Metode Elemen Batas (MEB) untuk Model Konduksi-Konveksi dalam Media Anisotropik

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Metode Elemen Batas (MEB) untuk Model Konduksi-Konveksi dalam Media Anisotropik"

Transkripsi

1 Metode Elemen Batas (MEB) untuk Model Konduksi-Konveksi dalam Media Anisotropik Moh. Ivan Azis September 13, 2011 Daftar Isi 1 Pendahuluan 1 2 Masalah nilai batas 1 3 Persamaan integral batas 2 4 Hasil numerik 3 5 Konklusi 5 1 Pendahuluan Berbagai proses fisik dapat dimodel dengan persamaan konduksi-konveksi, seperti transpor dan dispersi polutan dalam tanah dan air permukaan, difusi dalam alat bermaterial semikonduktor, medan magnet bergerak, magnetohydrodynamics, dan lain-lainnya. Dalam bidang perpindahan panas, kita dapat menyebutkan masalah pertumbuhan kristal, pengerasan permukaan benda menggunakan laser, pemotongan logam, dan lain-lainnya (Wrobel dan DeFigueiredo [2]). Model konduksi-konveksi untuk media anisotropik sangat relevan dengan proses fisik transpor dan dispersi polutan dalam tanah, karena medium tanah dapat dianggap sebagai medium anisotropik. 2 Masalah nilai batas Dengan merujuk pada sistim kordinat Cartesian Ox 1 x 2, secara umum persamaan pembangun untuk sistem konduksi-konveksi steady dua dimensi dalam suatu media anisotropik yang homogen, dengan asumsi bahwa tidak terdapat sumber pembangkit dalam media, adalah λ ij 2 ϕ ϕ v i = 0 (1) dimana ϕ dapat berupa temperatur, λ ij adalah diffusivitas panas konstan, dan v i adalah komponen vektor kecepatan konstan v. Matriks kofisien [λ ij ] merupakan matriks bilangan real definit positif dan simetris. Juga, pada (1) penjumlahan untuk index yang berulang (jumlahan dari 1 sampai 2) diberlakukan. Suku pertama di ruas kiri dari (1) merepresentasikan proses konduksi, sedangkan suku keduanya menggambarkan proses konveksi dari sistem. Disampaikan pada Pelatihan Pemodelan Matematika dan Simulasi beberapa Sistem Fisik untuk Media Anisotropik Menggunakan Metode Elemen Batas, Fak. MIPA Unhas, Pebruari 2002 Dosen Jurusan Matematika Fak. MIPA Unhas, Makassar Indonesia. 1

2 Solusi dari (1) dicari dimana solusi tersebut valid dalam daerah di R 2 dengan batas yang terdiri dari sejumlah berhingga kurva halus bagian demi bagian. Pada salah satu dari ϕ(x) atau P (x) = λ ij ϕ(x) x i n j (x) diberikan, dimana x = (x 1, x 2 ), n = (n 1, n 2 ) melambangkan vektor normal satuan mengarah ke luar di batas. Metode solusi yang dipakai akan bekerja dengan cara menurunkan suatu persamaan integral batas, yang relevan untuk persamaan differensial (1), darimana nilai numerik ϕ dan P dapat ditentukan untuk semua titik dalam daerah. 3 Persamaan integral batas Bila (1) diperkalikan dengan ϕ lalu diintegralkan, maka ( 2 ) ϕ ϕ λ ij v i ϕ d = 0 (2) Dengan menggunakan Teorema Divergensi Gauss pada (2) kita akan memperoleh ( ) ( ϕ λ ij n j ϕv i n i ϕ ϕ ϕ ϕ ) d λ ij ϕ v i d = 0 (3) x i Penggunaan Teorema Divergensi Gauss sekali lagi pada integral domain di persamaan (3) untuk integran pertamanya akan menghasilkan ( ) ϕ λ ij n j ϕv i n i ϕ ϕ d ϕλ ij n j d x i x i Atau dimana + (ϕλ 2 ϕ ϕ ij + ϕ v i ) d = 0 (4) (λ 2 ϕ ϕ ) ij + v i ϕ d = [P ϕ (P v ϕ + P )ϕ] d (5) P v (x) = v i n i (x) dan P ϕ (x, ξ) (x, ξ) λ ij n j (x) x i Fungsi ϕ, yang biasa disebut sebagai solusi fundamental, kita definisikan sebagai dimana ξ = (ξ 1, ξ 2 ), dan δ adalah fungsi delta Dirac. sebagai berikut (lihat Azis [1] untuk penurunan ϕ ) ( ϕ (x, ξ) = K 2π exp v. Ṙ 2D λ ij 2 ϕ ϕ + v i = δ(x ξ) (6) Solusi fundamental ϕ ini dapat dituliskan ) K 0 ( ) vṙ 2D dimana D = [λ 11 +λ 12 (ρ+ρ)+λ 22 ρρ]/2, K = ρ/d, Ṙ = ẋ ξ, ẋ = (x 1 + ρx 2, ρx 2 ), ξ = (ξ 1 + ρξ 2, ρξ 2 ), v = (v 1 + ρv 2, ρv 2 ), Ṙ = (x 1 + ρx 2 ξ 1 ρξ 2 ) 2 + ( ρx 2 ρξ 2 ) 2, v = (v 1 + ρv 2 ) 2 + ( ρv 2 ) 2, ρ dan ρ berturut-turut merupakan bagian real dan imajiner positif dari akar kompleks ρ dari persamaan kuadrat λ λ 12 ρ + λ 22 ρ 2 = 0 dan tanda bar ( ) melambangkan operasi konjugat untuk bilangan kompleks, serta K 0 adalah fungsi Bessel termodifikasi berorde nol. (7) 2

3 Sebagai salah satu sifat dari fungsi delta Dirac, persamaan berikut berlaku ϕ(x) δ(x ξ) d(x) = η(ξ) ϕ(ξ) (8) dimana η = 1 2 bila ξ berada pada batas domain dan mempunyai kemiringan yang berubah secara kontinyu pada ξ, η = 1 bila ξ berada di dalam domain, η = 0 bila ξ berada di luar domain. Substitusi persamaan (6) ke dalam ruas kiri dari (5) dan penggunaan persamaan (8) memberikan η(ξ) ϕ(ξ) = {P (x) ϕ (x, ξ) [P v (x) ϕ (x, ξ) + P (x, ξ)] ϕ(x)} d(x) (9) Persamaan (9) dapat digunakan untuk menentukan solusi ϕ dan P di setiap titik x di batas dan di dalam domain. Dan kalkulasi solusi ini sepenuhnya hanya memerlukan kalkulasi integral batas pada ruas kanan persamaan (9). Tetapi secara umum integral batas ini tidak mudah dikalkulasi secara analitik, karena bentuk geometri dari tidak beraturan atau kelakuan dari fungsi ϕ dan P sangat bervariasi. Untuk itu, nilai integral batas ini lalu diapproksimasi dengan cara memenggalmenggal batas domain menjadi segmen-segmen kecil berupa garis lurus dan kelakuan dari fungsi ϕ dan P juga didekati dengan mengasumsikan bahwa fungsi-fungsi ini konstan, atau bervariasi secara linear, kuadratik dan seterusnya pada setiap segmen. Lalu integral dihitung untuk setiap segmen dan kemudian menjumlahkannya. Dengan kata lain batas domain diapproksimasi oleh suatu poligon yang jumlah sisinya diambil sebanyak mungkin sehingga nilai pendekatan akurat dapat diperoleh. 4 Hasil numerik Pada pasal ini beberapa contoh masalah konduksi-konveksi akan diselesaikan secara numerik dengan menggunakan persamaan integral batas (9). Contoh 1 : Masalah Uji Perhatikan solusi analitik untuk (1) berikut dimana α 1 dan α 2 adalah bilangan ril yang memenuhi ϕ = exp(α 1 x 1 + α 2 x 2 ) (10) λ 22 α (2λ 12 α 1 v 2 )α 2 + (λ 11 α 2 1 v 1 α 1 ) = 0. (11) Geometri medium dan syarat batas dari masalahnya adalah (lihat Gambar 1) Kofisien λ ij dan v i adalah P, yang dapat dihitung dari (10), diketahui pada AB, BC dan CD, ϕ, seperti diberikan oleh (10), diketahui pada AD. λ 11 = 1, λ 12 = 1, λ 22 = 2, v 1 = 1, v 2 = 1. Juga diambil α 1 = 1 dan nilai α 2 dihitung dari persamaan kuadrat (11). Tabel 1 memperlihatkan perbandingan antara solusi MEB dan solusi analitik. Dapat diamati bahwa solusi MEB konvergen ke solusi analitik sejalan dengan meningkatnya jumlah segmen dari 80, 160 dan 320. Contoh 2 Perhatikan masalah transpor dan dispersi polutan dalam tanah yang dibangun oleh persamaan (1) untuk suatu medium tanah yang diasumsikan isotropik homogen dan memiliki geometri dan syarat batas seperti diperlihatkan dalam Gambar 2 dengan kofisien konduktivitas λ 11 = 1, λ 12 = 0, λ 22 = 1, dan kecepatan aliran polutan v 1 = 0, v 2 = 1 untuk kasus pertama, dan v 1 = 2, v 2 = 1 untuk kasus 3

4 x 2 D(0, 1) C(1, 1) A(0, 0) B(1, 0) Gambar 1: Geometri dari masalah uji x 1 Tabel 1: Solusi MEB dan analitik untuk Contoh 1 Posisi MEB Analitik (x 1, x 2 ) ϕ ϕ/ x 1 ϕ/ x 2 ϕ ϕ/ x 1 ϕ/ x 2 80 segmen (.1,.5) (.3,.5) (.5,.5) (.7,.5) (.9,.5) segmen (.1,.5) (.3,.5) (.5,.5) (.7,.5) (.9,.5) segmen (.1,.5) (.3,.5) (.5,.5) (.7,.5) (.9,.5)

5 y D(0, 1) P = 1 C(1, 1) P = 0 P = 0 A(0, 0) ϕ = 0 B(1, 0) Gambar 2: Geometri untuk Contoh 2 x Tabel 2: Solusi MEB untuk Contoh 2 Posisi v 1 = 0, v 2 = 1 v 1 = 2, v 2 = 1 (x 1, x 2 ) ϕ ϕ/ x 1 ϕ/ x 2 ϕ ϕ/ x 1 ϕ/ x 2 (.1,.5) (.3,.5) (.5,.5) (.7,.5) (.9,.5) (.5,.1) (.5,.3) (.5,.5) (.5,.7) (.5,.9) kedua. Tidak tersedia solusi analitik eksak sederhana untuk contoh masalah ini. Kita tertarik untuk melihat pengaruh perubahan komponen kecepatan v 1, dari v 1 = 0 menjadi v 1 = 2. Tabel 2 memperlihatkan solusi MEB dengan menggunakan 320 segmen. Dari tabel ini dapat diamati pengaruh perubahan komponen kecepatan v 1 (kecepatan ke arah sumbu-x 1 ) dari v 1 = 0 menjadi v 1 = 2, dengan komponen kecepatan v 2 tetap (v 2 = 1). Dapat dikatakan bahwa perubahan ini menurunkan besarnya nilai (magnitude) dari solusi ϕ dan ϕ/ x 2 dan menaikkan besarnya nilai ϕ/ x 1. Secara intuitif hasil ini diharapkan (expected) karena keberadaan aliran ke arah sumbu-x 1 (v 1 0) akan mempengaruhi (mengurangi) laju aliran ke arah sumbu-x 2 ( ϕ/ x 2 ) dan konsentrasi polutan ϕ itu sendiri. Dapat pula diamati bahwa perubahan nilai v 1 dari v 1 = 0 menjadi v 1 = 2 mempengaruhi kesimetrian solusi di sepanjang ordinat x 2 = 0.5. Ketika v 1 = 0 solusi di titik-titik dengan ordinat x 2 = 0.5 simetris, tapi untuk v 1 = 2 kesimetrian ini tidak terjadi lagi. Secara intuitif hal ini juga diharapkan. 5 Konklusi Suatu MEB untuk solusi masalah nilai batas untuk model konduksi-konveksi dalam suatu medium anisotropik telah ditemukan. MEB ini secara umum cukup mudah untuk diimplementasikan untuk memperoleh solusi numerik untuk masalah tertentu. Hasil numerik yang diperoleh dengan menggunakan MEB ini mengindikasikan bahwa MEB ini dapat menghasilkan solusi numerik yang cukup 5

6 akurat. Evaluasi integral secara analitik, penerapan proses refinement untuk penyelesaian sistim persamaan aljabar linear, dan strategi peletakan titik sumber di luar domain akan memberikan hasil yang lebih akurat. References [1] Azis, M. I. (2001). On the boundary integral equation method for the solution of some problems for inhomogeneous media (PhD Thesis), Department of Applied Mathematics, University of Adelaide. [2] Wrobel, L. C. and DeFigueiredo, D. B. Coupled Conduction-Convection Problems. in BEMs in Heat Transfer, Wrobel, L. C. and Brebbia, C. A. (eds.), Computational Mechanics Publications, Elsevier Applied Science 6

Model Perpindahan dan Penyebaran Pollutan

Model Perpindahan dan Penyebaran Pollutan Model Perpindahan dan Penyebaran Pollutan Moh. Ivan Azis Abstrak Metode Elemen Batas diturunkan untuk penentuan solusi masalah nilai batas yang membangun model Model Perpindahan dan Penyebaran Pollutan.

Lebih terperinci

Metode Elemen Batas (MEB) untuk Model Perambatan Gelombang

Metode Elemen Batas (MEB) untuk Model Perambatan Gelombang Metode Elemen Batas (MEB) untuk Model Perambatan Gelombang Moh. Ivan Azis September 13, 2011 Abstrak Metode Elemen Batas untuk masalah perambatan gelombang akustik (harmonis) berhasil diturunkan pada tulisan

Lebih terperinci

Metode Elemen Batas (MEB) untuk Model Konduksi Panas

Metode Elemen Batas (MEB) untuk Model Konduksi Panas Metode Elemen Batas MEB) untuk Model Konduksi Panas Moh. Ivan Azis October 14, 011 Abstrak Metode Elemen Batas untuk masalah konduksi panas pada media ortotropik berhasil ditemukan pada tulisan ini. Solusi

Lebih terperinci

METODE ELEMEN BATAS UNTUK MASALAH TRANSPORT

METODE ELEMEN BATAS UNTUK MASALAH TRANSPORT METODE ELEMEN BATAS UNTUK MASALAH TRANSPORT Agusman Sahari. 1 1 Jurusan Matematika FMIPA UNTAD Kampus Bumi Tadulako Tondo Palu Abstrak Dalam paper ini mendeskripsikan tentang solusi masalah transport polutan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan suatu ilmu pengetahuan yang sering disebut sebagai induk dari ilmu-ilmu pengetahuan yang lain. Hal ini karena, matematika banyak diterapkan

Lebih terperinci

METODE ELEMEN BATAS (MEB) UNTUK SOLUSI NUMERIK MASALAH STATIK DARI MATERIAL ELASTIS ISOTROPIK TAK-HOMOGEN

METODE ELEMEN BATAS (MEB) UNTUK SOLUSI NUMERIK MASALAH STATIK DARI MATERIAL ELASTIS ISOTROPIK TAK-HOMOGEN METODE ELEMEN BATAS (MEB) UNTUK SOLUSI NUMERIK MASALAH STATIK DARI MATERIAL ELASTIS ISOTROPIK TAK-HOMOGEN Mohammad Ivan Azis ) ABSTRACT A boundary element method is derived for the solution of static boundary

Lebih terperinci

Suatu Metode Numerik Untuk Komputasi Perembesan Air Ke Dalam Tanah Pada Sistim Irigasi

Suatu Metode Numerik Untuk Komputasi Perembesan Air Ke Dalam Tanah Pada Sistim Irigasi Suatu Metode Numerik Untuk Komputasi Perembesan Air Ke Dalam Tanah Pada Sistim Irigasi Moh. Ivan Azis Abstrak Suatu metode numerik ditemukan untuk menghitung kandungan air dalam tanah pada suatu sistim

Lebih terperinci

Metode elemen batas untuk menyelesaikan masalah perpindahan panas

Metode elemen batas untuk menyelesaikan masalah perpindahan panas Metode elemen batas untuk menyelesaikan masalah perpindahan panas Imam Solekhudin 1 Jurusan Matematika FMIPA UGM Yogyakarta, imams@ugm.ac.id Abstrak. Permasalahan perpindahan panas keadaan stasioner dimodelkan

Lebih terperinci

Bab II Konsep Dasar Metode Elemen Batas

Bab II Konsep Dasar Metode Elemen Batas Bab II Konsep Dasar Metode Elemen Batas II.1 II.1.1 Kalkulus Dasar Teorema Gradien Misal menyatakan domain pada ruang dimensi dua dan menyatakan batas i x + j 2 2 x 2 + 2 2 elanjutnya, penentuan integral

Lebih terperinci

1.1 Latar Belakang dan Identifikasi Masalah

1.1 Latar Belakang dan Identifikasi Masalah BAB I PENDAHULUAN Seiring dengan pertumbuhan kebutuhan dan intensifikasi penggunaan air, masalah kualitas air menjadi faktor yang penting dalam pengembangan sumberdaya air di berbagai belahan bumi. Walaupun

Lebih terperinci

BAB II DASAR TEORI. 2.1 Persamaan Kontinuitas dan Persamaan Gerak

BAB II DASAR TEORI. 2.1 Persamaan Kontinuitas dan Persamaan Gerak BAB II DASAR TEORI Ada beberapa teori yang berkaitan dengan konsep-konsep umum mengenai aliran fluida. Beberapa akan dibahas pada bab ini. Diantaranya adalah hukum kekekalan massa dan hukum kekekalan momentum.

Lebih terperinci

Bab IV Persamaan Integral Batas

Bab IV Persamaan Integral Batas Bab IV Persamaan Integral Batas IV.1 Konvensi simbol ebelum memulai pembahasan, kita akan memperkenalkan sejumlah konvensi simbol yang akan digunakan pada tesis ini. imbol x, y, x 0 akan digunakan untuk

Lebih terperinci

Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga

Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga JURNAL SAINS DAN SENI ITS Vol. 4, No.2, (2015) 2337-3520 (2301-928X Print) A-13 Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga Vimala Rachmawati dan Kamiran Jurusan

Lebih terperinci

Bab 2 TEORI DASAR. 2.1 Model Aliran Panas

Bab 2 TEORI DASAR. 2.1 Model Aliran Panas Bab 2 TEORI DASAR 2.1 Model Aliran Panas Perpindahan panas adalah energi yang dipindahkan karena adanya perbedaan temperatur. Terdapat tiga cara atau metode bagiamana panas dipindahkan: Konduksi Konduksi

Lebih terperinci

PDP linear orde 2 Agus Yodi Gunawan

PDP linear orde 2 Agus Yodi Gunawan PDP linear orde 2 Agus Yodi Gunawan Pada bagian ini akan dipelajari tiga jenis persamaan diferensial parsial (PDP) linear orde dua yang biasa dijumpai pada masalah-masalah dunia nyata, yaitu persamaan

Lebih terperinci

Pemodelan Matematika dan Metode Numerik

Pemodelan Matematika dan Metode Numerik Bab 3 Pemodelan Matematika dan Metode Numerik 3.1 Model Keadaan Tunak Model keadaan tunak hanya tergantung pada jarak saja. Oleh karena itu, distribusi temperatur gas sepanjang pipa sebagai fungsi dari

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan suatu ilmu pengetahuan yang sering disebut sebagai induk dari ilmu-ilmu pengetahuan yang lain. Hal ini karena, matematika banyak diterapkan

Lebih terperinci

I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai.

I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai. I. PENDAHULUAN 1.1 Latar Belakang dan Masalah Dalam kehidupan, polusi yang ada di sungai disebabkan oleh limbah dari pabrikpabrik dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk

Lebih terperinci

TINJAUAN PUSTAKA. diketahui) dengan dua atau lebih peubah bebas dinamakan persamaan. Persamaan diferensial parsial memegang peranan penting di dalam

TINJAUAN PUSTAKA. diketahui) dengan dua atau lebih peubah bebas dinamakan persamaan. Persamaan diferensial parsial memegang peranan penting di dalam II. TINJAUAN PUSTAKA 2.1 Persamaan Diferensial Parsial Persamaan yang mengandung satu atau lebih turunan parsial suatu fungsi (yang diketahui) dengan dua atau lebih peubah bebas dinamakan persamaan diferensial

Lebih terperinci

Bab 3 MODEL DAN ANALISIS MATEMATIKA

Bab 3 MODEL DAN ANALISIS MATEMATIKA Bab 3 MODEL DAN ANALISIS MATEMATIKA Pada bab ini akan dimodelkan permasalahan penyebaran virus flu burung yang bergantung pada ruang dan waktu. Pada bab ini akan dibahas pula analisis dari model hingga

Lebih terperinci

PENERAPAN METODE ELEMEN HINGGA UNTUK SOLUSI PERSAMAAN STURM-LIOUVILLE

PENERAPAN METODE ELEMEN HINGGA UNTUK SOLUSI PERSAMAAN STURM-LIOUVILLE PENERAPAN METODE ELEMEN HINGGA UNTUK SOLUSI PERSAMAAN STURM-LIOUVILLE Viska Noviantri Mathematics & Statistics Department, School of Computer Science, Binus University Jln. K.H. Syahdan No. 9, Palmerah,

Lebih terperinci

SOLUSI NUMERIK PERSAMAAN LAPLACE DAN HELMHOLTZ DENGAN MENGGUNAKAN METODE ELEMEN BATAS

SOLUSI NUMERIK PERSAMAAN LAPLACE DAN HELMHOLTZ DENGAN MENGGUNAKAN METODE ELEMEN BATAS SOLUSI NUMERIK PERSAMAAN LAPLACE DAN HELMHOLTZ DENGAN MENGGUNAKAN METODE ELEMEN BATAS NUMERICAL SOLUTION OF LAPLACE AND HELMHOLTZ EQUATION BY BOUNDARY ELEMENT METHOD Cicilia Tiranda Dr. Jeffry Kusuma Dr.

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan salah satu ilmu pengetahuan yang sudah lama dipelajari dan berkembang pesat. Perkembangan ilmu matematika tidak terlepas dari perkembangan

Lebih terperinci

Sidang Tugas Akhir - Juli 2013

Sidang Tugas Akhir - Juli 2013 Sidang Tugas Akhir - Juli 2013 STUDI PERBANDINGAN PERPINDAHAN PANAS MENGGUNAKAN METODE BEDA HINGGA DAN CRANK-NICHOLSON COMPARATIVE STUDY OF HEAT TRANSFER USING FINITE DIFFERENCE AND CRANK-NICHOLSON METHOD

Lebih terperinci

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. Menjelaskan cara penyelesaian soal dengan

Lebih terperinci

BAB III HASIL DAN PEMBAHASAN. analitik dengan metode variabel terpisah. Selanjutnya penyelesaian analitik dari

BAB III HASIL DAN PEMBAHASAN. analitik dengan metode variabel terpisah. Selanjutnya penyelesaian analitik dari BAB III HASIL DAN PEMBAHASAN Pada bab ini akan dibahas penurunan model persamaan panas dimensi satu. Setelah itu akan ditentukan penyelesaian persamaan panas dimensi satu secara analitik dengan metode

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Air merupakan kebutuhan penting bagi pertumbuhan tanaman. Namun, pada saat musim kemarau tiba atau di daerah dengan intensitas hujan rendah, ketersediaan air

Lebih terperinci

BAB V PERAMBATAN GELOMBANG OPTIK PADA MEDIUM NONLINIER KERR

BAB V PERAMBATAN GELOMBANG OPTIK PADA MEDIUM NONLINIER KERR A V PERAMATAN GELOMANG OPTIK PADA MEDIUM NONLINIER KERR 5.. Pendahuluan erkas (beam) optik yang merambat pada medium linier mempunyai kecenderungan untuk menyebar karena adanya efek difraksi; lihat Gambar

Lebih terperinci

Pemodelan Distribusi Suhu pada Tanur Carbolite STF 15/180/301 dengan Metode Elemen Hingga

Pemodelan Distribusi Suhu pada Tanur Carbolite STF 15/180/301 dengan Metode Elemen Hingga Pemodelan Distribusi Suhu pada Tanur Carbolite STF 15/180/301 dengan Metode Elemen Hingga Wafha Fardiah 1), Joko Sampurno 1), Irfana Diah Faryuni 1), Apriansyah 1) 1) Program Studi Fisika Fakultas Matematika

Lebih terperinci

BAB III PERSAMAAN DIFUSI, PERSAMAAN KONVEKSI DIFUSI, DAN METODE PEMISAHAN VARIABEL

BAB III PERSAMAAN DIFUSI, PERSAMAAN KONVEKSI DIFUSI, DAN METODE PEMISAHAN VARIABEL BAB III PERSAMAAN DIFUSI, PERSAMAAN KONVEKSI DIFUSI, DAN METODE PEMISAHAN VARIABEL Dalam menyelesaikan persamaan pada tugas akhir ini terdapat beberapa teori dasar yang digunakan. Oleh karena itu, pada

Lebih terperinci

Bab 4 DINDING SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG

Bab 4 DINDING SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG Bab 4 DINDING SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG Pada bab sebelumnya telah dibahas mengenai dasar laut sinusoidal sebagai reflektor gelombang. Persamaan yang digunakan untuk memodelkan masalah dasar

Lebih terperinci

SOLUSI ANALITIK MASALAH KONDUKSI PANAS PADA TABUNG

SOLUSI ANALITIK MASALAH KONDUKSI PANAS PADA TABUNG Jurnal LOG!K@, Jilid 6, No. 1, 2016, Hal. 11-22 ISSN 1978 8568 SOLUSI ANALITIK MASALAH KONDUKSI PANAS PADA TABUNG Afo Rakaiwa dan Suma inna Program Studi Matematika, Fakultas Sains dan Teknologi, Universitas

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Perpindahan Kalor Kalor adalah energi yang diterima oleh benda sehingga suhu benda atau wujudnya berubah. Ukuran jumlah kalor dinyatakan dalam satuan joule (J). Kalor disebut

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Dalam kehidupan sehari-hari banyak permasalahan yang muncul di lingkungan sekitar. Hal tersebut yang memicu kreatifitas berpikir manusia untuk menyelesaikan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Umum Perpindahan panas adalah perpindahan energi yang terjadi pada benda atau material yang bersuhu tinggi ke benda atau material yang bersuhu rendah, hingga tercapainya kesetimbangan

Lebih terperinci

SRI REDJEKI KALKULUS I

SRI REDJEKI KALKULUS I SRI REDJEKI KALKULUS I KLASIFIKASI BILANGAN RIIL n Bilangan yang paling sederhana adalah bilangan asli : n 1, 2, 3, 4, 5,. n n Bilangan asli membentuk himpunan bagian dari klas himpunan bilangan yang lebih

Lebih terperinci

Menentukan Distribusi Temperatur dengan Menggunakan Metode Crank Nicholson

Menentukan Distribusi Temperatur dengan Menggunakan Metode Crank Nicholson Jurnal Penelitian Sains Volume 13 Nomer 2(B) 13204 Menentukan Distribusi Temperatur dengan Menggunakan Metode Crank Nicholson Siti Sailah Jurusan Fisika FMIPA, Universitas Sriwijaya, Sumatera Selatan,

Lebih terperinci

PENYELESAIAN MASALAH STURM-LIOUVILLE DARI PERSAMAAN GELOMBANG SUARA DI BAWAH AIR DENGAN METODE BEDA HINGGA

PENYELESAIAN MASALAH STURM-LIOUVILLE DARI PERSAMAAN GELOMBANG SUARA DI BAWAH AIR DENGAN METODE BEDA HINGGA PENYELESAIAN MASALAH STURM-LIOUVILLE DARI PERSAMAAN GELOMBANG SUARA DI BAWAH AIR DENGAN METODE BEDA HINGGA oleh FIQIH SOFIANA M0109030 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh

Lebih terperinci

BAB III PEMODELAN PERSAMAAN INTEGRAL PADA ALIRAN FLUIDA

BAB III PEMODELAN PERSAMAAN INTEGRAL PADA ALIRAN FLUIDA BAB III PEMODELAN PERSAMAAN INTEGRAL PADA ALIRAN FLUIDA 3.1 Deskripsi Masalah Permasalahan yang dibahas di dalam Tugas Akhir ini adalah mengenai aliran fluida yang mengalir keluar melalui sebuah celah

Lebih terperinci

SOLUSI PENYEBARAN PANAS PADA BATANG KONDUKTOR MENGGUNAKAN METODE CRANK-NICHOLSON

SOLUSI PENYEBARAN PANAS PADA BATANG KONDUKTOR MENGGUNAKAN METODE CRANK-NICHOLSON SOLUSI PENYEBARAN PANAS PADA BATANG KONDUKTOR MENGGUNAKAN METODE CRANK-NICHOLSON Viska Noviantri Mathematics & Statistics Department, School of Computer Science, Binus University Jl. K.H. Syahdan No. 9,

Lebih terperinci

MATEMATIKA EKONOMI DAN BISNIS. Nuryanto.ST.,MT

MATEMATIKA EKONOMI DAN BISNIS. Nuryanto.ST.,MT MATEMATIKA EKONOMI DAN BISNIS Fungsi Non Linear Fungsi non-linier merupakan bagian yang penting dalam matematika untuk ekonomi, karena pada umumnya fungsi-fungsi yang menghubungkan variabel-variabel ekonomi

Lebih terperinci

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal Linier (Linier Shallow Water Equation)

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal Linier (Linier Shallow Water Equation) Bab 2 Landasan Teori Dalam bab ini akan dijelaskan mengenai Persamaan Air Dangkal linier (Linear Shallow Water Equation), metode beda hingga, metode ekspansi asimtotik biasa, dan metode ekspansi asimtotik

Lebih terperinci

Persamaan Diferensial Biasa

Persamaan Diferensial Biasa Persamaan Diferensial Biasa Titik Tetap dan Sistem Linear Toni Bakhtiar Departemen Matematika IPB Oktober 2012 Toni Bakhtiar (m@thipb) PDB Oktober 2012 1 / 31 Titik Tetap SPD Mandiri dan Titik Tetap Tinjau

Lebih terperinci

BAB 4 ANALISIS DAN BAHASAN

BAB 4 ANALISIS DAN BAHASAN BAB 4 ANALISIS DAN BAHASAN 4.1 Model LWR Pada skripsi ini, model yang akan digunakan untuk memodelkan kepadatan lalu lintas secara makroskopik adalah model LWR yang dikembangkan oleh Lighthill dan William

Lebih terperinci

METODE PENELITIAN Sumber Data

METODE PENELITIAN Sumber Data 13 METODE PENELITIAN Sumber Data Data yang digunakan dalam penelitian ini merupakan hasil simulasi melalui pembangkitan dari komputer. Untuk membangkitkan data, digunakan desain model persamaan struktural

Lebih terperinci

Aplikasi Persamaan Bessel Orde Nol Pada Persamaan Panas Dua dimensi

Aplikasi Persamaan Bessel Orde Nol Pada Persamaan Panas Dua dimensi JURNAL FOURIER Oktober 2013, Vol. 2, No. 2, 113-123 ISSN 2252-763X Aplikasi Persamaan Bessel Orde Nol Pada Persamaan Panas Dua dimensi Annisa Eki Mulyati dan Sugiyanto Program Studi Matematika Fakultas

Lebih terperinci

MODIFIKASI METODE CAUCHY DENGAN ORDE KONVERGENSI EMPAT. Masnida Esra Elisabet ABSTRACT

MODIFIKASI METODE CAUCHY DENGAN ORDE KONVERGENSI EMPAT. Masnida Esra Elisabet ABSTRACT MODIFIKASI METODE CAUCHY DENGAN ORDE KONVERGENSI EMPAT Masnida Esra Elisabet Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Riau Kampus

Lebih terperinci

Persamaan Poisson. Fisika Komputasi. Irwan Ary Dharmawan

Persamaan Poisson. Fisika Komputasi. Irwan Ary Dharmawan (Pendahuluan) 1D untuk syarat batas Robin 2D dengan syarat batas Dirichlet Fisika Komputasi Jurusan Fisika Universitas Padjadjaran http://phys.unpad.ac.id/jurusan/staff/dharmawan email : dharmawan@phys.unpad.ac.id

Lebih terperinci

Bab 4 Hukum Gauss. A. Pendahuluan

Bab 4 Hukum Gauss. A. Pendahuluan Bab 4 Hukum Gauss A. Pendahuluan Pada pokok bahasan ini, disajikan tentang hukum Gauss yang memberikan fluks medan listrik yang melewati suatu permukaan tertutup yang melingkupi suatu distribusi muatan.

Lebih terperinci

METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR. Rino Martino 1 ABSTRACT

METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR. Rino Martino 1 ABSTRACT METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR Rino Martino 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya

Lebih terperinci

SIMULASI ALIRAN PANAS PADA SILINDER YANG BERGERAK. Rico D.P. Siahaan, Santo, Vito A. Putra, M. F. Yusuf, Irwan A Dharmawan

SIMULASI ALIRAN PANAS PADA SILINDER YANG BERGERAK. Rico D.P. Siahaan, Santo, Vito A. Putra, M. F. Yusuf, Irwan A Dharmawan SIMULASI ALIRAN PANAS PADA SILINDER YANG BERGERAK Rico D.P. Siahaan, Santo, Vito A. Putra, M. F. Yusuf, Irwan A Dharmawan ABSTRAK SIMULASI ALIRAN PANAS PADA SILINDER YANG BERGERAK. Aliran panas pada pelat

Lebih terperinci

TRANSPOR POLUTAN. April 14. Pollutan Transport

TRANSPOR POLUTAN. April 14. Pollutan Transport TRANSPOR POLUTAN April 14 Pollutan Transport 2 Transpor Polutan Persamaan Konveksi-Difusi Penyelesaian Analitis Rerensi Graf and Altinakar, 1998, Fluvial Hydraulics, Chapter 8, pp. 517-609, J. Wiley and

Lebih terperinci

BAB-4. METODE PENELITIAN

BAB-4. METODE PENELITIAN BAB-4. METODE PENELITIAN 4.1. Bahan Penelitian Untuk keperluan kalibrasi dan verifikasi model numerik yang dibuat, dibutuhkan data-data tentang pola penyebaran polutan dalam air. Ada beberapa peneliti

Lebih terperinci

BAB III PEMODELAN DENGAN METODE VOLUME HINGGA

BAB III PEMODELAN DENGAN METODE VOLUME HINGGA A III PEMODELAN DENGAN METODE VOLUME HINGGA 3.1 Teori Dasar Metode Volume Hingga Computational fluid dnamic atau CFD merupakan ilmu ang mempelajari tentang analisa aliran fluida, perpindahan panas dan

Lebih terperinci

KONSEP DASAR PERSAMAAN DIFERENSIAL

KONSEP DASAR PERSAMAAN DIFERENSIAL KONSEP DASAR PERSAMAAN DIFERENSIAL A. PENGERTIAN PERSAMAAN DIFERENSIAL Dalam pelajaran kalkulus, kita telah berkenalan dan mengkaji berbagai macam metode untuk mendiferensialkan suatu fungsi (dasar). Sebagai

Lebih terperinci

Teori Relativitas. Mirza Satriawan. December 7, Fluida Ideal dalam Relativitas Khusus. M. Satriawan Teori Relativitas

Teori Relativitas. Mirza Satriawan. December 7, Fluida Ideal dalam Relativitas Khusus. M. Satriawan Teori Relativitas Teori Relativitas Mirza Satriawan December 7, 2010 Fluida Ideal dalam Relativitas Khusus Quiz 1 Tuliskan perumusan kelestarian jumlah partikel dengan memakai vektor-4 fluks jumlah partikel. 2 Tuliskan

Lebih terperinci

II. TINJAUAN PUSTAKA. Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada ( ) ( ) ( )

II. TINJAUAN PUSTAKA. Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada ( ) ( ) ( ) II. TINJAUAN PUSTAKA 2.1 Definisi Turunan Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada sebarang bilangan c adalah asalkan limit ini ada. Jika limit ini memang ada, maka dikatakan

Lebih terperinci

Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia.

Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia. INTEGRASI NUMERIK TANPA ERROR UNTUK FUNGSI-FUNGSI TERTENTU Irma Silpia 1, Syamsudhuha, Musraini M. 1 Mahasiswi Jurusan Matematika Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

DASAR SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG

DASAR SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG h Bab 3 DASAR SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG 3.1 Persamaan Gelombang untuk Dasar Sinusoidal Dasar laut berbentuk sinusoidal adalah salah satu bentuk dasar laut tak rata yang berupa fungsi sinus

Lebih terperinci

Catatan Kuliah MA1123 Kalkulus Elementer I

Catatan Kuliah MA1123 Kalkulus Elementer I Catatan Kuliah MA1123 Kalkulus Elementer I Oleh Hendra Gunawan, Ph.D. Departemen Matematika ITB Sasaran Belajar Setelah mempelajari materi Kalkulus Elementer I, mahasiswa diharapkan memiliki (terutama):

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan suatu ilmu pengetahuan yang sering disebut sebagai induk dari ilmu-ilmu pengetahuan yang lain. Di antara beberapa disiplin ilmu, fisika

Lebih terperinci

6 FUNGSI LINEAR DAN FUNGSI

6 FUNGSI LINEAR DAN FUNGSI 6 FUNGSI LINEAR DAN FUNGSI KUADRAT 5.1. Fungsi Linear Pada Bab 5 telah dijelaskan bahwa fungsi linear merupakan fungsi yang variabel bebasnya paling tinggi berpangkat satu. Bentuk umum fungsi linear adalah

Lebih terperinci

BAB II LANDASAN TEORI. eigen dan vektor eigen, persamaan diferensial, sistem persamaan diferensial, titik

BAB II LANDASAN TEORI. eigen dan vektor eigen, persamaan diferensial, sistem persamaan diferensial, titik BAB II LANDASAN TEORI Pada bab ini, akan dijelaskan landasan teori yang akan digunakan dalam bab selanjutnya sebagai bahan acuan yang mendukung dan memperkuat tujuan penelitian. Landasan teori yang dimaksud

Lebih terperinci

METODE BERTIPE NEWTON UNTUK AKAR GANDA DENGAN KONVERGENSI KUBIK ABSTRACT

METODE BERTIPE NEWTON UNTUK AKAR GANDA DENGAN KONVERGENSI KUBIK ABSTRACT METODE BERTIPE NEWTON UNTUK AKAR GANDA DENGAN KONVERGENSI KUBIK Risvi Ayu Imtihana 1, Asmara Karma 1 Mahasiswa Program Studi S1 Matematika Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

BAB 3 METODOLOGI PENELITIAN

BAB 3 METODOLOGI PENELITIAN BAB 3 METODOLOGI PENELITIAN 3.1 Diagram Alir Penelitian Berikut adalah diagram alir penelitian konduksi pada arah radial dari pembangkit energy berbentuk silinder. Gambar 3.1 diagram alir penelitian konduksi

Lebih terperinci

BAB II PERSAMAAN DIFERENSIAL BIASA

BAB II PERSAMAAN DIFERENSIAL BIASA BAB II PERSAMAAN DIFERENSIAL BIASA Tujuan Pembelajaran Umum: 1 Mahasiswa mampu memahami konsep dasar persamaan diferensial 2 Mahasiswa mampu menggunakan konsep dasar persamaan diferensial untuk menyelesaikan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Persoalan yang melibatkan model matematika sering kali muncul dalam

BAB II TINJAUAN PUSTAKA. Persoalan yang melibatkan model matematika sering kali muncul dalam BAB II TINJAUAN PUSTAKA 2.1 Komputasi 2.1.1. Metode Analitik dan metode Numerik Persoalan yang melibatkan model matematika sering kali muncul dalam berbagai ilmu pengetahuan, seperti dalam bidang fisika,

Lebih terperinci

BAB II LANDASAN TEORI. dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta

BAB II LANDASAN TEORI. dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta BAB II LANDASAN TEORI Pada bab ini akan diuraikan beberapa teori-teori yang digunakan sebagai acuan dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta teorema-teorema

Lebih terperinci

ANALISIS VEKTOR. Aljabar Vektor. Operasi vektor

ANALISIS VEKTOR. Aljabar Vektor. Operasi vektor ANALISIS VEKTOR Aljabar Vektor Operasi vektor Besaran yang memiliki nilai dan arah disebut dengan vektor. Contohnya adalah perpindahan, kecepatan, percepatan, gaya, dan momentum. Sementara itu, besaran

Lebih terperinci

Penggunaan Metode Level Set dalam Menyelesaikan Masalah Stefan Dua Fase

Penggunaan Metode Level Set dalam Menyelesaikan Masalah Stefan Dua Fase Penggunaan Metode Level Set dalam Menyelesaikan Masalah Stefan Dua Fase (Kasus Masalah Pencairan Es) Makbul Muksar 1, Tjang Daniel Candra 2, Susy Kuspambudi Andaini 3 1 Jurusan Matematika FMIPA UM, mmuksar@yahoo.com

Lebih terperinci

TUJUAN INSTRUKSIONAL KHUSUS

TUJUAN INSTRUKSIONAL KHUSUS PREVIEW KALKULUS TUJUAN INSTRUKSIONAL KHUSUS Mahasiswa mampu: menyebutkan konsep-konsep utama dalam kalkulus dan contoh masalah-masalah yang memotivasi konsep tersebut; menjelaskan menyebutkan konsep-konsep

Lebih terperinci

Teori Dasar Gelombang Gravitasi

Teori Dasar Gelombang Gravitasi Bab 2 Teori Dasar Gelombang Gravitasi 2.1 Gravitasi terlinearisasi Gravitasi terlinearisasi merupakan pendekatan yang memadai ketika metrik ruang waktu, g ab, terdeviasi sedikit dari metrik datar, η ab

Lebih terperinci

Bab III. Integral Fungsi Kompleks

Bab III. Integral Fungsi Kompleks Bab III Integral Fungsi ompleks Integrasi suatu fungsi kompleks f() = u + iv dilakukan pada bidang Argand, sehingga integrasinya menyerupai integral garis pada integral vektor. Hal ini terjadi mengingat

Lebih terperinci

ISTIYANTO.COM. memenuhi persamaan itu adalah B. 4 4 C. 4 1 PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPA

ISTIYANTO.COM. memenuhi persamaan itu adalah B. 4 4 C. 4 1 PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPA PERBANDINGAN KISI-KISI UN 009 DAN 00 SMA IPA Materi Logika Matematika Kemampuan yang diuji UN 009 UN 00 Menentukan negasi pernyataan yang diperoleh dari penarikan kesimpulan Menentukan negasi pernyataan

Lebih terperinci

SOLUSI NUMERIK PERSAMAAN INTEGRAL VOLTERRA-FREDHOLM NONLINEAR MENGGUNAKAN FUNGSI BASIS BARU ABSTRACT

SOLUSI NUMERIK PERSAMAAN INTEGRAL VOLTERRA-FREDHOLM NONLINEAR MENGGUNAKAN FUNGSI BASIS BARU ABSTRACT SOLUSI NUMERIK PERSAMAAN INTEGRAL VOLTERRA-FREDHOLM NONLINEAR MENGGUNAKAN FUNGSI BASIS BARU Vanny Octary 1 Endang Lily 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika

Lebih terperinci

Studi Analitik dan Numerik Perpindahan Panas pada Fin Trapesium (Studi Kasus pada Finned Tube Heat Exchanger)

Studi Analitik dan Numerik Perpindahan Panas pada Fin Trapesium (Studi Kasus pada Finned Tube Heat Exchanger) JURNAL TEKNIK POMITS Vol., No., (013) ISSN: 337-3539 (301-971 Print) B-316 Studi Analitik dan Numerik Perpindahan Panas pada Fin Trapesium (Studi Kasus pada Finned Tube Heat Exchanger) Ahmad Zaini dan

Lebih terperinci

STUDI PERPINDAHAN PANAS DENGAN MENGGUNAKAN SISTEM KOORDINAT SEGITIGA

STUDI PERPINDAHAN PANAS DENGAN MENGGUNAKAN SISTEM KOORDINAT SEGITIGA STUDI PERPINDAHAN PANAS DENGAN MENGGUNAKAN SISTEM KOORDINAT SEGITIGA Oleh : Farda Nur Pristiana 1208 100 059 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH

Lebih terperinci

BAB II LANDASAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi

BAB II LANDASAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi BAB II LANDASAN TEORI Pada bab ini akan dibahas tentang landasan teori yang digunakan pada bab selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi yang diuraikan berupa definisi-definisi

Lebih terperinci

BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL

BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL Pendahuluan Persamaan diferensial adalah persamaan yang memuat diferensial Kita akan membahas tentang Persamaan Diferensial Biasa yaitu

Lebih terperinci

Bagian 2 Matriks dan Determinan

Bagian 2 Matriks dan Determinan Bagian Matriks dan Determinan Materi mengenai fungsi, limit, dan kontinuitas akan kita pelajari dalam Bagian Fungsi dan Limit. Pada bagian Fungsi akan mempelajari tentang jenis-jenis fungsi dalam matematika

Lebih terperinci

Soal UN 2009 Materi KISI UN 2010 Prediksi UN 2010

Soal UN 2009 Materi KISI UN 2010 Prediksi UN 2010 PREDIKSI UN 00 SMA IPA BAG. (Berdasar buku terbitan Istiyanto: Bank Soal Matematika-Gagas Media) Logika Matematika Soal UN 009 Materi KISI UN 00 Prediksi UN 00 Menentukan negasi pernyataan yang diperoleh

Lebih terperinci

FUNGSI DELTA DIRAC. Marwan Wirianto 1) dan Wono Setya Budhi 2)

FUNGSI DELTA DIRAC. Marwan Wirianto 1) dan Wono Setya Budhi 2) INTEGRAL, Vol. 1 No. 1, Maret 5 FUNGSI DELTA DIRAC Marwan Wirianto 1) dan Wono Setya Budhi ) 1) Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Katolik Parahyangan, Bandung

Lebih terperinci

Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL

Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL A. PENGERTIAN PERSAMAAN DIFERENSIAL Dalam pelajaran kalkulus, kita telah berkenalan dan mengkaji berbagai macam metode untuk mendiferensialkan suatu

Lebih terperinci

(A) 3 (B) 5 (B) 1 (C) 8

(A) 3 (B) 5 (B) 1 (C) 8 . Turunan dari f ( ) = + + (E) 7 + +. Turunan dari y = ( ) ( + ) ( ) ( + ) ( ) ( + ) ( + ) ( + ) ( ) ( + ) (E) ( ) ( + ) 7 5 (E) 9 5 9 7 0. Jika f ( ) = maka f () = 8 (E) 8. Jika f () = 5 maka f (0) +

Lebih terperinci

Medan Elektromagnetik 3 SKS. M. Hariansyah Program Studi Teknik Elektro Fakultas Teknik Universitas Ibn Khaldun Bogor

Medan Elektromagnetik 3 SKS. M. Hariansyah Program Studi Teknik Elektro Fakultas Teknik Universitas Ibn Khaldun Bogor Medan Elektromagnetik 3 SKS M. Hariansyah Program Studi Teknik Elektro Fakultas Teknik Universitas Ibn Khaldun Bogor 2 0 1 4 Medan Elektromagnetik I -Referensi: WILLIAM H HAYT Materi Kuliah -Analisa Vektor

Lebih terperinci

BAB II TINJAUAN PUSTAKA. tegak, perlu diketahui tentang materi-materi sebagai berikut.

BAB II TINJAUAN PUSTAKA. tegak, perlu diketahui tentang materi-materi sebagai berikut. BAB II TINJAUAN PUSTAKA Sebelum pembahasan mengenai irisan bidang datar dengan tabung lingkaran tegak, perlu diketahui tentang materi-materi sebagai berikut. A. Matriks Matriks adalah himpunan skalar (bilangan

Lebih terperinci

PENYELESAIAN PERSAMAAN PANAS BALIK (BACKWARD HEAT EQUATION) Oleh: RICHA AGUSTININGSIH

PENYELESAIAN PERSAMAAN PANAS BALIK (BACKWARD HEAT EQUATION) Oleh: RICHA AGUSTININGSIH TUGAS AKHIR PENYELESAIAN PERSAMAAN PANAS BALIK (BACKWARD HEAT EQUATION) Oleh: RICHA AGUSTININGSIH 1204100019 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH

Lebih terperinci

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal (SWE)

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal (SWE) Bab 2 Landasan Teori Dalam bab ini akan dibahas mengenai Persamaan Air Dangkal dan dasar-dasar teori mengenai metode beda hingga untuk menghampiri solusi dari persamaan diferensial parsial. 2.1 Persamaan

Lebih terperinci

PEMILIHAN KOEFISIEN TERBAIK KUADRATUR KUADRAT TERKECIL DUA TITIK DAN TIGA TITIK. Nurul Ain Farhana 1, Imran M. 2 ABSTRACT

PEMILIHAN KOEFISIEN TERBAIK KUADRATUR KUADRAT TERKECIL DUA TITIK DAN TIGA TITIK. Nurul Ain Farhana 1, Imran M. 2 ABSTRACT PEMILIHAN KOEFISIEN TERBAIK KUADRATUR KUADRAT TERKECIL DUA TITIK DAN TIGA TITIK Nurul Ain Farhana, Imran M Mahasiswa Program Studi S Matematika Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

SOLUSI ANALITIK DAN SOLUSI NUMERIK KONDUKSI PANAS PADA ARAH RADIAL DARI PEMBANGKIT ENERGI BERBENTUK SILINDER

SOLUSI ANALITIK DAN SOLUSI NUMERIK KONDUKSI PANAS PADA ARAH RADIAL DARI PEMBANGKIT ENERGI BERBENTUK SILINDER SOLUSI ANALITIK DAN SOLUSI NUMERIK KONDUKSI PANAS PADA ARAH RADIAL DARI PEMBANGKIT ENERGI BERBENTUK SILINDER ABSTRAK Telah dilakukan perhitungan secara analitik dan numerik dengan pendekatan finite difference

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Aljabar Linear Definisi 2.1.1 Matriks Matriks A adalah susunan persegi panjang yang terdiri dari skalar-skalar yang biasanya dinyatakan dalam bentuk berikut: [ ] Definisi 2.1.2

Lebih terperinci

Aplikasi Aljabar Lanjar pada Metode Numerik

Aplikasi Aljabar Lanjar pada Metode Numerik Aplikasi Aljabar Lanjar pada Metode Numerik IF223 Aljabar Geometri Oleh: Rinaldi Munir Program Studi Informatika, STEI-ITB Rinaldi Munir - IF223 Aljabar Geometri Apa itu Metode Numerik? Numerik: berhubungan

Lebih terperinci

BAB 1 PERSAMAAN. a) 2x + 3 = 9 a) 5 = b) x 2 9 = 0 b) = 12 c) x = 0 c) 2 adalah bilangan prima genap d) 3x 2 = 3x + 5

BAB 1 PERSAMAAN. a) 2x + 3 = 9 a) 5 = b) x 2 9 = 0 b) = 12 c) x = 0 c) 2 adalah bilangan prima genap d) 3x 2 = 3x + 5 BAB PERSAMAAN Sifat Sifat Persamaan Persamaan adalah kalimat matematika terbuka yang menyatakan hubungan sama dengan. Sedangkan kesamaan adalah kalimat matematika tertutup yang menyatakan hubungan sama

Lebih terperinci

PENDAHULUAN Anda harus dapat

PENDAHULUAN Anda harus dapat PENDAHULUAN Di dalam modul ini Anda akan mempelajari Teori Pita Energi yang mencakup : asal mula celah energi, model elektron hampir bebas, model Kronig-Penney, dan persamaan sentral. Oleh karena itu,

Lebih terperinci

: D C adalah fungsi kompleks dengan domain riil

: D C adalah fungsi kompleks dengan domain riil BAB 4. INTEGRAL OMPLES 4. Integral Garis ompleks Misalkan ( : D adalah fungsi kompleks dengan domain riil b D [ a, b], maka integral (, dimana ( x( + iy( dapat dengan mudah a b dihitung, yaitu a i contoh

Lebih terperinci

Simulasi Numerik Aliran Fluida pada Permukaan Peregangan dengan Kondisi Batas Konveksi di Titik-Stagnasi

Simulasi Numerik Aliran Fluida pada Permukaan Peregangan dengan Kondisi Batas Konveksi di Titik-Stagnasi JURNAL SAINS DAN SENI ITS Vol. 5 No. 2 (2016) 2337-3520 (2301-928X Print) A-83 Simulasi Numerik Aliran Fluida pada Permukaan Peregangan dengan Kondisi Batas Konveksi di Titik-Stagnasi Ahlan Hamami, Chairul

Lebih terperinci

Solusi Numerik Persamaan Gelombang Dua Dimensi Menggunakan Metode Alternating Direction Implicit

Solusi Numerik Persamaan Gelombang Dua Dimensi Menggunakan Metode Alternating Direction Implicit Vol. 11, No. 2, 105-114, Januari 2015 Solusi Numerik Persamaan Gelombang Dua Dimensi Menggunakan Metode Alternating Direction Implicit Rezki Setiawan Bachrun *,Khaeruddin **,Andi Galsan Mahie *** Abstrak

Lebih terperinci

Agus Suryanto dan Isnani Darti

Agus Suryanto dan Isnani Darti Pengaruh Waktu Tunda pada Model Pertumbuhan Logistik Agus Suryanto dan Isnani Darti Jurusan Matematika - FMIPA Universitas Brawijaya suryanto@ub.ac.id www.asuryanto.lecture.ub.ac.id Prodi Pendidikan Matematika

Lebih terperinci

SKRIPSI. Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik. Oleh : JOKO SUPRIYANTO NIM. I

SKRIPSI. Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik. Oleh : JOKO SUPRIYANTO NIM. I SIMULASI NUMERIK PERPINDAHAN PANAS 2 DIMENSI PADA PROSES PENDINGINAN TEMBAGA MURNI DENGAN VARIASI CETAKAN PASIR DAN MULLITE MENGGUNAKAN PENDEKATAN BEDA HINGGA SKRIPSI Diajukan sebagai salah satu syarat

Lebih terperinci

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1. Integral Lipat Dua Atas Daerah Persegipanjang

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1. Integral Lipat Dua Atas Daerah Persegipanjang ingkasan Kalkulus 2, Untuk dipakai di ITB 1 Integral Lipat Dua Atas Daerah Persegipanjang Perhatikan fungsi z = f(x, y) pada = {(x, y) : a x b, c y d} Bentuk partisi P atas daerah berupa n buah persegipanjang

Lebih terperinci