SISTEM DINAMIK DISKRET. Anggota Kelompok: 1. Inggrid Riana C. 2. Kharisma Madu B. 3. Solehan

Ukuran: px
Mulai penontonan dengan halaman:

Download "SISTEM DINAMIK DISKRET. Anggota Kelompok: 1. Inggrid Riana C. 2. Kharisma Madu B. 3. Solehan"

Transkripsi

1 SISTEM DINAMIK DISKRET Anggota Kelompok: 1. Inggrid Riana C. 2. Kharisma Madu B. 3. Solehan

2 SISTEM DINAMIK Kontinu Sistem Dinamik Diskret

3 POKOK BAHASAN SDD OTONOMUS NON-OTONOMUS 1-D MULTI-D LINEAR NON-LINEAR LINEAR NON-LINEAR

4 SISTEM OTONOMUS 1-D SDD Otonomus Linear 1-D SDD Otonomus Non-Linear 1-D Titik Tetap Titik Tetap Solusi Solusi Jika Ada Kestabilan Linearisasi Kestabilan

5 SDD OTONOMUS LINEAR 1-D Bentuk Umum x n+1 = ax n + b, dengan n = 0,1,2,, x n R, a, b R.

6 SDD OTONOMUS LINEAR 1-D Solusi Sistem Diberikan SDD x n+1 = ax n + b, dengan nilai awal x 0. Solusinya adalah x n = x 0 b 1 a an + b, jika a 1 1 a x 0 + bn, jika a = 1

7 SDD OTONOMUS LINEAR 1-D Titik Tetap Titik tetap dari x n+1 = ax n + b, adalah x R sedemikian sehingga diperoleh x = ax + b, b x, jika a 1 = 1 a x 0, jika a = 1 dan b = 0. Untuk a = 1 dan b 0 titik tetap tidak ada.

8 SDD OTONOMUS LINEAR 1-D Proposisi 1. Titik tetap dari x n+1 = ax n + b ada jika dan hanya jika a 1 atau a = 1 dan b = 0. Proposisi 2. Titik tetap dari x n+1 = ax n + b tunggal jika dan hanya jika a 1.

9 SDD OTONOMUS LINEAR 1-D Kestabilan Titik Tetap Titik tetap x dari x n+1 = f(x n ) adalah: Stabil global (asimtotik) jika lim n x n = x, x 0 R Stabil lokal (asimtotik) jika x stabil lokal dan lim n x n = x. Proposisi 3. Titik tetap dari x n+1 = ax n + b, stabil global jika dan hanya jika a < 1

10 SDD OTONOMUS LINEAR 1-D Contoh 1. x n+1 = 3 4 x n + 2 Titik Tetap: x = 8 Solusi: x n = 3 4 n x Kestabilan: a = 3 4 < 1 stabil

11 SDD OTONOMUS LINEAR 1-D Contoh 2. x n+1 = 2x n + 2 Titik Tetap: x = 2 3 Solusi: x n = 2 n x Kestabilan: a = 2 > 1 tak stabil

12 SDD OTONOMUS NON-LINEAR 1-D Bentuk Umum x n+1 = f x n, dengan n = 0,1,2,. Solusi Sistem Diberikan SDD x n+1 = f x n dengan nilai awal x 0. Solusinya adalah x 1 = f x 0 x 2 = f x 1 = f f (x 0) = f 2 x 0 x n = f n x 0

13 SDD OTONOMUS NON-LINEAR 1-D Titik Tetap Titik tetap dari x n+1 = f x n, adalah x R sedemikian sehingga x = f x. Linearisasi Hasil linearisasi: x n+1 = ax n + b, dengan a = f x dan b = f x f x x

14 SDD OTONOMUS NON-LINEAR 1-D Kestabilan Titik Tetap Proposisi 4. Titik tetap dari x n+1 = f x n, stabil lokal di sekitar titik tetap x jika dan hanya jika f (x ) < 1.

15 SDD OTONOMUS NON-LINEAR 1-D Contoh x n+1 = 3x n + x 2 n x 3 n Titik Tetap: x 1 = 0 x 2 = 1 x 3 = 2 Kestabilan: f (x 1 ) = f (0) = 3 > 1 tidak stabil f (x 2 ) = f 1 = 2 > 1 tidak stabil f (x 1 ) = f (2) = 3 > 1 tidak stabil

16 SISTEM OTONOMUS MULTI-D SDD Otonomus Linear Multi-D SDD Otonomus Non-Linear Multi-D Titik Tetap Titik Tetap Solusi Solusi Kestabilan Linearisasi Kestabilan

17 Bentuk Umum x n+1 = Ax n + B, x n R k dengan n = 0,1,2,. Titik Tetap Titik tetap dari x n+1 = Ax n + B, adalah x R k sedemikian sehingga x = Ax + B, diperoleh x = I A 1 B, jika I A 0.

18 Proposisi 5. Titik tetap dari x n+1 = Ax n + B, tunggal jika dan hanya jika I A 0. Solusi Sistem Diberikan SDD x n+1 = Ax n + B, dengan nilai awal x 0. Solusinya adalah x n = A n x 0 I A 1 B + I A 1 B, jika I A 0. atau x n = A n x 0 x + x.

19 Lemma 1. Jika matriks A n n mempunyai n nilai eigen real berbeda λ 1, λ 2,, λ n maka ada matriks non singular Q n n sedemikian sehingga A = QDQ 1, di mana D matriks diagonal λ λ D = 2 0, 0 λ n Q = v1v 2 vn dan Av i = λ i v i, i = 1, 2,, n.

20 Proposisi 6. Sistem persamaan beda linear orde pertama nonhomogen x n+1 = Ax n + B, dapat ditransformasi ke sistem persamaan beda linear orde pertama homogen zn+1 = Azn, di mana zn x n x dan x = I A 1 B.

21 Proposisi 6. Sistem persamaan beda linear orde pertama nonhomogen x n+1 = Ax n + B, dapat ditransformasi ke sistem persamaan beda linear orde pertama homogen zn+1 = Azn, di mana zn = x n x dan x = I A 1 B.

22 Proposisi 7. Solusi dari sistem persamaan beda linear orde pertama non-homogen x n+1 = Ax n + B, adalah x n = QD n Q 1 x 0 x + x, di mana D adalah Jordan Matriks yang bersesuaian dengan A.

23 Kasus 2 (Nilai Eigen Real Kembar) Contoh 1. Uncoupled System x n+1 = 2x n, y n+1 = 2y n, di mana x 0 = x 0, y 0.

24 2. Coupled System x n+1 = 2x n y n, y n+1 = x n + 4y n, di mana x 0 = x 0, y 0.

25 Kasus 3 (Nilai Eigen Kompleks Berbeda) Bentuk Umum x n+1 = Ax n + B dengan Titik Tetap n = 0,1,2,. Titik tetap dari x n+1 = Ax n + B, adalah x R sedemikian sehingga x = Ax + B, diperoleh x = I A 1 B, jika I A 0.

26 Lemma 3. Jika matriks A k k mempunyai k 2 nilai eigen kompleks berbeda μ 1, μ 1, μ 2, μ 2,, μ k 2, μ k 2 dimana μ j α j + iβ j dan μ j α j iβ j, maka ada matriks non singular Q k k sedemikian sehingga di mana D matriks blok D = α 1 β 1 β 1 α 1 A = QDQ 1, α 2 β 2 β 2 α 2 α n 2 β n 2 β n 2 α n 2 Q = v1w 1 v iw i dan AQ = QD, i = 1, 2,, k.,

27 Kemudian jika blok pertama pada matriks blok D diubah dalam bentuk koordinat polar dimana α j = r j cos θ j dan β j = r j sin θ j, maka : α j β j cos θ j sin θ j = r β j α j j sin θ j cos θ j Lemma 6 cos θ j sin θ j r j sin θ j cos θ j n n = r cos nθ j sin nθ j j sin nθ j cos nθ j

28 Teorema 3 Titik tetap dari x n+1 = Ax n + B dengan A mempunyai k 2 pasang μ 1, μ 1, μ 2, μ 2,, μ k 2, μ k 2 nilai eigen imajiner yang berbeda, dimana μ j α j + iβ j dan μ j α j iβ j stabil global (asimtotik) jika dan hanya jika r j α 2 2 j + β 1 2 j < 1, j = 1,2,, k 2

29 Diagram Phase Sistem x n+1 = αx n βy n y n+1 = βx n + αy n mempunyai variasi perilaku bergantung pada nilai r.

30 Orbit Periodik : r = 1 Searah Jarum Jam Spiral Masuk : r < 1 Berlawanan Arah Jarum Jam Searah Jarum Jam Berlawanan Arah Jarum Jam Spiral Keluar : r > 1 Searah Jarum Jam Berlawanan Arah Jarum Jam

31 Orbit Periodik : r = 1 x n+1 = αx n βy n y n+1 = βx n + αy n Orbit periodik berlawanan arah jarum jam Misalkan r = 1, β = 1 dan nilai awal x 0, y 0 = 1,0. Berdasarkan persamaan di atas, diperoleh x 1, y 1 = 0,1, x 2, y 2 = 1,0, x 3, y 3 = 0, 1, dan x 4, y 4 = 1,0. Terlihat bahwa sistem berbentuk orbit periodik dan berlawanan arah jarum jam.

32 Orbit Periodik : r = 1 x n+1 = αx n βy n y n+1 = βx n + αy n Orbit periodik searah arah jarum jam Misalkan r = 1, β = 1 dan nilai awal x 0, y 0 = 1,0. Berdasarkan persamaan di atas, diperoleh x 1, y 1 = 0, 1, x 2, y 2 = 1,0, x 3, y 3 = 0, 1, dan x 4, y 4 = 1,0. Terlihat bahwa sistem berbentuk orbit periodik dan searah jarum jam. Sebagai catatan, α menentukan arah pergerakan.

33 Kasus 1 (Nilai Eigen Real Berbeda) Contoh 1. Uncoupled System x n+1 = 2x n, y n+1 = 0.5y n, di mana x 0 = x 0, y 0.

34 2. Coupled System x n+1 = x n + 0.5y n, y n+1 = x n + 1.5y n, di mana x 0 = x 0, y 0.

35 Contoh 1. r = 1, β > 0 x n+1 = y n, y n+1 = x n, di mana x 0 = x 0, y 0.

36 Contoh 1 A = λi A = 0 λ 1 1 λ = 0 λ = 0 λ 2 = 1 λ = i i 1 1 i x 0 = x 0, y 0 1 i b 1 b 2 i 1 ib 1 i 1 + b 2 w = i 1 = i 1 0 Q = Q 1 = μ 1 = i μ 1 = i maka α = 0, β = 1 x n+1 = y n, y n+1 = x n, λ 1,2 = ±i μ 1 = i μ 1 = i θ = tan 1 β α = tan 1 = 90 r = α 2 + β 2 = = 1

37 x n+1 = y n, y n+1 = x n, D n = 1 n cos 90n sin 90n sin 90n cos 90n = x 0 = x 0, y 0 cos 90n sin 90n sin 90n cos 90n x n = QD n Q 1 x 0 = cos 90n sin 90n 1 sin 90n cos 90n x 0 y 0 = cos 90n sin 90n sin 90n cos 90n x 0 y 0 x n = x 0 cos 90n y 0 sin 90n y n = x 0 sin 90n + x 0 cos 90n

38 2. r > 1, β > 0 x n+1 = x n + y n, y n+1 = x n y n, di mana x 0 = x 0, y 0.

39 Contoh 2 A = λi A = 0 λ λ + 1 = 0 (λ + 1) 2 +1 = 0 λ 2 + 2λ + 2 = 0 λ 1,2 = 1 ± i μ 1 = 1 + i μ 1 = 1 i λ = i i 1 1 i b 1 b 2 1 i i 1 ib 1 + b 2 1 i w = Q = Q 1 = maka α = 1, β = 1 i 1 = i 1 0 μ 1 = 1 + i, μ 1 = 1 i x n+1 = x n + y n, y n+1 = x n y n, x 0 = x 0, y 0 θ = tan 1 β α = tan 1 1 = 135 r = α 2 + β 2 = = 2

40 x n+1 = x n + y n, y n+1 = x n y n, D n = 2 n cos 135n sin 135n sin 135n cos 135n = x 0 = x 0, y 0 cos 135n sin 135n sin 135n cos 135n x n = QD n Q 1 x 0 = n cos 135n sin 135n sin 135n cos 135n x 0 y 0 = 2 n cos 135n sin 135n sin 135n cos 135n x 0 y 0 x n = 2 n x 0 cos 135n 2 n y 0 sin 135n y n = 2 n x 0 sin 135n + 2 n x 0 cos 135n

41 Kasus 4 (Nilai Eigen Kompleks Kembar) Bentuk Umum x n+1 = Ax n + B dengan Titik Tetap n = 0,1,2,. Titik tetap dari x n+1 = Ax n + B, adalah x R sedemikian sehingga x = Ax + B, diperoleh x = I A 1 B, jika I A 0.

42 Lemma 4. Jika matriks A k k mempunyai k 2 nilai eigen kompleks kembar, μ, μ, μ, μ,, μ, μ dimana μ α + iβ dan μ α iβ, maka ada matriks non singular Q k k sedemikian sehingga di mana D matriks diagonal D = α β β α A = QDQ 1, α β β α α β β α Q = v w v w dan AQ = QD, i = 1, 2,, n.,

43 D n = r n cos nθ r n sin nθ r n sin nθ r n cos nθ nr n 1 cos n 1 θ nr n 1 sin n 1 θ r n cos nθ r n sin nθ nr n 1 sin n 1 θ nr n 1 cos n 1 θ r n sin nθ r n cos nθ n n 1 r n 2 cos n 2 θ n n 1 rn 2 sin n 2 θ 2! 2! nr n 1 cos n 1 θ nr n 1 sin n 1 θ n n 1 r n 2 sin n 2 θ n n 1 r n 2 cos n 2 θ nr n 1 sin n 1 θ nr n 1 cos n 1 θ 2! 2! rn cos nθ r n sin nθ r n sin nθ r n cos nθ, n 1 x n+1 = r n k n k cos n k θx 0 sin n k θy 0 k=0 y n+1 = r n k n k sin n k θx 0 cos n k θy 0 n 1 k=0

44 Teorema 4 Titik tetap dari x n+1 = Ax n + B dengan A mempunyai k 2 pasang μ, μ, μ, μ,, μ, μ nilai eigen imajiner kembar, dimana μ α + iβ danμ α iβ stabil global jika dan hanya jika r j α 2 2 j + β 1 2 j < 1, j = 1,2,, k 2

45 SDD OTONOMUS NON-LINEAR MULTI-D Bentuk Umum x n+1 = f x n, dengan n = 0,1,2,. Solusi Sistem Diberikan SDD x n+1 =, f x n dengan nilai awal x 0. Solusinya adalah x 1 = f x 0 x 2 = f x 1 = f f (x 0) = f 2 x 0 x n = f n x 0

46 SDD OTONOMUS NON-LINEAR MULTI-D Titik Tetap Titik tetap dari x n+1 = f x n, adalah x R sedemikian sehingga x = f x. Linearisasi Hasil linearisasi: x n+1 = Ux n + V, dengan U = f x dan V = f x f x x Kestabilan Sama seperti SDD Linear Multi-D

47 SDD Linear 1D Bentuk: x n+1 = ax n + b Titik Tetap: x = b 1 a Titik tetap x stabil global a < 1 SDD Non-Linear 1D Bentuk: x n+1 = f x n Titik Tetap: x = f x KESIMPULAN Titik tetap x stabil lokal f x < 1

48 SDD Linear Multi-D KESIMPULAN Bentuk: x n+1 = Ax n + B Titik Tetap: x = I A 1 B Kestabilan untuk kasus 2-D: 1. Nilai Eigen Berbeda Nilai Eigen Negatif Nilai Eigen Positif Stabil (Osilasi Konvergen) Stabil: 0 < λ: 1 1 < λ< 2 λ< 1 1. < λ 2 < 0. Saddle (Osilasi Saddle: Konvergen/Divergen) 0 < λ 1 < 1 < λ: 2. λ 1 < 1 < λ 2 < 0. Source (Osilasi Source: Divergen) 1 < : λ 1 < λ 2 < 1

49 2. Nilai Eigen Kembar KESIMPULAN Fokus (Stabil): 0 < λ 1 = λ 2 < 1. Fokus (Osilasi Konvergen): 1 < λ 1 = λ 2 < 0. Improper (Stabil): 0 < λ < 1. Improper (Source): λ > 1. Continuum Unstable: λ = 1.

50 KESIMPULAN 3. Nilai Eigen Kompleks Periodik Tertutup: r = β > 0 Berlawanan Arah Jarum Jam 2. β < 0 Searah Jarum Jam Spiral Masuk (Stabil Asimtotik) : r < β > 0 Berlawanan Arah Jarum Jam 2. β < 0 Searah Jarum Jam Spiral Keluar (Tak Stabil) : 1 < r. 1. β > 0 Berlawanan Arah Jarum Jam 2. β < 0 Searah Jarum Jam

51 KESIMPULAN SDD Non-Linear Multi-D Bentuk: x n+1 = f x n Titik Tetap: x = f x Kestabilan titik tetap x sama seperti SDD Linear Multi-D

Persamaan Diferensial Biasa

Persamaan Diferensial Biasa Persamaan Diferensial Biasa Titik Tetap dan Sistem Linear Toni Bakhtiar Departemen Matematika IPB Oktober 2012 Toni Bakhtiar (m@thipb) PDB Oktober 2012 1 / 31 Titik Tetap SPD Mandiri dan Titik Tetap Tinjau

Lebih terperinci

Karena v merupakan vektor bukan nol, maka A Iλ = 0. Dengan kata lain, Persamaan (2.2) dapat dipenuhi jika dan hanya jika,

Karena v merupakan vektor bukan nol, maka A Iλ = 0. Dengan kata lain, Persamaan (2.2) dapat dipenuhi jika dan hanya jika, BAB II KAJIAN TEORI Pada bab ini akan dibahas mengenai definisi-definisi dan teorema-teorema dari nilai eigen, vektor eigen, dan diagonalisasi, sistem persamaan differensial, model predator prey lotka-voltera,

Lebih terperinci

SISTEM DINAMIK KONTINU LINEAR. Oleh: 1. Meirdania Fitri T 2. Siti Khairun Nisa 3. Grahani Ayu Deca F. 4. Fira Fitriah 5.

SISTEM DINAMIK KONTINU LINEAR. Oleh: 1. Meirdania Fitri T 2. Siti Khairun Nisa 3. Grahani Ayu Deca F. 4. Fira Fitriah 5. SISTEM DINAMIK KONTINU LINEAR Oleh: 1. Meirdania Fitri T 2. Siti Khairun Nisa 3. Grahani Ayu Deca F. 4. Fira Fitriah 5. Lisa Risfana Sari Sistem Dinamik D Sistem dinamik adalah sistem yang dapat diketahui

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 7 BAB II TINJAUAN PUSTAKA Dalam bab ini akan dibahas beberapa poin tentang sistem dinamik, kestabilan sistem dinamik, serta konsep bifurkasi. A. Sistem Dinamik Secara umum Sistem dinamik didefinisikan

Lebih terperinci

Sistem Hasil Kali Persamaan Diferensial Otonomus pada Bidang

Sistem Hasil Kali Persamaan Diferensial Otonomus pada Bidang Sistem Hasil Kali Persamaan Diferensial Otonomus pada Bidang SKRIPSI Diajukan Kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk Memenuhi Sebagian Persyaratan Guna

Lebih terperinci

BIFURKASI PADA MODEL SUSCEPTIBLE INFECTED RECOVERED (SIR) DENGAN WAKTU TUNDA DAN LAJU PENULARAN BILINEAR SKRIPSI

BIFURKASI PADA MODEL SUSCEPTIBLE INFECTED RECOVERED (SIR) DENGAN WAKTU TUNDA DAN LAJU PENULARAN BILINEAR SKRIPSI BIFURKASI PADA MODEL SUSCEPTIBLE INFECTED RECOVERED (SIR) DENGAN WAKTU TUNDA DAN LAJU PENULARAN BILINEAR SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta

Lebih terperinci

Created By Aristastory.Wordpress.com BAB I PENDAHULUAN. Teori sistem dinamik adalah bidang matematika terapan yang digunakan untuk

Created By Aristastory.Wordpress.com BAB I PENDAHULUAN. Teori sistem dinamik adalah bidang matematika terapan yang digunakan untuk BAB I PENDAHULUAN 1.1 Latar Belakang Teori sistem dinamik adalah bidang matematika terapan yang digunakan untuk memeriksa kelakuan sistem dinamik kompleks, biasanya dengan menggunakan persamaan diferensial

Lebih terperinci

BAB II KAJIAN TEORI. representasi pemodelan matematika disebut sebagai model matematika. Interpretasi Solusi. Bandingkan Data

BAB II KAJIAN TEORI. representasi pemodelan matematika disebut sebagai model matematika. Interpretasi Solusi. Bandingkan Data A. Model Matematika BAB II KAJIAN TEORI Pemodelan matematika adalah proses representasi dan penjelasan dari permasalahan dunia real yang dinyatakan dalam pernyataan matematika (Widowati dan Sutimin, 2007:

Lebih terperinci

BIFURKASI HOPF PADA SISTEM PREDATOR PREY DENGAN FUNGSI RESPON TIPE II

BIFURKASI HOPF PADA SISTEM PREDATOR PREY DENGAN FUNGSI RESPON TIPE II BIFURKASI HOPF PADA SISTEM PREDATOR PREY DENGAN FUNGSI RESPON TIPE II SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk Memenuhi Sebagian Persyaratan

Lebih terperinci

BAB II LANDASAN TEORI. dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta

BAB II LANDASAN TEORI. dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta BAB II LANDASAN TEORI Pada bab ini akan diuraikan beberapa teori-teori yang digunakan sebagai acuan dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta teorema-teorema

Lebih terperinci

BAB II MATRIKS POSITIF. Pada bab ini akan dibahas mengenai Teorema Perron, yaitu teori hasil kontribusi

BAB II MATRIKS POSITIF. Pada bab ini akan dibahas mengenai Teorema Perron, yaitu teori hasil kontribusi BAB II MATRIKS POSITIF Pada bab ini akan dibahas mengenai Teorema Perron, yaitu teori hasil kontribusi dari seorang matematikawan German, Oskar Perron. Perron menerbitkan tulisannya tentang sifat-sifat

Lebih terperinci

BAB 2 PDB Linier Order Satu 2

BAB 2 PDB Linier Order Satu 2 BAB Konsep Dasar BAB 2 PDB Linier Order Satu 2 BAB 3 Aplikasi PDB Order Satu 3 BAB 4 PDB Linier Order Dua 4 BAB 5 Aplikasi PDB Order Dua 5 BAB 6 Sistem PDB 6 BAB 7 PDB Nonlinier dan Kesetimbangan Dalam

Lebih terperinci

Teori Bifurkasi (3 SKS)

Teori Bifurkasi (3 SKS) Teori Bifurkasi (3 SKS) Department of Mathematics Faculty of Mathematics and Natural Sciences Gadjah Mada University E-mail : f_adikusumo@gadjahmada.edu Sistem Dinamik PENGERTIAN UMUM : - Formalisasi matematika

Lebih terperinci

BAB II LANDASAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi

BAB II LANDASAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi BAB II LANDASAN TEORI Pada bab ini akan dibahas tentang landasan teori yang digunakan pada bab selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi yang diuraikan berupa definisi-definisi

Lebih terperinci

Bab II Teori Pendukung

Bab II Teori Pendukung Bab II Teori Pendukung II.1 Sistem Autonomous Tinjau sistem persamaan differensial berikut, = dy = f(x, y), g(x, y), (2.1) dengan asumsi f dan g adalah fungsi kontinu yang mempunyai turunan yang kontinu

Lebih terperinci

Teori kendali. Oleh: Ari suparwanto

Teori kendali. Oleh: Ari suparwanto Teori kendali Oleh: Ari suparwanto Minggu Ke-1 Permasalahan oleh : Ari Suparwanto Permasalahan Diberikan sistem dan sinyal referensi. Masalah kendali adalah menentukan sinyal kendali sehingga output sistem

Lebih terperinci

BAB II KAJIAN TEORI. Persamaan diferensial sangat penting dalam pemodelan matematika khususnya

BAB II KAJIAN TEORI. Persamaan diferensial sangat penting dalam pemodelan matematika khususnya BAB II KAJIAN TEORI 2.1 Persamaan Diferensial Persamaan diferensial sangat penting dalam pemodelan matematika khususnya untuk pemodelan yang membutuhkan solusi dari sebuah permasalahan. Pemodelan matematika

Lebih terperinci

IV PEMBAHASAN. jika λ 1 < 0 dan λ 2 > 0, maka titik bersifat sadel. Nilai ( ) mengakibatkan. 4.1 Model SIR

IV PEMBAHASAN. jika λ 1 < 0 dan λ 2 > 0, maka titik bersifat sadel. Nilai ( ) mengakibatkan. 4.1 Model SIR 9 IV PEMBAHASAN 4.1 Model SIR 4.1.1 Titik Tetap Untuk mendapatkan titik tetap diperoleh dari dua persamaan singular an ) sehingga dari persamaan 2) diperoleh : - si + s = 0 9) si + )i = 0 didapat titik

Lebih terperinci

LANDASAN TEORI. Model ini memiliki nilai kesetimbangan positif pada saat koordinat berada di titik

LANDASAN TEORI. Model ini memiliki nilai kesetimbangan positif pada saat koordinat berada di titik LANDASAN TEORI Model Mangsa Pemangsa Lotka Volterra Bagian ini membahas model mangsa pemangsa klasik Lotka Volterra. Model Lotka Volterra menggambarkan laju perubahan populasi dua spesies yang saling berinteraksi.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Aljabar Linear Definisi 2.1.1 Matriks Matriks A adalah susunan persegi panjang yang terdiri dari skalar-skalar yang biasanya dinyatakan dalam bentuk berikut: [ ] Definisi 2.1.2

Lebih terperinci

BAB II LANDASAN TEORI. eigen dan vektor eigen, persamaan diferensial, sistem persamaan diferensial, titik

BAB II LANDASAN TEORI. eigen dan vektor eigen, persamaan diferensial, sistem persamaan diferensial, titik BAB II LANDASAN TEORI Pada bab ini, akan dijelaskan landasan teori yang akan digunakan dalam bab selanjutnya sebagai bahan acuan yang mendukung dan memperkuat tujuan penelitian. Landasan teori yang dimaksud

Lebih terperinci

TRANSFORMASI LINIER PADA RUANG BANACH

TRANSFORMASI LINIER PADA RUANG BANACH TRANSFORMASI LINIER PADA RUANG BANACH Nur Aeni, S.Si., M.Pd Jurusan Matematika, Fakultas Sains dan Teknologi, UINAM nuraeniayatullah@gmail.com ABSTRAK Info: Jurnal MSA Vol. 2 No. 1 Edisi: Januari Juni

Lebih terperinci

Pengantar Metode Perturbasi Bab 1. Pendahuluan

Pengantar Metode Perturbasi Bab 1. Pendahuluan Pengantar Metode Perturbasi Bab 1. Pendahuluan Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas PAM 454 KAPITA SELEKTA MATEMATIKA TERAPAN II Semester Ganjil 2016/2017 Review Teori Dasar Terkait

Lebih terperinci

SISTEM DINAMIK TUGAS 3. Oleh RIRIN SISPIYATI ( ) Program Studi Matematika

SISTEM DINAMIK TUGAS 3. Oleh RIRIN SISPIYATI ( ) Program Studi Matematika SISTEM DINAMIK TUGAS Oleh RIRIN SISPIYATI (16 Program Studi Matematika INSTITUT TEKNOLOGI BANDUNG 9 EXERCISE 4 4. 1. In Eercise. of chapter we analysed the eistence of perios solutions in an invariant

Lebih terperinci

DESKRIPSI PENGARUH PARAMETER TERHADAP KESTABILAN PERILAKU SISTEM BANDUL GANDA SEDERHANA

DESKRIPSI PENGARUH PARAMETER TERHADAP KESTABILAN PERILAKU SISTEM BANDUL GANDA SEDERHANA DESKRIPSI PENGARUH PARAMETER TERHADAP KESTABILAN PERILAKU SISTEM BANDUL GANDA SEDERHANA Thoufina Kurniyati Mahasiswa Jurusan Matematika Fakultas Sains dan Teknologi UIN Maulana Malik Ibrahim Malang E-mail:

Lebih terperinci

8. Deret Fourier yang Diperumum dan Hampiran Terbaik di L 2 (a, b)

8. Deret Fourier yang Diperumum dan Hampiran Terbaik di L 2 (a, b) 8. Deret Fourier yang Diperumum dan Hampiran Terbaik di L (a, b) 8.1 Deret Fourier yang Diperumum Jika {ϕ n } 1 adalah basis ortonormal untuk L (a, b) dan f L (a, b), maka f, ϕ n disebut koefisien Fourier

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Persamaan diferensial Persamaan diferensial adalah suatu persamaan yang di dalamnya terdapat turunan-turunan. Jika terdapat variabel bebas tunggal, turunannya merupakan

Lebih terperinci

EKSISTENSI TITIK TETAP DARI SUATU TRANSFORMASI LINIER PADA RUANG BANACH

EKSISTENSI TITIK TETAP DARI SUATU TRANSFORMASI LINIER PADA RUANG BANACH EKSISTENSI TITIK TETAP DARI SUATU TRANSFORMASI LINIER PADA RUANG BANACH Nur Aeni Prodi Matematika, Fakultas Sains dan Teknologi, UINAM nuraeniayatullah@gmailcom Info: Jurnal MSA Vol 3 No 1 Edisi: Januari

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Sistem dinamik merupakan formalisasi Matematika untuk menggambarkan konsep-konsep ilmiah dari proses deterministik yang bergantung terhadap waktu (Kuznetsov,

Lebih terperinci

PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 2 - II

PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 2 - II PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE - II.Persamaan Homogen dengan Koefisien Konstan Suatu persamaan linier homogen y + ay + by = 0 (1) mempunyai koefisien a dan b adalah konstan. Persamaan ini mempunyai

Lebih terperinci

4. Deret Fourier pada Interval Sebarang dan Aplikasi

4. Deret Fourier pada Interval Sebarang dan Aplikasi 4. Deret Fourier pada Interval Sebarang dan Aplikasi Kita telah mempelajari bagaimana menguraikan fungsi periodik dengan periode 2 yang terdefinisi pada R sebagai deret Fourier. Deret trigonometri tersebut

Lebih terperinci

MODIFIKASI SISTEM PREDATOR-PREY: DINAMIKA MODEL LESLIE-GOWER DENGAN DAYA DUKUNG YANG TUMBUH LOGISTIK

MODIFIKASI SISTEM PREDATOR-PREY: DINAMIKA MODEL LESLIE-GOWER DENGAN DAYA DUKUNG YANG TUMBUH LOGISTIK SEMIRATA MIPAnet 2017 24-26 Agustus 2017 UNSRAT, Manado MODIFIKASI SISTEM PREDATOR-PREY: DINAMIKA MODEL LESLIE-GOWER DENGAN DAYA DUKUNG YANG TUMBUH LOGISTIK HASAN S. PANIGORO 1, EMLI RAHMI 2 1 Universitas

Lebih terperinci

MATEMATIKA TEKNIK II BILANGAN KOMPLEKS

MATEMATIKA TEKNIK II BILANGAN KOMPLEKS MATEMATIKA TEKNIK II BILANGAN KOMPLEKS 2 PENDAHULUAN SISTEM BILANGAN KOMPLEKS REAL IMAJINER RASIONAL IRASIONAL BULAT PECAHAN BULAT NEGATIF CACAH ASLI 0 3 ILUSTRASI Carilah akar-akar persamaan x 2 + 4x

Lebih terperinci

KONVOLUSI DISTRIBUSI EKSPONENSIAL DENGAN PARAMETER BERBEDA

KONVOLUSI DISTRIBUSI EKSPONENSIAL DENGAN PARAMETER BERBEDA Jurnal Matematika UNAND Vol. No. 4 Hal. 9 ISSN : 33 9 c Jurusan Matematika FMIPA UNAND KONVOLUSI DISTRIBUSI EKSPONENSIAL DENGAN PARAMETER BERBEDA MARNISYAH ANAS Program Studi Magister Matematika, Fakultas

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Didunia nyata banyak soal matematika yang harus dimodelkan terlebih dahulu untuk mempermudah mencari solusinya. Di antara model-model tersebut dapat berbentuk sistem

Lebih terperinci

BILANGAN KOMPLEKS. 1. Bilangan-Bilangan Real. 2. Bilangan-Bilangan Imajiner. 3. Bilangan-Bilangan Kompleks

BILANGAN KOMPLEKS. 1. Bilangan-Bilangan Real. 2. Bilangan-Bilangan Imajiner. 3. Bilangan-Bilangan Kompleks BILANGAN KOMPLEKS 1. Bilangan-Bilangan Real Sekumpulan bilangan-bilangan real yang dapat menempati seluruh titik pada garis lurus, hal ini dinamakan garis bilangan real seperti pada Gambar 1. Operasi penjumlahan,

Lebih terperinci

SIFAT-SIFAT DINAMIK DARI MODEL INTERAKSI CINTA DENGAN MEMPERHATIKAN DAYA TARIK PASANGAN

SIFAT-SIFAT DINAMIK DARI MODEL INTERAKSI CINTA DENGAN MEMPERHATIKAN DAYA TARIK PASANGAN Jurnal Matematika UNAND Vol. 5 No. 2 Hal. 50 55 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND SIFAT-SIFAT DINAMIK DARI MODEL INTERAKSI CINTA DENGAN MEMPERHATIKAN DAYA TARIK PASANGAN AIDA BETARIA Program

Lebih terperinci

BAB II KAJIAN TEORI. dinamik, sistem linear, sistem nonlinear, titik ekuilibrium, analisis kestabilan

BAB II KAJIAN TEORI. dinamik, sistem linear, sistem nonlinear, titik ekuilibrium, analisis kestabilan BAB II KAJIAN TEORI Pada bab ini akan dibahas mengenai nilai eigen dan vektor eigen, sistem dinamik, sistem linear, sistem nonlinear, titik ekuilibrium, analisis kestabilan sistem dinamik, kriteria Routh-Hurwitz,

Lebih terperinci

MATRIKS BENTUK KANONIK RASIONAL DENGAN MENGGUNAKAN PEMBAGI ELEMENTER INTISARI

MATRIKS BENTUK KANONIK RASIONAL DENGAN MENGGUNAKAN PEMBAGI ELEMENTER INTISARI Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster) Volume 6, No. (17), hal 7 34. MATRIKS BENTUK KANONIK RASIONAL DENGAN MENGGUNAKAN PEMBAGI ELEMENTER Ardiansyah, Helmi, Fransiskus Fran INTISARI Pada

Lebih terperinci

DASAR-DASAR TEORI RUANG HILBERT

DASAR-DASAR TEORI RUANG HILBERT DASAR-DASAR TEORI RUANG HILBERT Herry P. Suryawan 1 Geometri Ruang Hilbert Definisi 1.1 Ruang vektor kompleks V disebut ruang hasilkali dalam jika ada fungsi (.,.) : V V C sehingga untuk setiap x, y, z

Lebih terperinci

TUGAS MANDIRI KULIAH PERSAMAAN DIFERENSIAL BIASA Tahun Ajaran 2016/2017

TUGAS MANDIRI KULIAH PERSAMAAN DIFERENSIAL BIASA Tahun Ajaran 2016/2017 A. Pengantar Persamaan Diferensial TUGAS MANDIRI KULIAH PERSAMAAN DIFERENSIAL BIASA Tahun Ajaran 016/017 1. Tentukan hasil turunan dari fungsi sebagai berikut: a. f() = c e b. f() = c cos k + c sin k c.

Lebih terperinci

Bab III Model Awal Kecanduan Terhadap Rokok

Bab III Model Awal Kecanduan Terhadap Rokok Bab III Model Awal Kecanduan Terhadap Rokok III.1 Pembentukan Model Model kecanduan terhadap rokok dibentuk menggunakan model dasar dalam epidemiologi yaitu model SIR (Susceptible, Infective, Removed)

Lebih terperinci

BENTUK NORMAL BIFURKASI HOPF PADA SISTEM UMUM DUA DIMENSI

BENTUK NORMAL BIFURKASI HOPF PADA SISTEM UMUM DUA DIMENSI Jurnal Matematika UNAND Vol. 5 No. 3 Hal. 15 23 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND BENTUK NORMAL BIFURKASI HOPF PADA SISTEM UMUM DUA DIMENSI MELA PUSPITA Program Studi Matematika, Fakultas

Lebih terperinci

I::: 1: J mempunyai persamaan karakteristik sebagai - - x,, matriks berukuran nxn.

I::: 1: J mempunyai persamaan karakteristik sebagai - - x,, matriks berukuran nxn. 2.1 Sistem Persamaan Diferensial Linear Mandiri Perhatikan sistem persamaan diferensial (SPD) berikut ini: 11. LANDASAN TEOR n111... "',, dengan fungsi ~(x) mempunyai sifat X = h (xi (tb... >X.(f)) lim,,,

Lebih terperinci

0. Pendahuluan. 0.1 Notasi dan istilah, bilangan kompleks

0. Pendahuluan. 0.1 Notasi dan istilah, bilangan kompleks 0. Pendahuluan Analisis Fourier mempelajari berbagai teknik menganalisis sebuah fungsi dengan menguraikannya sebagai deret atau integral fungsi tertentu (yang sifat-sifatnya telah kita kenal dengan baik,

Lebih terperinci

1 Mengapa Perlu Belajar Geometri Daftar Pustaka... 1

1 Mengapa Perlu Belajar Geometri Daftar Pustaka... 1 Daftar Isi 1 Mengapa Perlu Belajar Geometri 1 1.1 Daftar Pustaka.................................... 1 2 Ruang Euclid 3 2.1 Geometri Euclid.................................... 8 2.2 Pencerminan dan Transformasi

Lebih terperinci

Pembahasan Matematika IPA SNMPTN 2012 Kode 132

Pembahasan Matematika IPA SNMPTN 2012 Kode 132 Tutur Widodo Pembahasan Matematika IPA SNMPTN 0 Pembahasan Matematika IPA SNMPTN 0 Kode Oleh Tutur Widodo. Lingkaran (x 6) + (y + ) = menyinggung garis x = di titik... (, 6) d. (, ) (, 6) e. (, ) c. (,

Lebih terperinci

BIFURKASI HOPF DALAM MODEL EPIDEMI DENGAN WAKTU TUNDAAN DISKRET

BIFURKASI HOPF DALAM MODEL EPIDEMI DENGAN WAKTU TUNDAAN DISKRET Vol. 5, No., Juni 009: 54-60 BIFUKASI HOPF DALAM MODEL EPIDEMI DENGAN WAKTU TUNDAAN DISKET ubono Setiawan Mahasiswa S Jurusan Matematika Universitas Gadah Mada Email : rubono_4869@yahoo.co.id Abstrak Di

Lebih terperinci

Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN) Bidang Matematika. Kode Paket 634. Oleh : Fendi Alfi Fauzi 1. x 0 x 2.

Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN) Bidang Matematika. Kode Paket 634. Oleh : Fendi Alfi Fauzi 1. x 0 x 2. Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri SNMPTN) Bidang Matematika Kode Paket 6 Oleh : Fendi Alfi Fauzi. lim x 0 cos x x tan x + π )... a) b) 0 c) d) e) Jawaban : C Pembahasan: lim x 0

Lebih terperinci

BAB II TINJAUAN PUSTAKA. kestabilan model predator-prey tipe Holling II dengan faktor pemanenan.

BAB II TINJAUAN PUSTAKA. kestabilan model predator-prey tipe Holling II dengan faktor pemanenan. BAB II TINJAUAN PUSTAKA Dalam bab ini akan dibahas mengenai dasar teori untuk menganalisis simulasi kestabilan model predator-prey tipe Holling II dengan faktor pemanenan. 2.1 Persamaan Diferensial Biasa

Lebih terperinci

Pembahasan Matematika IPA SNMPTN 2012 Kode 483

Pembahasan Matematika IPA SNMPTN 2012 Kode 483 Tutur Widodo Pembahasan Matematika IPA SNMPTN 0 Pembahasan Matematika IPA SNMPTN 0 Kode 8 Oleh Tutur Widodo. Di dalam kotak terdapat bola biru, 6 bola merah dan bola putih. Jika diambil 8 bola tanpa pengembalian,

Lebih terperinci

TINJAUAN PUSTAKA. Dalam bab ini akan dibahas beberapa konsep mendasar meliputi ruang vektor,

TINJAUAN PUSTAKA. Dalam bab ini akan dibahas beberapa konsep mendasar meliputi ruang vektor, II. TINJAUAN PUSTAKA Dalam bab ini akan dibahas beberapa konsep mendasar meliputi ruang vektor, ruang Bernorm dan ruang Banach, ruang barisan, operator linear (transformasi linear) serta teorema-teorema

Lebih terperinci

4. Deret Fourier pada Interval Sebarang dan Aplikasi

4. Deret Fourier pada Interval Sebarang dan Aplikasi 8 Hendra Gunawan 4. Deret Fourier pada Interval Sebarang dan Aplikasi Kita telah mempelajari bagaimana menguraikan fungsi periodik dengan periode 2 yang terdefinisi pada R sebagai deret Fourier. Deret

Lebih terperinci

II. TINJAUAN PUSTAKA. Sistem dinamik adalah sistem yang berubah dari waktu ke waktu (Farlow,et al.,

II. TINJAUAN PUSTAKA. Sistem dinamik adalah sistem yang berubah dari waktu ke waktu (Farlow,et al., II. TINJAUAN PUSTAKA 2.1 Sistem Dinamik Sistem dinamik adalah sistem yang berubah dari waktu ke waktu (Farlow,et al., 2002). Salah satu tujuan utama dari sistem dinamik adalah mempelajari perilaku dari

Lebih terperinci

Barisan dan Deret Agus Yodi Gunawan

Barisan dan Deret Agus Yodi Gunawan Barisan dan Deret Agus Yodi Gunawan Barisan. Definisi. Barisan tak hingga adalah suatu fungsi dengan daerah asalnya himpunan bilangan bulat positif dan daerah kawannya himpunan bilangan real. Notasi untuk

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Sistem Persamaan Diferensial Definisi 2.1.1 Persamaan Diferensial Persamaan diferensial adalah persamaan yang memuat variabel bebas, variabel tak bebas dan derivative-derivatif

Lebih terperinci

MATEMATIKA. Sesi TRANSFORMASI 2 CONTOH SOAL A. ROTASI

MATEMATIKA. Sesi TRANSFORMASI 2 CONTOH SOAL A. ROTASI MATEMATIKA KELAS XII IPA - KURIKULUM GABUNGAN 14 Sesi NGAN TRANSFORMASI A. ROTASI Rotasi adalah memindahkan posisi suatu titik (, y) dengan cara dirotasikan pada titik tertentu sebesar sudut tertentu.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Persamaan diferensial Persamaan diferensial merupakan persamaan yang melibatkan turunanturunan dari fungsi yang tidak diketahui (Waluya, 2006). Contoh 2.1 : Diberikan persamaan

Lebih terperinci

Bab 2 TEORI DASAR. 2.1 Linearisasi Persamaan Air Dangkal

Bab 2 TEORI DASAR. 2.1 Linearisasi Persamaan Air Dangkal Bab 2 TEORI DASAR 2.1 Linearisasi Persamaan Air Dangkal Persamaan air dangkal merupakan persamaan untuk gelombang permukaan air yang dipengaruhi oleh kedalaman air tersebut. Kedalaman air dapat dikatakan

Lebih terperinci

Hendra Gunawan. 23 April 2014

Hendra Gunawan. 23 April 2014 MA1201 MATEMATIKA 2A Hendra Gunawan Semester II, 2013/2014 23 April 2014 Kuliah ang Lalu 13.11 Integral Lipat Dua atas Persegi Panjang 13.2 Integral Berulang 13.3 33Integral Lipat Dua atas Daerah Bukan

Lebih terperinci

TE Teknik Numerik Sistem Linear. Bidang Studi Teknik Sistem Pengaturan Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember

TE Teknik Numerik Sistem Linear. Bidang Studi Teknik Sistem Pengaturan Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember TE9467 Teknik Numerik Sistem Linear Bidang Studi Teknik Sistem Pengaturan Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember O U T L I N E OBJEKTIF TEORI 3 CONTOH 4 SIMPULAN 5 LATIHAN OBJEKTIF

Lebih terperinci

BIFURKASI TRANSKRITIKAL PADA SISTEM DINAMIK SKRIPSI

BIFURKASI TRANSKRITIKAL PADA SISTEM DINAMIK SKRIPSI BIFURKASI TRANSKRITIKAL PADA SISTEM DINAMIK SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk memenuhi sebagian persyaratan guna memperoleh gelar

Lebih terperinci

TINJAUAN MATA KULIAH... Kegiatan Belajar 2: PD Variabel Terpisah dan PD Homogen Latihan Rangkuman Tes Formatif

TINJAUAN MATA KULIAH... Kegiatan Belajar 2: PD Variabel Terpisah dan PD Homogen Latihan Rangkuman Tes Formatif iii Daftar Isi TINJAUAN MATA KULIAH... xiii MODUL 1: PERSAMAAN DIFERENSIAL ORDE SATU 1.1 Pengertian PD Orde Satu dan Solusinya... 1.2 Latihan... 1.7 Rangkuman... 1.9 Tes Formatif 1..... 1.10 PD Variabel

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN Pada Bab I Pendahuluan ini dijelaskan mengenai latar belakang yang mendasari penelitian yang kemudian dirumuskan dalam rumusan masalah. Berdasarkan latar belakang dan rumusan masalah

Lebih terperinci

BAB II KAJIAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi

BAB II KAJIAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi BAB II KAJIAN TEORI Pada bab ini akan dibahas tentang landasan teori yang digunakan pada bab selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi yang diuraikan berupa definisi-definisi

Lebih terperinci

ANALISIS DINAMIK SUDUT DEFLEKSI PADA MODEL VIBRASI DAWAI

ANALISIS DINAMIK SUDUT DEFLEKSI PADA MODEL VIBRASI DAWAI ANALISIS DINAMIK SUDUT DEFLEKSI PADA MODEL VIBRASI DAWAI 1Imam Mufid, Ari Kusumastuti, 3 Fachrur Rozi 1 Jurusan Matematika, Universitas Islam Negeri Maulana Malik Ibrahim Malang jurusan Matematika, Universitas

Lebih terperinci

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1. Integral Lipat Dua Atas Daerah Persegipanjang

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1. Integral Lipat Dua Atas Daerah Persegipanjang ingkasan Kalkulus 2, Untuk dipakai di ITB 1 Integral Lipat Dua Atas Daerah Persegipanjang Perhatikan fungsi z = f(x, y) pada = {(x, y) : a x b, c y d} Bentuk partisi P atas daerah berupa n buah persegipanjang

Lebih terperinci

Discrete Time Dynamical Systems

Discrete Time Dynamical Systems Discrete Time Dynamical Systems Sheet 1 and Solution (1) Tentukan titik tetap dari fungsi berikut. (a) f(x) = x x (b) f(x) = 2x + bx (c) f(x) = e (a) Titik tetap f memenuhi persamaan f(x) = x x x = x x

Lebih terperinci

III HASIL DAN PEMBAHASAN

III HASIL DAN PEMBAHASAN Fungsi periodizer kutub tersebut dapat dituliskan pula sebagai: p θ, N, θ 0 = π N N.0 n= n sin Nn θ θ 0. () f p θ, N, θ 0 = π N N j= j sin Nj θ θ 0 diperoleh dengan menyubstitusi variabel θ pada f θ =

Lebih terperinci

SUMMARY ALJABAR LINEAR

SUMMARY ALJABAR LINEAR SUMMARY ALJABAR LINEAR SUMANANG MUHTAR GOZALI KBK ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2010 2 KATA PENGANTAR Bismillahirrahmanirrahim Segala puji bagi Allah Rabb semesta alam. Shalawat serta

Lebih terperinci

THE EFFECT OF DELAYED TIME OF OSCILLATION IN THE LOGISTIC EQUATION

THE EFFECT OF DELAYED TIME OF OSCILLATION IN THE LOGISTIC EQUATION Jurnal Matematika UNAND Vol. 2 No. 1 Hal. 72 77 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND THE EFFECT OF DELAYED TIME OF OSCILLATION IN THE LOGISTIC EQUATION IVONE LAWRITA ERWANSA, EFENDI, AHMAD

Lebih terperinci

BIFURKASI SADDLE-NODE PADA SISTEM INTERAKSI NONLINEAR SEPASANG OSILATOR TANPA PERTURBASI

BIFURKASI SADDLE-NODE PADA SISTEM INTERAKSI NONLINEAR SEPASANG OSILATOR TANPA PERTURBASI BIFURKASI SADDLE-NODE PADA SISTEM INTERAKSI NONLINEAR SEPASANG OSILATOR TANPA PERTURBASI Yolpin Durahim 1 Novianita Achmad Hasan S. Panigoro Diterima: xx xxxx 20xx, Disetujui: xx xxxx 20xx o Abstrak Dalam

Lebih terperinci

KARAKTERISTIK PERSAMAAN ALJABAR RICCATI DAN PENERAPANNYA PADA MASALAH KENDALI

KARAKTERISTIK PERSAMAAN ALJABAR RICCATI DAN PENERAPANNYA PADA MASALAH KENDALI Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA, Fakultas MIPA, Universitas Negeri Yogyakarta, 4 Mei 0 KARAKTERISTIK PERSAMAAN ALJABAR RICCATI DAN PENERAPANNYA PADA MASALAH KENDALI

Lebih terperinci

UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK

UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK UJI KONVERGENSI Januari 208 Tim Dosen Kalkulus 2 TPB ITK Uji Integral Teorema 3 Jika + k= u k adalah deret dengan suku-suku tak negatif, dan jika ada suatu konstanta M sedemikian hingga s n = u + u 2 +

Lebih terperinci

SISTEM PERSAMAAN LINEAR ( BAGIAN II )

SISTEM PERSAMAAN LINEAR ( BAGIAN II ) SISTEM PERSAMAAN LINEAR ( BAGIAN II ) D. FAKTORISASI MATRIKS D2 2. METODE ITERASI UNTUK MENYELESAIKAN SPL D3 3. NILAI EIGEN DAN VEKTOR EIGEN D4 4. POWER METHOD Beserta contoh soal untuk setiap subbab 2

Lebih terperinci

Penentuan Bifurkasi Hopf Pada Predator Prey

Penentuan Bifurkasi Hopf Pada Predator Prey J. Math. and Its Appl. ISSN: 9-65X Vol., No., Nov 5, 5 Penentuan Bifurkasi Hopf Pada Predator Prey Dian Savitri Jurusan Teknik Sipil, Fakultas Teknik Universitas Negeri Surabaya d savitri@yahoo.com Abstrak

Lebih terperinci

SISTEM KONTROL LINIER

SISTEM KONTROL LINIER SISTEM KONTROL LINIER Silabus : 1. SISTEM KONTROL 2. TRANSFORMASI LAPLACE 3. PEMODELAN MATEMATIKA DARI SISTEM DINAMIK 4. ANALISIS SISTEM KONTROL DALAM RUANG KEADAAN 5. DESAIN SISTEM KONTROL DALAM RUANG

Lebih terperinci

MINGGU KE-11 HUKUM BILANGAN BESAR LEMAH DAN KUAT

MINGGU KE-11 HUKUM BILANGAN BESAR LEMAH DAN KUAT MINGGU KE-11 HUKUM BILANGAN BESAR LEMAH DAN KUAT HUKUM BILANGAN BESAR LEMAH DAN KUAT Misalkan X 1, X 2, X 3... barisan variabel random. Kita tulis S n = n X i. Dalam subbab ini kita akan menjawab pertanyaan

Lebih terperinci

3. Kekonvergenan Deret Fourier

3. Kekonvergenan Deret Fourier 3. Kekonvergenan Deret Fourier Sekarang kita akan membahas kekonvergenan deret Fourier, khususnya kekonvergenan titik demi titik. Melalui Contoh 2 yang dibahas pada bab sebelumnya kita mengetahui bahwa

Lebih terperinci

ALJABAR LINEAR SUMANANG MUHTAR GOZALI KBK ANALISIS

ALJABAR LINEAR SUMANANG MUHTAR GOZALI KBK ANALISIS ALJABAR LINEAR SUMANANG MUHTAR GOZALI KBK ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2010 2 KATA PENGANTAR Bismillahirrahmanirrahim Segala puji bagi Allah Rabb semesta alam Shalawat serta salam

Lebih terperinci

BAB III PEMBAHASAN. Bab III terbagi menjadi tiga sub-bab, yaitu sub-bab A, sub-bab B, dan subbab

BAB III PEMBAHASAN. Bab III terbagi menjadi tiga sub-bab, yaitu sub-bab A, sub-bab B, dan subbab BAB III PEMBAHASAN Bab III terbagi menjadi tiga sub-bab, yaitu sub-bab A, sub-bab B, dan subbab C. Sub-bab A menjelaskan mengenai konsep dasar C[a, b] sebagai ruang vektor beserta contohnya. Sub-bab B

Lebih terperinci

g(x, y) = F 1 { f (u, v) F (u, v) k} dimana F 1 (F (u, v)) diselesaikan dengan: f (x, y) = 1 MN M + vy )} M 1 N 1

g(x, y) = F 1 { f (u, v) F (u, v) k} dimana F 1 (F (u, v)) diselesaikan dengan: f (x, y) = 1 MN M + vy )} M 1 N 1 Fast Fourier Transform (FFT) Dalam rangka meningkatkan blok yang lebih spesifik menggunakan frekuensi dominan, akan dikalikan FFT dari blok jarak, dimana jarak asal adalah: FFT = abs (F (u, v)) = F (u,

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Pada bab ini akan dibahas tinjauan pustaka yang akan digunakan untuk tesis ini, yang selanjutnya akan di perlukan pada Bab 3. Tinjauan pustaka yang dibahas adalah mengenai yang mendukung

Lebih terperinci

MINGGU KE-9 MACAM-MACAM KONVERGENSI

MINGGU KE-9 MACAM-MACAM KONVERGENSI MINGGU KE-9 MACAM-MACAM KONVERGENSI Kita telah mengetahui bahwa untuk n besar dan θ kecil sedemikian hingga nθ = λ, distribusi binomial bisa dihampiri oleh distribusi Poisson. Mencari hampiran distribusi

Lebih terperinci

BARISAN HINGGA BIFURKASI PERIOD-DOUBLING PADA INTERAKSI NONLINEAR SEPASANG OSILATOR TESIS. Karya Tulis sebagai Salah Satu Syarat

BARISAN HINGGA BIFURKASI PERIOD-DOUBLING PADA INTERAKSI NONLINEAR SEPASANG OSILATOR TESIS. Karya Tulis sebagai Salah Satu Syarat BARISAN HINGGA BIFURKASI PERIOD-DOUBLING PADA INTERAKSI NONLINEAR SEPASANG OSILATOR TESIS Karya Tulis sebagai Salah Satu Syarat untuk Memperoleh Gelar Magister Matematika Institut Teknologi Bandung Oleh

Lebih terperinci

PEMODELAN MATEMATIKA DAN ANALISIS KESTABILAN LOKAL PADA PERUBAHAN POPULASI PENDERITA DIABETES MELITUS

PEMODELAN MATEMATIKA DAN ANALISIS KESTABILAN LOKAL PADA PERUBAHAN POPULASI PENDERITA DIABETES MELITUS Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 04, No. 3 (2015), hal 135-142 PEMODELAN MATEMATIKA DAN ANALISIS KESTABILAN LOKAL PADA PERUBAHAN POPULASI PENDERITA DIABETES MELITUS Marisa Effendi,

Lebih terperinci

BAB 7 TRANSFORMASI LINEAR PADA RUANG VEKTOR

BAB 7 TRANSFORMASI LINEAR PADA RUANG VEKTOR BAB 7 TRANSFORMASI LINEAR PADA RUANG VEKTOR A. DEFINISI DASAR 1. Definisi-1 Suatu pemetaan f dari ruang vektor V ke ruang vektor W adalah aturan perkawanan sedemikian sehingga setiap vektor v V dikawankan

Lebih terperinci

BIFURKASI PITCHFORK PADA SISTEM DINAMIK DIMENSI-n SKRIPSI

BIFURKASI PITCHFORK PADA SISTEM DINAMIK DIMENSI-n SKRIPSI BIFURKASI PITCHFORK PADA SISTEM DINAMIK DIMENSI-n SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk memenuhi sebagian persyaratan guna memperoleh

Lebih terperinci

7. RESIDU DAN PENGGUNAAN. Contoh 1 Carilah titik singular dan tentukan jenisnya dari fungsi berikut a. f(z) = 1/z

7. RESIDU DAN PENGGUNAAN. Contoh 1 Carilah titik singular dan tentukan jenisnya dari fungsi berikut a. f(z) = 1/z MATEMATIKA 6 TEKNIK Residu dan Penggunaan 6 7. RESIDU DAN PENGGUNAAN 7.. RESIDU DAN KUTUB disebut titik singular dari f() bila f() gagal analitik di tetapi analitik pada suatu titik dari setiap lingkungan

Lebih terperinci

(MS.3) SUBRUANG CONINVARIAN DARI MATRIKS KUADRAT KOMPLEKS

(MS.3) SUBRUANG CONINVARIAN DARI MATRIKS KUADRAT KOMPLEKS Seminar Nasional Statistika 2 November 20 Vol 2, November 20 (MS.3) SUBRUANG CONINVARIAN DARI MATRIKS KUADRAT KOMPLEKS Euis Hartini Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

II LANDASAN TEORI. Besaran merupakan frekuensi sudut, merupakan amplitudo, merupakan konstanta fase, dan, merupakan konstanta sembarang.

II LANDASAN TEORI. Besaran merupakan frekuensi sudut, merupakan amplitudo, merupakan konstanta fase, dan, merupakan konstanta sembarang. 2 II LANDASAN TEORI Pada bagian ini akan dibahas teori-teori yang digunakan dalam penyusunan karya ilmiah ini. Teori-teori tersebut meliputi osilasi harmonik sederhana yang disarikan dari [Halliday,1987],

Lebih terperinci

MODEL DINAMIKA CINTA DENGAN MEMPERHATIKAN DAYA TARIK PASANGAN

MODEL DINAMIKA CINTA DENGAN MEMPERHATIKAN DAYA TARIK PASANGAN MODEL DINAMIKA CINTA DENGAN MEMPERHATIKAN DAYA TARIK PASANGAN SKRIPSI SARJANA MATEMATIKA OLEH : SUCI RAHMA NURA BP. 1010432018 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS

Lebih terperinci

Matematika Teknik Dasar-2 2 Bilangan Kompleks - 1. Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya

Matematika Teknik Dasar-2 2 Bilangan Kompleks - 1. Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya Matematika Teknik Dasar-2 2 Bilangan Kompleks - 1 Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya Simbol j Penyelesaian dari sebuah persamaan kuadratik ax 2 + bx rumus x = b± b2

Lebih terperinci

MA1201 KALKULUS 2A Do maths and you see the world

MA1201 KALKULUS 2A Do maths and you see the world Catatan Kuliah MA20 KALKULUS 2A Do maths and you see the world disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 203 Catatan kuliah ini ditulis

Lebih terperinci

Persamaan Diferensial

Persamaan Diferensial TKS 4003 Matematika II Persamaan Diferensial Linier Non Homogen Tk. 2 (Differential: Linier Non Homogen Orde 2) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Solusi umum merupakan jumlah

Lebih terperinci

Lecture Notes: Discrete Dynamical System and Chaos. Johan Matheus Tuwankotta

Lecture Notes: Discrete Dynamical System and Chaos. Johan Matheus Tuwankotta Lecture Notes: Discrete Dynamical System and Chaos Johan Matheus Tuwankotta Departemen Matematika, FMIPA, Institut Teknologi Bandung, jl. Ganesha no., Bandung, Indonesia. mailto:theo@dns.math.itb.ac.id.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI A. Matriks 1. Pengertian Matriks Definisi II. A. 1 Matriks didefinisikan sebagai susunan segi empat siku- siku dari bilangan- bilangan yang diatur dalam baris dan kolom (Anton, 1987:22).

Lebih terperinci

SISTEM KOORDINAT SISTEM TRANSFORMASI KOORDINAT RG091521

SISTEM KOORDINAT SISTEM TRANSFORMASI KOORDINAT RG091521 SISTEM KOORDINAT SISTEM TRANSFORMASI KOORDINAT RG091521 SISTEM KOORDINAT SISTEM TRANSFORMASI KOORDINAT RG091521 Sistem Koordinat Parameter SistemKoordinat Koordinat Kartesian Koordinat Polar Sistem Koordinat

Lebih terperinci

, ω, L dan C adalah riil, tunjukkanlah

, ω, L dan C adalah riil, tunjukkanlah . Jika z j j PROBLEM SE# Sistem Bilangan Kompleks, tentukanlah bagian riil dan bagian imajiner dari bilangan kompleks z z. Carilah harga dan y yang memenuhi persamaan : y j y, j, ( ) ( ). Carilah bentuk

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Himpunan Konvek Definisi 2.1.1. Suatu himpunan C di R n dikatakan konvek jika untuk setiap x, y C dan setiap bilangan real α, 0 < α < 1, titik αx + (1 - α)y C atau garis penghubung

Lebih terperinci