HOMOMORFISMA RING DERET PANGKAT TERITLAK MIRING

Ukuran: px
Mulai penontonan dengan halaman:

Download "HOMOMORFISMA RING DERET PANGKAT TERITLAK MIRING"

Transkripsi

1 J. Sai MIPA Agutu 2009 Vol. 5 No. 2 Hal.: 9-24 ISSN HOMOMORFISMA RING DERET PANGKAT TERITLAK MIRING Ahmad Faiol Jurua Matematika FMIPA Uiverita Lampug Badar Lampug 3545 Idoeia faiol_mathuila@yahoo.co.id Diterima 9 Jui 2009 dietujui utuk diterbitka 28 Agutu 2009 ABSTRACT Let R be a rig ( S ) a trictly ordered mooid ad : S E d ( R ) a mooid homomorphim. Cotructed R[[ S ]] i.e. the et of all fuctio from S to R whoe upport i artiia ad arrow. With poitwie additio ad the kew covolutio multiplicatio R[[ S ]] become a rig called the kew geeralized power erie rig. I thi reearch we will ivetigate about homomorphim of kew geeralized power erie rig. Keyword: ordered mooid artiia arrow rig homorphim kew geeralized power erie rig.. PENDAHULUAN Rig poliomial R[X] didefiiika ebagai himpua emua fugi dari (bilaga bulat o egatif) ke R (rig dega eleme atua) dega yarat f ( ) 0 haya utuk berhigga bayak yag dilegkapi dega operai pejumlaha biaa da pergadaa ditributif. Selajutya rig poliomial R[X] digeeraliai mejadi rig deret pagkat formal R[[X]] yaitu dega cara meghilagka yarat f ( ) 0 haya utuk berhigga bayak ). Rig poliomial R[X] juga dapat digeeraliai mejadi rig mooid R[S] yaitu himpua emua fugi dari mooid S ke R (rig dega eleme atua) dega yarat upp( f ) { S f ( ) 0} berhigga yag dilegkapi dega operai pejumlaha biaa da pergadaa kovolui. Selajutya Ribeboim 6) megkotruki rig deret pagkat teritlak (geeralized power erie rig) R[[S]] yag merupaka geeraliai dari rig deret pagkat formal R[[X]] da rig mooid R[S] yaitu himpua emua fugi dari mooid terurut tega S ke R (rig dega eleme atua) dega yarat upp( f ) { S f ( ) 0} Arti da arrow yag dilegkapi dega operai pejumlaha da pergadaa yag ama pada rig mooid R[S]. Ribomboim 7) juga megkotruki homomorfima rig deret pagkat teritlak (RDPT). Mazurek da Ziembowki 5) megkotruki rig baru yag merupaka geeraliai dari rig deret pagkat teritlak R[[S]] dega cara meambahka uatu homomorfima mooid : S Ed( R ) yag diguaka utuk merubah operai pergadaa kovolui pada R[[S]]. Selajutya rig baru ii diebut rig deret pagkat teritlak mirig (kew geeralized power erie rig) da diotaika dega R[[ S ]] atau R[[ S ]]. Dari uraia di ata telah dijelaka bahwa rig deret pagkat teritlak (RDPT) R[[S]] merupaka betuk khuu dari rig deret pagkat teritlak mirig (RDPTM) ehigga pada peelitia ii aka dikotruki homomorfima RDPTM berdaarka homomorfima RDPT yag udah ada. 2. METODE PENELITIAN Peelitia ii dilakuka berdaarka tudi literatur berupa buku-buku da jural-jural ilmiah khuuya yag berkaita dega himpua terurut mooid terurut ifat Arti da arrow rig deret pagkat teritlak (RDPT) homomorfima RDPT da rig deret pagkat teritlak mirig (RDPTM). Alur peelitia ecara utuh digambarka pada diagram (Gambar ) di bawah ii FMIPA Uiverita Lampug 9

2 A. Faiol Homomorfima Rig Deret Pagkat Mempelajari Himpua Terurut Sifat Arti da arrow Mooid Terurut Rig da homomorfima rig Mempelajari kotruki RDPT da homorfima RDPT Mempelajari kotruki RDPTM Megkotruki homomorfima RDPTM berdaarka homomorfima RDPT Membuktika homomorfima RDPTM yag telah dikotruki Gambar. Diagram alur peelitia Pada tahap awal dipelajari koep-koep daar tetag himpua terurut ifat Arti da arrow mooid terurut teori rig da homomorfima rig. Koep-koep daar ii yag atiya aka bayak membatu utuk memahami kotruki RDPT da RDPTM. Berikut ii aka diajika beberapa defiii lemma da teorema yag terkait dega himpua terurut ifat Arti da arrow mooid terurut teori rig da homomorfima rig. Defiii (Himpua Terurut) ) Diberika himpua tak koog S. a. Relai bier pada S diebut relai uruta parial jika memeuhi: i. reflekif :( x S) x x. ii. ati imetri : ( x y S)( x y y x x y) iii. traitif : ( x y z S)( x y y z x z) b. Relai uruta parial pada S diebut relai uruta total jika utuk ebarag x y S berlaku x y atau y x. c. Suatu eleme m S diebut eleme miimal jika ( x S )( x m m x ). d. Himpua S yag dilegkapi dega uatu uruta parial diebut himpua terurut (ordered et). Utuk elajutya otai ( S ) meyataka S himpua terurut terhadap uruta parial. Defiii 2 (Arti da arrow) 6) Diketahui ( S ) himpua terurut. Himpua terurut ( S ) dikataka Arti jika etiap baria turu tega dari eleme-eleme S elalu berhigga. Himpua terurut ( S ) dikataka Noether jika etiap baria aik tega dari eleme-eleme S elalu berhigga. Utuk elajutya otai ( z i ) i meyataka baria ecara umum baik higga maupu takhigga. Teorema (Arti da arrow) 2) Jika ( S ) himpua terurut maka peryataa berikut ekuivale :. S Arti da arrow. 2. Jika ( ) baria eleme-eleme S maka terdapat ehigga FMIPA Uiverita Lampug

3 J. Sai MIPA Agutu 2009 Vol. 5 No Jika ( ) S maka terdapat 2 ehigga 2. Defiii 3 (Mooid) 4) Groupoid ( S ) artiya himpua tak koog S dega operai bier " " terdefiii. Dega kata lai dipuyai pemetaa : S S S. Selajutya ( S ) diebut emigrup jika " " berifat aoiatif yaitu: S)( ) ( ). ( ( 2 S)( 2 2 Jika ( S ) mempuyai ifat tambaha ) maka ( S ) diebut emigrup komutatif. Jika terdapat eleme di dalam S edemikia ehigga ( S) ( ) maka diebut eleme idetita di dalam S da S diebut emigrup dega idetita atau mooid. Defiii 4 (Mooid Terurut) 7) Himpua terurut ( S ) dikataka mooid terurut jika S mooid da relai uruta kompatibel yaki jika ( t S )( t t ) da ( S ) dikataka mooid terurut tega jika urutaya kompatibel tega yaki jika ( t S )( t t). Defiii 5 (Rig) 3) Rig ( R ) adalah himpua tak koog R yag dilegkapi dega dua operai bier yag diebut pejumlaha da pergadaa yag terdefiii di dalam R edemikia ehigga ifat-ifat berikut terpeuhi :. ( R ) grup komutatif (abelia). 2. Pergadaa ( ) berifat aoiatif. 3. Utuk etiap a b c R ifat ditributif kiri a ( b c) ( a b) ( a c) da ifat ditributif kaa ( a b) c ( a c) ( b c) terpeuhi. Defii 6 (Homomorfima Rig) 3) Diberika rig R da R. Pemetaa : R R merupaka homomorfima jika memeuhi : i. (a + b) = (a) + (b) ii. (ab) = (a) (b) Utuk etiap a b R. Setelah mempelajari koep-koep daar diata lagkah berikutya adalah mempelajari kotruki RDPT da homomorfima RDPT. Pertama aka diajika tetag kotruki RDPT. Diketahui R ebuah rig dega eleme atua da ( S ) mooid terurut tega. Dibetuk uatu himpua S R yaki himpua emua pemetaa f : S R. Utuk S f R upport f didefiiika ebagai upp( f ) { S f ( ) 0}. Kemudia dibetuk A { f R upp( f ) Arti da arrow }. Utuk ebarag S da f f 2 f A himpua X ( f f2 f) {( x x x ) upp( f ) x x upp( f ) x x x } berhigga. 2 2 Selajutya didefiiika operai pejumlaha da pergadaa pada A : ( ) : ( f g A)( f g : S R ) ( f g)( ) f ( ) g( ) ( ) : ( f g A)( f g : S R) ( f g)( ) f ( x) g( y) ( x y) X ( f g ) Dega dua operai di ata Ribemboim 6) telah membuktika bahwa A merupaka rig. Rig ii S elajutya diebut Rig Deret Pagkat Teritlak (RDPT) da diimbolka dega[[ R ]] atau R[[ S ]]. S 2009 FMIPA Uiverita Lampug 2

4 A. Faiol Homomorfima Rig Deret Pagkat Selajutya aka dikotruki homomorfima RDPT. Diketahui R da R rig ( S ) da ( S ) mooid terurut tega A da A RDPT. Mialka : R R homomorfima rig da : ( S ) ( S ) homomorfima tega. Utuk etiap S ( ( )) ( S ) terurut trivial. Jika f A maka upp( f ) ( ( S)) berhigga. Selajutya didefiika f : S R dega f ( ( )) f ( t) utuketiap S t ( ( )) f ( t ) 0 jika t ( S) Di ii lai jika ijektif maka f ( ( )) f ( ) utuk etiap S. Selajutya didapat upp( f ) (upp( f )) yag berakibat upp( f ) Arti da arrow ubet ( S ). Dega kata lai S f A [[ R ]]. Da ii medefiiika pemetaaa : A A. Ribemboim 7) telah membuktika bahwa pemetaa terebut merupaka homomorfima rig. Lagkah terakhir mempelajari kotruki RDPTM da megkotruki homomorfima RDPTM berdaarka homorfima RDPT yag udah ada da kemudia membuktika homomorfima RDPTM yag telah dikotruki. Lagkah terakhir ii aka dijelaka pada bagia Hail da Pembahaa di bawah ii. 3. HASIL DAN PEMBAHASAN 3.. Rig Deret Pagkat Teritlak Mirig Mazurek da Ziembowki 5) megkotruki rig baru yag merupaka geeraliai dari RDPT yag telah dikotruki oleh Ribemboim 6) dega cara meambahka uatu homomorfima mooid : S Ed( R ) yag diguaka utuk merubah operai pergadaa kovolui pada RDPT. Di bawah ii aka diajika kotruki RDPTM. Diketahui R ebuah rig dega eleme atua ( S ) mooid terurut tega da : S Ed ( R ) homomorfima mooid. Utuk ebarag S melambagka image yaki (). Dapat dibuktika yag berarti merupaka eleme idetita Ed(R). Diberika uatu himpua A yaki himpua emua pemetaa f : S R dega upp( f ) { S f ( ) 0} Arti da arrow. Utuk ebarag S da f f 2 f A himpua X ( f f2 f ) {( x x2 x ) upp( f) x x upp( f ) xx 2 x} berhigga. Selajutya didefiiika operai pejumlaha da pergadaa pada A : ( ) : ( f g A)( f g : S R ) ( f g)( ) f ( ) g( ) ( ) : ( f g A)( f g : S R) ( f g)( ) ( x y) X ( f g ) f ( x) ( g( y)) ; X ( f g) x 0 ; X ( f g) Dega dua operai di ata Mazurek da Ziembowki 5) telah membuktika bahwa A merupaka ebuah rig yag elajutya diebut Rig Deret Pagkat Teritlak Mirig (RDPTM) da diimbolka dega R[[ S ]] atau R[[ S ]] Homomorfima Rig Deret Pagkat Teritlak Mirig Berdaarka homomorfima RDPT yag telah dikotruki Ribemboim 7) di bawah ii aka dicoba dikotruki homomorfiam RDPTM FMIPA Uiverita Lampug

5 J. Sai MIPA Agutu 2009 Vol. 5 No. 2 Diketahui R da R rig ( S ) da ( S ) mooid terurut tega A da A RDPTM. Mialka : R R homomorfima rig da : ( S ) ( S ) homomorfima tega. Mialka : S E d ( R ) da : S E d ( R ) homomorfima mooid. Utuk etiap S ( ) melambagka image dari jadi R R merupaka edomorfima. Da utuk etiap S ( ) melambagka image dari jadi : R R merupaka edomorfima. Selajutya didefiika pemetaaa Aka ditujukka Bukti : (i) Utuk ebarag ( f )( ( )) t ( 0 : A A f ( t) ( )) : A A ebagai berikut : merupaka homomorfima rig. f g A da S berlaku : ( f g)( ( )) ( f g)( t) t ( ( )) : f ( t) g( t) t ( ( )) t ( ( )) f ( t) g( t) t ( ( )) t ( ( )) ( f )( ( )) ( g)( ( )) ( f ) ( g) ( ( )) (ii) Utuk ebarag f g A da S berlaku : ( fg)( ( )) ( fg)( t) t ( ( )) cd t ( t) ( ) cd t ( t) ( ) f ( c) ( g( d)) c f ( c) ( g( d)) c f ( c) ( g( d)) c d ( S ) c S d S ( c) c ( d ) d c f ( c) c d ( S ) c S d S ( c) c ( d ) d c ( g( d)) 2009 FMIPA Uiverita Lampug 23

6 A. Faiol Homomorfima Rig Deret Pagkat c c d ( S ) c S d S ( c) c ( d ) d c d ( ) Dari (i) da (ii) maka terbukti bahwa f ( c) g( d) ( f )( c ) ( g)( d ) ( f ). ( g) ( ( )) c : A A merupaka homomorfima rig. 4. KESIMPULAN Dapat dikotruki homomorfima RDPTM berdaarka homomorfima RDPT yag udah ada dega medefiiika pemetaaa : A A ebagai berikut : ( f )( ( )) t ( 0 f ( t) ( )) Pemetaa ii merupaka homomorfima rig jika diberi bataa DAFTAR PUSTAKA.. Adki W.A. ad Weitraub S.H. 992 Algebra A Approach Via Module Theory Spriger-Verlag New York. 2. Elliot G.A. ad Ribeboim P. 990 Field of Geeralized Power Serie Arch. Math. 54: Fraleigh J.B A Firt Coure i Abtract Algebra Addio-Weley Publihig Compay New York. 4. Howie J.M. 976 A Itroductio to Semigroup Theory Academic Pre Ic. Lodo. 5. Mazurek R. ad Ziembowki M Uierial Rig of Skew Geeralized Power Serie J. Algebra 38: Ribeboim P. 990 Geeralized Power Serie Rig I Lattice Semigroup ad Uiveral Algebra Pleum Pre New York Ribeboim P. 99 Rig of Geeralized Power Serie : Nilpotet elemet Abh. Math. Sem. Uiv. Hamburg. 6: FMIPA Uiverita Lampug

RING MATRIKS ATAS RING KOMUTATIF. Achmad Abdurrazzaq, Ari Wardayani, Suroto Universitas Jenderal Soedirman

RING MATRIKS ATAS RING KOMUTATIF. Achmad Abdurrazzaq, Ari Wardayani, Suroto Universitas Jenderal Soedirman JMP : Volume 7 Nomor 1, Jui 2015, hal 11-18 RING MATRIKS ATAS RING KOMUTATIF Achmad Abdurrazzaq, Ari Wardayai, Suroto razzaqgaesha@gmailcom Uiversitas Jederal Soedirma ABSTRACT This paper discusses a matrices

Lebih terperinci

Homomorfisma Pada Semimodul Atas Aljabar Max-Plus

Homomorfisma Pada Semimodul Atas Aljabar Max-Plus Homomorfisma Pada Semimodul Atas Aljabar Max-Plus A 14 Oleh : Musthofa Jurusa Pedidika Matematika FMIPA UNY Abstrak Kosep homorfisma telah bayak dibahas pada beberapa struktur aljabar yaitu pada ruag vektor

Lebih terperinci

SUMMABILITAS CESARO PADA OPERASI DERET DIVERGEN. Sangadji* 1

SUMMABILITAS CESARO PADA OPERASI DERET DIVERGEN. Sangadji* 1 Summabilita Cearo pada Operai Dere Diverge (Sagadji) SUMMABILITAS CESARO PADA OPERASI DERET DIVERGE Sagadji* ABSTRAK SUMMABILITAS CESARO PADA OPERASI DERET DIVERGE Bayak orag uka membicaraka tetag deret

Lebih terperinci

Beberapa Sifat Semigrup Matriks Atas Daerah Integral Admitting Struktur Ring 1

Beberapa Sifat Semigrup Matriks Atas Daerah Integral Admitting Struktur Ring 1 Beberapa Sifat Semigrup Matriks Atas Daerah Itegral Admittig Struktur ig K a r y a t i Jurusa Pedidika Matematika FMIPA, Uiversitas Negeri Yogyakarta Email: yatiuy@yahoo.com Abstrak Diberika adalah daerah

Lebih terperinci

Bab II Landasan Teori

Bab II Landasan Teori Bab II adaa eori Bab ii meyajika kajia item da teori-teori yag aka medaari da diguaka dalam mecari betuk model tereduki. Beberapa hal yag aka dikaji dalam bab ii adalah item PV da beberapa teori daar yag

Lebih terperinci

BAB I PENDAHULUAN. , membentuk struktur ring terhadap operasi penjumlahan matriks dan operasi pergandaan matriks baku. Himpunan bagian dari

BAB I PENDAHULUAN. , membentuk struktur ring terhadap operasi penjumlahan matriks dan operasi pergandaan matriks baku. Himpunan bagian dari BB I PENDHULUN. Latar Belakag Masalah Struktur rig (gelaggag) R adalah suatu himpua R yag kepadaya didefiisika dua operasi bier yag disebut pejumlaha da pergadaa yag memeuhi aksioma-aksioma tertetu, yaitu:

Lebih terperinci

Semigrup Matriks Admitting Struktur Ring

Semigrup Matriks Admitting Struktur Ring Semigrup Matriks dmittig Struktur ig K a r y a t i Jurusa Pedidika Matematika FMIP, Uiversitas Negeri Yogyakarta Email: yatiuy@yahoo.com bstrak Diberika adalah rig komutatif dega eleme satua da adalah

Lebih terperinci

SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS

SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS Prosidig Semiar Nasioal Peelitia, Pedidika da Peerapa MIPA, Fakultas MIPA, Uiversitas Negeri Yogyakarta, 4 Mei 0 SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS Musthofa Jurusa Pedidika Matematika FMIPA

Lebih terperinci

SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS. Abstrak

SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS. Abstrak Prosidig Semiar Nasioal Peelitia, Pedidika da Peerapa MIPA, Fakultas MIPA, Uiversitas Negeri Yogyakarta, 4 Mei 0 SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS Musthofa Jurusa Pedidika Matematika FMIPA

Lebih terperinci

SEMI MODUL POLINOMIAL FUZZY ATAS ALJABAR MAX-PLUS FUZZY

SEMI MODUL POLINOMIAL FUZZY ATAS ALJABAR MAX-PLUS FUZZY JMP : Volume 3 Nomor 1, Jui 2011 SEMI MODUL POLINOMIAL FUZZY ATAS ALJABAR MAX-PLUS FUZZY Ari Wardayai da Suroto Prodi Matematika, Jurusa MIPA, Fakultas Sais da Tekik Uiversitas Jederal Soedirma (email

Lebih terperinci

Pembentukan Ring Faktor Pada Ring Deret Pangkat Teritlak Miring

Pembentukan Ring Faktor Pada Ring Deret Pangkat Teritlak Miring Pembentukan Ring Faktor Pada Ring Deret Pangkat Teritlak Miring Ahmad Faisol Jurusan Matematika FMIPA Universitas Lampung Jl. Prof. Soemantri Brojonegoro No. 1 Bandar Lampung Email : faisol_mathunila@yahoo.co.id

Lebih terperinci

SUBGELANGGANG KOMUTATIF MAKSIMAL DARI GELANGGANG POLINOM MIRING

SUBGELANGGANG KOMUTATIF MAKSIMAL DARI GELANGGANG POLINOM MIRING SUBGELANGGANG KOMUTATIF MAKSIMAL DARI GELANGGANG POLINOM MIRING Prof. Dr. Amir Kamal Amir, M.Sc Dra. Nur Erawaty, M.Si Filawati, S.Si Jurusa Matematika, Fakultas Matemetika da Ilmu Pegetahua Alam, Uiversitas

Lebih terperinci

SIFAT-SIFAT SEMIGRUP SIMETRIS INTERVAL

SIFAT-SIFAT SEMIGRUP SIMETRIS INTERVAL SIFAT-SIFAT SEMIGRUP SIMETRIS INTERVAL Riza Febri Yusma Sri Gemawati Asli Sirait *riza_febri@yahoo.com Mahasiswa Program S Matematika Dose Jurusa Matematika Fakultas Matematika da Ilmu Pegetahua Alam Uiveritas

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang Masalah

BAB I PENDAHULUAN. A. Latar Belakang Masalah BAB I PENDAHULUAN A. Latar Belakag Masalah Struktur alabar adalah suatu himpua yag di dalamya didefiisika suatu operasi bier yag memeuhi aksioma-aksioma tertetu. Gelaggag ( Rig ) merupaka suatu struktur

Lebih terperinci

BAB IV SEBARAN ASIMTOTIK PENDUGA DENGAN MENGGUNAKAN KERNEL SERAGAM. ) menyatakan banyaknya kejadian pada interval [ 0, n ] dan h

BAB IV SEBARAN ASIMTOTIK PENDUGA DENGAN MENGGUNAKAN KERNEL SERAGAM. ) menyatakan banyaknya kejadian pada interval [ 0, n ] dan h BAB IV SEBARAN ASIMTOTIK PENDUGA DENGAN MENGGUNAKAN KERNEL SERAGAM 4.1 Peduga dega Kerel Seragam Pada bab ii diguaka peduga dega kerel eragam. Hal ii karea aya belum berail memperole ebara aimtotik dari

Lebih terperinci

MENENTUKAN SPECTRUM SUATU GRAF BERBANTUAN MATLAB

MENENTUKAN SPECTRUM SUATU GRAF BERBANTUAN MATLAB LAPORAN PENELITIAN KOMPETITIF DOSEN BERSAMA MAHASISWA MENENTUKAN SPECTRUM SUATU GRAF BERBANTUAN MATLAB KETUA TIM PENELITI ABDUSSAKIR, M.Pd JURUSAN MATEMATIKA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM

Lebih terperinci

KETERKAITAN ANTARA MODUL BEBAS DENGAN MODUL DILIHAT DARI SIFAT-SIFAT HOMOMORFISME MODUL

KETERKAITAN ANTARA MODUL BEBAS DENGAN MODUL DILIHAT DARI SIFAT-SIFAT HOMOMORFISME MODUL KETERKAITAN ANTARA MODUL BEBAS DENGAN MODUL DILIHAT DARI SIFAT-SIFAT HOMOMORFISME MODUL Khusul Afifa 1, Abdussakir 2 1 Mahasiswa Jurusa Matematika UIN Maulaa Malik Ibrahim Malag 2 Dose Jurusa Matematika

Lebih terperinci

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n LIMIT 4.. FUNGSI LIMIT Defiisi 4.. A R Titik c R adalah titik limit dari A, jika utuk setiap δ > 0 ada palig sedikit satu titik di A, c sedemikia sehigga c < δ. Defiisi diatas dapat disimpulka dega cara

Lebih terperinci

SIFAT SIFAT TRANSFORMASI LINEAR DARI R KE R

SIFAT SIFAT TRANSFORMASI LINEAR DARI R KE R SIF SIF RNSFORMSI LINER m DRI R KE R Diuu utuk memeuhi uga Mata Kuliah ljabar Liear Doe Pegampu : Dr. Suroo, M. Pd Diuu oleh : Kelompok. ge Chritie rii ( 84.55 ). dik Setyo Nugroho ( 84.65 ). Beti Lutvi

Lebih terperinci

GRUP TERURUT PARSIAL PADA MATRIKS SIMETRI BERUKURAN 2 2

GRUP TERURUT PARSIAL PADA MATRIKS SIMETRI BERUKURAN 2 2 Jural LOG!K@, Jilid 7, No, 7, Hal 46-5 ISSN 978 8568 GRU ERURU ARSIAL ADA MARIKS SIMERI BERUKURAN Irmatul Hasaah Uiversitas Islam Negeri Sulta Maulaa Hasauddi Bate Email: irmatulhasaah@uibateacid Abstract:

Lebih terperinci

I. DERET TAKHINGGA, DERET PANGKAT

I. DERET TAKHINGGA, DERET PANGKAT I. DERET TAKHINGGA, DERET PANGKAT. Pedahulua Pembahasa tetag deret takhigga sebagai betuk pejumlaha suku-suku takhigga memegag peraa petig dalam fisika. Pada bab ii aka dibahas megeai pegertia deret da

Lebih terperinci

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang 5. DERET

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang 5. DERET Pertemua 7. BAHAN AJAR ANALISIS REAL Matematika STKIP Tuaku Tambusai Bagkiag 5. da kekovergeaya 5. DERET Diberika sebuah barisa a, dapat didefeisika barisa bilaga real S N dega S N := N a = a + a 2 +...

Lebih terperinci

II. TINJAUAN PUSTAKA. Secara umum apabila a bilangan bulat dan b bilangan bulat positif, maka ada tepat = +, 0 <

II. TINJAUAN PUSTAKA. Secara umum apabila a bilangan bulat dan b bilangan bulat positif, maka ada tepat = +, 0 < II. TINJAUAN PUSTAKA 2.1 Keterbagia Secara umum apabila a bilaga bulat da b bilaga bulat positif, maka ada tepat satu bilaga bulat q da r sedemikia sehigga : = +, 0 < dalam hal ii b disebut hasil bagi

Lebih terperinci

Secara umum, suatu barisan dapat dinyatakan sebagai susunan terurut dari bilangan-bilangan real:

Secara umum, suatu barisan dapat dinyatakan sebagai susunan terurut dari bilangan-bilangan real: BARISAN TAK HINGGA Secara umum, suatu barisa dapat diyataka sebagai susua terurut dari bilaga-bilaga real: u 1, u 2, u 3, Barisa tak higga merupaka suatu fugsi dega domai berupa himpua bilaga bulat positif

Lebih terperinci

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai definisi suatu ring serta

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai definisi suatu ring serta BAB II LANDASAN TEORI Pada bab ii aka dibahas megeai defiisi suatu rig serta beberaa sifat yag dierluka dalam embahasa oliomial ermutasi Pejelasa megeai rig dimulai dega defiisi dari suatu sistem matematika

Lebih terperinci

MATEMATIKA DISKRIT FUNGSI

MATEMATIKA DISKRIT FUNGSI 1 MATEMATIKA DISKRIT FUNGSI Fugsi Misalka A da B himpua. Relasi bier f dari A ke B merupaka suatu fugsi jika setiap eleme di dalam A dihubugka dega tepat satu eleme di dalam B. Jika f adalah fugsi dari

Lebih terperinci

ENDOMORFISMA RIGID DAN COMPATIBLE PADA RING DERET PANGKAT TERGENERALISASI MIRING

ENDOMORFISMA RIGID DAN COMPATIBLE PADA RING DERET PANGKAT TERGENERALISASI MIRING ENDOMORFISMA RIGID DAN COMPATIBLE PADA RING DERET PANGKAT TERGENERALISASI MIRING Ahmad Faisol Jurusan Matematika FMIPA Universitas Lampung E-mail: faisol_mathunila@yahoo.co.id Abstract. Given a ring R,

Lebih terperinci

PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT

PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT Prosidig Semiar Nasioal Matematika da Terapaya 06 p-issn : 0-0384; e-issn : 0-039 PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT Liatus

Lebih terperinci

Fungsi. Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B.

Fungsi. Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B. Fugsi Misalka A da B himpua. Relasi bier f dari A ke B merupaka suatu fugsi jika setiap eleme di dalam A dihubugka dega tepat satu eleme di dalam B. Jika f adalah fugsi dari A ke B kita meuliska f : A

Lebih terperinci

HUBUNGAN PELABELAN GRACEFUL PADA DIGRAF BIDIRECTIONAL G DAN GRAF UNDERLYING DARI G

HUBUNGAN PELABELAN GRACEFUL PADA DIGRAF BIDIRECTIONAL G DAN GRAF UNDERLYING DARI G J Sais MIPA Desember 7 Vol 1 No Hal: 197 - ISSN 1978-187 ABSTRACT HUBUNGAN PELABELAN GRACEFUL PADA DIGRAF BIDIRECTIONAL G DAN GRAF UNDERLYING DARI G Kristiaa Wijaya Jurusa Matematika FMIPA Uiversitas Jember

Lebih terperinci

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4 Program Studi : Tekik Iformatika Miggu ke : 4 INDUKSI MATEMATIKA Hampir semua rumus da hukum yag berlaku tidak tercipta dega begitu saja sehigga diraguka kebearaya. Biasaya, rumus-rumus dapat dibuktika

Lebih terperinci

TEOREMA WEYL UNTUK OPERATOR HYPONORMAL

TEOREMA WEYL UNTUK OPERATOR HYPONORMAL Jural UJMC, Volume 3, Nomor, Hal. - 6 pissn : 460-3333 eissn : 579-907X TEOREMA WEYL UNTUK OPERATOR HYPONORMAL Guawa Uiversitas Muhammadiyah Purwokerto, gu.oge@gmail.com Abstract This paper aims at describig

Lebih terperinci

BAB IV DESKRIPSI ANALISIS DATA

BAB IV DESKRIPSI ANALISIS DATA BAB IV DESKRIPSI ANALISIS DATA A. Dekripi Data Peelitia ii megguaka peelitia ekperime, ubyek peelitiaya dibedaka mejadi dua kela, yaitu kela kotrol da kela ekperime. Kela kotrol pada peelitia ii merupaka

Lebih terperinci

Batas Bilangan Ajaib Pada Graph Caterpillar

Batas Bilangan Ajaib Pada Graph Caterpillar J. Math. ad Its Appl. ISSN: 189-605X Vol. 3, No., Nov 006, 49 56 Batas Bilaga Ajaib Pada Graph Caterpillar Chairul Imro Jurusa Matematika FMIPA ITS Surabaya imro-its@matematika.its.ac.id Abstrak Jika suatu

Lebih terperinci

Mariatul Kiftiah. JurusanMatematika FMIPA Universitas Tanjungpura, Pontianak Jl. A Yani Pontianak ABSTRACT

Mariatul Kiftiah. JurusanMatematika FMIPA Universitas Tanjungpura, Pontianak Jl. A Yani Pontianak ABSTRACT Prosidig Semirata2015 bidag MIPA BKS-PTN Barat Uiversitas Tajugpura Potiaak EKSISTENSI DAN KETUNGGALAN TITIK TETAP DARI PEMETAAN KANNAN DI RUANG MODULAR (THE EXISTENCE AND UNIQUENESS OF A FIXED POINT FOR

Lebih terperinci

) didefinisikan sebagai persamaan yang dapat dinyatakan dalam bentuk: a x a x a x b... b adalah suatu urutan bilangan dari bilangan s1, s2,...

) didefinisikan sebagai persamaan yang dapat dinyatakan dalam bentuk: a x a x a x b... b adalah suatu urutan bilangan dari bilangan s1, s2,... SISEM PERSAMAAN LINIER DAN MARIKS. SISEM PERSAMAAN LINIER Secara umum, persamaa liier dega variabel ( x, x,..., x ) didefiisika sebagai persamaa yag dapat diyataka dalam betuk: a x a x a x b... dega a,

Lebih terperinci

Barisan Dan Deret Arimatika

Barisan Dan Deret Arimatika Barisa Da Deret Arimatika A. Barisa Aritmatika Niko etera memiliki sebuah peggaris ukura 0 cm. Ia megamati bilaga-bilaga pada peggarisya ii. Bilaga-bilaga tersebut beruruta 0, 1,, 3,, 0. etiap bilaga beruruta

Lebih terperinci

MATHunesa (Volume 3 No 3) 2014

MATHunesa (Volume 3 No 3) 2014 MATHuesa (Volume 3 No 3) 014 MINIMUM PENUTUP TITIK DAN MINIMUM PENUTUP SISI PADA GRAF KOMPLIT DAN GRAF BIPARTIT KOMPLIT Yessi Riskiada Kusumawardai Program Studi S1 Matematika, Fakultas Matematika da Ilmu

Lebih terperinci

Matematika Terapan Dosen : Zaid Romegar Mair, ST., M.Cs Pertemuan 3

Matematika Terapan Dosen : Zaid Romegar Mair, ST., M.Cs Pertemuan 3 Matematika Terapa Dose : Zaid Romegar Mair ST. M.Cs Pertemua 3 PROGRAM STUDI TEKNIK INFORMATIKA Jl. Koloel Wahid Udi Lk. I Kel. Kayuara Sekayu 30711 web:www.polsky.ac.id mail: polsky@polsky.ac.id Tel.

Lebih terperinci

Fungsi. Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B.

Fungsi. Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B. Fugsi Misalka A da B himpua. Relasi bier f dari A ke B merupaka suatu fugsi jika setiap eleme di dalam A dihubugka dega tepat satu eleme di dalam B. Jika f adalah fugsi dari A ke B kita meuliska f : A

Lebih terperinci

Fisika Statistik. Jumlah SKS : 3. Oleh : Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Mulawarman

Fisika Statistik. Jumlah SKS : 3. Oleh : Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Mulawarman Fiika Statitik Jumlah SKS : 3 Oleh : Rahmawati M, S.Si., M.Si. Jurua Fiika Fakulta Matematika da Ilmu Pegetahua Alam Uiverita Mulawarma Pertemua 2 da 3 Pedahulua (Termodiamika) 2. Statitik Maxwell-Boltzma.

Lebih terperinci

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3 BAB XII. SUKU BANYAK A = a Pegertia: f(x) = a x + a x + a x + + a x +a adalah suku bayak (poliom) dega : - a, a, a,.,a, a, a 0 adalah koefisiekoefisie suku bayak yag merupaka kostata real dega a 0 - a

Lebih terperinci

ANALISIS SISTEM NON LINEAR MELALUI PENDEKATAN SISTEM LINEAR DENGAN PARAMETER BERUBAH-UBAH

ANALISIS SISTEM NON LINEAR MELALUI PENDEKATAN SISTEM LINEAR DENGAN PARAMETER BERUBAH-UBAH ANALISIS SISEM NON LINEAR MELALUI PENDEKAAN SISEM LINEAR DENGAN PARAMEER BERUBAH-UBAH Widowati Jurua Matematika FMIPA UNDIP Jl Prof H Soedarto SH Semarag 5075 e-mail: wiwied_mathudip@yahoocom Abtrak Pada

Lebih terperinci

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian BAB I PENDAHULUAN A. Latar Belakag Masalah Matematika merupaka suatu ilmu yag mempuyai obyek kajia abstrak, uiversal, medasari perkembaga tekologi moder, da mempuyai pera petig dalam berbagai disipli,

Lebih terperinci

MATERI PEMBEKALAN PESERTA OLIMPIADE NASIONAL MATEMATIKA PERGURUAN TINGGI BIDANG ALJABAR

MATERI PEMBEKALAN PESERTA OLIMPIADE NASIONAL MATEMATIKA PERGURUAN TINGGI BIDANG ALJABAR MATERI PEMBEKALAN PESERTA OLIMPIADE NASIONAL MATEMATIKA PERGURUAN TINGGI BIDANG ALJABAR Oleh: AGUS MAMAN ABADI JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI

Lebih terperinci

Pembentukan Ring Bersih Menggunakan Lokalisasi Ore. Construction of Clean Ring using Ore Localization

Pembentukan Ring Bersih Menggunakan Lokalisasi Ore. Construction of Clean Ring using Ore Localization Jurnal Matematika & Sain, April 4, Vol. 9 Nomor Pembentukan Ring Berih Menggunakan Lokaliai Ore Abtrak Uha Inaini dan Indah Emilia Wijayanti ) Juruan Matematika, Fakulta Matematika dan Ilmu Pengetahuan

Lebih terperinci

Jurusan Matematika Universitas Riau, Riau 1 Kampus Binawidya Pekanbaru 28293, Indonesia Jurusan Matematika Universitas Riau, Riau 2 ABSTRACT

Jurusan Matematika Universitas Riau, Riau 1 Kampus Binawidya Pekanbaru 28293, Indonesia Jurusan Matematika Universitas Riau, Riau 2 ABSTRACT Proidig emirata05 bidag MIPA BK-PT Barat Uiverita Tajugpura Potiaak PEAKIR RAIO DA PRODUK EKPOEIAL YAG EFIIE UTUK VARIAI POPULAI PADA AMPLIG ACAK EDERHAA EXPOETIAL RATIO AD PRODUCT ETIMATIO FOR POPULATIO

Lebih terperinci

BAB II LANDASAN TEORI. Pada bab ini akan dibahas dasar-dasar teori yang akan digunakan

BAB II LANDASAN TEORI. Pada bab ini akan dibahas dasar-dasar teori yang akan digunakan BAB II LANDASAN TEORI Pada bab ii aka dibaa daar-daar teori yag aka diguaka dalam peulia kripi ii, yaitu megeai metode peakira maximum likeliood, metode peakira oit maximum likeliood da fier iformatio..1

Lebih terperinci

Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1

Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1 Barisa Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 9/0/06 Matematika Barisa Tak Higga Secara sederhaa, barisa merupaka susua dari bilaga bilaga yag urutaya berdasarka bilaga

Lebih terperinci

BAB 6. DERET TAYLOR DAN DERET LAURENT Deret Taylor

BAB 6. DERET TAYLOR DAN DERET LAURENT Deret Taylor Bab 6 Deret Taylor da Deret Lauret BAB 6 DERET TAYLOR DAN DERET LAURENT 6 Deret Taylor Misal fugsi f aalitik pada - < R ligkara dega pusat di da jari-jari R Maka utuk setiap titik pada ligkara itu f dapat

Lebih terperinci

INTERVAL KEPERCAYAAN

INTERVAL KEPERCAYAAN INTERVAL KEPERCAYAAN Tujua utama diambil ebuah ampel dari ebuah populai adalah utuk memperoleh iformai megeai parameter populai.. Ada cara meetuka parameter populai yaitu peakira da pegujia hipotei. Peakira

Lebih terperinci

PERTEMUAN 13. VEKTOR dalam R 3

PERTEMUAN 13. VEKTOR dalam R 3 PERTEMUAN VEKTOR dalam R Pegertia Ruag Vektor Defiisi R Jika adalah sebuah bilaga bulat positif, maka tupel - - terorde (ordered--tuple) adalah sebuah uruta bilaga riil ( a ),a,..., a. Semua tupel - -terorde

Lebih terperinci

Himpunan Kritis Pada Graph Caterpillar

Himpunan Kritis Pada Graph Caterpillar 1 0 Himpua Kritis Pada Graph Caterpillar Chairul Imro, Budi Setiyoo, R. Simajutak, Edy T. Baskoro {imro-its,budi}@matematika.its.ac.id, {rio,ebaskoro}@ds.math.itb.ac.id Ues, Semarag, 4 7 Juli 006 Abstrak

Lebih terperinci

HUBUNGAN VARIETY DAN IDEAL RADIKAL SKRIPSI. Oleh : Ambar Mujiarti J2A

HUBUNGAN VARIETY DAN IDEAL RADIKAL SKRIPSI. Oleh : Ambar Mujiarti J2A HUBUNGAN VARIETY DAN IDEAL RADIKAL SKRIPSI Oleh : Ambar Mujiarti J2A 004 003 PROGRAM STUDI MATEMATIKA JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS DIPONEGORO SEMARANG 2009

Lebih terperinci

TESIS KARAKTERISASI RING-RING DENGAN SIFAT JUMLAH BASIS TETAP DAN TOPIK-TOPIK YANG TERKAIT

TESIS KARAKTERISASI RING-RING DENGAN SIFAT JUMLAH BASIS TETAP DAN TOPIK-TOPIK YANG TERKAIT TESIS KAAKTEISASI ING-ING DENGAN SIFAT JUMLAH BASIS TETAP DAN TOPIK-TOPIK YANG TEKAIT CHAACTEISATION OF INGS WITH INVAIANT BASIS NUMBE AND ELATED TOPICS SAMSUL AIFIN 09/290722/PPA/02875 POGAM STUDI S2

Lebih terperinci

BAB I PENDAHULUAN. Integral adalah salah satu konsep penting dalam Matematika yang

BAB I PENDAHULUAN. Integral adalah salah satu konsep penting dalam Matematika yang BAB I PENDAHULUAN 1.1 Latar Belakag Masalah Itegral adalah salah satu kosep petig dalam Matematika yag dikemukaka pertama kali oleh Isac Newto da Gottfried Wilhelm Leibiz pada akhir abad ke-17. Selajutya

Lebih terperinci

Pendugaan. Parameter HAZMIRA YOZZA IZZATI RAHMI HG JURUSAN MATEMATIKA FMIPA UNIV. ANDALAS LOGO

Pendugaan. Parameter HAZMIRA YOZZA IZZATI RAHMI HG JURUSAN MATEMATIKA FMIPA UNIV. ANDALAS LOGO Pedugaa Parameter HAZMIRA YOZZA JURUSAN MATEMATIKA FMIPA UNIV. ANDALAS LOGO Kompetei meyebutka klp ifereia tatitika & ruag ligkupya mejelaka metode pedugaa klaik da yarat-yarat peduga yag baik pada pedugaa

Lebih terperinci

BAB II TEORI DASAR. Definisi Grup G disebut grup komutatif atau grup abel jika berlaku hukum

BAB II TEORI DASAR. Definisi Grup G disebut grup komutatif atau grup abel jika berlaku hukum BAB II TEORI DASAR 2.1 Aljabar Liier Defiisi 2. 1. 1 Grup Himpua tak kosog G disebut grup (G, ) jika pada G terdefiisi operasi, sedemikia rupa sehigga berlaku : a. Jika a, b eleme dari G, maka a b eleme

Lebih terperinci

Pelabelan E-cordial pada Graf Hasil Cartesian Product

Pelabelan E-cordial pada Graf Hasil Cartesian Product Pelabela E-cordial pada Gra Hasil Cartesia Product Kholis Widyasmedi, R. Heri Soelistyo Program Studi Matematika Jurusa Matematika Fakultas Sais da Matematika Uiversitas Dipoegoro Email: widyasmedi@gmail.com

Lebih terperinci

SIFAT-SIFAT DASAR MATRIKS SKEW HERMITIAN Basic Properties of Skew Hermitian Matrices

SIFAT-SIFAT DASAR MATRIKS SKEW HERMITIAN Basic Properties of Skew Hermitian Matrices Jural Barekeg Vol. 7 No. 2 Hal. 19 26 (2013) SIFAT-SIFAT DASAR MATRIKS SKEW HERMITIAN Basic Properties of Skew Hermitia Matrices LIDIA SALAKA 1, HENRY W. M. PATTY 2, MOZART WINSTON TALAKUA 3 1 Mahasiswa

Lebih terperinci

Sistem Bilangan Real. Modul 1 PENDAHULUAN

Sistem Bilangan Real. Modul 1 PENDAHULUAN Modul 1 Sistem Bilaga Real Prof. R. Soematri D PENDAHULUAN alam modul ii aka dibahas sifat-sifat pokok bilaga real. Meskipu pembaca sudah akrab bear dega bilaga real amu modul ii aka membahasya lebih cermat

Lebih terperinci

BAB III RUANG HAUSDORFF. Pada bab ini akan dibahas mengenai ruang Hausdorff, kekompakan pada

BAB III RUANG HAUSDORFF. Pada bab ini akan dibahas mengenai ruang Hausdorff, kekompakan pada 8 BAB III RUANG HAUSDORFF Pada bab ii aka dibahas megeai ruag Hausdorff, kekompaka pada ruag Hausdorff da ruag regular legkap. Pembahasa diawali dega medefiisika Ruag Hausdorff da beberapa sifatya kemudia

Lebih terperinci

TINJAUAN PUSTAKA. 2.1 Ruang Vektor. Definisi (Darmawijaya, 2007) Diketahui (V, +) grup komutatif dan (F,,. ) lapangan dengan elemen identitas

TINJAUAN PUSTAKA. 2.1 Ruang Vektor. Definisi (Darmawijaya, 2007) Diketahui (V, +) grup komutatif dan (F,,. ) lapangan dengan elemen identitas II. TINJAUAN PUSTAKA 2.1 Ruag Vektor Defiisi 2.1.1 (Darmawijaya, 2007) Diketahui (V, +) grup komutatif da (F,,. ) lapaga dega eleme idetitas 1. V disebut ruag vektor (vector space) atas F jika ada operasi

Lebih terperinci

BARISAN PANGKAT TERURUT MATRIKS PADA ALJABAR MAX PLUS

BARISAN PANGKAT TERURUT MATRIKS PADA ALJABAR MAX PLUS BRISN PNGKT TERURUT MTRIKS PD LJBR MX PLUS Nurwa Jurusa Matematika FMIP Uiversitas Negeri Gorotalo E-mail: urwa_mat@ug.ac.id bstrak Diberika matriks R yag memeuhi = λ. Matriks adalah k + c c k taktereduksi

Lebih terperinci

Diagram Kendali Simpangan Baku Eksak untuk Proses Berdistribusi Normal dengan Parameter σ Diketahui

Diagram Kendali Simpangan Baku Eksak untuk Proses Berdistribusi Normal dengan Parameter σ Diketahui Statitika, Vol. No., 5 6 Mei Diagram Kedali Simpaga Baku Ekak utuk Proe Berditribui Normal dega Parameter Diketahui Aceg Komarudi Mutaqi, Suwada Program Studi Statitika Fakulta MIPA Uiverita Ilam Badug,

Lebih terperinci

Induksi matematik untuk memecahkan problema deret dan bilangan bulat bentuk kuadrat sempurna

Induksi matematik untuk memecahkan problema deret dan bilangan bulat bentuk kuadrat sempurna Iduksi matematik utuk memecahka problema deret da bilaga bulat betuk kuadrat sempura Oleh: Sutopo Jurusa Fisika FMIPA UM sutopo@fisika.um.ac.id Ditulis pada sekitar bula Februari 2011. Diuggah pada 3 Desember

Lebih terperinci

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI IPA SMA Al Azhar-3

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI IPA SMA Al Azhar-3 III. METODOLOGI PENELITIAN A. Populai da Sampel Peelitia Populai dalam peelitia ii adalah emua iwa kela I IPA SMA Al Azhar-3 Badar Lampug tahu ajara 0/0 yag berjumlah 48 iwa da terebar dalam empat kela.

Lebih terperinci

PENDUGAAN PARAMETER. Ledhyane Ika Harlyan

PENDUGAAN PARAMETER. Ledhyane Ika Harlyan PENDUGAAN PARAMETER Ledhyae Ika Harlya Jurua Pemafaata Sumberdaya Perikaa da Kelauta Uiverita Brawijaya 03 Statitik Ifereia Mecakup emua metode yag diguaka dalam pearika keimpula atau geeraliai megeai

Lebih terperinci

Solusi Numerik PDP. ( Metode Beda Hingga ) December 9, 2013. Solusi Numerik PDP

Solusi Numerik PDP. ( Metode Beda Hingga ) December 9, 2013. Solusi Numerik PDP ( Metode Beda Higga ) December 9, 2013 Sebuah persamaa differesial apabila didiskritisasi dega metode beda higga aka mejadi sebuah persamaa beda. Jika persamaa differesial parsial mempuyai solusi eksak

Lebih terperinci

PENAKSIR RASIO UNTUK VARIANSI POPULASI MENGGUNAKAN KUARTIL DARI KARAKTER TAMBAHAN PADA SAMPLING ACAK SEDERHANA

PENAKSIR RASIO UNTUK VARIANSI POPULASI MENGGUNAKAN KUARTIL DARI KARAKTER TAMBAHAN PADA SAMPLING ACAK SEDERHANA PEAKIR RAIO UTUK VARIAI POPULAI MEGGUAKA KUARTIL DARI KARAKTER TAMBAHA PADA AMPLIG ACAK EDERHAA Ari Elvita *, Arima Ada, Hapoa irait Mahaiwa Program Matematika Doe Jurua Matematika Fakulta Matematika da

Lebih terperinci

BARISAN DAN DERET. Nurdinintya Athari (NDT)

BARISAN DAN DERET. Nurdinintya Athari (NDT) BARISAN DAN DERET Nurdiitya Athari (NDT) BARISAN Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) = a Fugsi tersebut dikeal sebagai barisa bilaga

Lebih terperinci

SIFAT-SIFAT FUNGSI EKSPONENSIAL BERBASIS BILANGAN NATURAL YANG DIDEFINISIKAN SEBAGAI LIMIT

SIFAT-SIFAT FUNGSI EKSPONENSIAL BERBASIS BILANGAN NATURAL YANG DIDEFINISIKAN SEBAGAI LIMIT Jural Matematika UNAND Vol. 4 No. 1 Hal. 12 22 ISSN : 2303 2910 c Jurusa Matematika FMIPA UNAND SIFAT-SIFAT FUNGSI EKSPONENSIAL BERBASIS BILANGAN NATURAL YANG DIDEFINISIKAN SEBAGAI LIMIT ENIVA RAMADANI

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret Program Perkuliaha Dasar Umum Sekolah Tiggi Tekologi Telkom Barisa da Deret Barisa Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) a Fugsi tersebut

Lebih terperinci

Bab IV. Penderetan Fungsi Kompleks

Bab IV. Penderetan Fungsi Kompleks Bab IV Pedereta Fugsi Kompleks Sebagaimaa pada fugsi real, fugsi kompleks juga dapat dideretka pada daerah kovergesiya. Semua watak kajia kovergesi pada fugsi real berlaku pula pada fugsi kompleks. Secara

Lebih terperinci

BARISAN DAN DERET. 05/12/2016 Matematika Teknik 1 1

BARISAN DAN DERET. 05/12/2016 Matematika Teknik 1 1 BARISAN DAN DERET 05//06 Matematika Tekik BARISAN Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 05//06 Matematika Tekik Barisa Tak Higga Secara sederhaa, barisa merupaka

Lebih terperinci

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi 6. Pecacaha Lajut Relasi Rekuresi Relasi rekuresi utuk dereta {a } adalah persamaa yag meyataka a kedalam satu atau lebih suku sebelumya, yaitu a 0, a,, a -, utuk seluruh bilaga bulat, dega 0, dimaa 0

Lebih terperinci

Selang Kepercayaan dari Parameter Distribusi Log-Normal Menggunakan Metode Bootstrap Persentil

Selang Kepercayaan dari Parameter Distribusi Log-Normal Menggunakan Metode Bootstrap Persentil Statitika, Vol. 8 No. 1, 13 17 Mei 008 Selag Kepercayaa dari Parameter Ditribui Log-Normal Megguaka Metode Boottrap Peretil Akhmad Fauzy Jurua Statitika FMIPA Uiverita Ilam Idoeia Yogyakarta Abtract I

Lebih terperinci

Setelah mempelajari modul ini Anda diharapkan dapat: a. memeriksa apakah suatu pemetaan merupakan operasi;

Setelah mempelajari modul ini Anda diharapkan dapat: a. memeriksa apakah suatu pemetaan merupakan operasi; Modul 1 Operasi Dr. Ahmad Muchlis B PENDAHULUAN erapakah 97531 86042? Kalau Ada megguaka kalkulator, jawabaya amat bergatug pada tipe kalkulator yag Ada pakai. 9 Kalkulator ilmiah Casio fx-250 memberika

Lebih terperinci

B a b 1 I s y a r a t

B a b 1 I s y a r a t 34 TKE 315 ISYARAT DAN SISTEM B a b 1 I s y a r a t (bagia 3) Idah Susilawati, S.T., M.Eg. Program Studi Tekik Elektro Fakultas Tekik da Ilmu Komputer Uiversitas Mercu Buaa Yogyakarta 29 35 1.5.2. Isyarat

Lebih terperinci

Hendra Gunawan. 12 Februari 2014

Hendra Gunawan. 12 Februari 2014 MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2013/2014 12 Februari 2014 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 82 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg

Lebih terperinci

ARTIKEL. Menentukan rumus Jumlah Suatu Deret dengan Operator Beda. Markaban Maret 2015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN

ARTIKEL. Menentukan rumus Jumlah Suatu Deret dengan Operator Beda. Markaban Maret 2015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN ARTIKEL Meetuka rumus Jumlah Suatu Deret dega Operator Beda Markaba 191115198801005 Maret 015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN PUSAT PENGEMBANGAN DAN PEMBERDAYAAN PENDIDIK DAN TENAGA KEPENDIDIKAN

Lebih terperinci

ANALISIS REAL I PENGANTAR. (Introduction to Real Analysis I) M. Zaki Riyanto, S.Si DIKTAT KULIAH ANALISIS

ANALISIS REAL I PENGANTAR. (Introduction to Real Analysis I) M. Zaki Riyanto, S.Si DIKTAT KULIAH ANALISIS DIKTAT KULIAH ANALISIS PENGANTAR ANALISIS REAL I (Itroductio to Real Aalysis I) M Zaki Riyato, SSi e-mail: zaki@mailugmacid http://zakimathwebid COPYRIGHT 008-009 Pegatar Aalisis Real I HALAMAN PERSEMBAHAN

Lebih terperinci

Pendekatan Nilai Logaritma dan Inversnya Secara Manual

Pendekatan Nilai Logaritma dan Inversnya Secara Manual Pedekata Nilai Logaritma da Iversya Secara Maual Moh. Affaf Program Studi Pedidika Matematika, STKIP PGRI BANGKALAN affafs.theorem@yahoo.com Abstrak Pada pegaplikasiaya, bayak peggua yag meggatugka masalah

Lebih terperinci

Model Pertumbuhan BenefitAsuransi Jiwa Berjangka Menggunakan Deret Matematika

Model Pertumbuhan BenefitAsuransi Jiwa Berjangka Menggunakan Deret Matematika Prosidig Semirata FMIPA Uiversitas Lampug, 0 Model Pertumbuha BeefitAsurasi Jiwa Berjagka Megguaka Deret Matematika Edag Sri Kresawati Jurusa Matematika FMIPA Uiversitas Sriwijaya edagsrikresawati@yahoocoid

Lebih terperinci

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3 SUKU BANYAK A Pegertia: f(x) x + a 1 x 1 + a 2 x 2 + + a 2 +a 1 adalah suku bayak (poliom) dega : - a, a 1, a 2,.,a 2, a 1, a 0 adalah koefisiekoefisie suku bayak yag merupaka kostata real dega a 0 - a

Lebih terperinci

Induksi Matematika. Pertemuan VII Matematika Diskret Semester Gasal 2014/2015 Jurusan Teknik Informatika UPN Veteran Yogyakarta

Induksi Matematika. Pertemuan VII Matematika Diskret Semester Gasal 2014/2015 Jurusan Teknik Informatika UPN Veteran Yogyakarta Iduksi Matematika Pertemua VII Matematika Diskret Semester Gasal 2014/2015 Jurusa Tekik Iformatika UPN Vetera Yogyakarta Metode pembuktia utuk peryataa perihal bilaga bulat adalah iduksi matematik. Cotoh

Lebih terperinci

LANDASAN TEORI. Pada bab ini akan diberikan beberapa konsep dasar (pengertian) yang akan digunakan dalam. pembahasan penelitian. 2.

LANDASAN TEORI. Pada bab ini akan diberikan beberapa konsep dasar (pengertian) yang akan digunakan dalam. pembahasan penelitian. 2. II. LANDASAN TEORI Pada bab ii aka diberika beberapa kosep dasar (pegertia) yag aka diguaka dalam pembahasa peelitia 2.1 Ruag Vektor Defiisi 3.1.1 (Darmawijaya, 2007) Diketahui (V, +) grup komutatif da

Lebih terperinci

Pengaruh Kenon-Unitalan Modul Terhadap Hasil Kali Tensor

Pengaruh Kenon-Unitalan Modul Terhadap Hasil Kali Tensor 6 : Pegaruh Keo Uitala odul. Pegaruh Keo-Uitala odul Terhadap Hasil Kali Tesor Oleh : Jurusa atetika FIP UNDIP Jl. Prof. H. Soedarto, S.H., Serag 5075 eil : ikkepri@yahoo.com BSTK. Pembahasa tetag teori

Lebih terperinci

INVERS TERGENERALISASI MATRIKS ATAS ALJABAR MAXPLUS Musthofa Jurusan Pendidikan Matematika FMIPA UNY

INVERS TERGENERALISASI MATRIKS ATAS ALJABAR MAXPLUS Musthofa Jurusan Pendidikan Matematika FMIPA UNY INVERS TERGENERALISASI MATRIKS ATAS ALJABAR MAXPLUS Musthofa Jurusa Pedidika Matematika FMIPA UNY musthofa@uy.ac.id Abstrak Jika A matriks atas lapaga, maka pasti terdapat dega tuggal suatu matriks B yag

Lebih terperinci

Solusi Soal OSN 2012 Matematika SMA/MA Hari Pertama

Solusi Soal OSN 2012 Matematika SMA/MA Hari Pertama Solusi Soal OSN Matematika SMA/MA Hari Pertama Soal 1. Buktika bahwa utuk sebarag bilaga asli a da b, bilaga adalah bilaga bulat geap tak egatif. = F P B (a, b) + KP K (a, b) a b Solusi. Pertama aka dibuktika

Lebih terperinci

BAB 5 BARISAN DAN DERET KOMPLEKS. Secara esensi, pembahasan tentang barisan dan deret komlpeks sama dengan barisan dan deret real.

BAB 5 BARISAN DAN DERET KOMPLEKS. Secara esensi, pembahasan tentang barisan dan deret komlpeks sama dengan barisan dan deret real. BAB 5 BARIAN DAN DERET KOMPLEK ecara eses, pembahasa tetag barsa da deret komlpeks sama dega barsa da deret real. 5. Barsa Barsa merupaka sebuah fugs dega doma berupa hmpua blaga asl N. ebuah barsa kompleks

Lebih terperinci

Fungsi Kompleks. (Pertemuan XXVII - XXX) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

Fungsi Kompleks. (Pertemuan XXVII - XXX) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya TKS 4007 Matematika III Fugsi Kompleks (Pertemua XXVII - XXX) Dr. AZ Jurusa Tekik Sipil Fakultas Tekik Uiversitas Brawijaya Pedahulua Persamaa x + 1 = 0 tidak memiliki akar dalam himpua bilaga real. Pertayaaya,

Lebih terperinci

Hendra Gunawan. 14 Februari 2014

Hendra Gunawan. 14 Februari 2014 MA20 MATEMATIKA 2A Hedra Guawa Semester II, 203/204 4 Februari 204 Sasara Kuliah Hari Ii 9. Barisa Tak Terhigga Memeriksa kekovergea suatu barisa da, bila mugki, meghitug limitya 9.2 Deret Tak Terhigga

Lebih terperinci

HALAMAN Dengan definisi limit barisan buktikan limit berikut ini : = 0. a. lim PENYELESAIAN : jadi terbukti bahwa lim = 0 = 5. b.

HALAMAN Dengan definisi limit barisan buktikan limit berikut ini : = 0. a. lim PENYELESAIAN : jadi terbukti bahwa lim = 0 = 5. b. Didowload dari ririez.blog.us.ac.id HALAMAN 36 37 5. Dega defiisi limit barisa buktika limit berikut ii : a. lim = 0 lim 1 2 + 3 = 0 > 0 h 1 = 2 + 3 0 = 1 2 + 3 1 2 1 2 1 2 < jadi terbukti bahwa lim =

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 71-76, Agustus 2003, ISSN :

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 71-76, Agustus 2003, ISSN : JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 71-76, Agustus 2003, ISSN : 1410-8518 SYARAT CUKUP AGAR SUATU FUNGSI TERINTEGRAL HENSTOCK MUTLAK DI DALAM RUANG METRIK KOMPAK LOKAL Mauharawati Jurusa Matematika

Lebih terperinci

Pengertian Secara Intuisi

Pengertian Secara Intuisi Pegertia Secara Ituisi Coba Gambarka grafik fugsi-fugsi berikut.. f ( ) +, pada [0,].. ) pada [0, ] da.. Dari grafik fugsi yag kamu peroleh, apa yag dapat kamu kataka tetag ilai-ilai ketiga fugsi tersebut

Lebih terperinci

BARISAN TAK HINGGA DAN DERET TAK HINGGA

BARISAN TAK HINGGA DAN DERET TAK HINGGA BARIAN TAK HINGGA DAN DERET TAK HINGGA Bajar/Barisa Tak Higga Barisa tak higga { } adalah suatu fugsi dari dimaa daerah domaiya adalah himpua bilaga bulat positif (bilaga asli). Cotoh: Bila.. maka fugsi

Lebih terperinci

Distribusi Pendekatan (Limiting Distributions)

Distribusi Pendekatan (Limiting Distributions) Distribusi Pedekata (Limitig Distributios) Ada 3 tekik utuk meetuka distribusi pedekata: 1. Tekik Fugsi Distribusi Cotoh 2. Tekik Fugsi Pembagkit Mome Cotoh 3. Tekik Teorema Limit Pusat Cotoh Fitriai Agustia,

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2016/2017 3 Februari 2017 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg Batas

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 1, 41-48, April 2003, ISSN : MATRIKS STOKASTIK GANDA DAN SIFAT-SIFATNYA

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 1, 41-48, April 2003, ISSN : MATRIKS STOKASTIK GANDA DAN SIFAT-SIFATNYA JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No., 4-48, April 00, ISSN : 40-858 MATRIKS STOKASTIK GANDA DAN SIFAT-SIFATNYA Suryoto Jurusa Matematika F-MIPA Uiversas Dipoegoro Semarag Abstrak Suatu matriks tak

Lebih terperinci