij yn j l yds 5.

2 34 dari kondisi dinamik 5.23, diperoleh persamaan integral batas c l ik ul i x K Ω l ijk ru l i yn l j ydω J η Ω l ik r j t τ l ij yds σ J η S l ik r R + R 2 n l i yds 5.2 dan π l ij P δ ij + λ i u j + j u i. Tensor tegangan pada fluida Non-Newton τij d ditentukan dari persamaan Maxwell linear + De l t τ ij η i u l j + j u l i 5.3 Pada interface awal S diberi gangguan fx, x 2, t a d + ɛe ikx 5.4 dengan ɛ sebagai parameter kecil dan tensor tegangan Non-Newton awal, kita asumsikan sebagai distribusi tegangan isotropik. τ ij Qδ ij 5.5 Dari persamaan 4.34 dan persamaan 5., diperoleh bentuk benang yang baru pada waktu t l. Nilai kecepatan u l dari persamaan 5. digunakan pada persamaan 4.34 untuk mendapatkan tensor tegangan tak Newton baru pada waktu t l. Iterasi ini berulang hingga mencapai energi minimum, yakni benang sudah terdeformasi menjadi satu tetesan droplet. Algoritma 5. Proses iterasi ini dituliskan dalam algoritma berikut: Step Menentukan bentuk permukaan benang awal dengan menyelesaikan persamaan 5. dengan memanfaatkan posisi awal x dan tensor tegangan awal 5.4 Step 2 Menghitung tensor tegangan Non-Newton τ d ij pada t l dengan menyelesaikan persamaan 5.2 untuk interface S l Step 3 Menghitung kecepatan pada t i dengan menyelesaikan persamaan 5. Step 4 Mengulang step sampai step 3 Kecepatan untuk fluida Newton dapat ditentukan melalui kekontinuan kecepatan, yakni u d u c, dengan algoritma sebagai berikut: Algoritma 5.2 Proses iterasi ini dituliskan dalam algoritma berikut: Step Mengambil bentuk permukaan benang awal dengan menyelesaikan persamaan 5. dengan memanfaatkan kondisi awal 5.3 dan tensor tegangan awal 5.4 Step 2 Menghitung tensor tegangan Newton τij d pada t i dengan menyelesaikan persamaan τ c ij η i u l j + j u l i untuk interface S l t i

3 35 Step 3 Menghitung kecepatan pada t i dengan menyelesaikan persamaan 5. Step 4 Lakukan ulang step sampai step 3. Algoritma ini digambarkan sebagai berikut: Input : Q, eps, etac, etad,sigma, E, a, L, x_{}, y_{}, tau,tau2,tau2, tau22 Kecepatan pada batas {u_bts} Kecepatan pada domain {udom} Tensor tegangan baru melalui persamaan Maxwell Linear Penentuan posisi baru melalui kondisi kinematik Keluaran : u_bts, udom, tau,tau2,tau2,tau22,x_baru akhir V.2 Integral Domain Proses deformasi benang yang bergerak pada sistem koordinat Ox x 2 ditransformasi ke sistem koordinat polar. Daerah domain didiskritisasi menjadi N r internal sel. Masing-masing internal sel berbentuk segitiga. Hal-hal ini dapat terlihat pada gambar berikut: Tensor tegangan tak Newton pada tiap-tiap titik integrasi di daerah domain dihitung dengan menggunakan metode Gauss Legendre 7 titik. Tensor tegangan

4 36 untuk waktu t berikutnya diformulasikan τ l+ ij ηh t De u l j x l i + h t De n+ ul j n + u l n+ x l i n+ u l i n i n x l j n+ xl j n τ l ij 5.6 dan τ l+ x j i+ x j i ij ηh t 2 uj n+ u j n + u in+ u i n De 2 x j i+ x j i x i n+ x i n x j n+ x j n + h t De τ l x j i+ x j i ij 5.7 dan disubstitusi ke integral domain τ ij j J ik dω Ω Perhitungan numerik untuk persamaan integral batas 5.5 terbagi menjadi dua bagian: a. Elemen batas dan internal cell tidak mengandung titik asal x Elemen atau cell regular Pada kasus ini, jarak antara titik asal x dengan titik-titik hasil diskritisasi y lebih besar dari nol x y > sedemikian sehingga singularitas kernel berada di luar domain integral. Simulasi numerik untuk kasus ini menggunakan Quadratur Gauss. Pada elemen batas menggunakan Quadratur Gauss Legendre 2 titik. Pada inner domain menggunakan modifikasi Quadratur Gauss Legendre. b. Elemen batas dan internal cell mengandung titik asal x Elemen atau cell singular Pada kasus ini, jarak antara titik asal x dengan titik-titik hasil diskritisasi y sama dengan nol x y sedemikian sehingga elemen batas mengandung singularitas kernel J ik r. Kernel j J ik r juga pada r singular pada integral domain. Ambil sembarang internal sel pada domain, dengan titik masing-masing a u, v, b u 2, v 2, c u 3, v 3. Titik-titik ini ditransformasi ke internal sel baru x, y, y 2, x 2, y, y 2, x 3, y, y 2 sedemikian sehingga diperoleh y u 3 u y + u 2 u y 2 + u 5.8 y 2 v 3 v y + v 2 v y 2 + v 5.9 dengan Jacobian Jac x y x y

5 37 Selanjutnya, pada masing-masing titik-titik segitiga terdapat tensor tegangan A, B, C, yang masing-masing dinyatakan A A A 2 A 2 A 22 B B ; B 2 B 2 B 22 C C ; C 2 C 2 C 22 dan mengalami proses transformasi sedenikian sehingga ; y A + y 2 B + y y 2 C 5. yang mana x, x 2, x 3 menyatakan titik-titik segitiga vertices. Dengan demikian integral domain dinyatakan dengan Ω τ ij j J ik dω u u v τ ij j J ik dudv 5. dengan J ik 4π u v τ ij j δ ik ln r + r ir k dudv r 2 Misal f y, y 2 ; α, β ln y α 2 + y 2 β 2 dengan f f y α y α 2 + y 2 β 2 y 2 β y α 2 + y 2 β 2 dan g y, y 2 ; α, β g 2 y, y 2 ; α, β g 2 y, y 2 ; α, β g 22 y, y 2 ; α, β y α 2 y α 2 + y 2 β 2 y αy 2 β y α 2 + y 2 β 2 y αy 2 β y α 2 + y 2 β 2 y 2 β 2 y α 2 + y 2 β 2

6 38 dan turunan dari fungsi g, yakni: g g g 2 g 2 g 2 g 2 g 22 g 22 2y α y α 2 + y 2 β 2y α 3 2 y α 2 + y 2 β 2 2 2y α 2 y 2 β y α 2 + y 2 β 2 2 y 2 β y α 2 + y 2 β 2y α 2 y 2 β 2 y α 2 + y 2 β 2 2 y α y α 2 + y 2 β 2y 2 β 2 y α 2 y α 2 + y 2 β 2 2 y 2 β y α 2 + y 2 β 2y α 2 y 2 β 2 y α 2 + y 2 β 2 2 y α y α 2 + y 2 β 2y 2 β 2 y α 2 y α 2 + y 2 β 2 2 2y α 2 y 2 β y α 2 + y 2 β 2 2 2y 2 β y α 2 + y 2 β 2y 2 β 3 2 y α 2 + y 2 β 2 2 Jika u, v α, β, maka y α 2 u 3 u y + u 2 u y 2 2 y 2 β 2 v 3 v y + v 2 v y 2 2 Misal : u 3 u a; u 2 u b; v 3 v c; v 2 v d; Dengan demikian penentuan integral domain τ ij j J ik dudv u y A + y 2 B + y y 2 C ay + by 2 ay + by cy + dy 2 + 2ay + by 2 2 y A + y 2 B + y y 2 C V.3 Integral Waktu ay + by cy + dy 2 2 2ay + by 2 3 ay + by cy + dy dy dy 2 Pada bagian ini, kita akan menentukan tensor tegangan tak Newton dan bentuk permukaan domain interface S l untuk waktu t berikutnya. Bentuk permukaan domain S l baru ditentukan melalui perhitungan posisi titik-titik diskritisasi batas domain S l, yakni perhitungan integral waktu pada kondisi kinematik 2.24 dengan menggunakan metode skema Euler Forward. x nm j t i+ x nm j t i + t u nm n n n j, n, 2,..., Nb 5.2

7 39 V.4 Hasil Numerik Telah diperoleh persamaan Stokes nonhomogen η jj u l i i P l De j t τ l ij dalam Ω dengan kondisi awal x 2 ; x 2 a d a d + ɛe ikx x ; x L L; dan kondisi batas [ τ ij t j ] kondisi dinamik pada batass [ τ ij n j ] σ + n i kondisi dinamik pada S R R 2 dx i u i kondisi kinematik padas dt Berdasarkan persamaan integral batas pada bab 4, diperoleh c ik u i x K ijk ru i yn j yds J ik rκn i yds S λ S τ ij r j Jik NN ydω λ Melalui hasil numerik dari persamaan integral batas, proses deformasi fluida tak Newton menjadi droplet dinyatakan sebagai perubahan bentuk permukaan interface perubahan x 2 pada setiap iterasi waktu t Berdasarkan gambar di atas, pembentukan tetesan droplet terjadi pada iterasi terakhir. Tetesan droplet terlihat pada saat bentuk interface mancapai nilai minimum. Namun, proses numerik pada subbab V.2 dan subbab V.3 memiliki kekurangan, yakni adanya kernel j J ik r pada integral domain yang mengandung singularitas r. Oleh karen itu, kita tidak memperoleh hasil yang maksimal. Perubahan bentuk yang telah diperoleh yang digambarkan sebagai berikut Pada gambar di atas nmpak jelas adanya singularitas pada titik x L. Ω

8 4.6 Profil interface fluida, dt Profil interface fluida, De, dt

9 4 T a b e l d a ta : P o sisi y b a ru e ta d. E 4 Q Iterasi ke, De 4, t

Bab IV Persamaan Integral Batas

Bab IV Persamaan Integral Batas Bab IV Persamaan Integral Batas IV.1 Konvensi simbol ebelum memulai pembahasan, kita akan memperkenalkan sejumlah konvensi simbol yang akan digunakan pada tesis ini. imbol x, y, x 0 akan digunakan untuk

Lebih terperinci

Bab III Model Proses Deformasi Benang Viscoelastis Linear di Lingkungan Fluida Newton

Bab III Model Proses Deformasi Benang Viscoelastis Linear di Lingkungan Fluida Newton Bab III Model Proses Deformasi Benang Viscoelastis Linear di Lingkungan Fluida Newton III.1 Stress dan Strain Salah satu hal yang penting dalam pengkonstruksian model proses deformasi suatu fluida adalah

Lebih terperinci

Bab I Pendahuluan. I.1 Latar Belakang Masalah

Bab I Pendahuluan. I.1 Latar Belakang Masalah Bab I Pendahuluan I.1 Latar Belakang Masalah Proses deformasi benang fluida telah banyak dikaji oleh beberapa peneliti sebelumnya, seperti Savart (1833), Plateau (1849), Rayleigh (1878), dan Tomotika (1935).

Lebih terperinci

METODE ELEMEN BATAS (MEB) UNTUK SOLUSI NUMERIK MASALAH STATIK DARI MATERIAL ELASTIS ISOTROPIK TAK-HOMOGEN

METODE ELEMEN BATAS (MEB) UNTUK SOLUSI NUMERIK MASALAH STATIK DARI MATERIAL ELASTIS ISOTROPIK TAK-HOMOGEN METODE ELEMEN BATAS (MEB) UNTUK SOLUSI NUMERIK MASALAH STATIK DARI MATERIAL ELASTIS ISOTROPIK TAK-HOMOGEN Mohammad Ivan Azis ) ABSTRACT A boundary element method is derived for the solution of static boundary

Lebih terperinci

ABSTRAK METODE ELEMEN BATAS UNTUK PENYELESAIAN MASALAH PEMBENTUKAN DROPLET PADA BENANG FLUIDA VISCOELASTIS A.WAHIDAH.AK NIM : 20105013.

ABSTRAK METODE ELEMEN BATAS UNTUK PENYELESAIAN MASALAH PEMBENTUKAN DROPLET PADA BENANG FLUIDA VISCOELASTIS A.WAHIDAH.AK NIM : 20105013. ABSTRAK METODE ELEMEN BATAS UNTUK PENYELESAIAN MASALAH PEMBENTUKAN DROPLET PADA BENANG FLUIDA VISCOELASTIS Oleh A.WAHIDAH.AK NIM : 20105013 Proses deformasi benang fluida tak Newton (Viscoelastis) menjadi

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB TINJAUAN PUSTAKA.1 Model Aliran Dua-Fase Nonekulibrium pada Media Berpori Penelitian ini merupakan kajian ulang terhadap penelitian yang telah dilakukan oleh Juanes (008), dalam tulisannya yang berjudul

Lebih terperinci

Metode Elemen Batas (MEB) untuk Model Perambatan Gelombang

Metode Elemen Batas (MEB) untuk Model Perambatan Gelombang Metode Elemen Batas (MEB) untuk Model Perambatan Gelombang Moh. Ivan Azis September 13, 2011 Abstrak Metode Elemen Batas untuk masalah perambatan gelombang akustik (harmonis) berhasil diturunkan pada tulisan

Lebih terperinci

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. Menjelaskan cara penyelesaian soal dengan

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN Penelitian ini dilakukan menggunakan metode semi numerik dimana koefisen transmisi didapatkan dengan menyelesaikan persamaan Schrodinger menggunakan MMT karena metode ini dalam

Lebih terperinci

1.1 Latar Belakang dan Identifikasi Masalah

1.1 Latar Belakang dan Identifikasi Masalah BAB I PENDAHULUAN Seiring dengan pertumbuhan kebutuhan dan intensifikasi penggunaan air, masalah kualitas air menjadi faktor yang penting dalam pengembangan sumberdaya air di berbagai belahan bumi. Walaupun

Lebih terperinci

Bab II Konsep Dasar Metode Elemen Batas

Bab II Konsep Dasar Metode Elemen Batas Bab II Konsep Dasar Metode Elemen Batas II.1 II.1.1 Kalkulus Dasar Teorema Gradien Misal menyatakan domain pada ruang dimensi dua dan menyatakan batas i x + j 2 2 x 2 + 2 2 elanjutnya, penentuan integral

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1.Dasar Fluida Dalam buku yang berjudul Fundamental of Fluid Mechanics karya Bruce R. Munson, Donald F. Young, Theodore H. Okiishi, dan Wade W. Huebsch, fluida didefinisikan sebagai

Lebih terperinci

Pemodelan Matematika dan Metode Numerik

Pemodelan Matematika dan Metode Numerik Bab 3 Pemodelan Matematika dan Metode Numerik 3.1 Model Keadaan Tunak Model keadaan tunak hanya tergantung pada jarak saja. Oleh karena itu, distribusi temperatur gas sepanjang pipa sebagai fungsi dari

Lebih terperinci

= = =

= = = = + + + = + + + = + +.. + + + + + + + + = + + + + ( ) + ( ) + + = + + + = + = 1,2,, = + + + + = + + + =, + + = 1,, ; = 1,, =, + = 1,, ; = 1,, = 0 0 0 0 0 0 0...... 0 0 0, =, + + + = 0 0 0 0 0 0 0 0 0....

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. dan medan hidrodinamik. Pertama, dengan menentukan potensial listrik V dan

BAB IV HASIL DAN PEMBAHASAN. dan medan hidrodinamik. Pertama, dengan menentukan potensial listrik V dan BAB IV HASIL DAN PEMBAHASAN 4. 1 Analisis Elektrohidrodinamik Analisis elektrohidrodinamik dimulai dengan mengevaluasi medan listrik dan medan hidrodinamik. Pertama, dengan menentukan potensial listrik

Lebih terperinci

KALKULUS MULTIVARIABEL II

KALKULUS MULTIVARIABEL II Pada Bidang Bentuk Vektor dari KALKULUS MULTIVARIABEL II (Minggu ke-9) Andradi Jurusan Matematika FMIPA UGM Yogyakarta, Indonesia Pada Bidang Bentuk Vektor dari 1 Definisi Daerah Sederhana x 2 Pada Bidang

Lebih terperinci

BAB IV SIMULASI NUMERIK

BAB IV SIMULASI NUMERIK BAB IV SIMULASI NUMERIK Pada bab ini kita bandingkan perilaku solusi KdV yang telah dibahas dengan hasil numerik serta solusi numerik untuk persamaan fkdv. Solusi persamaan KdV yang disimulasikan pada

Lebih terperinci

Metode Elemen Batas (MEB) untuk Model Konduksi Panas

Metode Elemen Batas (MEB) untuk Model Konduksi Panas Metode Elemen Batas MEB) untuk Model Konduksi Panas Moh. Ivan Azis October 14, 011 Abstrak Metode Elemen Batas untuk masalah konduksi panas pada media ortotropik berhasil ditemukan pada tulisan ini. Solusi

Lebih terperinci

Metode Elemen Batas (MEB) untuk Model Konduksi-Konveksi dalam Media Anisotropik

Metode Elemen Batas (MEB) untuk Model Konduksi-Konveksi dalam Media Anisotropik Metode Elemen Batas (MEB) untuk Model Konduksi-Konveksi dalam Media Anisotropik Moh. Ivan Azis September 13, 2011 Daftar Isi 1 Pendahuluan 1 2 Masalah nilai batas 1 3 Persamaan integral batas 2 4 Hasil

Lebih terperinci

METODE PSEUDO ARC-LENGTH DAN PENERAPANNYA PADA PENYELESAIAN SISTEM PERSAMAAN NONLINIER TERPARAMETERISASI

METODE PSEUDO ARC-LENGTH DAN PENERAPANNYA PADA PENYELESAIAN SISTEM PERSAMAAN NONLINIER TERPARAMETERISASI Jurnal Matematika UNAND Vol. 5 No. 4 Hal. 9 17 ISSN : 233 291 c Jurusan Matematika FMIPA UNAND METODE PSEUDO ARC-LENGTH DAN PENERAPANNYA PADA PENYELESAIAN SISTEM PERSAMAAN NONLINIER TERPARAMETERISASI RAHIMA

Lebih terperinci

BAB III PEMODELAN PERSAMAAN INTEGRAL PADA ALIRAN FLUIDA

BAB III PEMODELAN PERSAMAAN INTEGRAL PADA ALIRAN FLUIDA BAB III PEMODELAN PERSAMAAN INTEGRAL PADA ALIRAN FLUIDA 3.1 Deskripsi Masalah Permasalahan yang dibahas di dalam Tugas Akhir ini adalah mengenai aliran fluida yang mengalir keluar melalui sebuah celah

Lebih terperinci

PEMBAHASAN. (29) Dalam (Grosen 1992), kondisi kinematik (19) dan kondisi dinamik (20) dapat dinyatakan dalam sistem Hamiltonian berikut : = (30)

PEMBAHASAN. (29) Dalam (Grosen 1992), kondisi kinematik (19) dan kondisi dinamik (20) dapat dinyatakan dalam sistem Hamiltonian berikut : = (30) 5 η = η di z = η (9) z x x z x x Dalam (Grosen 99) kondisi kinematik (9) kondisi dinamik () dapat dinyatakan dalam sistem Hamiltonian : δ H t = () δη δ H ηt = δ Dengan mengenalkan variabel baru u = x maka

Lebih terperinci

3. ORBIT KEPLERIAN. AS 2201 Mekanika Benda Langit. Monday, February 17,

3. ORBIT KEPLERIAN. AS 2201 Mekanika Benda Langit. Monday, February 17, 3. ORBIT KEPLERIAN AS 2201 Mekanika Benda Langit 1 3.1 PENDAHULUAN Mekanika Newton pada mulanya dimanfaatkan untuk menentukan gerak orbit benda dalam Tatasurya. Misalkan Matahari bermassa M pada titik

Lebih terperinci

FUNGSI GELOMBANG DAN RAPAT PROBABILITAS PARTIKEL BEBAS 1D DENGAN MENGGUNAKAN METODE CRANK-NICOLSON

FUNGSI GELOMBANG DAN RAPAT PROBABILITAS PARTIKEL BEBAS 1D DENGAN MENGGUNAKAN METODE CRANK-NICOLSON FUNGSI GELOMBANG DAN RAPAT PROBABILITAS PARTIKEL BEBAS 1D DENGAN MENGGUNAKAN METODE CRANK-NICOLSON Rif ati Dina Handayani 1 ) Abstract: Suatu partikel yang bergerak dengan momentum p, menurut hipotesa

Lebih terperinci

Persamaan Poisson. Fisika Komputasi. Irwan Ary Dharmawan

Persamaan Poisson. Fisika Komputasi. Irwan Ary Dharmawan (Pendahuluan) 1D untuk syarat batas Robin 2D dengan syarat batas Dirichlet Fisika Komputasi Jurusan Fisika Universitas Padjadjaran http://phys.unpad.ac.id/jurusan/staff/dharmawan email : dharmawan@phys.unpad.ac.id

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Persamaan Non Linear Definisi 2.1 (Munir, 2006) : Sistem persamaan non linear adalah kumpulan dari dua atau lebih persamaan-persamaan non linear. Bentuk umum sistem persamaan

Lebih terperinci

Model Perpindahan dan Penyebaran Pollutan

Model Perpindahan dan Penyebaran Pollutan Model Perpindahan dan Penyebaran Pollutan Moh. Ivan Azis Abstrak Metode Elemen Batas diturunkan untuk penentuan solusi masalah nilai batas yang membangun model Model Perpindahan dan Penyebaran Pollutan.

Lebih terperinci

BAB 2 KAJIAN PUSTAKA DAN LANDASAN TEORI. Dalam beberapa tahun terakhir, model graph secara statistik telah diaplikasikan

BAB 2 KAJIAN PUSTAKA DAN LANDASAN TEORI. Dalam beberapa tahun terakhir, model graph secara statistik telah diaplikasikan BAB 2 KAJIAN PUSTAKA DAN LANDASAN TEORI Dalam beberapa tahun terakhir, model graph secara statistik telah diaplikasikan dengan baik pada aplikasi pengenalan suara, pengolahan citra (Willsky, 2002 dan Choi

Lebih terperinci

Modul Praktikum Analisis Numerik

Modul Praktikum Analisis Numerik Modul Praktikum Analisis Numerik (Versi Beta 1.2) Mohammad Jamhuri UIN Malang December 2, 2013 Mohammad Jamhuri (UIN Malang) Modul Praktikum Analisis Numerik December 2, 2013 1 / 18 Praktikum 1: Deret

Lebih terperinci

BINOVATIF LISTRIK DAN MAGNET. Hani Nurbiantoro Santosa, PhD.

BINOVATIF LISTRIK DAN MAGNET. Hani Nurbiantoro Santosa, PhD. BINOVATIF LISTRIK DAN MAGNET Hani Nurbiantoro Santosa, PhD hanisantosa@gmail.com 2 BAB 2 MEDAN LISTRIK DAN HUKUM GAUSS Pendahuluan, Distribusi Muatan Kontinu, Mencari Medan Listrik Menggunakan Integral,

Lebih terperinci

PDP linear orde 2 Agus Yodi Gunawan

PDP linear orde 2 Agus Yodi Gunawan PDP linear orde 2 Agus Yodi Gunawan Pada bagian ini akan dipelajari tiga jenis persamaan diferensial parsial (PDP) linear orde dua yang biasa dijumpai pada masalah-masalah dunia nyata, yaitu persamaan

Lebih terperinci

II LANDASAN TEORI. dengan, 1,2,3,, menyatakan koefisien deret pangkat dan menyatakan titik pusatnya.

II LANDASAN TEORI. dengan, 1,2,3,, menyatakan koefisien deret pangkat dan menyatakan titik pusatnya. 2 II LANDASAN TEORI Pada bagian ini akan dibahas teoriteori yang mendukung karya tulis ini. Teoriteori tersebut meliputi persamaan diferensial penurunan persamaan KdV yang disarikan dari (Ihsanudin, 2008;

Lebih terperinci

Bab 4 DINDING SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG

Bab 4 DINDING SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG Bab 4 DINDING SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG Pada bab sebelumnya telah dibahas mengenai dasar laut sinusoidal sebagai reflektor gelombang. Persamaan yang digunakan untuk memodelkan masalah dasar

Lebih terperinci

Reflektor Gelombang 1 balok

Reflektor Gelombang 1 balok Bab 3 Reflektor Gelombang 1 balok Setelah diperoleh persamaan yang menggambarkan gerak gelombang air setiap saat yaitu SWE, maka pada bab ini akan dielaskan mengenai pengaruh 1 balok terendam sebagai reflektor

Lebih terperinci

Pengolahan Data dan Analisis

Pengolahan Data dan Analisis BAB 5 Pengolahan Data dan Analisis Deskripsi isi 5.1 Hubungan Simpangan Maksimum Sumber Getaran Terhadap Tegangan dan Frekuensi............................ 35 5.2 Komputasi Numerik...........................

Lebih terperinci

BAB III HASIL DAN PEMBAHASAN. analitik dengan metode variabel terpisah. Selanjutnya penyelesaian analitik dari

BAB III HASIL DAN PEMBAHASAN. analitik dengan metode variabel terpisah. Selanjutnya penyelesaian analitik dari BAB III HASIL DAN PEMBAHASAN Pada bab ini akan dibahas penurunan model persamaan panas dimensi satu. Setelah itu akan ditentukan penyelesaian persamaan panas dimensi satu secara analitik dengan metode

Lebih terperinci

DASAR-DASAR TEORI RUANG HILBERT

DASAR-DASAR TEORI RUANG HILBERT DASAR-DASAR TEORI RUANG HILBERT Herry P. Suryawan 1 Geometri Ruang Hilbert Definisi 1.1 Ruang vektor kompleks V disebut ruang hasilkali dalam jika ada fungsi (.,.) : V V C sehingga untuk setiap x, y, z

Lebih terperinci

BAB 4 Sistem Persamaan Linear. Sistem m persamaan linear dalam n variabel LG=C adalah himpunan persamaan linear

BAB 4 Sistem Persamaan Linear. Sistem m persamaan linear dalam n variabel LG=C adalah himpunan persamaan linear BAB 4 Sistem Persamaan Linear berbentuk Sistem m persamaan linear dalam n variabel LG=C adalah himpunan persamaan linear Dengan koefisien dan adalah bilangan-bilangan yang diberikan. Sistem ini disebut

Lebih terperinci

PENDEKATAN TEORITIK. Elastisitas Medium

PENDEKATAN TEORITIK. Elastisitas Medium PENDEKATAN TEORITIK Elastisitas Medium Untuk mengetahui secara sempurna kelakuan atau sifat dari suatu medium adalah dengan mengetahui hubungan antara tegangan yang bekerja () dan regangan yang diakibatkan

Lebih terperinci

0. Pendahuluan. 0.1 Notasi dan istilah, bilangan kompleks

0. Pendahuluan. 0.1 Notasi dan istilah, bilangan kompleks 0. Pendahuluan Analisis Fourier mempelajari berbagai teknik menganalisis sebuah fungsi dengan menguraikannya sebagai deret atau integral fungsi tertentu (yang sifat-sifatnya telah kita kenal dengan baik,

Lebih terperinci

KONTROL OPTIMAL UNTUK DISTRIBUSI TEMPERATUR DENGAN PENDEKATAN BEDA HINGGA

KONTROL OPTIMAL UNTUK DISTRIBUSI TEMPERATUR DENGAN PENDEKATAN BEDA HINGGA KONTROL OPTIMAL UNTUK DISTRIBUSI TEMPERATUR DENGAN PENDEKATAN BEDA HINGGA Nama Mahasiswa : Asri Budi Hastuti NRP : 1205 100 006 Dosen Pembimbing : Drs. Kamiran, M.Si. Abstrak Kontrol optimal temperatur

Lebih terperinci

BAB-4. METODE PENELITIAN

BAB-4. METODE PENELITIAN BAB-4. METODE PENELITIAN 4.1. Bahan Penelitian Untuk keperluan kalibrasi dan verifikasi model numerik yang dibuat, dibutuhkan data-data tentang pola penyebaran polutan dalam air. Ada beberapa peneliti

Lebih terperinci

Teori Relativitas. Mirza Satriawan. December 7, Fluida Ideal dalam Relativitas Khusus. M. Satriawan Teori Relativitas

Teori Relativitas. Mirza Satriawan. December 7, Fluida Ideal dalam Relativitas Khusus. M. Satriawan Teori Relativitas Teori Relativitas Mirza Satriawan December 7, 2010 Fluida Ideal dalam Relativitas Khusus Quiz 1 Tuliskan perumusan kelestarian jumlah partikel dengan memakai vektor-4 fluks jumlah partikel. 2 Tuliskan

Lebih terperinci

Bab III Solusi Dasar Persamaan Lapisan Fluida Viskos Tipis

Bab III Solusi Dasar Persamaan Lapisan Fluida Viskos Tipis Bab III Solusi Dasar Persamaan Lapisan Fluida Viskos Tipis III.1 III.1.1 Solusi Dasar dari Model Prekursor Persamaan Fluida Tipis Dimensi Satu Sebagai langkah pertama untuk memahami karakteristik aliran

Lebih terperinci

MODEL MATEMATIKA MANIPULATOR FLEKSIBEL

MODEL MATEMATIKA MANIPULATOR FLEKSIBEL Bab 3 MODEL MATEMATIKA MANIPULATOR FLEKSIBEL Pada Bab ini akan dibahas mengenai model matematika dari manipulator fleksibel. Model matematika yang akan diturunkan akan menggunakan teori balok Timoshenko

Lebih terperinci

PEMBENTUKAN POLINOMIAL ORTOGONAL MENGGUNAKAN PERSAMAAN INTEGRAL NONLINEAR. Susilawati 1 ABSTRACT

PEMBENTUKAN POLINOMIAL ORTOGONAL MENGGUNAKAN PERSAMAAN INTEGRAL NONLINEAR. Susilawati 1 ABSTRACT PEMBENTUKAN POLINOMIAL ORTOGONAL MENGGUNAKAN PERSAMAAN INTEGRAL NONLINEAR Susilawati 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya

Lebih terperinci

BAB II LANDASAN TEORI. Pada Bab Landasan Teori ini akan dibahas mengenai definisi-definisi, dan

BAB II LANDASAN TEORI. Pada Bab Landasan Teori ini akan dibahas mengenai definisi-definisi, dan BAB II LANDASAN TEORI Pada Bab Landasan Teori ini akan dibahas mengenai definisi-definisi, dan teorema-teorema yang akan menjadi landasan untuk pembahasan pada Bab III nanti, diantaranya: fungsi komposisi,

Lebih terperinci

11. Konvolusi. Misalkan f dan g fungsi yang terdefinisi pada R. Konvolusi dari f dan g adalah fungsi f g yang didefinisikan sebagai.

11. Konvolusi. Misalkan f dan g fungsi yang terdefinisi pada R. Konvolusi dari f dan g adalah fungsi f g yang didefinisikan sebagai. 11. Konvolusi Operasi konvolusi yang akan kita bahas di sini sebetulnya pernah kita jumpai pada pembahasan deret Fourier (ketika membuktikan kekonvergenan jumlah parsialnya). Operasi konvolusi merupakan

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah

BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Pemodelan matematika merupakan bidang matematika yang berusaha untuk merepresentasikan dan menjelaskan masalah dunia nyata dalam pernyataan matematik. Representasi

Lebih terperinci

BIFURKASI SADDLE-NODE PADA SISTEM INTERAKSI NONLINEAR SEPASANG OSILATOR TANPA PERTURBASI

BIFURKASI SADDLE-NODE PADA SISTEM INTERAKSI NONLINEAR SEPASANG OSILATOR TANPA PERTURBASI BIFURKASI SADDLE-NODE PADA SISTEM INTERAKSI NONLINEAR SEPASANG OSILATOR TANPA PERTURBASI Yolpin Durahim 1 Novianita Achmad Hasan S. Panigoro Diterima: xx xxxx 20xx, Disetujui: xx xxxx 20xx o Abstrak Dalam

Lebih terperinci

Model Dinamik Robot Planar 1 DOF dan Simulasi

Model Dinamik Robot Planar 1 DOF dan Simulasi Model Dinamik Robot Planar 1 DOF dan Simulasi Indrazno Siradjuddin Pemodelan pergerakan suatu benda dalam sistem dinamik dapat dilakukan dengan beberapa cara diantaranya adalah dengan menggunakan metode

Lebih terperinci

Modul Praktikum Analisis Numerik

Modul Praktikum Analisis Numerik Modul Praktikum Analisis Numerik (Versi Beta 1.2) Mohammad Jamhuri UIN Malang September 27, 2013 Mohammad Jamhuri (UIN Malang) Modul Praktikum Analisis Numerik September 27, 2013 1 / 12 Praktikum 1: Deret

Lebih terperinci

PEMECAH GELOMBANG BERUPA SERANGKAIAN BALOK

PEMECAH GELOMBANG BERUPA SERANGKAIAN BALOK Bab 4 PEMECAH GELOMBANG BERUPA SERANGKAIAN BALOK 4.1 Kasus 2 buah Balok Dalam bahasan ini akan dipelajari proses transmisi dan refleksi yang terjadi untuk kasus 2 buah balok dengan bentuk geometri yang

Lebih terperinci

BAB 4 ANALISIS DAN BAHASAN

BAB 4 ANALISIS DAN BAHASAN BAB 4 ANALISIS DAN BAHASAN 4.1 Model LWR Pada skripsi ini, model yang akan digunakan untuk memodelkan kepadatan lalu lintas secara makroskopik adalah model LWR yang dikembangkan oleh Lighthill dan William

Lebih terperinci

BAB-2. TINJAUAN PUSTAKA Persamaan Dasar

BAB-2. TINJAUAN PUSTAKA Persamaan Dasar BAB-2. TINJAUAN PUSTAKA 2.1. Persamaan Dasar Persamaan yang menyatakan fenomena sebaran polutan diturunkan dengan berdasar pada persamaan umum angkutan massa pada fluida mengalir. Unsurunsur dinamika angkutan

Lebih terperinci

KONTROL OPTIMAL UNTUK DISTRIBUSI TEMPERATUR DENGAN PENDEKATAN BEDA HINGGA

KONTROL OPTIMAL UNTUK DISTRIBUSI TEMPERATUR DENGAN PENDEKATAN BEDA HINGGA KONTROL OPTIMAL UNTUK DISTRIBUSI TEMPERATUR DENGAN PENDEKATAN BEDA HINGGA ASRI BUDI HASTUTI 1205 100 006 Dosen Pembimbing: Drs. Kamiran, M.Si Pendahuluan Kontrol optimal temperatur fluida suatu kontainer

Lebih terperinci

3.7 Further Results and Technical Notes. Yenni Angraini-G

3.7 Further Results and Technical Notes. Yenni Angraini-G 3.7 Further Results and Technical Notes Yenni Angraini-G161150051 Outline Nonlinear Gauss-Seidel Algorithm (NLGSA) Sifat asimtotik dari penduga Penalized Generalized Weighted Least Squares (PGWLS) Mean

Lebih terperinci

METODE ITERASI KSOR UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR ABSTRACT

METODE ITERASI KSOR UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR ABSTRACT METODE ITERASI KSOR UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR Adek Putri Syafriani, Syamsudhuha 2, Zulkarnain 2 Mahasiswa Program Studi S Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan

Lebih terperinci

PEMBAHASAN KISI-KISI SOAL UAS KALKULUS PEUBAH BANYAK (TA 2015/2016)

PEMBAHASAN KISI-KISI SOAL UAS KALKULUS PEUBAH BANYAK (TA 2015/2016) PEMBAHAAN KII-KII OAL UA KALKULU PEUBAH BANYAK (TA 5/6) Arini oesatyo Putri DEEMBER 3, 5 UNIVERITA ILAM NEGERI UNAN GUNUNG DJATI BANDUNG Pembahasan oal Kisi-Kisi UA Kalkulus Peubah Banyak Tahun Ajaran

Lebih terperinci

SKEMA NUMERIK UNTUK MENYELESAIKAN PERSAMAAN BURGERS MENGGUNAKAN METODE CUBIC B-SPLINE QUASI- INTERPOLANT DAN MULTI-NODE HIGHER ORDER EXPANSIONS

SKEMA NUMERIK UNTUK MENYELESAIKAN PERSAMAAN BURGERS MENGGUNAKAN METODE CUBIC B-SPLINE QUASI- INTERPOLANT DAN MULTI-NODE HIGHER ORDER EXPANSIONS SKEMA NUMERIK UNTUK MENYELESAIKAN PERSAMAAN BURGERS MENGGUNAKAN METODE CUBIC B-SPLINE QUASI- INTERPOLANT DAN MULTI-NODE HIGHER ORDER EXPANSIONS Nafanisya Mulia 1, Yudhi Purwananto 2, Rully Soelaiman 3

Lebih terperinci

BAB V PERAMBATAN GELOMBANG OPTIK PADA MEDIUM NONLINIER KERR

BAB V PERAMBATAN GELOMBANG OPTIK PADA MEDIUM NONLINIER KERR A V PERAMATAN GELOMANG OPTIK PADA MEDIUM NONLINIER KERR 5.. Pendahuluan erkas (beam) optik yang merambat pada medium linier mempunyai kecenderungan untuk menyebar karena adanya efek difraksi; lihat Gambar

Lebih terperinci

BAB IV SEBARAN ASIMTOTIK PENDUGA TURUNAN PERTAMA DAN KEDUA DARI KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR

BAB IV SEBARAN ASIMTOTIK PENDUGA TURUNAN PERTAMA DAN KEDUA DARI KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR 3 BAB IV SEBARAN ASIMTOTIK PENDUGA TURUNAN PERTAMA DAN KEDUA DARI KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR 4.. Sebaran asimtotik dari,, Teorema 4. ( Normalitas Asimtotik

Lebih terperinci

SISTEM DINAMIK DISKRET. Anggota Kelompok: 1. Inggrid Riana C. 2. Kharisma Madu B. 3. Solehan

SISTEM DINAMIK DISKRET. Anggota Kelompok: 1. Inggrid Riana C. 2. Kharisma Madu B. 3. Solehan SISTEM DINAMIK DISKRET Anggota Kelompok: 1. Inggrid Riana C. 2. Kharisma Madu B. 3. Solehan SISTEM DINAMIK Kontinu Sistem Dinamik Diskret POKOK BAHASAN SDD OTONOMUS NON-OTONOMUS 1-D MULTI-D LINEAR NON-LINEAR

Lebih terperinci

Husna Arifah,M.Sc : Persamaan Bessel: Fungsi-fungsi Besel jenis Pertama

Husna Arifah,M.Sc : Persamaan Bessel: Fungsi-fungsi Besel jenis Pertama Bentuk umum PD Bessel : x 2 y"+xy' +(x 2 υ 2 )y =...() Kita asumsikan bahwa parameter υ dalam () adalah bilangan riil dan tak negatif. Penyelesaian PD mempunyai bentuk : y(x) = x r m = a m x m = a m xm

Lebih terperinci

KALKULUS MULTIVARIABEL II

KALKULUS MULTIVARIABEL II Definisi KALKULUS MULTIVARIABEL II (Minggu ke-7) Andradi Jurusan Matematika FMIPA UGM Yogyakarta, Indonesia Definisi 1 Definisi 2 ontoh Soal Definisi Integral Garis Fungsi f K R 2 R di Sepanjang Kurva

Lebih terperinci

UJIAN AKHIR SEMESTER METODE NUMERIS I

UJIAN AKHIR SEMESTER METODE NUMERIS I PETUNJUK UJIAN AKHIR SEMESTER METODE NUMERIS I DR. IR. ISTIARTO, M.ENG. KAMIS, 8 JUNI 017 OPEN BOOK 150 MENIT 1. Saudara tidak boleh menggunakan komputer untuk mengerjakan soal ujian ini.. Tuliskan urutan/cara/formula

Lebih terperinci

Kuliah 07 Persamaan Diferensial Ordinari Problem Kondisi Batas (PDOPKB)

Kuliah 07 Persamaan Diferensial Ordinari Problem Kondisi Batas (PDOPKB) Kuliah 07 Persamaan Diferensial Ordinari Problem Kondisi Batas (PDOPKB) Persamaan diferensial satu variabel bebas (ordinari) orde dua disebut juga sebagai Problem Kondisi Batas. Hal ini disebabkan persamaan

Lebih terperinci

PENURUNAN PERSAMAAN GELOMBANG SOLITON DENGAN DERET FOURIER ORDE DUA SECARA NUMERIK

PENURUNAN PERSAMAAN GELOMBANG SOLITON DENGAN DERET FOURIER ORDE DUA SECARA NUMERIK PENURUNAN PERSAMAAN GELOMBANG SOLITON DENGAN DERET FOURIER ORDE DUA SECARA NUMERIK Sarwadi Jurusan Matematika FMIPA UNDIP Abstrak Salah satu solusi dari persamaan Korteweg - de Vries (KdV) adalah gelombang

Lebih terperinci

Persamaan Gelombang Datar

Persamaan Gelombang Datar Persamaan Gelombang Datar Budi Syihabuddin Telkom University Semester Ganjil 2017/2018 August 28, 2017 Budi Syihabuddin (Telkom University) Elektromagnetika Telekomunikasi August 28, 2017 1 / 20 Referensi

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan suatu ilmu pengetahuan yang sering disebut sebagai induk dari ilmu-ilmu pengetahuan yang lain. Hal ini karena, matematika banyak diterapkan

Lebih terperinci

DASAR SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG

DASAR SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG h Bab 3 DASAR SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG 3.1 Persamaan Gelombang untuk Dasar Sinusoidal Dasar laut berbentuk sinusoidal adalah salah satu bentuk dasar laut tak rata yang berupa fungsi sinus

Lebih terperinci

6 Sistem Persamaan Linear

6 Sistem Persamaan Linear 6 Sistem Persamaan Linear Pada bab, kita diminta untuk mencari suatu nilai x yang memenuhi persamaan f(x) = 0. Pada bab ini, masalah tersebut diperumum dengan mencari x = (x, x,..., x n ) yang secara sekaligus

Lebih terperinci

Media Pembelajaran Integrasi Numerik Dengan Metode Kuadratur Gauss

Media Pembelajaran Integrasi Numerik Dengan Metode Kuadratur Gauss Media Pembelajaran Integrasi Numerik Dengan Metode Kuadratur Gauss Puji Catur Siswipraptini 1, Rifarhan 2 Jurusan Teknik Informatika Sekolah Tinggi Teknik PLN Jakarta JL. Lingkar Luar Barat, Menara PLN,

Lebih terperinci

ELLIPTIC CURVE CRYPTOGRAPHY. Disarikan oleh: Dinisfu Sya ban ( )

ELLIPTIC CURVE CRYPTOGRAPHY. Disarikan oleh: Dinisfu Sya ban ( ) ELLIPTIC CURVE CRYPTOGRAPHY Disarikan oleh: Dinisfu Sya ban (0403100596) SEKOLAH TINGGI SANDI NEGARA BOGOR 007 A. Fungsi Elliptic Curves 1. Definisi Elliptic Curves Definisi 1. : Misalkan k merupakan field

Lebih terperinci

METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR ABSTRACT

METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR ABSTRACT METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR Birmansyah 1, Khozin Mu tamar 2, M. Natsir 2 1 Mahasiswa Program Studi S1 Matematika

Lebih terperinci

BAB V DISTRIBUSI NORMAL. Deskripsi: Pada bab ini akan dibahas mengenai konsep distribusi normal dalam pengukuran.

BAB V DISTRIBUSI NORMAL. Deskripsi: Pada bab ini akan dibahas mengenai konsep distribusi normal dalam pengukuran. BAB V DISTRIBUSI NORMAL Deskripsi: Pada bab ini akan dibahas mengenai konsep distribusi normal dalam pengukuran. Manfaat: Memberikan metode distribusi normal yang benar saat melakukan proses pengukuran.

Lebih terperinci

Variabel Banyak Bernilai Real 1 / 1

Variabel Banyak Bernilai Real 1 / 1 Fungsi Variabel Banyak Bernilai Real Turunan Parsial dan Turunan Wono Setya Budhi KK Analisis dan Geometri, FMIPA ITB Variabel Banyak Bernilai Real 1 / 1 Turunan Parsial dan Turunan Usaha pertama untuk

Lebih terperinci

Pendahuluan Metode Numerik Secara Umum

Pendahuluan Metode Numerik Secara Umum Pendahuluan Metode Numerik Secara Umum Umi Sa adah Politeknik Elektronika Negeri Surabaya 2012 Pendahuluan Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan

Lebih terperinci

Karena v merupakan vektor bukan nol, maka A Iλ = 0. Dengan kata lain, Persamaan (2.2) dapat dipenuhi jika dan hanya jika,

Karena v merupakan vektor bukan nol, maka A Iλ = 0. Dengan kata lain, Persamaan (2.2) dapat dipenuhi jika dan hanya jika, BAB II KAJIAN TEORI Pada bab ini akan dibahas mengenai definisi-definisi dan teorema-teorema dari nilai eigen, vektor eigen, dan diagonalisasi, sistem persamaan differensial, model predator prey lotka-voltera,

Lebih terperinci

PERTEMUAN 2 STATISTIKA DASAR MAT 130

PERTEMUAN 2 STATISTIKA DASAR MAT 130 PERTEMUAN 2 STATISTIKA DASAR MAT 130 Data 1. Besaran Statistika berbicara tentang data dalam bentuk besaran (dimensi) Besaran adalah sesuatu yang dapat dipaparkan secara jelas dan pada prinsipnya dapat

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA Dalam proses penelitian untuk mengkaji karakteristik penduga distribusi generalized gamma dengan metode generalized moment ini, penulis menggunakan definisi, teorema dan konsep dasar

Lebih terperinci

II. LANDASAN TEORI. beberapa konsep dan teori yang berkaitan dengan penduga parameter distribusi GB2

II. LANDASAN TEORI. beberapa konsep dan teori yang berkaitan dengan penduga parameter distribusi GB2 5 II. LANDASAN TEORI Dalam proses penelitian penduga parameter dari suatu distribusi diperlukan beberapa konsep dan teori yang mendukung dari ilmu statistika. Berikut ini akan dijelaskan beberapa konsep

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 7 BAB II TINJAUAN PUSTAKA Dalam bab ini akan dibahas beberapa poin tentang sistem dinamik, kestabilan sistem dinamik, serta konsep bifurkasi. A. Sistem Dinamik Secara umum Sistem dinamik didefinisikan

Lebih terperinci

perpindahan, kita peroleh persamaan differensial berikut :

perpindahan, kita peroleh persamaan differensial berikut : 1.1 Pengertian Persamaan Differensial Banyak sekali masalah terapan (dalam ilmu teknik, ilmu fisika, biologi, kimia, sosial, dan lain-lain), yang telah dirumuskan dengan model matematika dalam bentuk persamaan

Lebih terperinci

Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL

Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL A. PENGERTIAN PERSAMAAN DIFERENSIAL Dalam pelajaran kalkulus, kita telah berkenalan dan mengkaji berbagai macam metode untuk mendiferensialkan suatu

Lebih terperinci

BAB III PEMODELAN DENGAN METODE VOLUME HINGGA

BAB III PEMODELAN DENGAN METODE VOLUME HINGGA BAB III PEMODELAN DENGAN METODE VOLUME HINGGA 3.1. Pendahuluan Pemodelan yang dibangun menggunakan kode komputer digunakan untuk melakukan perhitungan matematis dengan memasukkan varibel-variabel yang

Lebih terperinci

TRANSFORMASI FOURIER QUATERNION

TRANSFORMASI FOURIER QUATERNION JIMT Vol. 10 No. 1 Juni 2013 (Hal. 83 88 ) Jurnal Ilmiah Matematika dan Terapan ISSN : 2450 766X TANSFOMASI FOUIE QUATENION esnawati Program Studi Matematika Jurusan Matematika FMIPA Universitas Tadulako

Lebih terperinci

Perhitungan Waktu Pemutus Kritis Menggunakan Metode Simpson pada Sebuah Generator yang Terhubung pada Bus Infinite

Perhitungan Waktu Pemutus Kritis Menggunakan Metode Simpson pada Sebuah Generator yang Terhubung pada Bus Infinite JURNAL TEKNIK ELEKTRO Vol., No., (03) -6 Perhitungan Waktu Pemutus Kritis Menggunakan Metode Simpson pada Sebuah Generator yang Terhubung pada Bus Infinite Argitya Risgiananda ), Dimas Anton Asfani ),

Lebih terperinci

Bab 1. Pendahuluan Metode Numerik Secara Umum

Bab 1. Pendahuluan Metode Numerik Secara Umum Bab 1. Pendahuluan Metode Numerik Secara Umum Yuliana Setiowati Politeknik Elektronika Negeri Surabaya 2007 1 Topik Pendahuluan Persoalan matematika Metode Analitik vs Metode Numerik Contoh Penyelesaian

Lebih terperinci

Identifikasi Parameter Akustik Permukaan Sumber dengan Metode Elemen Batas

Identifikasi Parameter Akustik Permukaan Sumber dengan Metode Elemen Batas Identifikasi Parameter Akustik Permukaan Sumber dengan Metode Elemen Batas Tetti Novalina Manik dan Simon Sadok Siregar Abstrak: Penentuan medan suara yang terjadi akibat radiasi sumber atau akibat hamburan

Lebih terperinci

2.7 Ensambel Makrokanonik

2.7 Ensambel Makrokanonik 22 BAB 2. TEORI ENSAMBEL 2.7 Ensambel Makrokanonik Dalam bagian ini kita akan menjabarkan rapat ruang fase untuk sistem terbuka, sistem yang berada dalam keadaan kesetimbangan termal dengan lingkungan

Lebih terperinci

Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga

Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga JURNAL SAINS DAN SENI ITS Vol. 4, No.2, (2015) 2337-3520 (2301-928X Print) A-13 Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga Vimala Rachmawati dan Kamiran Jurusan

Lebih terperinci

Persamaan Diferensial

Persamaan Diferensial Orde Satu Jurusan Matematika FMIPA-Unud Senin, 18 Desember 2017 Orde Satu Daftar Isi 1 Pendahuluan 2 Orde Satu Apakah Itu? Solusi Pemisahan Variabel Masalah Gerak 3 4 Orde Satu Pendahuluan Dalam subbab

Lebih terperinci

Solusi Persamaan Linier Simultan

Solusi Persamaan Linier Simultan Solusi Persamaan Linier Simultan Obyektif : 1. Mengerti penggunaan solusi persamaan linier 2. Mengerti metode eliminasi gauss. 3. Mampu menggunakan metode eliminasi gauss untuk mencari solusi 1. Sistem

Lebih terperinci

TINJAUAN PUSTAKA. Model Linier dengan n pengamatan dan p variable penjelas biasa ditulis sebagai

TINJAUAN PUSTAKA. Model Linier dengan n pengamatan dan p variable penjelas biasa ditulis sebagai II. TINJAUAN PUSTAKA 2.1. Model Linear Model Linier dengan n pengamatan dan p variable penjelas biasa ditulis sebagai berikut : Y i = β 0 + X i1 β 1 + X i2 β 2 + + X ip β p +ε i ; i = 1,2,, n bila dirinci

Lebih terperinci

Bab III Studi Kasus III.1 Decline Rate

Bab III Studi Kasus III.1 Decline Rate Bab III Studi Kasus III.1 Decline Rate Studi kasus akan difokuskan pada data penurunan laju produksi (decline rate) di 31 lokasi sumur reservoir panas bumi Kamojang, Garut. Persoalan mendasar dalam penilaian

Lebih terperinci

BAB IV MODEL HIDDEN MARKOV

BAB IV MODEL HIDDEN MARKOV BAB IV MODEL HIDDEN MARKOV 4.1 State dan Proses Observasi Semua proses didefinisikan pada ruang peluang (Ω, F, P). Misalnya X = {X : k N} adalah rantai Markov dengan state berhingga yang bersifat homogen

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Didunia nyata banyak soal matematika yang harus dimodelkan terlebih dahulu untuk mempermudah mencari solusinya. Di antara model-model tersebut dapat berbentuk sistem

Lebih terperinci

Kestabilan Aliran Fluida Viskos Tipis pada Bidang Inklinasi

Kestabilan Aliran Fluida Viskos Tipis pada Bidang Inklinasi 1 Jurnal Matematika, Statistika, & Komputasi Vol 5 No 1, 1-9, Juli 2008 Kestabilan Aliran Fluida Viskos Tipis pada Bidang Inklinasi Sri Sulasteri Jurusan Pend. Matematika UIN Alauddin Makassar Jalan Sultan

Lebih terperinci

CNH2B4 / KOMPUTASI NUMERIK

CNH2B4 / KOMPUTASI NUMERIK CNH2B4 / KOMPUTASI NUMERIK TIM DOSEN KK MODELING AND COMPUTATIONAL EXPERIMENT 1 REVIEW KALKULUS & KONSEP ERROR Fungsi Misalkan A adalah himpunan bilangan. Fungsi f dengan domain A adalah sebuah aturan

Lebih terperinci