PEMBAHASAN KISI-KISI SOAL UAS KALKULUS PEUBAH BANYAK (TA 2015/2016)

Ukuran: px
Mulai penontonan dengan halaman:

Download "PEMBAHASAN KISI-KISI SOAL UAS KALKULUS PEUBAH BANYAK (TA 2015/2016)"

Transkripsi

1 PEMBAHAAN KII-KII OAL UA KALKULU PEUBAH BANYAK (TA 5/6) Arini oesatyo Putri DEEMBER 3, 5 UNIVERITA ILAM NEGERI UNAN GUNUNG DJATI BANDUNG

2 Pembahasan oal Kisi-Kisi UA Kalkulus Peubah Banyak Tahun Ajaran 5/6 Dosen: Bu Yulinda Eliskar, M.i. elesaikan integral berikut ini a. xye xy dydx Penyelesaian: Misalkan u = xy, maka du = xy. ehingga dy xye xy dydx = eu dudx = [exy ] dx = (ex )dx = [ex x] = [e e + ] = ( ) = = ln 3 siny b. e x cosy dydx Penyelesaian: siny e x cosy dxdy = [e x cosy] siny dy = (e siny cosy cosy) dy = [e siny siny] = [e sin ( ) sin ( )] [esin sin] = e + = e. Dengan menggnakan koordinat polar, tentukanlah integral dari x (ketsakan terlebih dahulu daerah asalnya). dy dx x y Penyelesaian: Diketahui r = x + y. ketsa daerah asalnya

3 Batas-batas integrasinya adalah r ehingga bentuk polarnya menjadi θ r drdθ r Dengan menggunakan metode substitusi, misalkan u = r, maka du dr = r, sehingga u dudθ = [ r ] dθ = ( 3 ) dθ = [ ( 3 )θ] ( 3 ) ( 3) = + ( 3 ). = 3. Tentukan luas permukaan dan buatlah sketsa gambarnya jika diketahui bagian bidang 3x y + 6z = yang dibatasi oleh bidang x =, y =, dan 3x + y =. Penyelesaian: ketsa bidang 3x y + 6z = Kita bisa susun batas-batas integrasinya x y 3 x + 6 Maka luas permukaannya adalah

4 3 x+6 A(G) = ( ) + ( 3 ) + dydx = [ 7 6 x] 3 x + 6. Hitunglah integral lipat tiga di bawah ini Penyelesaian: x+6 = 7 6 dydx dx = 7 6 ( 3 x + 6) dx = 7. = 6 6xy z 3 dxdydz 6xy z 3 dxdydz = 6xdx y dy z 3 dz = ( 3) ( ) (65 5 = ([3x ] ) ([ 3 y3 ] ) ([ z ] 5 ) ) = Carilah bayangan dari persegi jika diberikan titik-titik sudutnya (,), (3,), (3,), (,) dan diketahui x = u + 3v, y = u v. Kemudian cari transformasi jacobi-nya. Penyelesaian: Hasil transformasi untuk titik (,) Hasil transformasi untuk titik (3,) Hasil transformasi untuk titik (,) Hasil transformasi untuk titik (,) G(,) = (. + 3., ) = (,) G(3,) = ( , 3 ) = (6,3) G(3,) = ( , 3 ) = (9,) G(,) = (. + 3., ) = (3, ) ehingga hasil transformasinya adalah persegi dengan sudut sudut (,), (6,3), (9,), (3, ). elanjutnya akan ditentukan transformasi jacobinya: J(u, v) = u u v = 3 = ( ) 3() = 3 = 5 v

5 6. Carilah curlf dan divf jika diketahui F(x, y, z) = x i + y j + z k. Penyelesaian: Diketahui bahwa F(x, y, z) = x i + y j + z k. Dimana M = x, N = y, P = z. Maka M = x, N ehingga divf = M + N + P = x + y + z. z elanjutnya = y, P z = z i j k curlf = = ( P z N ) i ( P Z M ) j + ( N Z M ) k M N P 7. Hitunglah integral garis dari = ( )i ( )j + ( )k = i j + k =,, y dx + x dy C Jika diketahui C merupakan kurva yang didefinisikan oleh x = t dan y = t, t. Penyelesaian: Diketahui dx dy = dan = t. ehingga diperoleh dt dt [(t )() + (t )(t)]dt = [(t ) + 8t 3 )]dt 8. Diberikan F(x, y) = (e y ye x )i + (xe y e x )j = [t + 3 t3 t] = 3 Tentukan apakah medan F yang diberikan konservatif? Jika demikian, tentukan f sedemikian sehingga F = f. Jika tidak, nyatakan bahwa F tidak konservatif. Penyelesaian: Diketahui M = e y ye x dan N = xe y e x. F dikatakan konservatif jika dan hanya jika M e x. Karena M = N fungsi f yang memenuhi = N M. Kita punya = ey e x dan N = ey, maka F merupakan konservatif. elanjutnya akan ditentukan

6 Jadi f = f f i + j = Mi + Nj = F(x, y) f = ey ye x, dan f = xey e x Perhatikan persamaan sebelah kiri, jika kita anti-diferensialkan terhadap-x menjadi f(x, y) = xe y ye x + C (y) () Dengan C(y) suatu konstanta yang bergantung terhadap variabel y. elanjutnya persamaan () didiferensialkan terhadap y kita peroleh f = xey e x + C (y)... () Bandingkan persamaan () dengan f yang kita punya sebelumnya, maka xe y e x = xe y e x + C (y) Diperoleh C (y) =, maka C (y)dy = dy. Kita simpulkan bahwa C (y) = + C, atau C (y) = C, dengan C suatu konstanta yang tidak bergantung terhadap variabel x maupun y. Dengan mensubstitusikan C(y) = C ke persamaan (), kita peroleh f(x, y) = xe y ye x + C 9. Jika F = (x + y )i + xyj, tentukan fluks F melintasi batas C dari bujursangkar satuan dengan titik-titik sudut (,), (,), (,), dan (,). Yaitu menghitung F. n ds C Penyelesaian: (Fluks merupakan banyaknya fluida bersih yang meninggalkan daerah ). Diketahui M = x + y dan N = xy. Kita tahu kesamaan dari Teorema Green F. n ds = divf da C Dimana divf = M + N = x + x. Dan daerah dapat dilihat dalam grafik berikut

7 Maka dapat kita simpulkan bahwa F. n ds = (x + x)da = x dxdy = [x ] dy = dy = C. Gunakan Teorema Divergensi Gauss untuk menghitung F. n ds jika diberikan a. F(x, y, z) = zi + xj + z k, dimana merupakan silinder pejal yang dibatasi oleh x + y, z. Penyelesaian: Teorema Divergensi Gauss mengatakan bahwa F. n ds = divf da. Diketahui M = z, N = x, dan P = z, sehingga divf = + + z = z Batas-batas integrasinya adalah r θ z ehingga F. n ds = divf da = zr drdzdθ =

8 b. F(x, y, z) = z i + y j + x k, dimana merupakan silinder pejal x + z, y. (Hint: Gunakan transformasi x = rcosθ, z = rsinθ, y = y). Penyelesaian: Diketahui M = z, N = y, dan P = x. ehingga F. n ds = ( M + N + P ) dv = ( + y + )dv = ydxdydx z elanjutnya kita transformasikan variabel (x, y, z) ke dalam (r, y, θ).yakni x = rcosθ, y = y, dan z = rsinθ. Maka kita punya transformasi Jacobian sebagai berikut: J(r, y, θ) = z r θ r θ r z z θ cosθ sinθ = = rcos θ + rsin θ = rsinθ rcosθ r(cos θ + sin θ) = r. ehingga kita bisa mendefinisikan wilayah menjadi y, θ dan r. Dapat kita simpulkan ydxdydx = yrdrdydθ = [yr ] dydθ = y dydθ = [ y ] dθ = 5dθ = [5θ] =. Diberikan F = yi + zj + xk, dimana C merupakan kurva segitiga dengan titik-titik sudut (,,), (,,), dan (,,), terarah berlawanan arah jarum jam jika dipandang dari atas. Gunakan Teorema toke untuk menghitung Penyelesaian: Diketahui M = y, N = z, dan P = x. Maka curlf = ( P N ) i ( P Z M ) j + ( N Z M ) k = ( )i ( )j + ( )k =,, F. T ds.

9 Kemudian n merupakan vektor normal satuan dengan panjang + + ( ) = Maka (curlf). n =,,. [( ),, ] = F. T ds = (curlf). n d = d = s

KALKULUS MULTIVARIABEL II

KALKULUS MULTIVARIABEL II Pada Bidang Bentuk Vektor dari KALKULUS MULTIVARIABEL II (Minggu ke-9) Andradi Jurusan Matematika FMIPA UGM Yogyakarta, Indonesia Pada Bidang Bentuk Vektor dari 1 Definisi Daerah Sederhana x 2 Pada Bidang

Lebih terperinci

SIFAT-SIFAT INTEGRAL LIPAT

SIFAT-SIFAT INTEGRAL LIPAT TUGAS KALKULUS LANJUT SIFAT-SIFAT INTEGAL LIPAT Oleh: KAMELIANI 46 JUUSAN MATEMATIKA FAKULTAS MATEMATIKA AN ILMU PENGETAHUAN ALAM UNIVESITAS NEGEI MAKASSA 4 SIFAT-SIFAT INTEGAL LIPAT A. SIFAT-SIFAT INTEGAL

Lebih terperinci

Integral Garis. Sesi XIII INTEGRAL 12/7/2015

Integral Garis. Sesi XIII INTEGRAL 12/7/2015 2//25 Mata Kuliah : Matematika Rekayasa Lanjut Kode MK : TK 85 Pengampu : Achfas Zacoeb esi XIII INTEGRAL e-mail : zacoeb@ub.ac.id www.zacoeb.lecture.ub.ac.id Hp. 823398339 Integral Garis Dari Gambar.,

Lebih terperinci

Integral Vektor. (Pertemuan VII) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

Integral Vektor. (Pertemuan VII) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya TK 47 Matematika III Integral Vektor (Pertemuan VII) Dr. AZ Jurusan Teknik ipil Fakultas Teknik Universitas Brawijaya Teorema Gauss Definisi : Jika V adalah volume yang dibatasi oleh suatu permukaan tertutup

Lebih terperinci

Pertemuan : 9 Materi : Teorema Green Bab IV. Teorema Green, Teorema Divergensi Gauss, dan Teorema Stokes

Pertemuan : 9 Materi : Teorema Green Bab IV. Teorema Green, Teorema Divergensi Gauss, dan Teorema Stokes Pertemuan : 9 Materi : Teorema Green Bab IV. Teorema Green, Teorema Divergensi Gauss, dan Teorema Stokes Standar Kompetensi : 1. Memahami Teorema Green Kompetensi Dasar : 1. Menyebutkan kembali pengertian

Lebih terperinci

Catatan Kuliah FI2101 Fisika Matematik IA

Catatan Kuliah FI2101 Fisika Matematik IA Khairul Basar atatan Kuliah FI2101 Fisika Matematik IA Semester I 2015-2016 Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi Bandung Bab 6 Analisa Vektor 6.1 Perkalian Vektor Pada bagian

Lebih terperinci

Dosen Pengampu : Puji Andayani, S.Si, M.Si, M.Sc

Dosen Pengampu : Puji Andayani, S.Si, M.Si, M.Sc KALKULUS III Teorema Integral Dosen Pengampu : Puji Andayani, S.Si, M.Si, M.Sc 1 INTEGRAL GARIS Integral Garis pada Fungsi Skalar Definisi : Jika f didefinisikan pada kurva diberikan secara parametrik

Lebih terperinci

1 Nama Anggota 1:Darul Afandi ( ) Jawaban soal No 40. -

1 Nama Anggota 1:Darul Afandi ( ) Jawaban soal No 40. - Universitas Jember Jurusan Matematika - FMIPA MAM 56 Deadline: Wednesday, 9 ; :55 Analisis Kompleks Tugas Template Jawaban Nama Kelompok: Group J Nama Anggota:. Darul Afandi (8). Wahyu Nikmatus Sholihah

Lebih terperinci

Matematika Dasar INTEGRAL PERMUKAAN

Matematika Dasar INTEGRAL PERMUKAAN Matematika asar INTEGRAL PERMUKAAN Misal suatu permukaan yang dinyatakan dengan persamaan z = f( x,y ) dan merupakan proyeksi pada bidang XOY. Bila diberikan lapangan vektor F( x,y,z ) = f( x,y,z ) i +

Lebih terperinci

ANALISIS VEKTOR. Aljabar Vektor. Operasi vektor

ANALISIS VEKTOR. Aljabar Vektor. Operasi vektor ANALISIS VEKTOR Aljabar Vektor Operasi vektor Besaran yang memiliki nilai dan arah disebut dengan vektor. Contohnya adalah perpindahan, kecepatan, percepatan, gaya, dan momentum. Sementara itu, besaran

Lebih terperinci

Kalkulus 2. Teknik Pengintegralan ke - 1. Tim Pengajar Kalkulus ITK. Institut Teknologi Kalimantan. Januari 2018

Kalkulus 2. Teknik Pengintegralan ke - 1. Tim Pengajar Kalkulus ITK. Institut Teknologi Kalimantan. Januari 2018 Kalkulus 2 Teknik Pengintegralan ke - 1 Tim Pengajar Kalkulus ITK Institut Teknologi Kalimantan Januari 2018 Tim Pengajar Kalkulus ITK (Institut Teknologi Kalimantan) Kalkulus 2 Januari 2018 1 / 36 Daftar

Lebih terperinci

Kalkulus Multivariabel I

Kalkulus Multivariabel I dan Fungsi Implisit dan Fungsi Implisit Statistika FMIPA Universitas Islam Indonesia dan Fungsi Implisit Ingat kembali aturan rantai pada fungsi satu peubah! Jika y = f (x(t)), di mana baik f maupun t

Lebih terperinci

BAB VI INTEGRAL LIPAT

BAB VI INTEGRAL LIPAT BAB VI INTEGRAL LIPAT 6.1 Pendahuluan Pada kalkulus dan fisika dasar, kita melihat sejumlah pemakaian integral misal untuk mencari luasan, volume, massa, momen inersia, dsb.nya. Dalam bab ini kita ingin

Lebih terperinci

panjang yang berukuran x i dan y i. Ambil sebuah titik pada sub persegi d

panjang yang berukuran x i dan y i. Ambil sebuah titik pada sub persegi d INTEGAL ANGKAP. Integral angkap Dua. Volume dan Pusat Massa. Integral angkap Tiga.4 Koordinat Tabung dan Koordinat Bola.. Intergral angkap Dua Misal diberikan daerah di bidang XOY ang berbentuk persegi

Lebih terperinci

Integral lipat dua BAB V INTEGRAL LIPAT 5.1. DEFINISI INTEGRAL LIPAT DUA. gambar 5.1 Luasan di bawah permukaan

Integral lipat dua BAB V INTEGRAL LIPAT 5.1. DEFINISI INTEGRAL LIPAT DUA. gambar 5.1 Luasan di bawah permukaan BAB V INTEGRAL LIPAT 5.1. DEFINISI INTEGRAL LIPAT DUA gambar 5.1 Luasan di bawah permukaan 61 Pada Matematika Dasar I telah dipelajari integral tertentu b f ( x) dx yang dapat didefinisikan, apabila f

Lebih terperinci

DIKTAT KALKULUS MULTIVARIABEL I

DIKTAT KALKULUS MULTIVARIABEL I DIKTAT KALKULUS MULTIVARIABEL I Oleh Atina Ahdika, S.Si, M.Si Ayundyah Kesumawati, S.Si, M.Si (Program Studi Statistika) FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS ISLAM INDONESIA 214/215

Lebih terperinci

Suryadi Siregar Metode Matematika Astronomi 2

Suryadi Siregar Metode Matematika Astronomi 2 Suryadi Siregar Metode Matematika Astronomi Bab 4 Integral Garis dan Teorema Green 4. Integral Garis Definisi : Misal suatu lintasan dalam ruang dimensi m pada interval [a,b]. Andaikan adalah medan vektor

Lebih terperinci

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1. Integral Lipat Dua Atas Daerah Persegipanjang

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1. Integral Lipat Dua Atas Daerah Persegipanjang ingkasan Kalkulus 2, Untuk dipakai di ITB 1 Integral Lipat Dua Atas Daerah Persegipanjang Perhatikan fungsi z = f(x,y) pada = {(x,y) : a x b, c y d} Bentuk partisi P atas daerah berupa n buah persegipanjang

Lebih terperinci

Matematika Teknik Dasar-2 9 Aplikasi Turunan Parsial dan Pengerjaannya Secara Geometri

Matematika Teknik Dasar-2 9 Aplikasi Turunan Parsial dan Pengerjaannya Secara Geometri Matematika Teknik Dasar-2 9 Aplikasi Turunan Parsial dan Pengerjaannya Secara Geometri Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya Contoh - 1 Volume V dari sebuah silinder dengan

Lebih terperinci

Kalkulus Multivariabel I

Kalkulus Multivariabel I Integral Lipat-Dua dalam Koordinat Kutub Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia 214 / 2 Integral Lipat-Dua dalam Koordinat Kutub Terdapat beberapa kurva tertentu pada suatu

Lebih terperinci

Dosen Pengampu : Puji Andayani, S.Si, M.Si, M.Sc

Dosen Pengampu : Puji Andayani, S.Si, M.Si, M.Sc KALKULUS III Teorema Integral (Stokes Theorem) Dosen Pengampu : Puji Andayani, S.Si, M.Si, M.Sc 1 Stokes Theorem Review : Pada pembahasan sebelumnya, kepadatan sirkulasi atau curl pada bidang dua dimensi

Lebih terperinci

DIKTAT KULIAH KALKULUS PEUBAH BANYAK (IE-308)

DIKTAT KULIAH KALKULUS PEUBAH BANYAK (IE-308) DIKTAT KULIAH (IE-308) BAB 5 INTEGRAL LIPAT Diktat ini digunakan bagi mahasiswa Jurusan Teknik Industri Fakultas Teknik Universitas Kristen Maranatha Ir. Rudy Wawolumaja M.Sc JURUSAN TEKNIK INDUSTRI -

Lebih terperinci

Bab 3. Sistem Koordinat Ortogonal. 3.1 Sistem Koordinat Kartesian. cakul fi5080 by khbasar; sem

Bab 3. Sistem Koordinat Ortogonal. 3.1 Sistem Koordinat Kartesian. cakul fi5080 by khbasar; sem Bab 3 cakul fi5080 by khbasar; sem1 2010-2011 Sistem Koordinat Ortogonal Sistem koordinat merupakan cara pandang terhadap suatu masalah. Penggunaan sistem koordinat yang berbeda dalam menyelesaikan suatu

Lebih terperinci

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1. Integral Lipat Dua Atas Daerah Persegipanjang

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1. Integral Lipat Dua Atas Daerah Persegipanjang ingkasan Kalkulus 2, Untuk dipakai di ITB 1 Integral Lipat Dua Atas Daerah Persegipanjang Perhatikan fungsi z = f(x, y) pada = {(x, y) : a x b, c y d} Bentuk partisi P atas daerah berupa n buah persegipanjang

Lebih terperinci

DIFERENSIAL TOTAL. 1 Kalkulus Lanjut Blog: aswhat.wordpress.com. dz dx dy x y dx x y dy. dz , ,04 0,65

DIFERENSIAL TOTAL. 1 Kalkulus Lanjut   Blog: aswhat.wordpress.com. dz dx dy x y dx x y dy. dz , ,04 0,65 DIFERENSIAL TOTAL 1. Pendahuluan Ingat kembali konsep diferensial pada fungsi satu variabel y = f(x). suatu diferensial dx terhadap variabel bebas didefinisikan sebagai: dy = f (x) dx selanjutnya, misalkan

Lebih terperinci

Dosen Pengampu : Puji Andayani, S.Si, M.Si, M.Sc

Dosen Pengampu : Puji Andayani, S.Si, M.Si, M.Sc KALKULUS III Teorema Integral (Green s Theorem) Dosen Pengampu : Puji Andayani, S.Si, M.Si, M.Sc 1 Kurva Tertutup Sederhana, Daerah Terhubung sederhana dan Berganda Suatu kurva tertutup sederhana adalah

Lebih terperinci

Materi UTS. Matematika Optimisasi. Semester Gasal Pengajar: Hazrul Iswadi

Materi UTS. Matematika Optimisasi. Semester Gasal Pengajar: Hazrul Iswadi Materi UTS Matematika Optimisasi Semester Gasal 6-7 Pengajar: Hazrul Iswadi Daftar Isi Pendahuluan...hal Pertemuan...hal - Pertemuan...hal - 9 Pertemuan...hal - 5 Pertemuan 4...hal 6 - Pertemuan 5...hal

Lebih terperinci

Program Studi Pendidikan Matematika STKIP PGRI SUMBAR

Program Studi Pendidikan Matematika STKIP PGRI SUMBAR INTEGRASI VEKTOR Materi pokok pertemuan ke 11: 1. Integral Biasa 2. Integral Garis URAIAN MATERI Sebelum masuk ke integral garis, Anda pelajari dulu mengenai integral biasa dari vektor. Integral Biasa

Lebih terperinci

BAB II PERSAMAAN DIFERENSIAL ORDE SATU

BAB II PERSAMAAN DIFERENSIAL ORDE SATU BAB II PERSAMAAN DIFERENSIAL ORDE SATU Kompetensi Mahasiswa diharapkan: 1. Mengenali bentuk PD orde satu dengan variabel terpisah dan tak terpisah.. Dapat mengubah bentuk PD tak terpisah menjadi terpisah

Lebih terperinci

DIKTAT KULIAH KALKULUS PEUBAH BANYAK (IE-308)

DIKTAT KULIAH KALKULUS PEUBAH BANYAK (IE-308) DIKTAT KULIAH (IE-308) BAB 7 INTEGRAL PERMUKAAN Diktat ini digunakan bagi mahasiswa Jurusan Teknik Industri Fakultas Teknik Universitas Kristen Maranatha Ir. Rudy Wawolumaja M.Sc JURUSAN TEKNIK INDUSTRI

Lebih terperinci

Teorema Divergensi, Teorema Stokes, dan Teorema Green

Teorema Divergensi, Teorema Stokes, dan Teorema Green TEOREMA DIVERGENSI, STOKES, DAN GREEN Materi pokok pertemuan ke 13: 1. Teorema divergensi Gauss URAIAN MATERI Untuk memudahkan perhitungan seringkali dibutuhkan penyederhanaan bentuk integral yang berdasarkan

Lebih terperinci

Senin, 18 JUNI 2001 Waktu : 2,5 jam

Senin, 18 JUNI 2001 Waktu : 2,5 jam UJIAN AKHIR SEMESTER KALKULUS I Senin, 8 JUNI Waktu :,5 jam SETIAP NOMOR MEMPUNYAI BOBOT. Tentukan (a) x + sin x dx (b) x x p x dx. Tentukan dy dx jika (a) y +) (x + ln x (b) y sin p x. Tentukan ln x p

Lebih terperinci

PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - I

PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - I PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - I 1. Pendahuluan Pengertian Persamaan Diferensial Metoda Penyelesaian -contoh Aplikasi 1 1.1. Pengertian Persamaan Differensial Secara Garis Besar Persamaan

Lebih terperinci

Bab 1 : Skalar dan Vektor

Bab 1 : Skalar dan Vektor Bab 1 : Skalar dan Vektor 1.1 Skalar dan Vektor Istilah skalar mengacu pada kuantitas yang nilainya dapat diwakili oleh bilangan real tunggal (positif atau negatif). x, y dan z kita gunakan dalam aljabar

Lebih terperinci

4.3. MEDAN LISTRIK OLEH DISTRIBUSI MUATAN KONTINYU

4.3. MEDAN LISTRIK OLEH DISTRIBUSI MUATAN KONTINYU 4.3. MEDAN LISTRIK OLEH DISTRIBUSI MUATAN KONTINYU Selain muatan berbentuk titik, dimungkinkan juga distribusi muatan kontinyu dalam bentuk garis, permukaan atau volume seperti yang ditunjukkan pada Gambar

Lebih terperinci

Kalkulus Multivariabel I

Kalkulus Multivariabel I Statistika FMIPA Universitas Islam Indonesia 214 Salah satu jenis generalisasi integral tentu b f (x)dx diperoleh dengan menggantikan himpunan [a, b] yang kita integralkan menjadi himpunan berdimensi dua

Lebih terperinci

FUNGSI-FUNGSI INVERS

FUNGSI-FUNGSI INVERS FUNGSI-FUNGSI INVERS Logaritma, Eksponen, Trigonometri Invers Departemen Matematika FMIPA IPB Bogor, 202 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 202 / 49 Topik Bahasan Fungsi Satu ke Satu 2

Lebih terperinci

Integral Tak Tentu. Modul 1 PENDAHULUAN

Integral Tak Tentu. Modul 1 PENDAHULUAN Modul 1 Integral Tak Tentu M PENDAHULUAN Drs. Hidayat Sardi, M.Si odul ini akan membahas operasi balikan dari penurunan (pendiferensialan) yang disebut anti turunan (antipendiferensialan). Dengan mengikuti

Lebih terperinci

DIKTAT KALKULUS MULTIVARIABEL I

DIKTAT KALKULUS MULTIVARIABEL I DIKTAT KALKULUS MULTIVARIABEL I Oleh Atina Ahdika, S.Si, M.Si Ayundyah Kesumawati, S.Si, M.Si (Program Studi Statistika) FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS ISLAM INDONESIA 214/215

Lebih terperinci

Kalkulus Multivariabel I

Kalkulus Multivariabel I Penerapan Integral Lipat-Dua Atina Ahdika,.i, M.i tatistika FMIPA Universitas Islam Indonesia 214 Penerapan Integral Lipat-Dua Penerapan Integral Lipat-Dua Penerapan lain dari integral lipat-dua antara

Lebih terperinci

Bab 1 Vektor. A. Pendahuluan

Bab 1 Vektor. A. Pendahuluan Bab 1 Vektor A. Pendahuluan Dalam mata kuliah Listrik Magnet A, maupun mata kuliah Listrik Magnet B sebagaii lanjutannya, penyajian konsep dan pemecahan masalah akan banyak memerlukan pengetahuan tentang

Lebih terperinci

BAB II PERSAMAAN DIFERENSIAL ORDE SATU

BAB II PERSAMAAN DIFERENSIAL ORDE SATU BAB II PERSAMAAN DIFERENSIAL ORDE SATU Kompetensi Mahasiswa diharapkan: 1. Mengenali bentuk PD orde satu dengan variabel terpisah dan tak terpisah.. Dapat mengubah bentuk PD tak terpisah menjadi terpisah

Lebih terperinci

Bagian 7 Koordinat Kutub

Bagian 7 Koordinat Kutub Bagian 7 Koordinat Kutub Bagian 7 Koordinat Kutub mempelajari bagaimana teknik integrasi yang telah Anda pelajari dalam bagian sebelumnya dapat digunakan untuk menyelesaikan soal yang berhubungan dengan

Lebih terperinci

FUNGSI KHUSUS DALAM BENTUK INTEGRAL

FUNGSI KHUSUS DALAM BENTUK INTEGRAL FUNGSI KHUSUS DALAM BENTUK INTEGRAL FUNGSI FAKTORIAL Definisi n e d n! Buktikan bahwa :!! e d e d e ( ) Terbukti FUNGSI Gamma Definisi ( ) p p e d ; p > Hubungan fungsi Gamma dengan fungsi Faktorial (

Lebih terperinci

Hendra Gunawan. 16 Oktober 2013

Hendra Gunawan. 16 Oktober 2013 MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 16 Oktober 2013 Latihan (Kuliah yang Lalu) 1. Diketahui g(x) = x 3 /3, x є [ 2,2]. Hitung nilai rata rata g pada [ 2,2] dan tentukan c є ( 2,2)

Lebih terperinci

Bab III. Integral Fungsi Kompleks

Bab III. Integral Fungsi Kompleks Bab III Integral Fungsi ompleks Integrasi suatu fungsi kompleks f() = u + iv dilakukan pada bidang Argand, sehingga integrasinya menyerupai integral garis pada integral vektor. Hal ini terjadi mengingat

Lebih terperinci

Persamaan Diferensial

Persamaan Diferensial Orde Satu Jurusan Matematika FMIPA-Unud Senin, 18 Desember 2017 Orde Satu Daftar Isi 1 Pendahuluan 2 Orde Satu Apakah Itu? Solusi Pemisahan Variabel Masalah Gerak 3 4 Orde Satu Pendahuluan Dalam subbab

Lebih terperinci

Hendra Gunawan. 5 Maret 2014

Hendra Gunawan. 5 Maret 2014 MA101 MATEMATIKA A Hendra Gunawan Semester II, 013/014 5 Maret 014 Kuliah yang Lalu 10.1 Parabola, aboa, Elips, danhiperbola a 10.4 Persamaan Parametrik Kurva di Bidang 10.5 SistemKoordinatPolar 11.1 Sistem

Lebih terperinci

INTEGRAL RANGKAP DUA. diberikan daerah di bidang XOY yang berbentuk persegi panjang, {( )

INTEGRAL RANGKAP DUA. diberikan daerah di bidang XOY yang berbentuk persegi panjang, {( ) Matematika asar Misal INTEGAL ANGKAP UA diberikan daerah di bidang XO yang berbentuk persegi panjang, {( ) } =, y a b, y d dan fungsi dua peubah z = f (,y ) >. Maka untuk menghitung volume benda ruang

Lebih terperinci

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran.

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran. 4 INTEGRAL Definisi 4.0. Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika untuk setiap D. F () f() Fungsi integral tak tentu f dinotasikan dengan f ( ) d dan f () dinamakan

Lebih terperinci

Soal dan Solusi Materi Elektrostatika

Soal dan Solusi Materi Elektrostatika P Soal dan Solusi Materi Elektrostatika 1. Tentukan medan listrik pada jarak z di atas salah satu ujung kawat sepanjang L yang membawa muatan berdistribusi seragam dengan rapat muatan, seperti gambar berikut

Lebih terperinci

Matematika Teknik Dasar-2 10 Aplikasi Integral - 1. Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya

Matematika Teknik Dasar-2 10 Aplikasi Integral - 1. Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya Matematika Teknik Dasar- 10 Aplikasi Integral - 1 Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya Volume Benda-Putar Sebuah bentuk bidang yang dibatasi kurva y = f(x), sumbu-x, dan

Lebih terperinci

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. Menjelaskan cara penyelesaian soal dengan

Lebih terperinci

MACLAURIN S SERIES. Ghifari Eka

MACLAURIN S SERIES. Ghifari Eka MACLAURIN S SERIES Ghifari Eka Taylor Series Sebelum membahas mengenai Maclaurin s series alangkah lebih baiknya apabila kita mengetahui terlebih dahulu mengenai Taylor series. Misalkan terdapat fungsi

Lebih terperinci

Pertemuan : 4 Materi : Fungsi Bernilai Vektor dan Gerak Sepanjang Kurva Bab II. Diferensial Kalkulus Dari Vektor

Pertemuan : 4 Materi : Fungsi Bernilai Vektor dan Gerak Sepanjang Kurva Bab II. Diferensial Kalkulus Dari Vektor Pertemuan : 4 Materi : Fungsi Bernilai Vektor dan Gerak Sepanjang Kurva Bab II. Diferensial Kalkulus Dari Vektor Standar Kompetensi : Setelah mengikuti perkuliahaan ini mahasiswa diharapkan dapat : 1.

Lebih terperinci

Kalkulus Multivariabel I

Kalkulus Multivariabel I Keterdiferensialan Statistika FMIPA Universitas Islam Indonesia Fungsi y = f (x) terdiferensialkan di titik x 0 jika f (x 0 + h) f (x 0 ) lim = f (x 0 ) h 0 ( h ) f (x0 + h) f (x 0 ) lim f (x 0 ) = 0 h

Lebih terperinci

FT UNIVERSITAS SURABAYA VARIABEL KOMPLEKS SUGATA PIKATAN. Bab V Aplikasi

FT UNIVERSITAS SURABAYA VARIABEL KOMPLEKS SUGATA PIKATAN. Bab V Aplikasi Bab V Aplikasi Selain aplikasi yang sudah diperkenalkan di bab I, teori variabel kompleks masih memiliki banyak ragam aplikasi lainnya. Beberapa di antaranya akan dibahas di dalam bab ini. Perhitungan

Lebih terperinci

SOAL&PEMBAHASAN MATEMATIKATKDSAINTEK SBMPTN. yos3prens.wordpres.com

SOAL&PEMBAHASAN MATEMATIKATKDSAINTEK SBMPTN. yos3prens.wordpres.com SOAL&PEMBAHASAN MATEMATIKATKDSAINTEK SBMPTN 05 yosprens.wordpres.com SOAL DAN PEMBAHASAN MATA UJI MATEMATIKA TKD SAINTEK SBMPTN 05 Berikut ini 5 soal mata uji matematika beserta pembahasannya yang diujikan

Lebih terperinci

Pertemuan Minggu ke Keterdiferensialan 2. Derivatif berarah dan gradien 3. Aturan rantai

Pertemuan Minggu ke Keterdiferensialan 2. Derivatif berarah dan gradien 3. Aturan rantai Pertemuan Minggu ke-10 1. Keterdiferensialan 2. Derivatif berarah dan gradien 3. Aturan rantai 1. Keterdiferensialan Pada fungsi satu peubah, keterdiferensialan f di x berarti keujudan derivatif f (x).

Lebih terperinci

MATEMATIKA TEKNIK 2 S1-TEKNIK ELEKTRO. Mohamad Sidiq

MATEMATIKA TEKNIK 2 S1-TEKNIK ELEKTRO. Mohamad Sidiq MATEMATIKA TEKNIK 2 S1-TEKNIK ELEKTRO REFERENSI E-BOOK REFERENSI ONLINE SOS Mathematics http://www.sosmath.com/diffeq/diffeq.html Wolfram Research Math World http://mathworld.wolfram.com/ordinarydifferentialequation.h

Lebih terperinci

Pertemuan : 7 Materi : Integral Garis dan Teorema Dasar Integral Garis Bab III. Integral Kalkulus Dari Vektor

Pertemuan : 7 Materi : Integral Garis dan Teorema Dasar Integral Garis Bab III. Integral Kalkulus Dari Vektor Pertemuan : 7 Materi : Integral Garis dan Teorema Dasar Integral Garis Bab III. Integral Kalkulus Dari Vektor Standar Kompetensi : 1. Memahami Integral Kalkulus dari Vektor. 2. Memahami Integral Garis,

Lebih terperinci

UJIAN TENGAH SEMESTER KALKULUS I

UJIAN TENGAH SEMESTER KALKULUS I UJIAN TENGAH SEMESTER KALKULUS I Senin, 9 April 001 Waktu :,5 jam 1. Tentukan dy dx jika (a) y 5x (x + 1) (b) y cos x.. Dengan menggunakan de nisi turunan, tentukan f 0 (x) untuk fungsi f berikut f (x)

Lebih terperinci

dengan vektor tersebut, namun nilai skalarnya satu. Artinya

dengan vektor tersebut, namun nilai skalarnya satu. Artinya 1. Pendahuluan Penggunaan besaran vektor dalam kehidupan sehari-hari sangat penting mengingat aplikasi besaran vektor yang luas. Mulai dari prinsip gaya, hingga bidang teknik dalam memahami konsep medan

Lebih terperinci

DERET FOURIER. n = bilangan asli (1,2,3,4,5,.) L = pertemuan titik. Bilangan-bilangan untuk,,,, disebut koefisien fourier dari f(x) dalam (-L,L)

DERET FOURIER. n = bilangan asli (1,2,3,4,5,.) L = pertemuan titik. Bilangan-bilangan untuk,,,, disebut koefisien fourier dari f(x) dalam (-L,L) DERET FOURIER Bila f adalah fungsi periodic yang berperioda p, maka f adalah fungsi periodic. Berperiode n, dimana n adalah bilangan asli positif (+). Untuk setiap bilangan asli positif fungsi yang didefinisikan

Lebih terperinci

KINEMATIKA. Fisika. Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom

KINEMATIKA. Fisika. Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom KINEMATIKA Fisika Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom Sasaran Pembelajaran Indikator: Mahasiswa mampu mencari besaran

Lebih terperinci

DIKTAT KULIAH KALKULUS PEUBAH BANYAK (IE-308)

DIKTAT KULIAH KALKULUS PEUBAH BANYAK (IE-308) DIKTAT KULIAH (IE-308) BAB 6 INTEGRAL GARIS Diktat ini digunakan bagi mahasiswa Jurusan Teknik Industri Fakultas Teknik Universitas Kristen Maranatha Ir. Rudy Wawolumaja M.Sc JURUSAN TEKNIK INDUSTRI -

Lebih terperinci

BINOVATIF LISTRIK DAN MAGNET. Hani Nurbiantoro Santosa, PhD.

BINOVATIF LISTRIK DAN MAGNET. Hani Nurbiantoro Santosa, PhD. BINOVATIF LISTRIK DAN MAGNET Hani Nurbiantoro Santosa, PhD hanisantosa@gmail.com 2 BAB 2 MEDAN LISTRIK DAN HUKUM GAUSS Pendahuluan, Distribusi Muatan Kontinu, Mencari Medan Listrik Menggunakan Integral,

Lebih terperinci

BAB 2 PERSAMAAN DIFFERENSIAL BIASA

BAB 2 PERSAMAAN DIFFERENSIAL BIASA BAB 2 BIASA 2.1. KONSEP DASAR Persamaan Diferensial (PD) Biasa adalah persamaan yang mengandung satu atau beberapa penurunan y (varibel terikat) terhadap x (variabel bebas) yang tidak spesifik dan ditentukan

Lebih terperinci

UJIAN TENGAH SEMESTER KALKULUS I Senin, 5 Maret 1999 Waktu : 2,5 jam

UJIAN TENGAH SEMESTER KALKULUS I Senin, 5 Maret 1999 Waktu : 2,5 jam UJIAN TENGAH SEMESTER KALKULUS I Senin, 5 Maret 999 Waktu :,5 jam SETIAP NOMOR MEMPUNYAI BOBOT 0. Misalkan diketahui fungsi f dengan ; 0 f() = ; < 0 Gunakan de nisi turunan untuk memeriksa aakah f 0 (0)

Lebih terperinci

I N T E G R A L (Anti Turunan)

I N T E G R A L (Anti Turunan) I N T E G R A L (Anti Turunan) I. Integral Tak Tentu A. Rumus Integral Bentuk Baku. Derifatif d/ X n = nx n- xn = Integral x n+ n. d/ cos x = - sin x sin x = - cos x. d/ sin x = cos x cos x = sin x 4.

Lebih terperinci

Soal-Soal dan Pembahasan SNMPTN Matematika IPA Tahun Pelajaran 2010/2011 Tanggal Ujian: 01 Juni 2011

Soal-Soal dan Pembahasan SNMPTN Matematika IPA Tahun Pelajaran 2010/2011 Tanggal Ujian: 01 Juni 2011 Soal-Soal dan Pembahasan SNMPTN Matematika IPA Tahun Pelajaran 00/0 Tanggal Ujian: 0 Juni 0. Diketahui vektor u = (a, -, -) dan v = (a, a, -). Jika vektor u tegak lurus pada v, maka nilai a adalah... A.

Lebih terperinci

SISTEM KOORDINAT VEKTOR. Tri Rahajoeningroem, MT T. Elektro - UNIKOM

SISTEM KOORDINAT VEKTOR. Tri Rahajoeningroem, MT T. Elektro - UNIKOM SISTEM KOORDINAT VEKTOR Tri Rahajoeningroem, MT T. Elektro - UNIKOM Tujuan Pembelajaran Mahasiswa dapat memahami koordinat vektor Mahasiswa dapat menggunakan sistem koordinat vektor untuk menyelesaikan

Lebih terperinci

10 Grafik Sudut Deviasi Bangun Datar

10 Grafik Sudut Deviasi Bangun Datar 10 Grafik Sudut Deviasi Bangun Datar Kita telah mempelajari bagaimana menghitung besar sudut belok di setiap titik pada tepi suatu bangun datar. Satu hal yang menarik tentang lingkaran adalah bahwa besar

Lebih terperinci

STK 203 TEORI STATISTIKA I

STK 203 TEORI STATISTIKA I STK 203 TEORI STATISTIKA I III. PEUBAH ACAK KONTINU III. Peubah Acak Kontinu 1 PEUBAH ACAK KONTINU Ingat definisi peubah acak! Definisi : Peubah acak Y adalah suatu fungsi yang memetakan seluruh anggota

Lebih terperinci

KALKULUS LANJUT. Oleh: Prayudi. Edisi Pertama Cetakan pertama, 2009

KALKULUS LANJUT. Oleh: Prayudi. Edisi Pertama Cetakan pertama, 2009 KALKULUS LANJUT Oleh: Prayudi Edisi Pertama Cetakan pertama, 2009 Hak Cipta 2009 pada penulis, Hak Cipta dilindungi undang-undang. Dilarang memperbanyak atau memindahkan sebagian atau seluruh isi buku

Lebih terperinci

, ω, L dan C adalah riil, tunjukkanlah

, ω, L dan C adalah riil, tunjukkanlah . Jika z j j PROBLEM SE# Sistem Bilangan Kompleks, tentukanlah bagian riil dan bagian imajiner dari bilangan kompleks z z. Carilah harga dan y yang memenuhi persamaan : y j y, j, ( ) ( ). Carilah bentuk

Lebih terperinci

Pengoptimalan fungsi dua peubah Secara geometri diferensial

Pengoptimalan fungsi dua peubah Secara geometri diferensial Pengoptimalan fungsi dua peubah Secara geometri diferensial Drs. Johannes P. Mataniari FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS SUMATERA UTARA PENDAHULUAN 1.1. Latar Belakang Suatu peubah

Lebih terperinci

Keep running VEKTOR. 3/8/2007 Fisika I 1

Keep running VEKTOR. 3/8/2007 Fisika I 1 VEKTOR 3/8/007 Fisika I 1 BAB I : VEKTOR Besaran vektor adalah besaran yang terdiri dari dua variabel, yaitu besar dan arah. Sebagai contoh dari besaran vektor adalah perpindahan. Sebuah besaran vektor

Lebih terperinci

Kalkulus 2. Teknik Pengintegralan ke - 2. Tim Pengajar Kalkulus ITK. Institut Teknologi Kalimantan. Januari 2018

Kalkulus 2. Teknik Pengintegralan ke - 2. Tim Pengajar Kalkulus ITK. Institut Teknologi Kalimantan. Januari 2018 Kalkulus 2 Teknik Pengintegralan ke - 2 Tim Pengajar Kalkulus ITK Institut Teknologi Kalimantan Januari 2018 Tim Pengajar Kalkulus ITK (Institut Teknologi Kalimantan) Kalkulus 2 Januari 2018 1 / 24 Daftar

Lebih terperinci

KALKULUS MULTIVARIABEL II

KALKULUS MULTIVARIABEL II KALKULUS MULTIVARIABEL II Integral Garis Medan Vektor dan (Minggu ke-8) Andradi Jurusan Matematika FMIPA UGM Yogyakarta, Indonesia 1 Integral Garis Medan Vektor 2 Terkait Lintasan Teorema Fundamental untuk

Lebih terperinci

TURUNAN. Bogor, Departemen Matematika FMIPA-IPB. (Departemen Matematika FMIPA-IPB) Kalkulus: Turunan Bogor, / 50

TURUNAN. Bogor, Departemen Matematika FMIPA-IPB. (Departemen Matematika FMIPA-IPB) Kalkulus: Turunan Bogor, / 50 TURUNAN Departemen Matematika FMIPA-IPB Bogor, 2012 (Departemen Matematika FMIPA-IPB) Kalkulus: Turunan Bogor, 2012 1 / 50 Topik Bahasan 1 Pendahuluan 2 Turunan Fungsi 3 Tafsiran Lain Turunan 4 Kaitan

Lebih terperinci

Suku Banyak Chebyshev

Suku Banyak Chebyshev Bab 3 Suku Banyak Chebyshev Suku banyak Chebyshev, yang diberi nama oleh Pafnuty Chebyshev, merupakan suatu deret dari suku banyak ortogonal yang dapat dituliskan secara rekursif. Suku banyak ini dibedakan

Lebih terperinci

Kalkulus Multivariabel I

Kalkulus Multivariabel I dan Gradien dan Gradien Statistika FMIPA Universitas Islam Indonesia dan Gradien Turunan-turunan parsial f x (x, y) dan f y (x, y) mengukur laju perubahan (dan kemiringan garis singgung) pada arah sejajar

Lebih terperinci

perpindahan, kita peroleh persamaan differensial berikut :

perpindahan, kita peroleh persamaan differensial berikut : 1.1 Pengertian Persamaan Differensial Banyak sekali masalah terapan (dalam ilmu teknik, ilmu fisika, biologi, kimia, sosial, dan lain-lain), yang telah dirumuskan dengan model matematika dalam bentuk persamaan

Lebih terperinci

Kalkulus II. Institut Teknologi Kalimantan

Kalkulus II. Institut Teknologi Kalimantan Tim Dosen Kalkulus II Tahun Persiapan Bersama Institut Kalkulus Teknologi II Kalimantan January 31, () 2018 1 / 71 Kalkulus II Tim Dosen Kalkulus II Tahun Persiapan Bersama Institut Teknologi Kalimantan

Lebih terperinci

4.4. KERAPATAN FLUKS LISTRIK

4.4. KERAPATAN FLUKS LISTRIK 4.4. KERAPATAN FLUKS LISTRIK Misalkan D adalah suatu medan vektor baru yang tidak bergantung pada medium dan didefinisikan oleh Didefinisikan fluks listrik dalam D sebagai Dalam satuan SI, satu garis fluks

Lebih terperinci

Kalkulus Diferensial week 09. W. Rofianto, ST, MSi

Kalkulus Diferensial week 09. W. Rofianto, ST, MSi Kalkulus Diferensial week 09 W. Rofianto, ST, MSi Tingkat Perubahan Rata-rata Jakarta Km 0 jam Bandung Km 140 Kecepatan rata-rata s t 140Km jam 70Km / jam Konsep Diferensiasi Bentuk y/ disebut difference

Lebih terperinci

BAB: TEKNIK PENGINTEGRALAN Topik: Metode Substitusi

BAB: TEKNIK PENGINTEGRALAN Topik: Metode Substitusi BAB: TEKNIK PENGINTEGRALAN Topik: Metode Substitusi Kompetensi yang diukur adalah kemampuan mahasiswa menghitung integral fungsi dengan metode substitusi.. UAS Kalkulus Semester Pendek no. b (kriteria:

Lebih terperinci

digunakan untuk menyelesaikan integral seperti 3

digunakan untuk menyelesaikan integral seperti 3 Bab Teknik Pengintegralan BAB TEKNIK PENGINTEGRALAN Rumus-rumus dasar integral tak tertentu yang diberikan pada bab hanya dapat digunakan untuk mengevaluasi integral dari fungsi sederhana dan tidak dapat

Lebih terperinci

Jurusan Matematika FMIPA-IPB

Jurusan Matematika FMIPA-IPB Jurusan Matematika FMIPA-IPB Ujian Kedua Semester Pendek T.A 4/5 KALKULUS/KALKULUS Jum at, Agustus 4 (Waktu : jam) SETIAP SOAL BERNILAI. Tentukan (a) + (b) p 4 + 5. Periksa apakah Teorema Nilai Rata-rata

Lebih terperinci

Persamaan Diferensial Biasa. Rippi Maya

Persamaan Diferensial Biasa. Rippi Maya Persamaan Diferensial Biasa Rippi Maya Maret 204 ii Contents PENDAHULUAN. Solusi persamaan diferensial..................... 2.. Solusi Implisit dan Solusi Eksplisit............. 2..2 Solusi Umum dan Solusi

Lebih terperinci

Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN) Bidang Matematika. Kode Paket 634. Oleh : Fendi Alfi Fauzi 1. x 0 x 2.

Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN) Bidang Matematika. Kode Paket 634. Oleh : Fendi Alfi Fauzi 1. x 0 x 2. Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri SNMPTN) Bidang Matematika Kode Paket 6 Oleh : Fendi Alfi Fauzi. lim x 0 cos x x tan x + π )... a) b) 0 c) d) e) Jawaban : C Pembahasan: lim x 0

Lebih terperinci

Peubah Acak dan Distribusi Kontinu

Peubah Acak dan Distribusi Kontinu BAB 1 Peubah Acak dan Distribusi Kontinu 1.1 Fungsi distribusi Definisi: Misalkan X peubah acak. Fungsi distribusi (kumulatif) dari X adalah F X (x) = P (X x) Contoh: 1. Misalkan X Bin(3, 0.5), maka fungsi

Lebih terperinci

Medan Elektromagnetik 3 SKS. M. Hariansyah Program Studi Teknik Elektro Fakultas Teknik Universitas Ibn Khaldun Bogor

Medan Elektromagnetik 3 SKS. M. Hariansyah Program Studi Teknik Elektro Fakultas Teknik Universitas Ibn Khaldun Bogor Medan Elektromagnetik 3 SKS M. Hariansyah Program Studi Teknik Elektro Fakultas Teknik Universitas Ibn Khaldun Bogor 2 0 1 4 Medan Elektromagnetik I -Referensi: WILLIAM H HAYT Materi Kuliah -Analisa Vektor

Lebih terperinci

Geometri pada Bidang, Vektor

Geometri pada Bidang, Vektor Jurusan Matematika FMIPA Unsyiah September 9, 2011 Sebuah kurva bidang (plane curve) ditentukan oleh pasangan persamaan parametrik x = f(t), y = g(t), t dalam I dengan f dan g kontinu pada selang I. I

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom [MA1124] KALKULUS II

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom [MA1124] KALKULUS II Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Integral Lipat Tiga [MA4] Integral Lipat Tiga pada Balok ( k, yk, k ) B y B k y k // [MA 4]. Partisi balok B menjadi n bagian; B, B,, B k,,

Lebih terperinci

A suatu fungsi vektor yang mempunyai derivatif kontinu, maka

A suatu fungsi vektor yang mempunyai derivatif kontinu, maka TEOEM DIVEGENI Teorema divergensi Gauss pabila V suatu ruang dibatasi dengan luasan tertutup, dan suatu fungsi vektor ang mempunai derivatif kontinu, maka V. dv.n d. d dengan n positif normal dari pada.

Lebih terperinci

Bab II Konsep Dasar Metode Elemen Batas

Bab II Konsep Dasar Metode Elemen Batas Bab II Konsep Dasar Metode Elemen Batas II.1 II.1.1 Kalkulus Dasar Teorema Gradien Misal menyatakan domain pada ruang dimensi dua dan menyatakan batas i x + j 2 2 x 2 + 2 2 elanjutnya, penentuan integral

Lebih terperinci

Soal-Soal dan Pembahasan Matematika IPA SNMPTN 2012 Tanggal Ujian: 13 Juni 2012

Soal-Soal dan Pembahasan Matematika IPA SNMPTN 2012 Tanggal Ujian: 13 Juni 2012 Soal-Soal dan Pembahasan Matematika IPA SNMPTN 01 Tanggal Ujian: 13 Juni 01 1. Lingkaran (x + 6) + (y + 1) 5 menyinggung garis y 4 di titik... A. ( -6, 4 ). ( -1, 4 ) E. ( 5, 4 ) B. ( 6, 4) D. ( 1, 4 )

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA101 MATEMATIKA A Hendra Gunawan Semester II, 016/017 1 Maret 017 Bab Sebelumnya 9.1 Barisan Tak Terhingga 9. Deret Tak Terhingga 9.3 Deret Positif: Uji Integral 9.4 Deret Positif: Uji Lainnya 9.5 Deret

Lebih terperinci