PEMBAHASAN. (29) Dalam (Grosen 1992), kondisi kinematik (19) dan kondisi dinamik (20) dapat dinyatakan dalam sistem Hamiltonian berikut : = (30)

Ukuran: px
Mulai penontonan dengan halaman:

Download "PEMBAHASAN. (29) Dalam (Grosen 1992), kondisi kinematik (19) dan kondisi dinamik (20) dapat dinyatakan dalam sistem Hamiltonian berikut : = (30)"

Transkripsi

1 5 η = η di z = η (9) z x x z x x Dalam (Grosen 99) kondisi kinematik (9) kondisi dinamik () dapat dinyatakan dalam sistem Hamiltonian : δ H t = () δη δ H ηt = δ Dengan mengenalkan variabel baru u = x maka persamaan () menjadi δ H ut = x δη () δ H ηt = x δ u (penurunan dapat dilihat pada lampiran ) Persamaan () merupakan sistem Hamilton untuk fluida dua lapisan peubah η Segkan persamaan () merupakan sistem Hamilton untuk fluida dua lapisan peubah u η Dalam persamaan () fungsi bergantung pada yang merupakan penyelesaian dari persamaan (5) hingga persamaan () persamaan (9) Fungsi ini secara analitik numerik sulit diselesaikan karena aya faktor tak linear Oleh karena itu salah satu tujuan penelitian ini adalah menentukan hampiran analitik untuk fungsi Selain itu akan ditentukan pula suatu sistem Hamilton yang ekivalen sistem Hamilton () tetapi menggunakan peubah fisis sehingga interpretasinya mudah dilakukan PEMBAHASAN Dalam bab ini akan dibahas suatu sistem Hamilton dari persamaan dasar untuk fluida dua lapisan yang ekivalen sistem Hamilton yang diberikan dalam persamaan () Dalam persamaan () Hamilton dari sistem tersebut tidak dinyatakan secara eksplisit sehingga sulit ditentukan Oleh karena itu dalam bab ini akan dibahas bagaimana bentuk suatu sistem Hamilton sehingga Hamiltoniannya dapat dinyatakan secara eksplisit yaitu hanya bergantung pada sistem fisis fluida Hampiran untuk Untuk menyelesaikan masalah nilai batas (5) hingga () diasumsikan panjang gelombang yang ditinjau cukup panjang sehingga dimisalkan = ε x (a) T = εt ε suatu parameter Selanjutnya diasumsikan pula bahwa gelombang yang ditinjau memiliki amplitudo yang cukup kecil orde ε sehingga dimisalkan η = ε AT ( ) (b) u = ε U( T) Dengan menggunakan persamaan () maka masalah nilai batas (5) hingga (8) menjadi ε + zz = z = di z = h (a) ε + zz = = ε h di z = h ( ) (b) z Masalah nilai batas (a) (b) diselesaikan menggunakan metode asimtotik Dalam metode ini dimisalkan solusi dalam bentuk : () () 5 () = ε + ε + ε + (a) () () 5 () = ε + ε + ε + (b) () i () i (i=) yang akan ditentukan Jika persamaan (a) disubtstisusikan ke persamaan (a) maka () () () ε zz + ε ( + zz ) 5 () () + ε ( + zz ) + = (5a) di z = h () () 5 () zz = εzz + ε zz + ε zz + = (5b)

2 6 Lalu berdasarkan persamaan (5a) (5b) koefisisen ε memberikan masalah nilai batas () zz = (6a) () z = di z = h (6b) Jika persamaan (6a) diintegralkan terhadap z dari z = h maka () () z z z= h = Lalu menggunakan persamaan (6b) didapatkan () z = () Fungsi tidak bergantung pada z misalkan () = F( T) (7) F ( ) T fungsi sembarang yang akan ditentukan Selanjutnya koefisien ε 5 ε pada persamaan (5a) (5b) masing-masing memberikan masalah nilai batas : () () + zz = (8a) () () + zz = (8b) di z = h () = () = (9) z z Jika persamaan (8a) (8b) diintegralkan terhadap z dari dasar z = h menggunakan persamaan (9) maka didapat ( ) z = F ( z h) () z = F( z h) 6 Kemudian jika kedua persamaan tersebut diintegralkan lagi terhadap z dari dasar z = h ( ) = F ( z h) () () = F ( z h) () (penurunan dapat dilihat pada lampiran ) Selanjutnya jika persamaan (b) disubstitusikan ke persamaan (a) maka () () () εzz + ε ( + zz ) 5 () () + ε ( + zz ) + = () di z = h ( x) = ε h () z Berdasarkan persamaan () () koefisien ε memberikan masalah nilai batas () zz = (a) = ε h di z = h ( ) (b) z Jika persamaan (a) diintegralkan terhadap z pada = h ( maka () () z z z= h = Lalu menggunakan persamaan (b) () maka z berupa fungsi yang tidak bergantung pada z misalkan () (5) Selanjutnya koefisien ε 5 ε pada persamaan () memberikan () () + zz = (6a) () () + zz = (6b) di ( () = () = (7) z z Jika persamaan (6a) (6b) diintegralkan terhadap z dari z = h ( ) memperhatikan persamaan (7) maka didapat () () z z z= h = F ( T) z z= h () z = ( F ( z) z= h ) 6 Kemudian apabila persamaan di atas diintegralkan terhadap z dari ( () = ( F ( z )) z= h (8) () = ( F ( z+ h) ) (9) (penurunan dapat dilihat pada lampiran ) Dengan demikian dari persamaan (7) () () persamaan (5) (8) (9) didapat = ε F( T ) ε F ( z h) + 5 ε F ( z h) + (5) = εf( T) ε ( F ( z+ h) ) + 5 ε ( F ( z+ h) ) + (5) Persamaan (5) (5) masing-masing adalah penyelesaian hampiran untuk

3 7 sehingga fungsi pada persamaan (8) dapat ditentukan Berikut ini akan ditentukan persamaanpersamaan yang berlaku untuk F F Hampiran untuk F F Karena u = x maka dari persamaan (8) fungsi pada persamaan (5) (5) U = ρf( T) ρf( T) + ε ρ ( F ( z+ h) ) + ρhf ( z h) + (5) Selanjutnya menggunakan kondisi kinematik pada (9) persamaan () z z = ε η( ) sehingga hf + hf = ε AF ( F) + hf + 6 ( h F ) + (5) 6 Persamaan (5) (5) menghasilkan suatu relasi untuk menentukan F F dalam U A Jika persamaan (5) dikalikan h persamaan (5) dikalikan ρ ρ( h+ h) ( hρ+ hρ) F = hu + ε AU ( hρ+ hρ) ρhh + ρhh + ρh h 6 U + (5) ( ρh+ ρh) Kemudian jika persamaan (5) dikalikan h persamaan (5) dikalikan ρ maka ρ( h+ h) ( hρ+ hρ) F = hu + ε AU+ ( ρh + ρh) ρh h+ ρh h+ ρh h 6 U + (55) ( ρh + ρ h) (penurunan dapat dilihat pada lampiran ) Persamaan (5) (55) masing-masing merupakan persamaan untuk menentukan F F Sistem Hamilton untuk gelombang dua arah Dengan menggunakan persamaan () Hamiltonian pada persamaan (5) menjadi H = ε H = ε Jd (56) J = ( K + P) ε Jika bentuk K P masing-masing pada persamaan (6) (7) disederhanakan menggunakan masingmasing pada persamaan (5) (5) maka J = g( ρ ρ) A + ε ρhf + ρhf + ε ρhf + ε ρhf ε ( ρf ρf ) A+ (57) (penurunan dapat dilihat pada lampiran 5) Karena bentuk F F dapat dieliminasi berdasarkan persamaan (5) (55) maka bentuk J pada persamaan (57) menjadi hh J = g( ρ ρ) + U ( hρ+ hρ) + ε ( βu + vau ) + (58a) h h ( ρh+ ρh) β = (58b) 6 ( hρ+ hρ) ( ρh ρh) v = (58c) ( ρh+ ρh) (penurunan dapat dilihat pada lampiran 6) Lalu menggunakan persamaan () (56) maka berdasarkan sistem Hamiltonian () δh U T = δ A δh A T = (59a) δu H = Jd (59b) J memenuhi persamaan (58)

4 8 Persamaan (59) merupakan sistem Hamilton untuk gelombang yang bergerak dalam dua arah pada fluida dua lapisan Berdasarkan definisi turunan variasi pada persamaan () J pada persamaan (58) maka persamaan (59) dapat dinyatakan UT + ( g( ρ ρ) A+ ε vu ) + = hh AT + U (6) ( ρh+ ρh) + ε vau + ε βu ) + = Persamaan (6) dikenal sebagai persamaan Boussinesq Persamaan Boussinesq (6) menunjukkan bahwa gelombang tersebut bergerak dalam dua arah ke kanan ke kiri Sistem Hamilton untuk gelombang satu arah Berikut ini akan ditinjau gelombang yang merambat hanya dalam satu arah misalnya ke kanan saja Oleh karena itu dikenalkan variabel baru R S sebagai A= R S g( ρ ρ) (6a) U = ( R+ S ) c g( ρ ρ) c = (6b) ρ h + ρ h Jika persamaan (6a) disubstitusikan ke persamaan (59b) J pada persamaan (58) maka H = g ( ρ ρ) H dimana H = J d (6a) g( ρ ρ ) J = ( R + S ) + ε + + c { β ( R S) ( ) ( ) } + vr+ S R S + (6b) Berdasarkan sistem Hamilton (59a) dalam peubah U A persamaan (6) maka sistem Hamilton dalam R S yang merujuk pada proposisi dalam bab landasan teori Sistem Hamilton dalam R S tersebut berbentuk c δ H Γ R T δ R = ST (6a) c δ Γ H δ S Γ= { c + c} (6b) Karena suatu operator simetri miring maka Γ juga operator simetri miring Jadi persamaan (6a) merupakan sistem Hamilton Hamiltonian H Selanjutnya tinjau gelombang yang merambat ke kiri yang dinyatakan oleh S persamaan gerak yang dominan berbentuk ST = cs + c( R+ S) + O( ε ) (6) Karena h berorde O( ε ) maka bentuk S bernilai sangat kecil yaitu S Dengan demikian sistem Hamilton (6) menjadi δ R T = Γ H (65) δ R H pada (6a) J diberikan g( ρ ρ) J = R + ε { βr + vr } (66) c Jika β v masing-masing pada persamaan (58b) (58c) bentuk c pada (6b) digunakan maka persamaan (66) menjadi λ µ J = R + ε R + R + (67a) 6 hh ( ρh+ ρh) λ = (67b) 6 ( ρh+ ρh) ( ρh ρh) µ = (67c) hh ( ρh+ ρh) (penurunan dapat dilihat pada lampiran 7) Karena S maka A R sehingga sistem Hamilton (65) menjadi δ H AT = { c + c} δ A (68a) H = J d (68b)

5 9 λ µ J = A + ε A + A + (68c) 6 Persamaan (68) merupakan sistem Hamilton untuk gelombang yang bergerak dalam satu arah pada fluida dua lapisan Dengan menggunakan definisi turunan variasi maka persamaan (68) menjadi AT = ca + ca+ ε { cλa µ + cµ AA + cλa + c A (69) λ µ masing-masing diberikan oleh persamaan (67b) (67c) Persamaan (69) dikenal sebagai persamaan KdV Deformasi Gelombang Soliter Dalam bagian ini akan dikaji bagaimana perubahan amplitudo gelombang soliter terhadap perubahan kedalaman fluida (deformasi gelombang soliter) Kajian ini akan memanfaatkan persamaan KdV (69) yang berupa sistem Hamilton Persamaan ini digunakan karena sifat Hamilton (energi) pada fluida dua lapisan yang tetap (konstan) terhadap perubahan waktu Untuk itu misalkan amplitudo as () kecepatan gelombang V() s sebagai fungsi dari variabel s s = σ σ suatu parameter σ << ε Ini berarti bahwa dasar fluida yang ditinjau bervariasi sangat lambat Selanjutnya misalkan pula suatu variabel baru : s ds ' Φ= T σ V( s') (7) Berikut ini akan ditentukan hampiran penyelesaian persamaan KdV (69) cara memisalkan variabel A V dalam uraian asimtotik A= A( Φ s) + σ A( Φ s) + (7) V = V + σv + (7) Jika persamaan (7) (7) disubstitusikan ke dalam persamaan (69) kemudian memisahkan koefisien - koefisien perpangkatan dari σ maka koefisien σ memberikan V c λ A Φ ε A ΦΦΦ µ AA Φ c = + (7) V Jika persamaan (7) diintegralkan terhadap Φ maka ( V c) λ µ A = ε A ΦΦ + A (7) c V Selanjutnya cara yang sama untuk memperoleh persamaan (7) koefisien σ memberikan c V c λ A+ ε A ΦΦ + µ AA V Φ c V + F = (75a) c F = VAΦ + A Φ + cas V V V µ + ε c µ A AΦ + AAs V 5 λ λ A s AΦΦ + A ΦΦs V V A µ λ + cs + A + A ΦΦ V Jika persamaan (7) (7) digunakan maka bentuk F menjadi cs F = ( VA) s ( VA) c c λ λ + ε A Φs + AΦ V Φ V V s c cλ cµ + V A Φ+ ε A ΦΦΦ AA Φ (75b) V V V (penurunan dapat dilihat pada lampiran 8) Berdasarkan persamaan (7) (75a) maka syarat keterselesaian pada persamaan (75a) adalah FAd Φ = (76) (Stakgold 967) Jika F pada persamaan (75b) disubstitusikan ke dalam persamaan (76) maka V λ Ad Φ ε A Φ d Φ = s c (77) V Jika persamaan (77) diintegralkan terhadap s V λ Ad Φ ε A d konstan Φ c Φ= (78) V (penurunan dapat dilihat pada lampiran 9) Dengan menggunakan persamaan (7) maka persamaan (78) menjadi

6 λ µ VAd Φ+ ε A AVd Φ + Φ V 6 = konstan (79) (penurunan dapat dilihat pada lampiran ) Karena d = VdΦ yang dari persamaan (7) maka persamaan (79) menjadi λ µ A ε A A d = konstan atau Jd = konstan (8) λ µ J = A + ε A + A + 6 Jika persamaan (8) persamaan (68c) dibandingkan maka dapat disimpulkan bahwa ruas kanan persamaan (8) merupakan energi total (Hamiltonian) untuk gelombang simpangan A Dalam hal ini pula bahwa energi total (Hamiltonian) dari A ini konstan terhadap perubahan waktu Hal ini sesuai sifat Hamiltonian yang tetap Selanjutnya berdasarkan persamaan (8) juga dapat kaitan antara amplitudo gelombang soliter variasi kedalaman fluida Hal ini dapat dijelaskan sebagai a λ ε + µa = konstan (8) µ 5 setelah mengabaikan suku-suku pada orde ε Khusus untuk ρ = yaitu fluida satu lapisan kedalaman h = h maka dari persamaan (8b) (8c) masing-masing memberikan h λ = µ = 6 h Dengan demikian berdasarkan persamaan (8) ( ) / a ah + ε = konstan (8) h Berdasarkan persamaan (8) bahwa a berbanding terbalik h Dalam hal ini gelombang soliter memiliki amplitudo yang kecil jika kedalaman fluida membesar Sebaliknya amplitudo gelombang soliter membesar pada fluida yang memiliki kedalaman yang kecil Dengan aya bentuk O( ε ) seperti pada persamaan (8) maka hasil ini dapat dikurangi Dengan kata lain gelombang soliter pada fluida kedalaman yang gkal memiliki ampllitudo yang tidak begitu besar seperti di gambar (program dapat dilihat pada lampiran ) Dari persamaan (7) persamaan diferensial biasa da V ( V c) µ = A V A dφ ελ c 6λ Penyelesaian persamaan diferensial biasa tersebut adalah A = asec h γφ (8a) a γ memenuhi µ γ ε ε λ V c a = = (8b) c V (penurunan dapat dilihat pada lampiran ) Persamaan (8a) merupakan penyelesaian gelombang soliter persamaan KdV (7) Jika A pada persamaan (8a) disubstitusikan ke dalam persamaan (78) maka

7 Gambar Hubungan a h pada fluida satu lapisan untuk berbagai nilai ε Selanjutnya untuk fluida dua lapisan asumsi ρ ρ (pendekatan Boussinesq) maka dari persamaan (67b) (67c) hh ( ) h λ = µ = h 6 hh Berdasarkan persamaan (8) konstan ahh h h + a h h 5 hh ε = (8) Dari persamaan di atas dapat dikatakan bahwa untuk h h amplitudo gelombang soliter interfacial cukup kecil Segkan pengaruh dari bentuk pada O( ε ) tidak signifikan Kesimpulan Persamaan dasar untuk fluida ideal yang tak berotasi (irrotational) diturunkan dari persamaan kekontinuan persamaan momentum Kemudian formulasi Hamilton untuk mendapatkan persamaan gerak bagi gelombang internal pada fluida dua lapisan diturunkan asumsi bahwa domain fluida dua lapisan dibatasi oleh batas atas yang rata batas bawah yang tidak rata (berupa fungsi) Untuk menentukan Hamiltonian (energi total)-nya membutuhkan asumsi gelombang interfacial yang cukup panjang amplitudo yang cukup kecil Persamaan gerak yang (persamaan KdV) berupa sistem Hamilton energi (Hamilton) konstan terhadap perubahan waktu Hal tersebut sesuai sifat Hamiltonian yang tetap Berdasarkan sifat Hamilton ini deformasi gelombang soliter interfacial Pada fluida satu lapisan bahwa amplitudo gelombang soliter memiliki hubungan terbalik kedalaman fluida pada orde rendah Gelombang soliter memiliki amplitudo yang kecil jika kedalaman fluida membesar Sebaliknya amplitudo gelombang soliter membesar pada fluida yang memiliki kedalaman yang kecil untuk orde yang rendah Tetapi pada orde yang lebih tinggi bahwa gelombang soliter pada fluida kedalaman yang gkal memiliki amplitudo yang tidak begitu besar Selanjutnya untuk fluida dua lapisan formulasi ini bahwa jika kedalaman kedua lapisan hampir sama maka amplitudo gelombang soliter interfacial cukup kecil segkan pengaruh orde yang lebih tinggi tidak signifikan

FORMULASI HAMILTON UNTUK MENGGAMBARKAN DEFORMASI GELOMBANG SOLITER DENGAN DASAR TIDAK RATA PADA FLUIDA DUA LAPISAN

FORMULASI HAMILTON UNTUK MENGGAMBARKAN DEFORMASI GELOMBANG SOLITER DENGAN DASAR TIDAK RATA PADA FLUIDA DUA LAPISAN FORMULASI HAMILTON UNTUK MENGGAMBARKAN DEFORMASI GELOMBANG SOLITER DENGAN DASAR TIDAK RATA PADA FLUIDA DUA LAPISAN AGATHA PRIMASARI SUTRISNO G5446 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUN

Lebih terperinci

II LANDASAN TEORI. dengan, 1,2,3,, menyatakan koefisien deret pangkat dan menyatakan titik pusatnya.

II LANDASAN TEORI. dengan, 1,2,3,, menyatakan koefisien deret pangkat dan menyatakan titik pusatnya. 2 II LANDASAN TEORI Pada bagian ini akan dibahas teoriteori yang mendukung karya tulis ini. Teoriteori tersebut meliputi persamaan diferensial penurunan persamaan KdV yang disarikan dari (Ihsanudin, 2008;

Lebih terperinci

III PEMBAHASAN. 3.1 Analisis Metode. dan (2.52) masing-masing merupakan penyelesaian dari persamaan

III PEMBAHASAN. 3.1 Analisis Metode. dan (2.52) masing-masing merupakan penyelesaian dari persamaan 6, 1 (2.52) Berdasarkan persamaan (2.52), maka untuk 0 1 masing-masing memberikan persamaan berikut:, 0,0, 0, 1,1, 1. Sehingga menurut persamaan (2.51) persamaan (2.52) diperoleh bahwa fungsi, 0, 1 masing-masing

Lebih terperinci

Bab 2 TEORI DASAR. 2.1 Linearisasi Persamaan Air Dangkal

Bab 2 TEORI DASAR. 2.1 Linearisasi Persamaan Air Dangkal Bab 2 TEORI DASAR 2.1 Linearisasi Persamaan Air Dangkal Persamaan air dangkal merupakan persamaan untuk gelombang permukaan air yang dipengaruhi oleh kedalaman air tersebut. Kedalaman air dapat dikatakan

Lebih terperinci

BAB IV SIMULASI NUMERIK

BAB IV SIMULASI NUMERIK BAB IV SIMULASI NUMERIK Pada bab ini kita bandingkan perilaku solusi KdV yang telah dibahas dengan hasil numerik serta solusi numerik untuk persamaan fkdv. Solusi persamaan KdV yang disimulasikan pada

Lebih terperinci

BAB II KAJIAN TEORI. homogen yang dikenal sebagai persamaan forced Korteweg de Vries (fkdv). Persamaan fkdv yang dikaji dalam makalah ini adalah

BAB II KAJIAN TEORI. homogen yang dikenal sebagai persamaan forced Korteweg de Vries (fkdv). Persamaan fkdv yang dikaji dalam makalah ini adalah BAB II KAJIAN TEORI Pada bab ini akan dibahas suatu jenis persamaan differensial parsial tak homogen yang dikenal sebagai persamaan forced Korteweg de Vries (fkdv). Persamaan fkdv yang dikaji dalam makalah

Lebih terperinci

DASAR SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG

DASAR SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG h Bab 3 DASAR SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG 3.1 Persamaan Gelombang untuk Dasar Sinusoidal Dasar laut berbentuk sinusoidal adalah salah satu bentuk dasar laut tak rata yang berupa fungsi sinus

Lebih terperinci

Bab 4 DINDING SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG

Bab 4 DINDING SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG Bab 4 DINDING SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG Pada bab sebelumnya telah dibahas mengenai dasar laut sinusoidal sebagai reflektor gelombang. Persamaan yang digunakan untuk memodelkan masalah dasar

Lebih terperinci

, serta notasi turunan total ρ

, serta notasi turunan total ρ LANDASAN TEORI Lanasan teori ini berasarkan rujukan Jaharuin (4 an Groesen et al (99, berisi penurunan persamaan asar fluia ieal, sarat batas fluia ua lapisan an sistem Hamiltonian Penentuan karakteristik

Lebih terperinci

Bab 2 LANDASAN TEORI. 2.1 Penurunan Persamaan Air Dangkal

Bab 2 LANDASAN TEORI. 2.1 Penurunan Persamaan Air Dangkal Bab 2 LANDASAN TEORI 2.1 Penurunan Persamaan Air Dangkal Persamaan air dangkal atau Shallow Water Equation (SWE) berlaku untuk fluida homogen yang memiliki massa jenis konstan, inviscid (tidak kental),

Lebih terperinci

BAB 3 PERAMBATAN GELOMBANG MONOKROMATIK

BAB 3 PERAMBATAN GELOMBANG MONOKROMATIK BAB 3 PERAMBATAN GELOMBANG MONOKROMATIK Dalam bab ini, kita akan mengamati perambatan gelombang pada fluida ideal dengan dasar rata. Perhatikan gambar di bawah ini. Gambar 3.1 Aliran Fluida pada Dasar

Lebih terperinci

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal (SWE)

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal (SWE) Bab 2 Landasan Teori Dalam bab ini akan dibahas mengenai Persamaan Air Dangkal dan dasar-dasar teori mengenai metode beda hingga untuk menghampiri solusi dari persamaan diferensial parsial. 2.1 Persamaan

Lebih terperinci

BAB V PERAMBATAN GELOMBANG OPTIK PADA MEDIUM NONLINIER KERR

BAB V PERAMBATAN GELOMBANG OPTIK PADA MEDIUM NONLINIER KERR A V PERAMATAN GELOMANG OPTIK PADA MEDIUM NONLINIER KERR 5.. Pendahuluan erkas (beam) optik yang merambat pada medium linier mempunyai kecenderungan untuk menyebar karena adanya efek difraksi; lihat Gambar

Lebih terperinci

PERSAMAAN SCHRÖDINGER TAK BERGANTUNG WAKTU DAN APLIKASINYA PADA SISTEM POTENSIAL 1 D

PERSAMAAN SCHRÖDINGER TAK BERGANTUNG WAKTU DAN APLIKASINYA PADA SISTEM POTENSIAL 1 D PERSAMAAN SCHRÖDINGER TAK BERGANTUNG WAKTU DAN APLIKASINYA PADA SISTEM POTENSIAL 1 D Keadaan Stasioner Pada pembahasan sebelumnya mengenai fungsi gelombang, telah dijelaskan bahwa potensial dalam persamaan

Lebih terperinci

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal Linier (Linier Shallow Water Equation)

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal Linier (Linier Shallow Water Equation) Bab 2 Landasan Teori Dalam bab ini akan dijelaskan mengenai Persamaan Air Dangkal linier (Linear Shallow Water Equation), metode beda hingga, metode ekspansi asimtotik biasa, dan metode ekspansi asimtotik

Lebih terperinci

SUATU FORMULASI HAMILTON BAGI GERAK GELOMBANG INTERFACIAL YANG MERAMBAT DALAM DUA ARAH

SUATU FORMULASI HAMILTON BAGI GERAK GELOMBANG INTERFACIAL YANG MERAMBAT DALAM DUA ARAH SUATU FORMULASI HAMILTON BAGI GERAK GELOMBANG INTERFACIAL YANG MERAMBAT DALAM DUA ARAH JAHARUDDIN Departemen Matematika, Fakultas Matematika an Ilmu Pengetahuan Alam, Institut Pertanian Bogor Jl. Raya

Lebih terperinci

Bab 3 MODEL DAN ANALISIS MATEMATIKA

Bab 3 MODEL DAN ANALISIS MATEMATIKA Bab 3 MODEL DAN ANALISIS MATEMATIKA Pada bab ini akan dimodelkan permasalahan penyebaran virus flu burung yang bergantung pada ruang dan waktu. Pada bab ini akan dibahas pula analisis dari model hingga

Lebih terperinci

BAB I PENDAHULUAN. terbagi dalam berberapa tingkatan, gelombang pada atmosfir yang berotasi

BAB I PENDAHULUAN. terbagi dalam berberapa tingkatan, gelombang pada atmosfir yang berotasi BAB I PENDAHULUAN 1.1. Latar Belakang. Fenomena gelombang Korteweg de Vries (KdV) merupakan suatu gejala yang penting untuk dipelajari, karena mempunyai pengaruh terhadap studi rekayasa yang terkait dengan

Lebih terperinci

III PEMBAHASAN. Berdasarkan persamaan (2.15) dan persamaan (2.16), fungsi kontinu dan masing-masing sebagai berikut : dan = 3

III PEMBAHASAN. Berdasarkan persamaan (2.15) dan persamaan (2.16), fungsi kontinu dan masing-masing sebagai berikut : dan = 3 8 III PEMBAHASAN Pada bagian ini akan dibahas penggunaan metode iterasi variasi untuk menyelesaikan suatu persamaan diferensial integral Volterra orde satu yang terdapat pada masalah osilasi berpasangan.

Lebih terperinci

perpindahan, kita peroleh persamaan differensial berikut :

perpindahan, kita peroleh persamaan differensial berikut : 1.1 Pengertian Persamaan Differensial Banyak sekali masalah terapan (dalam ilmu teknik, ilmu fisika, biologi, kimia, sosial, dan lain-lain), yang telah dirumuskan dengan model matematika dalam bentuk persamaan

Lebih terperinci

Pengantar Gelombang Nonlinier 1. Ekspansi Asimtotik. Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas

Pengantar Gelombang Nonlinier 1. Ekspansi Asimtotik. Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Pengantar Gelombang Nonlinier 1. Ekspansi Asimtotik Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas PAM 672 Topik dalam Matematika Terapan Semester Ganjil 2016/2017 Pendahuluan Metode perturbasi

Lebih terperinci

1 BAB 4 ANALISIS DAN BAHASAN

1 BAB 4 ANALISIS DAN BAHASAN 1 BAB 4 ANALISIS DAN BAHASAN Pada bab ini akan dibahas pengaruh dasar laut tak rata terhadap perambatan gelombang permukaan secara analitik. Pengaruh dasar tak rata ini akan ditinjau melalui simpangan

Lebih terperinci

Kestabilan Aliran Fluida Viskos Tipis pada Bidang Inklinasi

Kestabilan Aliran Fluida Viskos Tipis pada Bidang Inklinasi 1 Jurnal Matematika, Statistika, & Komputasi Vol 5 No 1, 1-9, Juli 2008 Kestabilan Aliran Fluida Viskos Tipis pada Bidang Inklinasi Sri Sulasteri Jurusan Pend. Matematika UIN Alauddin Makassar Jalan Sultan

Lebih terperinci

Pengantar Metode Perturbasi Bab 1. Pendahuluan

Pengantar Metode Perturbasi Bab 1. Pendahuluan Pengantar Metode Perturbasi Bab 1. Pendahuluan Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas PAM 454 KAPITA SELEKTA MATEMATIKA TERAPAN II Semester Ganjil 2016/2017 Review Teori Dasar Terkait

Lebih terperinci

Persamaan SWE Linier untuk Dasar Sinusoidal

Persamaan SWE Linier untuk Dasar Sinusoidal Bab 3 Persamaan SWE Linier untuk Dasar Sinusoidal Pada bab ini akan dijelaskan mengenai penggunaan persamaan SWE linier untuk masalah gelombang air dengan dasar sinusoidal. Dalam menyelesaikan masalah

Lebih terperinci

I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai.

I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai. I. PENDAHULUAN 1.1 Latar Belakang dan Masalah Dalam kehidupan, polusi yang ada di sungai disebabkan oleh limbah dari pabrikpabrik dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk

Lebih terperinci

( t) TINJAUAN PUSTAKA. x dengan nilai fungsi dari: x

( t) TINJAUAN PUSTAKA. x dengan nilai fungsi dari: x Berawal dari apa yang telah disampaikan sebelumnya, pada skripsi kali ini akan dipelajari bagaimana perilaku trayektori solusi soliton sistem optik periodik melalui pendekatan analisis sistem dinamik yang

Lebih terperinci

PENGGUNAAN METODE HOMOTOPI PADA MASALAH PERAMBATAN GELOMBANG INTERFACIAL

PENGGUNAAN METODE HOMOTOPI PADA MASALAH PERAMBATAN GELOMBANG INTERFACIAL PENGGUNAAN METODE HOMOTOPI PADA MASALAH PERAMBATAN GELOMBANG INTERFACIAL JAHARUDDIN Departeen Mateatika Fakultas Mateatika Ilu Pengetahuan Ala Institut Pertanian Bogor Jl Meranti, Kapus IPB Daraga, Bogor

Lebih terperinci

Simulasi Perambatan Tsunami menggunakan Persamaan Gelombang Air-Dangkal

Simulasi Perambatan Tsunami menggunakan Persamaan Gelombang Air-Dangkal Matematika LAPORAN AKHIR PENELITIAN PENGUATAN PROGRAM STUDI Simulasi Perambatan Tsunami menggunakan Persamaan Gelombang Air-Dangkal Oleh: Mohammad Jamhuri, M.Si NIP. 1981050 00501 1004 FAKULTAS SAINS DAN

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. dan medan hidrodinamik. Pertama, dengan menentukan potensial listrik V dan

BAB IV HASIL DAN PEMBAHASAN. dan medan hidrodinamik. Pertama, dengan menentukan potensial listrik V dan BAB IV HASIL DAN PEMBAHASAN 4. 1 Analisis Elektrohidrodinamik Analisis elektrohidrodinamik dimulai dengan mengevaluasi medan listrik dan medan hidrodinamik. Pertama, dengan menentukan potensial listrik

Lebih terperinci

BAB II KAJIAN TEORI. syarat batas, deret fourier, metode separasi variabel, deret taylor dan metode beda

BAB II KAJIAN TEORI. syarat batas, deret fourier, metode separasi variabel, deret taylor dan metode beda BAB II KAJIAN TEORI Pada bab ini akan dibahas tentang beberapa teori dasar yang digunakan sebagai landasan pembahasan pada bab III. Beberapa teori dasar yang dibahas, diantaranya teori umum tentang persamaan

Lebih terperinci

MATERI PERKULIAHAN. Gambar 1. Potensial tangga

MATERI PERKULIAHAN. Gambar 1. Potensial tangga MATERI PERKULIAHAN 3. Potensial Tangga Tinjau suatu partikel bermassa m, bergerak dari kiri ke kanan pada suatu daerah dengan potensial berbentuk tangga, seperti pada Gambar 1. Pada daerah < potensialnya

Lebih terperinci

PENYELESAIAN MASALAH GELOMBANG PERMUKAAN DENGAN MENGGUNAKAN METODE PERTURBASI HOMOTOPI ANGGRAENI PUTRISIA

PENYELESAIAN MASALAH GELOMBANG PERMUKAAN DENGAN MENGGUNAKAN METODE PERTURBASI HOMOTOPI ANGGRAENI PUTRISIA PENYELESAIAN MASALAH GELOMBANG PERMUKAAN DENGAN MENGGUNAKAN METODE PERTURBASI HOMOTOPI ANGGRAENI PUTRISIA DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR

Lebih terperinci

Department of Mathematics FMIPAUNS

Department of Mathematics FMIPAUNS Lecture 2: Metode Operator A. Metode Operator untuk Sistem Linear dengan Koefisien Konstan Pada bagian ini akan dibicarakan cara menentukan penyelesaian sistem persamaan diferensial linear dengan menggunakan

Lebih terperinci

BAB II STUDI PUSTAKA. Propagated wave area. Shallow water. Area of study. Gambar II-1. Ilustrasi Tsunami

BAB II STUDI PUSTAKA. Propagated wave area. Shallow water. Area of study. Gambar II-1. Ilustrasi Tsunami BAB II STUDI PUSTAKA II.1 Rambatan Tsunami Gelombang tsunami terbentuk akibat adanya pergesaran vertikal massa air. Pergeseran ini bisa terjadi oleh gempa, letusan gunung berapi, runtuhan gunung es, dan

Lebih terperinci

DAFTAR SIMBOL. : permeabilitas magnetik. : suseptibilitas magnetik. : kecepatan cahaya dalam ruang hampa (m/s) : kecepatan cahaya dalam medium (m/s)

DAFTAR SIMBOL. : permeabilitas magnetik. : suseptibilitas magnetik. : kecepatan cahaya dalam ruang hampa (m/s) : kecepatan cahaya dalam medium (m/s) DAFTAR SIMBOL n κ α R μ m χ m c v F L q E B v F Ω ħ ω p K s k f α, β s-s V χ (0) : indeks bias : koefisien ekstinsi : koefisien absorpsi : reflektivitas : permeabilitas magnetik : suseptibilitas magnetik

Lebih terperinci

Metode Elemen Batas (MEB) untuk Model Perambatan Gelombang

Metode Elemen Batas (MEB) untuk Model Perambatan Gelombang Metode Elemen Batas (MEB) untuk Model Perambatan Gelombang Moh. Ivan Azis September 13, 2011 Abstrak Metode Elemen Batas untuk masalah perambatan gelombang akustik (harmonis) berhasil diturunkan pada tulisan

Lebih terperinci

Bab II Model Lapisan Fluida Viskos Tipis Akibat Gaya Gravitasi

Bab II Model Lapisan Fluida Viskos Tipis Akibat Gaya Gravitasi Bab II Model Lapisan Fluida Viskos Tipis Akibat Gaya Gravitasi II.1 Gambaran Umum Model Pada bab ini, kita akan merumuskan model matematika dari masalah ketidakstabilan lapisan fluida tipis yang bergerak

Lebih terperinci

Bab 2. Persamaan Einstein dan Ricci Flow. 2.1 Geometri Riemann

Bab 2. Persamaan Einstein dan Ricci Flow. 2.1 Geometri Riemann Bab 2 Persamaan Einstein dan Ricci Flow 2.1 Geometri Riemann Sebuah himpunan M disebut sebagai manifold jika tiap titik Q dalam M memiliki lingkungan terbuka S yang dapat dipetakan 1-1 melalui sebuah pemetaan

Lebih terperinci

PDP linear orde 2 Agus Yodi Gunawan

PDP linear orde 2 Agus Yodi Gunawan PDP linear orde 2 Agus Yodi Gunawan Pada bagian ini akan dipelajari tiga jenis persamaan diferensial parsial (PDP) linear orde dua yang biasa dijumpai pada masalah-masalah dunia nyata, yaitu persamaan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 7 BAB II TINJAUAN PUSTAKA Dalam bab ini akan dibahas beberapa poin tentang sistem dinamik, kestabilan sistem dinamik, serta konsep bifurkasi. A. Sistem Dinamik Secara umum Sistem dinamik didefinisikan

Lebih terperinci

3.1 Analisis Dimensional persamaan Navier Stokes

3.1 Analisis Dimensional persamaan Navier Stokes Bab 3 Model Matematika Pada bab ini akan dibahas mengenai proses dalam pembuatan model. Analisis dimensional serta pendekatan lubrikasi kita gunakan terhadap persamaan-persamaan dasar (Navier Stokes) serta

Lebih terperinci

LAMPIRAN I. Alfabet Yunani

LAMPIRAN I. Alfabet Yunani LAMPIRAN I Alfabet Yunani Alha Α Nu Ν Beta Β Xi Ξ Gamma Γ Omicron Ο Delta Δ Pi Π Esilon Ε Rho Ρ Zeta Ζ Sigma Σ Eta Η Tau Τ Theta Θ Usilon Υ Iota Ι hi Φ, Kaa Κ Chi Χ Lambda Λ Psi Ψ Mu Μ Omega Ω LAMPIRAN

Lebih terperinci

METODE PEMOTONGAN DERET FOURIER UNTUK MENYELESAIKAN PERSAMAAN GERAK GELOMBANG INTERNAL YANG PERIODIK PADA FLUIDA DUA LAPISAN MUHBAHIR

METODE PEMOTONGAN DERET FOURIER UNTUK MENYELESAIKAN PERSAMAAN GERAK GELOMBANG INTERNAL YANG PERIODIK PADA FLUIDA DUA LAPISAN MUHBAHIR METODE PEMOTONGAN DERET FOURIER UNTUK MENYELESAIKAN PERSAMAAN GERAK GELOMBANG INTERNAL YANG PERIODIK PADA FLUIDA DUA LAPISAN MUHBAHIR SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 8 PERNYATAAN MENGENAI

Lebih terperinci

BAB II PERSAMAAN DIFERENSIAL BIASA

BAB II PERSAMAAN DIFERENSIAL BIASA BAB II PERSAMAAN DIFERENSIAL BIASA Tujuan Pembelajaran Umum: 1 Mahasiswa mampu memahami konsep dasar persamaan diferensial 2 Mahasiswa mampu menggunakan konsep dasar persamaan diferensial untuk menyelesaikan

Lebih terperinci

BAB II LANDASAN TEORI. dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta

BAB II LANDASAN TEORI. dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta BAB II LANDASAN TEORI Pada bab ini akan diuraikan beberapa teori-teori yang digunakan sebagai acuan dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta teorema-teorema

Lebih terperinci

Pengantar Metode Perturbasi Bab 4. Ekspansi Asimtotik pada Persamaan Diferensial Biasa

Pengantar Metode Perturbasi Bab 4. Ekspansi Asimtotik pada Persamaan Diferensial Biasa Pengantar Metode Perturbasi Bab 4. Ekspansi Asimtotik pada Persamaan Diferensial Biasa Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas PAM 454 KAPITA SELEKTA MATEMATIKA TERAPAN II Semester

Lebih terperinci

II LANDASAN TEORI. Besaran merupakan frekuensi sudut, merupakan amplitudo, merupakan konstanta fase, dan, merupakan konstanta sembarang.

II LANDASAN TEORI. Besaran merupakan frekuensi sudut, merupakan amplitudo, merupakan konstanta fase, dan, merupakan konstanta sembarang. 2 II LANDASAN TEORI Pada bagian ini akan dibahas teori-teori yang digunakan dalam penyusunan karya ilmiah ini. Teori-teori tersebut meliputi osilasi harmonik sederhana yang disarikan dari [Halliday,1987],

Lebih terperinci

PENGARUH ARUS PADA GERAK GELOMBANG SOLITER INTERNAL STUDI KASUS PADA FLUIDA DUA LAPISAN RIDZAN DJAFRI

PENGARUH ARUS PADA GERAK GELOMBANG SOLITER INTERNAL STUDI KASUS PADA FLUIDA DUA LAPISAN RIDZAN DJAFRI PENGARUH ARUS PADA GERAK GELOMBANG SOLITER INTERNAL STUDI KASUS PADA FLUIDA DUA LAPISAN RIDZAN DJAFRI SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2009 PERNYATAAN MENGENAI TESIS DAN SUMBER INFORMASI

Lebih terperinci

BAB 2. Landasan Teori. 2.1 Persamaan Dasar

BAB 2. Landasan Teori. 2.1 Persamaan Dasar BAB 2 Landasan Teori Objek yang diamati pada permasalahan ini adalah lapisan fluida tipis, yaitu akan dilihat perubahan ketebalan dari lapisan fluida tipis tersebut dengan adanya penambahan surfaktan ke

Lebih terperinci

Bab V Prosedur Numerik

Bab V Prosedur Numerik Bab V Prosedur Numerik Pada bab ini, metode numerik digunakan untuk menghitung medan kecepatan, yakni dengan menghitung batas dan domain integral. Tensor tegangan tak Newton melalui persamaan Maxwell Linear

Lebih terperinci

BAB IV PEMBAHASAN. 4.1 Analisis Kestabilan Model Matematika AIDS dengan Transmisi. atau Ibu menyusui yang positif terinfeksi HIV ke anaknya.

BAB IV PEMBAHASAN. 4.1 Analisis Kestabilan Model Matematika AIDS dengan Transmisi. atau Ibu menyusui yang positif terinfeksi HIV ke anaknya. BAB IV PEMBAHASAN Pada bab ini dilakukan analisis model penyebaran penyakit AIDS dengan adanya transmisi vertikal pada AIDS. Dari model matematika tersebut ditentukan titik setimbang dan kemudian dianalisis

Lebih terperinci

BAB I PERSAMAAN DIFERENSIAL BIASA ORDE SATU

BAB I PERSAMAAN DIFERENSIAL BIASA ORDE SATU BAB I PERSAMAAN DIFERENSIAL BIASA ORDE SATU Definisi: Persamaan diferensial adalah suatu hubungan yang terdapat antara suatu variabel independen x, suatu variabel dependen y, dan satu atau lebih turunan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1.Dasar Fluida Dalam buku yang berjudul Fundamental of Fluid Mechanics karya Bruce R. Munson, Donald F. Young, Theodore H. Okiishi, dan Wade W. Huebsch, fluida didefinisikan sebagai

Lebih terperinci

PARTIKEL DALAM SUATU KOTAK SATU DIMENSI

PARTIKEL DALAM SUATU KOTAK SATU DIMENSI PARTIKEL DALAM SUATU KOTAK SATU DIMENSI Atom terdiri dari inti atom yang dikelilingi oleh elektron-elektron, di mana elektron valensinya bebas bergerak di antara pusat-pusat ion. Elektron valensi geraknya

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Persamaan Diferensial Banyak sekali masalah terapan dalam ilmu teknik, ilmu fisika, biologi, dan lain-lain yang telah dirumuskan dengan model matematika dalam bentuk pesamaan

Lebih terperinci

Bab III Model Proses Deformasi Benang Viscoelastis Linear di Lingkungan Fluida Newton

Bab III Model Proses Deformasi Benang Viscoelastis Linear di Lingkungan Fluida Newton Bab III Model Proses Deformasi Benang Viscoelastis Linear di Lingkungan Fluida Newton III.1 Stress dan Strain Salah satu hal yang penting dalam pengkonstruksian model proses deformasi suatu fluida adalah

Lebih terperinci

FORMULASI HAMILTONIAN UNTUK MENGGAMBARKAN GERAK GELOMBANG INTERNAL PADA LAUT DALAM RINA PRASTIWI

FORMULASI HAMILTONIAN UNTUK MENGGAMBARKAN GERAK GELOMBANG INTERNAL PADA LAUT DALAM RINA PRASTIWI FORMULASI HAMILTONIAN UNTUK MENGGAMBARKAN GERAK GELOMBANG INTERNAL PADA LAUT DALAM RINA PRASTIWI SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2009 PERYATAAN MENGENAI TESIS DAN SUMBER INFORMASI Dengan

Lebih terperinci

III HASIL DAN PEMBAHASAN

III HASIL DAN PEMBAHASAN 7 III HASIL DAN PEMBAHASAN 3.1 Perumusan Model Pada bagian ini akan dirumuskan model pertumbuhan ekonomi yang mengoptimalkan utilitas dari konsumen dengan asumsi: 1. Terdapat tiga sektor dalam perekonomian:

Lebih terperinci

TINJAUAN PUSTAKA. diketahui) dengan dua atau lebih peubah bebas dinamakan persamaan. Persamaan diferensial parsial memegang peranan penting di dalam

TINJAUAN PUSTAKA. diketahui) dengan dua atau lebih peubah bebas dinamakan persamaan. Persamaan diferensial parsial memegang peranan penting di dalam II. TINJAUAN PUSTAKA 2.1 Persamaan Diferensial Parsial Persamaan yang mengandung satu atau lebih turunan parsial suatu fungsi (yang diketahui) dengan dua atau lebih peubah bebas dinamakan persamaan diferensial

Lebih terperinci

II LANDASAN TEORI. Contoh. Ditinjau dari sistem yang didefinisikan oleh:

II LANDASAN TEORI. Contoh. Ditinjau dari sistem yang didefinisikan oleh: 5 II LANDASAN TEORI 2.1 Keterkontrolan Untuk mengetahui persoalan sistem kontrol mungkin tidak ada, jika sistem yang ditinjau tidak terkontrol. Walaupun sebagian besar sistem terkontrol ada, akan tetapi

Lebih terperinci

Bab 1. Pendahuluan. 1.1 Latar Belakang Masalah

Bab 1. Pendahuluan. 1.1 Latar Belakang Masalah Bab 1 Pendahuluan 1.1 Latar Belakang Masalah Gelombang air laut merupakan salah satu fenomena alam yang terjadi akibat adanya perbedaan tekanan. Panjang gelombang air laut dapat mencapai ratusan meter

Lebih terperinci

bangunan- Gangguan tersebut dapat merupakan dan kedalaman normal.

bangunan- Gangguan tersebut dapat merupakan dan kedalaman normal. Aliran seragam merupakan aliran yang tidak berubah menurut tempat. Konsep aliran seragam dan aliran kritis sangat diperlukan dalam peninjauan aliran berubah dengan cepat atau berubah lambat laun. Perhitungan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB TINJAUAN PUSTAKA. Definisi Gelombang dan klasifikasinya. Gelombang adalah suatu gangguan menjalar dalam suatu medium ataupun tanpa medium. Dalam klasifikasinya gelombang terbagi menjadi yaitu :. Gelombang

Lebih terperinci

BAB I PERSAMAAN DIFERENSIAL LINIER ORDE I

BAB I PERSAMAAN DIFERENSIAL LINIER ORDE I BAB I PERSAMAAN DIFERENSIAL LINIER ORDE I. Pengertian PD, Orde (tingkat), & Derajat (Pangkat) Persamaan diferensial adalah suatu persamaan yang memuat derivatifderivatif (turunan) sekurang-kurangnya derivatif

Lebih terperinci

BAB II KAJIAN TEORI. representasi pemodelan matematika disebut sebagai model matematika. Interpretasi Solusi. Bandingkan Data

BAB II KAJIAN TEORI. representasi pemodelan matematika disebut sebagai model matematika. Interpretasi Solusi. Bandingkan Data A. Model Matematika BAB II KAJIAN TEORI Pemodelan matematika adalah proses representasi dan penjelasan dari permasalahan dunia real yang dinyatakan dalam pernyataan matematika (Widowati dan Sutimin, 2007:

Lebih terperinci

BAB II DASAR TEORI. 2.1 Persamaan Kontinuitas dan Persamaan Gerak

BAB II DASAR TEORI. 2.1 Persamaan Kontinuitas dan Persamaan Gerak BAB II DASAR TEORI Ada beberapa teori yang berkaitan dengan konsep-konsep umum mengenai aliran fluida. Beberapa akan dibahas pada bab ini. Diantaranya adalah hukum kekekalan massa dan hukum kekekalan momentum.

Lebih terperinci

BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK

BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK 4. Sebaran Asimtotik,, Teorema 4. (Sebaran Normal Asimtotik,, ) Misalkan fungsi intensitas seperti (3.2) dan terintegralkan lokal. Jika kernel K adalah

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Aljabar Linear Definisi 2.1.1 Matriks Matriks A adalah susunan persegi panjang yang terdiri dari skalar-skalar yang biasanya dinyatakan dalam bentuk berikut: [ ] Definisi 2.1.2

Lebih terperinci

PENURUNAN PERSAMAAN GELOMBANG SOLITON DENGAN DERET FOURIER ORDE DUA SECARA NUMERIK

PENURUNAN PERSAMAAN GELOMBANG SOLITON DENGAN DERET FOURIER ORDE DUA SECARA NUMERIK PENURUNAN PERSAMAAN GELOMBANG SOLITON DENGAN DERET FOURIER ORDE DUA SECARA NUMERIK Sarwadi Jurusan Matematika FMIPA UNDIP Abstrak Salah satu solusi dari persamaan Korteweg - de Vries (KdV) adalah gelombang

Lebih terperinci

Reflektor Gelombang 1 balok

Reflektor Gelombang 1 balok Bab 3 Reflektor Gelombang 1 balok Setelah diperoleh persamaan yang menggambarkan gerak gelombang air setiap saat yaitu SWE, maka pada bab ini akan dielaskan mengenai pengaruh 1 balok terendam sebagai reflektor

Lebih terperinci

Metode Elemen Batas (MEB) untuk Model Konduksi-Konveksi dalam Media Anisotropik

Metode Elemen Batas (MEB) untuk Model Konduksi-Konveksi dalam Media Anisotropik Metode Elemen Batas (MEB) untuk Model Konduksi-Konveksi dalam Media Anisotropik Moh. Ivan Azis September 13, 2011 Daftar Isi 1 Pendahuluan 1 2 Masalah nilai batas 1 3 Persamaan integral batas 2 4 Hasil

Lebih terperinci

Bab II Teori Pendukung

Bab II Teori Pendukung Bab II Teori Pendukung II.1 Sistem Autonomous Tinjau sistem persamaan differensial berikut, = dy = f(x, y), g(x, y), (2.1) dengan asumsi f dan g adalah fungsi kontinu yang mempunyai turunan yang kontinu

Lebih terperinci

Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL

Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL A. PENGERTIAN PERSAMAAN DIFERENSIAL Dalam pelajaran kalkulus, kita telah berkenalan dan mengkaji berbagai macam metode untuk mendiferensialkan suatu

Lebih terperinci

BIFURKASI SADDLE-NODE PADA SISTEM INTERAKSI NONLINEAR SEPASANG OSILATOR TANPA PERTURBASI

BIFURKASI SADDLE-NODE PADA SISTEM INTERAKSI NONLINEAR SEPASANG OSILATOR TANPA PERTURBASI BIFURKASI SADDLE-NODE PADA SISTEM INTERAKSI NONLINEAR SEPASANG OSILATOR TANPA PERTURBASI Yolpin Durahim 1 Novianita Achmad Hasan S. Panigoro Diterima: xx xxxx 20xx, Disetujui: xx xxxx 20xx o Abstrak Dalam

Lebih terperinci

Teori Dasar Gelombang Gravitasi

Teori Dasar Gelombang Gravitasi Bab 2 Teori Dasar Gelombang Gravitasi 2.1 Gravitasi terlinearisasi Gravitasi terlinearisasi merupakan pendekatan yang memadai ketika metrik ruang waktu, g ab, terdeviasi sedikit dari metrik datar, η ab

Lebih terperinci

BAB VI DISTRIBUSI PROBABILITAS MENERUS

BAB VI DISTRIBUSI PROBABILITAS MENERUS BAB VI DISTRIBUSI ROBABILITAS MENERUS 6. Distribusi Uniform (seragam) Menerus Distribusi seragam menerus merupakan distribusi yang paling sederhana. Karaketristik distribusi ini adalah fungsi kepadatannya

Lebih terperinci

BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan

BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan BAB II KAJIAN TEORI Pada bab ini akan dibahas beberapa hal yang digunakan sebagai landasan pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan beberapa kajian matematika,

Lebih terperinci

dy = f(x,y) = p(x) q(y), dx dy = p(x) dx,

dy = f(x,y) = p(x) q(y), dx dy = p(x) dx, 5. Persamaan Diferensian Dengan Variabel Terpisah Persamaan diferensial berbentuk y = f(), dengan f suatu fungsi kontinu pada suatu interval real, dapat dicari penyelesaiannya dengan cara mengintegralkan

Lebih terperinci

PERSAMAAN DIFERENSIAL (PD)

PERSAMAAN DIFERENSIAL (PD) PERSAMAAN DIFERENSIAL (PD) A. PENGERTIAN Persamaan yang mengandung variabel dan beberapa fungsi turunan terhadap variabel tersebut. CONTOH : + 5 5 0 disebut PD orde I + 6 + 7 0 disebut PD orde II B. PEMBENTUKAN

Lebih terperinci

BAB 3 DINAMIKA STRUKTUR

BAB 3 DINAMIKA STRUKTUR BAB 3 DINAMIKA STRUKTUR Gerakan dari struktur terapung akan dipengaruhi oleh keadaan sekitarnya, dimana terdapat gaya gaya luar yang bekerja pada struktur dan akan menimbulkan gerakan pada struktur. Untuk

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Proses Poisson Periodik Definisi 2.1 (Proses stokastik) Proses stokastik X = {X(t), t T } adalah suatu himpunan dari peubah acak yang memetakan suatu ruang contoh Ω ke suatu

Lebih terperinci

2.7 Ensambel Makrokanonik

2.7 Ensambel Makrokanonik 22 BAB 2. TEORI ENSAMBEL 2.7 Ensambel Makrokanonik Dalam bagian ini kita akan menjabarkan rapat ruang fase untuk sistem terbuka, sistem yang berada dalam keadaan kesetimbangan termal dengan lingkungan

Lebih terperinci

BINOVATIF LISTRIK DAN MAGNET. Hani Nurbiantoro Santosa, PhD.

BINOVATIF LISTRIK DAN MAGNET. Hani Nurbiantoro Santosa, PhD. BINOVATIF LISTRIK DAN MAGNET Hani Nurbiantoro Santosa, PhD hanisantosa@gmail.com 2 BAB 2 MEDAN LISTRIK DAN HUKUM GAUSS Pendahuluan, Distribusi Muatan Kontinu, Mencari Medan Listrik Menggunakan Integral,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Transformasi Laplace Salah satu cara untuk menganalisis gejala peralihan (transien) adalah menggunakan transformasi Laplace, yaitu pengubahan suatu fungsi waktu f(t) menjadi

Lebih terperinci

LAMPIRAN. Hubungan antara koordinat kartesian dengan koordinat silinder:

LAMPIRAN. Hubungan antara koordinat kartesian dengan koordinat silinder: LAMPIRAN A.TRANSFORMASI KOORDINAT 1. Koordinat silinder Hubungan antara koordinat kartesian dengan koordinat silinder: Vector kedudukan adalah Jadi, kuadrat elemen panjang busur adalah: Maka: Misalkan

Lebih terperinci

Persamaan Diferensial

Persamaan Diferensial TKS 4003 Matematika II Persamaan Diferensial Konsep Dasar dan Pembentukan (Differential : Basic Concepts and Establishment ) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan

Lebih terperinci

KONSEP DASAR PERSAMAAN DIFERENSIAL

KONSEP DASAR PERSAMAAN DIFERENSIAL KONSEP DASAR PERSAMAAN DIFERENSIAL A. PENGERTIAN PERSAMAAN DIFERENSIAL Dalam pelajaran kalkulus, kita telah berkenalan dan mengkaji berbagai macam metode untuk mendiferensialkan suatu fungsi (dasar). Sebagai

Lebih terperinci

Teori Ensambel. Bab Rapat Ruang Fase

Teori Ensambel. Bab Rapat Ruang Fase Bab 2 Teori Ensambel 2. Rapat Ruang Fase Dalam bagian sebelumnya, kita telah menghitung sifat makroskopis dari suatu sistem terisolasi dengan nilai E, V dan N tertentu. Sekarang kita akan membangun suatu

Lebih terperinci

Analisis Kestabilan Linear dan Simulasi

Analisis Kestabilan Linear dan Simulasi Bab 4 Analisis Kestabilan Linear dan Simulasi Pada Bab ini kita akan membahas mengenai ketidakstabilan dari lapisan kondensat. Analisis kestabilan linier kita gunakan untuk melihat kondisi serta parameterparameter

Lebih terperinci

I PENDAHULUAN 1.1 Latar Belakang dan Perumusan Masalah

I PENDAHULUAN 1.1 Latar Belakang dan Perumusan Masalah I PENDAHULUAN 1.1 Latar Belakang dan Perumusan Masalah Penelusuran tentang fenomena belalang merupakan bahasan yang baik untuk dipelajari karena belalang dikenal suka berkelompok dan berpindah. Dalam kelompok,

Lebih terperinci

Metode Koefisien Tak Tentu untuk Penyelesaian PD Linier Homogen Tak Homogen orde-2 Matematika Teknik I_SIGIT KUSMARYANTO

Metode Koefisien Tak Tentu untuk Penyelesaian PD Linier Homogen Tak Homogen orde-2 Matematika Teknik I_SIGIT KUSMARYANTO Metode Koefisien Tak Tentu untuk Penyelesaian Persamaan Diferensial Linier Tak Homogen orde-2 Solusi PD pada PD Linier Tak Homogen ditentukan dari solusi umum PD Linier Homogen dan PD Linier Tak Homogen.

Lebih terperinci

Atau dengan menginverse S = S(U), menjadi U=U(S), kemudian menghitung:

Atau dengan menginverse S = S(U), menjadi U=U(S), kemudian menghitung: ISTITUT TEKOLOGI BADUG FAKULTAS MATEMATIKA DA ILMU PEGETAHUA ALAM PROGRAM STUDI FISIKA UJIA TEGAH SEMESTER - FI-5 Mekanika Statistik SEMESTER/ Sem. - 6/7 Hari/Tgl. : Senin 3 Maret 7 Waktu :.-3. Sifat :

Lebih terperinci

II LANDASAN TEORI. Misalkan adalah suatu fungsi skalar, maka turunan vektor kecepatan dapat dituliskan sebagai berikut :

II LANDASAN TEORI. Misalkan adalah suatu fungsi skalar, maka turunan vektor kecepatan dapat dituliskan sebagai berikut : 2 II LANDASAN TEORI Pada bagian ini akan dibahas teori-teori yang digunakan dalam menyusun karya ilmiah ini. Teori-teori tersebut meliputi sistem koordinat silinder, aliran fluida pada pipa lurus, persamaan

Lebih terperinci

PENGENDALIAN OPTIMAL DISTRIBUSI VAKSIN PADA MODEL EPIDEMIK RABIES DENGAN MASA KELAHIRAN PERIODIK

PENGENDALIAN OPTIMAL DISTRIBUSI VAKSIN PADA MODEL EPIDEMIK RABIES DENGAN MASA KELAHIRAN PERIODIK PENDAHULUAN PENGENDALIAN OPTIMAL DISTRIBUSI VAKSIN PADA MODEL EPIDEMIK RABIES DENGAN MASA KELAHIRAN PERIODIK Oleh : Qurrotu Ainy Jufri (1210100072) Dosen Pembimbing : Drs. Kamiran, M.Si. Jurusan Matematika

Lebih terperinci

III PEMBAHASAN. (3.3) disubstitusikan ke dalam sistem koordinat silinder yang ditinjau pada persamaan (2.4), maka diperoleh

III PEMBAHASAN. (3.3) disubstitusikan ke dalam sistem koordinat silinder yang ditinjau pada persamaan (2.4), maka diperoleh III PEMBAHASAN Pada bagian ini akan dibahas penggunaan metode perturbasi homotopi untuk menyelesaikan suatu masalah taklinear. Metode ini digunakan untuk menyelesaikan model Sisko dalam masalah aliran

Lebih terperinci

II. TINJAUAN PUSTAKA. Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada ( ) ( ) ( )

II. TINJAUAN PUSTAKA. Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada ( ) ( ) ( ) II. TINJAUAN PUSTAKA 2.1 Definisi Turunan Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada sebarang bilangan c adalah asalkan limit ini ada. Jika limit ini memang ada, maka dikatakan

Lebih terperinci

BAB II LANDASAN TEORI. eigen dan vektor eigen, persamaan diferensial, sistem persamaan diferensial, titik

BAB II LANDASAN TEORI. eigen dan vektor eigen, persamaan diferensial, sistem persamaan diferensial, titik BAB II LANDASAN TEORI Pada bab ini, akan dijelaskan landasan teori yang akan digunakan dalam bab selanjutnya sebagai bahan acuan yang mendukung dan memperkuat tujuan penelitian. Landasan teori yang dimaksud

Lebih terperinci

Pr { +h =1 = } lim. Suatu fungsi dikatakan h apabila lim =0. Dapat dilihat bahwa besarnya. probabilitas independen dari.

Pr { +h =1 = } lim. Suatu fungsi dikatakan h apabila lim =0. Dapat dilihat bahwa besarnya. probabilitas independen dari. 6.. Proses Kelahiran Murni Dalam bab ini, akan dibahas beberapa contoh penting dari waktu kontinu, state diskrit, proses Markov. Khususnya, dengan kumpulan dari variabel acak {;0 } di mana nilai yang mungkin

Lebih terperinci

BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL

BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL Pendahuluan Persamaan diferensial adalah persamaan yang memuat diferensial Kita akan membahas tentang Persamaan Diferensial Biasa yaitu

Lebih terperinci