Pengaruh Kenon-Unitalan Modul Terhadap Hasil Kali Tensor

Ukuran: px
Mulai penontonan dengan halaman:

Download "Pengaruh Kenon-Unitalan Modul Terhadap Hasil Kali Tensor"

Transkripsi

1 6 : Pegaruh Keo Uitala odul. Pegaruh Keo-Uitala odul Terhadap Hasil Kali Tesor Oleh : Jurusa atetika FIP UNDIP Jl. Prof. H. Soedarto, S.H., Serag 5075 eil : ikkepri@yahoo.com BSTK. Pembahasa tetag teori modul oleh [5] dibagi mejadi modul uital da modul o uital. Grup bel yag memeuhi aksio utuk mejadi -modul kecuali aksio uital disebut - modul o uital. Pada keyataaya rig dega eleme satua tidak selalu mejami bahwa aksio uital modul tersebut dipeuhi. Dalam paper ii dijelaska tetag hasil kali tesor dari modul o uital atas rig dega eleme satua. Beberapa sifat khusus seperti isomorfis pada hasil kali tesor pada modul uital tidak dapat dipertahaka oleh modul o uital. Kata Kuci : aksio uital, modul o-uital, modul uital, hasil kali tesor I. PENDHULUN odul adalah struktur yag diperoleh melalui operasi pergadaa skalar (aksi) atara grup bel da rig. Pada umumya modul yag lebih bayak dikeal adalah modul uital. Defiisi aksio uital utuk -modul kiri adalah ( m )1 m= m. Pada [5] pembahasa tetag modul dibagi mejadi modul uital da modul o-uital. Berbeda dega modul uital, rig di modul o-uital tidak harus dilegkapi dega eleme satua 1. Pada keyataaya, rig dega eleme satua pu tidak mejami modul yag terbetuk pasti bersifat uital. odul o-uital atas rig dega eleme satua iilah yag mejadi latar belakag peulisa paper ii. Utuk setiap -modul kiri uital N da -modul kaa uital dapat dibetuk hasil kali tesor atara da N yaitu N. Hasil kali tesor tersebut memeuhi beberapa sifat-sifat tertetu. Persalahaya adalah apakah keuitala sebuah modul aka berpegaruh terhadap hasil kali tesor yag terbetuk. Pada tulisa ii utuk modul uital cukup ditulis dega modul saja. Peulis megaggap bahwa pembaca telah mehami kosep Teori odul uital, sehigga tidak perlu diberika pejelasa tetag hal tersebut. II. HSIL KLI TENSO Bagia ii memberika defiisi hasil kali tesor modul uital beserta sifatsifatya. Sebelumya dijelaska tetag pegertia pemetaa biliear da seimbag ( balaced ) dalam hubugaya dega pembetuka hasil kali tesor. Defiisi da sifat-sifat berikut diambil dari [5]. Defiisi.1 Diberika -modul kaa, -modul kiri N da grup bel ( G, + ). Pemetaa β : N G disebut fugsi biliear da seimbag atas jika utuk setiap m1, m, 1, N da r berlaku β m + m, = β m, + β m, (i). ( 1 1) ( 1 1) ( 1) (ii). β( m1, 1+ ) = β( m1, 1) + β( m1, ) (iii). β( mr, ) = β( m, r ) (Balace) Defiisi hasil kali tesor dari da N dijelaska dalam defiisi berikut. akalah dipresetasika dalam Semiar Nasioal atetika da Pedidika atetika dega te Peigkata Kotribusi Peelitia da Pembelajara atetika dalam Upaya Pembetuka Karakter Bagsa pada taggal 7 November 010 di Jurusa Pedidika atetika FIP UNY

2 6 : Pegaruh Keo Uitala odul. Defiisi. Diberika -modul kaa, -modul kiri N da sebarag grup bel ( G, +). Grup bel N beserta fugsi biliear da seimbag τ disebut hasil kali tesor dari da N jika utuk setiap pemetaa biliear da seimbag β : N G terdapat dega tuggal pemetaa β : N G sedemikia higga diagram berikut komutatif, yaitu β = β o τ. β N G τ β N Figure 1 : Diagram hasil kali tesor Eleme-eleme dari m m da N. i I Teore.3 Diberika -modul kaa da -modul kiri N. Hasil kali tesor dari da N tuggal. Lem.4 Jika N adalah hasil kali tesor dari -modul kaa da - modul kiri N diyataka dega { i i i i }, ka utuk setiap m, m,, N, da r berlaku N 1 1 m1+ m 1 = m1 1+ m 1 (i). (ii). m + = m + m (iii). mr = m r (iv). m 0= 0 = 0 Defiisi.5 Hasil kali tesor homomorfis f : ' da g: N N' adalah pemetaa f g: N ' N' dega defiisi ( m N) f g( m ) = f ( m) g Teore.6 Diberika homomorfis -modul kaa f : ', ' f ': '' da homomorfis -modul kiri g: N N', g': N' N''. Sifat-sifat berikut dipeuhi (i). Id Id N = Id N (ii). f on = o g =o f ' g' o f g = f ' o f g' o g (iii). Proposisi berikut ii mejelaska bahwa hasil kali tesor mempertahaka keeksaka kaa barisa modul-modul. Semiar Nasioal atetika da Pedidika atetika Yogyakarta, 7 ovember

3 6 : Pegaruh Keo Uitala odul. Proposisi.7 Diberika barisa eksak kaa dari -modul kiri f g B C 0. Utuk setiap -modul kaa D barisa I D f I D D g D B D C 0 juga eksak kaa. Berdasarka pegertia hasil kali tesor, [5] dapat meujukka eksistesi isomorfis didalam hasil kali tesor melalui tiga teore berikut: Teore.8 Utuk setiap -modul kaa da -modul kiri B, ka da B B. Bukti: Diketahui = (, )-bimodul, ka dapat dibetuk da B. Jika dibetuk pemetaa α : dega defiisi ( a r ) α ( a r) = ar da pemetaa β : dega defiisi ( a ) β ( a) a 1, = diperoleh α o β = I da β o α = I atau. alog utuk B B. Teore.9 Utuk setiap -modul kaa, ka ( B) C ( B C. S S ) Teore.10 Utuk setiap keluarga ( λ) B= ( λ ). λ Λ B λ Λ S -bimodul B da S -modul kiri C, (, ) -modul kaa { λ } λ Λ da -modul kiri B, III. ODUL NON-UNITL Pada [5] pembahasa tetag modul terbagi mejadi dua bagia yaitu modul uital da modul o-uital. Berbeda dega modul uital, pada modul o-uital struktur rigya tidak harus dilegkapi dega eleme satua. Utuk lebih jelas cotoh berikut dapat dijadika motivasi muculya defiisi modul o-uital. Cotoh 3.1 Diberika rig. Himpua = merupaka subrig dari { } yag tidak mempuyai eleme satua, yaitu 1. Pada didefiisika sebuah aksi atas diriya sediri yaitu,,m a m. Terhadap aksi tersebut, memeuhi semua aksio utuk mejadi sebuah modul kecuali aksio uital, sebab tak mempuyai eleme satua. Jadi merupaka modul o-uital atas diriya sediri. Cotoh 3.1 dapat dijadika motivasi muculya defiisi modul-o uital berikut yag diambil dari [5] da [9] sebagai berikut. Defiisi 3. (odul o-uital) Diberika rig (tidak harus mempuyai eleme satua). Grup bel terhadap sebuah aksi kiri α :, ( am, ) a amdisebut -modul kiri o-uital jika utuk setiap r1, r da m1, m aksio berikut dipeuhi: (i). r1( m1+ m) = rm 1 1+ rm 1 r + r m = rm + rm (ii) Semiar Nasioal atetika da Pedidika atetika Yogyakarta, 7 ovember 010 6

4 6 : Pegaruh Keo Uitala odul. (iii).( rr ) m = r ( rm ) Defiisi utuk -modul kaa da (, B) -bimodul o-uital diperoleh dega cara yag aalog. Homomorfis pada -modul o-uital didefiisika dega cara yag sa seperti pada Homomorfis -modul. Pada kasus rig dega eleme satua, tidak selalu mejami bahwa modul yag terbetuk aka selalu memeuhi aksio uital. Cotoh 3.3 Diberika -modul kiri da hasil kali kartesia = a, a a, a. Himpua adalah rig dega eleme satua dega {( 1 ) 1 } defiisi operasiya ( ( a1, a),( b1, b) ) 1. ( a1, a) + ( b1, b) = ( a1+ b1, a + b). ( a1, a).( b1, b) = ( ab 1 1, ab). Kemudia pada didefiisika aksi kiri ( ( a1, a) )( m ) (( a1, a), m) ( a1, a) m am 1 am α :, α = = +. Terhadap aksi kiri α, merupaka -modul kiri o-uital. Bukti: Berdasarka aksio yag dimiliki -modul kiri diperoleh (i). (, + ) grup bel, (ii). (, +, ) rig dega eleme satua ( 1,1 ) (iii). ksi kiri α tertutup, sebab utuk setiap ( 1, ) α (, ), =, = +. a1 a m a1 a m am 1 am (iv). ksi kiri α well defied. mbil sebarag ( 1, ) ( 1, ) α α a a da m, a a = b b da m 1 = m. ka ditujukka (,, ) = ((, ), ) (, ) = (, ) a a m b b m a a m b b m Karea a = b a b am + am = bm + bm, 1 1 = da m 1 = m, aksi kiri pada -modul meyebabka am 1 1 = bm 1 da am 1 = bm. Dari sifat bier operasi + di, diperoleh am + am = bm + bm Terbukti α well defied. (v). Utuk setiap ( 1, ),( 1, ) a a b b da m1, m diperoleh (, +, ) = ( +, + ) = ( + ) + ( + ) a a b b m a b a b m a b m a b m = am + bm + am + bm = am + am + bm + bm = ( a1, a) m1 + ( b1, b) m1. (, ) a1 a m1 + m = a1 m1 + m + a m1 + m = am am 1 + am 1 + am 3. (, ) (, ) = am + am + am + am = a a m + a a m (,., ) = (, ) = + a a b b m ab a b m ab m a b m a1( bm 1 1) a( bm1) ( a1, a)( bm 1 1 bm1) ( a, a ) ( b, b ) m = + = + = Semiar Nasioal atetika da Pedidika atetika Yogyakarta, 7 ovember

5 6 : Pegaruh Keo Uitala odul. m1 0, 1,1 m1 = 1m1+ 1 m1 = m1+ m1 m 1. Dari (i) (v) meskipu adalah rig dega eleme satua, tetapi merupaka -modul kiri o-uital. Secara umum berdasarka Cotoh 3.3 jika diberika -modul kiri uital, 4. jika ka ka dapat dipadag sebagai, adalah Lebih lajut jika, -bimodul o-uital. -modul kiri o-uital,. -bimodul uital, ka adalah Pada pembahasa berikutya, modul o-uital yag dibahas adalah modul o-uital atas rig dega eleme satua. Sehigga pada tulisa ii jika tidak diberika keteraga lebih lajut diasumsika sebagai rig dega eleme satua. Berikutya aka diberika cotoh-cotoh modul o-uital yag mucul akibat aksi α seperti pada Cotoh 3.3 diatas. Cotoh 3.4 Diberika rig dega eleme satua. Himpua yaitu himpua triks berukura atas merupaka modul kiri o-uital atas. Cotoh 3.5 Pada Cotoh 3.3, jika diambil rig adalah lapaga bilaga real da x T adalah ruag vektor xy =, = ( ), ka adalah -modul kiri y uital. Jadi terhadap aksi kiri seperti pada Cotoh 3.3, adalah -modul kiri ouital. Secara umum, merupaka -modul o-uital m,. m Cotoh 3.6 Pada Cotoh 3.3, jika diambil rig adalah rig triks berukura yaitu da adalah ruag vektor, ka adalah -modul kiri uital. kibatya adalah -modul kiri o-uital sebab x x 1 0 x 1 0 x x x \, = y 0 + = y 0 1 y 0 1 y y y Utuk m,, -modul kiri uital. Lebih lajut diperoleh merupaka adalah m ( ( )) -modul kiri o-uital. Cotoh 3.7 Utuk setiap ruag vektor V atas lapaga F, dapat dibetuk himpua LiF ( V, V ) = { T : V V T trasforsi liear }. LiF ( V, V ) merupaka ruag vektor atas lapaga F, ( TT, ' LiF ( VV, ))( α F) T + T ' LiF ( V, V ) da T LiF ( V, V) defiisi ( v V) T + T' ( v) = T( v) + T' ( v) da αt( v) α T( v) Selajutya dapat ditujukka bahwa sebab α dega =. Karea ruag vektor LiF ( V, V ) dapat dipadag sebagai F -modul, ka terhadap aksi seperti pada Cotoh 3.3 Li ( V, V merupaka F -modul kiri o-uital,. F ) IV. HSIL KLI TENSO DI ODUL NON-UNITL. Pada bagia sebelumya diberika pejelasa tetag hasil kali tesor utuk modul uital. Selajutya diberika pejelasa bagaia sifat uital sebuah modul berpegaruh terhadap hasil kali tesor yag terbetuk. Sifat-sifat di bawah ii ditulis berdasarka [9]. Semiar Nasioal atetika da Pedidika atetika Yogyakarta, 7 ovember

6 6 : Pegaruh Keo Uitala odul. Lem 4.1 Utuk setiap -modul kaa o-uital terdapat epimorfis 1:, m 1. Bukti : mbil sebarag m, a. 1( m+ ) = ( m+ ) 1= ( m 1) + ( 1 ) = 1( m) + 1 b. 1( rm) = rm 1= r ( m 1) = r ( 1)( m) c. Jika m a, utuk m tersebut terdapat sedemikia higga 1 = 1= m a1= m a. Dari (a) - (c) terbukti 1: merupaka epimorfis. Epimorfis 1 aka mejadi isomorfis jika da haya jika -modul kaa uital. Lem 4.1 juga berlaku utuk -modul kiri o-uital. Utuk setiap - modul kiri uital K terdapat epimorfis 1 : K K. Dari Teore.8 telah diketahui bahwa jika modul uital, ka. Berikut diberika teore tetag isomorfi pada kategori modul o uital. Peulis perlu megigatka kembali bahwa defiisi homomorfis pada modul o uital sa dega modul uital. Teore 4. Diberika Μ %. Pemetaa dega defiisi m a da Hom,, a f dega defiisi a ( r ) f ( r) = r merupaka isomorfis modul. Bukti: Bukti aalog dega Teore.8. Perbedaaya dikareaka struktur modul o-uitalya, yaitu utuk m, m 1 1. Diberika pemetaa α = Hom (, ), a f dia ( r ) f ( r) = r. (i). Pemetaa α well defied, sebab utuk setiap, b dega = b berakibat ( r ) r = br f ( r) = f ( r) f = f. b b (ii). Pemetaa α merupaka homorfis modul, sebab utuk setiap. b da r diperoleh α + b = f = f + f = α +α b da α + b b ( r) = f = f r = α r. r (iii) Ditujukka α ijektif. mbil sebarag x Ker( α ), α ( x) = f x = ο. kibatya = = karea berlaku utuk sebarag r, haruslah x = 0 atau ( r ) fx ( r) xr 0, Ker ( α ) = 0. (iv). Pemetaa α surjektif sebab utuk setiap g Hom (, ), terdapat g( 1 ) sedemikia higga ( r ) α ( g( 1 ))( r) = fg( 1 )( r) = g( 1 ) r = g( r) = g( r). Jadi terbukti g Hom (, ) g 1 α g 1 = g. 1 ( )( ) ( ) Semiar Nasioal atetika da Pedidika atetika Yogyakarta, 7 ovember

7 6 : Pegaruh Keo Uitala odul. Teore 4. da Teore.8 memberika gambara bagaia struktur modul o uital mempegaruhi sifat hasil kali tesor. Jika di Teore.8 diperoleh da Hom,, ka di Teore 4. diperoleh hal yag berbeda yaitu utuk -modul kaa o-uital, 1 da (, ). alog utuk (, ) Hom 1 1:, m 1 m 1 bimodul o-uital terdapat epimorfis a ( = m ) 1 1. V. SIPULN DN SN Defiisi da aksio odul o-uital merupaka perumu dari modul uital jika rig yag diberika adalah rig tapa eleme satua. [5] membagi defiisi modul mejadi dua bagia, dia rig pada modul uital adalah rig dega eleme satua 1, sedagaka pada modul o-uital rigya tidak harus dega eleme satua. Pada keyataaya, Grup bel yag dioperasika dega rig yag dilegkapi eleme satua tidak selalu mejadi modul uital. rtiya keuitalaya bear-bear bergatug pada aksioya. Hasil kali tesor terbetuk dari modul-modul kiri da kaa. Sifat dari hasil kali tesor atara modul uital da modul o-uital tidak sa. Pada -modul o-uital Hom, da. Sedagka utuk kaa diperoleh bahwa -modul uital kaa diperoleh Hom, da. Jadi isomorfis hasil kali tesor dipegaruhi oleh aksio uital modul. Kajia tetag modul o-uital dapat dieksplor lebih lajut. Dari modul uital da hasil kali tesor, [3] telah mejelaska sebuah struktur yag disebut korig da komodul. Selajutya dalam [6] da [9], struktur dasar pada korig digati dega modul o-uital da diperoleh sebuah struktur baru yag disebut korig leh da komodul leh. Peulis berharap, pembaca dapat melakuka peelitia lebih lajut yag sih berkaita deg modul o-uital da hasil kali tesor. DFT PUSTK [1] dkis,w.,., ad Weitroub, SH., lgebra : pproach odule Theory, Spriger- Verlag, New York, 199. [] derso, F.W. ad Fuller, K.., Graduate Texts i athetics, athetical ethod of classical echaics, d Ed., Spriger Verlag, New York, 199. [3] Brzeziński, T., ad Wisbauer,., Corig ad comodules, Gery, 003. [4] Fraleigh, J., first Course i bstract lgebra, 6th Ed., Sigapore : ddiso - Wesley Publishig Compay, [5] Hugerford, T.W., lgebra, Graduate text i athetics, Spriger-Verlag, New York, Heidelberg, Berli, [6] Puspita, N. P., Korig Leh, tesis, Uiversitas Gadjah ada, Yogyakarta, 009. [7] Schubert, H., Categories, Spriger-Verlag,Berli, Heidelberg, New York, 197. [8] Wisbauer,., Foudatio of odule ad ig Theory, Gordo ad Breach Sciece Publishers, [9] Wisbauer,., Weak Corig, i Jural of lgebra 45, pp , 001. Semiar Nasioal atetika da Pedidika atetika Yogyakarta, 7 ovember

Homomorfisma Pada Semimodul Atas Aljabar Max-Plus

Homomorfisma Pada Semimodul Atas Aljabar Max-Plus Homomorfisma Pada Semimodul Atas Aljabar Max-Plus A 14 Oleh : Musthofa Jurusa Pedidika Matematika FMIPA UNY Abstrak Kosep homorfisma telah bayak dibahas pada beberapa struktur aljabar yaitu pada ruag vektor

Lebih terperinci

Mariatul Kiftiah. JurusanMatematika FMIPA Universitas Tanjungpura, Pontianak Jl. A Yani Pontianak ABSTRACT

Mariatul Kiftiah. JurusanMatematika FMIPA Universitas Tanjungpura, Pontianak Jl. A Yani Pontianak ABSTRACT Prosidig Semirata2015 bidag MIPA BKS-PTN Barat Uiversitas Tajugpura Potiaak EKSISTENSI DAN KETUNGGALAN TITIK TETAP DARI PEMETAAN KANNAN DI RUANG MODULAR (THE EXISTENCE AND UNIQUENESS OF A FIXED POINT FOR

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang Masalah

BAB I PENDAHULUAN. A. Latar Belakang Masalah BAB I PENDAHULUAN A. Latar Belakag Masalah Struktur alabar adalah suatu himpua yag di dalamya didefiisika suatu operasi bier yag memeuhi aksioma-aksioma tertetu. Gelaggag ( Rig ) merupaka suatu struktur

Lebih terperinci

Semigrup Matriks Admitting Struktur Ring

Semigrup Matriks Admitting Struktur Ring Semigrup Matriks dmittig Struktur ig K a r y a t i Jurusa Pedidika Matematika FMIP, Uiversitas Negeri Yogyakarta Email: yatiuy@yahoo.com bstrak Diberika adalah rig komutatif dega eleme satua da adalah

Lebih terperinci

TINJAUAN PUSTAKA. 2.1 Ruang Vektor. Definisi (Darmawijaya, 2007) Diketahui (V, +) grup komutatif dan (F,,. ) lapangan dengan elemen identitas

TINJAUAN PUSTAKA. 2.1 Ruang Vektor. Definisi (Darmawijaya, 2007) Diketahui (V, +) grup komutatif dan (F,,. ) lapangan dengan elemen identitas II. TINJAUAN PUSTAKA 2.1 Ruag Vektor Defiisi 2.1.1 (Darmawijaya, 2007) Diketahui (V, +) grup komutatif da (F,,. ) lapaga dega eleme idetitas 1. V disebut ruag vektor (vector space) atas F jika ada operasi

Lebih terperinci

RING MATRIKS ATAS RING KOMUTATIF. Achmad Abdurrazzaq, Ari Wardayani, Suroto Universitas Jenderal Soedirman

RING MATRIKS ATAS RING KOMUTATIF. Achmad Abdurrazzaq, Ari Wardayani, Suroto Universitas Jenderal Soedirman JMP : Volume 7 Nomor 1, Jui 2015, hal 11-18 RING MATRIKS ATAS RING KOMUTATIF Achmad Abdurrazzaq, Ari Wardayai, Suroto razzaqgaesha@gmailcom Uiversitas Jederal Soedirma ABSTRACT This paper discusses a matrices

Lebih terperinci

LANDASAN TEORI. Pada bab ini akan diberikan beberapa konsep dasar (pengertian) yang akan digunakan dalam. pembahasan penelitian. 2.

LANDASAN TEORI. Pada bab ini akan diberikan beberapa konsep dasar (pengertian) yang akan digunakan dalam. pembahasan penelitian. 2. II. LANDASAN TEORI Pada bab ii aka diberika beberapa kosep dasar (pegertia) yag aka diguaka dalam pembahasa peelitia 2.1 Ruag Vektor Defiisi 3.1.1 (Darmawijaya, 2007) Diketahui (V, +) grup komutatif da

Lebih terperinci

SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS

SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS Prosidig Semiar Nasioal Peelitia, Pedidika da Peerapa MIPA, Fakultas MIPA, Uiversitas Negeri Yogyakarta, 4 Mei 0 SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS Musthofa Jurusa Pedidika Matematika FMIPA

Lebih terperinci

Beberapa Sifat Semigrup Matriks Atas Daerah Integral Admitting Struktur Ring 1

Beberapa Sifat Semigrup Matriks Atas Daerah Integral Admitting Struktur Ring 1 Beberapa Sifat Semigrup Matriks Atas Daerah Itegral Admittig Struktur ig K a r y a t i Jurusa Pedidika Matematika FMIPA, Uiversitas Negeri Yogyakarta Email: yatiuy@yahoo.com Abstrak Diberika adalah daerah

Lebih terperinci

SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS. Abstrak

SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS. Abstrak Prosidig Semiar Nasioal Peelitia, Pedidika da Peerapa MIPA, Fakultas MIPA, Uiversitas Negeri Yogyakarta, 4 Mei 0 SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS Musthofa Jurusa Pedidika Matematika FMIPA

Lebih terperinci

SIFAT-SIFAT SEMIGRUP SIMETRIS INTERVAL

SIFAT-SIFAT SEMIGRUP SIMETRIS INTERVAL SIFAT-SIFAT SEMIGRUP SIMETRIS INTERVAL Riza Febri Yusma Sri Gemawati Asli Sirait *riza_febri@yahoo.com Mahasiswa Program S Matematika Dose Jurusa Matematika Fakultas Matematika da Ilmu Pegetahua Alam Uiveritas

Lebih terperinci

SUBGELANGGANG KOMUTATIF MAKSIMAL DARI GELANGGANG POLINOM MIRING

SUBGELANGGANG KOMUTATIF MAKSIMAL DARI GELANGGANG POLINOM MIRING SUBGELANGGANG KOMUTATIF MAKSIMAL DARI GELANGGANG POLINOM MIRING Prof. Dr. Amir Kamal Amir, M.Sc Dra. Nur Erawaty, M.Si Filawati, S.Si Jurusa Matematika, Fakultas Matemetika da Ilmu Pegetahua Alam, Uiversitas

Lebih terperinci

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR Nur Aei Prodi Matematika, FST-UINAM uraeiatullah@gmail.com Ifo: Jural MSA Vol. 3 No. 2 Edisi: Juli Desember

Lebih terperinci

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n LIMIT 4.. FUNGSI LIMIT Defiisi 4.. A R Titik c R adalah titik limit dari A, jika utuk setiap δ > 0 ada palig sedikit satu titik di A, c sedemikia sehigga c < δ. Defiisi diatas dapat disimpulka dega cara

Lebih terperinci

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR Nur Aei Prodi Matematika, FST-UINAM uraeiatullah@gmail.com Ifo: Jural MSA Vol. 3 No. 2 Edisi: Juli Desember

Lebih terperinci

BAB I PENDAHULUAN. , membentuk struktur ring terhadap operasi penjumlahan matriks dan operasi pergandaan matriks baku. Himpunan bagian dari

BAB I PENDAHULUAN. , membentuk struktur ring terhadap operasi penjumlahan matriks dan operasi pergandaan matriks baku. Himpunan bagian dari BB I PENDHULUN. Latar Belakag Masalah Struktur rig (gelaggag) R adalah suatu himpua R yag kepadaya didefiisika dua operasi bier yag disebut pejumlaha da pergadaa yag memeuhi aksioma-aksioma tertetu, yaitu:

Lebih terperinci

BAB II TEORI DASAR. Definisi Grup G disebut grup komutatif atau grup abel jika berlaku hukum

BAB II TEORI DASAR. Definisi Grup G disebut grup komutatif atau grup abel jika berlaku hukum BAB II TEORI DASAR 2.1 Aljabar Liier Defiisi 2. 1. 1 Grup Himpua tak kosog G disebut grup (G, ) jika pada G terdefiisi operasi, sedemikia rupa sehigga berlaku : a. Jika a, b eleme dari G, maka a b eleme

Lebih terperinci

TEOREMA WEYL UNTUK OPERATOR HYPONORMAL

TEOREMA WEYL UNTUK OPERATOR HYPONORMAL Jural UJMC, Volume 3, Nomor, Hal. - 6 pissn : 460-3333 eissn : 579-907X TEOREMA WEYL UNTUK OPERATOR HYPONORMAL Guawa Uiversitas Muhammadiyah Purwokerto, gu.oge@gmail.com Abstract This paper aims at describig

Lebih terperinci

PEMETAAN KONTRAKTIF PADA RUANG b-metrik CONE R BERNILAI R 2

PEMETAAN KONTRAKTIF PADA RUANG b-metrik CONE R BERNILAI R 2 J. Math. ad Its Appl. ISSN: 829-605X Vol. 3, No. 2, Nopember 206, -0 PEMETAAN KONTRAKTIF PADA RUANG b-metrik CONE R BERNILAI R 2 Suarsii, Mahmud Yuus 2, Sadjido 3, Auda Nuril Z 4,2,3,4 Jurusa Matematika,

Lebih terperinci

BARISAN PANGKAT TERURUT MATRIKS PADA ALJABAR MAX PLUS

BARISAN PANGKAT TERURUT MATRIKS PADA ALJABAR MAX PLUS BRISN PNGKT TERURUT MTRIKS PD LJBR MX PLUS Nurwa Jurusa Matematika FMIP Uiversitas Negeri Gorotalo E-mail: urwa_mat@ug.ac.id bstrak Diberika matriks R yag memeuhi = λ. Matriks adalah k + c c k taktereduksi

Lebih terperinci

PERTEMUAN 13. VEKTOR dalam R 3

PERTEMUAN 13. VEKTOR dalam R 3 PERTEMUAN VEKTOR dalam R Pegertia Ruag Vektor Defiisi R Jika adalah sebuah bilaga bulat positif, maka tupel - - terorde (ordered--tuple) adalah sebuah uruta bilaga riil ( a ),a,..., a. Semua tupel - -terorde

Lebih terperinci

HUBUNGAN ANTARA KONVERGEN HAMPIR PASTI, KONVERGEN DALAM PELUANG, DAN KONVERGEN DALAM SEBARAN

HUBUNGAN ANTARA KONVERGEN HAMPIR PASTI, KONVERGEN DALAM PELUANG, DAN KONVERGEN DALAM SEBARAN Jural Matematika UNAND Vol. 2 No. 2 Hal. 0 6 ISSN : 2303 290 c Jurusa Matematika FMIPA UNAND HUBUNGAN ANTARA KONVERGEN HAMPIR PASTI, KONVERGEN DALAM PELUANG, DAN KONVERGEN DALAM SEBARAN VIRA AGUSTA, DODI

Lebih terperinci

SIFAT-SIFAT FUNGSI EKSPONENSIAL BERBASIS BILANGAN NATURAL YANG DIDEFINISIKAN SEBAGAI LIMIT

SIFAT-SIFAT FUNGSI EKSPONENSIAL BERBASIS BILANGAN NATURAL YANG DIDEFINISIKAN SEBAGAI LIMIT Jural Matematika UNAND Vol. 4 No. 1 Hal. 12 22 ISSN : 2303 2910 c Jurusa Matematika FMIPA UNAND SIFAT-SIFAT FUNGSI EKSPONENSIAL BERBASIS BILANGAN NATURAL YANG DIDEFINISIKAN SEBAGAI LIMIT ENIVA RAMADANI

Lebih terperinci

SEMI MODUL POLINOMIAL FUZZY ATAS ALJABAR MAX-PLUS FUZZY

SEMI MODUL POLINOMIAL FUZZY ATAS ALJABAR MAX-PLUS FUZZY JMP : Volume 3 Nomor 1, Jui 2011 SEMI MODUL POLINOMIAL FUZZY ATAS ALJABAR MAX-PLUS FUZZY Ari Wardayai da Suroto Prodi Matematika, Jurusa MIPA, Fakultas Sais da Tekik Uiversitas Jederal Soedirma (email

Lebih terperinci

BAB I PENDAHULUAN. Integral adalah salah satu konsep penting dalam Matematika yang

BAB I PENDAHULUAN. Integral adalah salah satu konsep penting dalam Matematika yang BAB I PENDAHULUAN 1.1 Latar Belakag Masalah Itegral adalah salah satu kosep petig dalam Matematika yag dikemukaka pertama kali oleh Isac Newto da Gottfried Wilhelm Leibiz pada akhir abad ke-17. Selajutya

Lebih terperinci

InfinityJurnal Ilmiah Program Studi Matematika STKIP Siliwangi Bandung, Vol 2, No.1, Februari 2013

InfinityJurnal Ilmiah Program Studi Matematika STKIP Siliwangi Bandung, Vol 2, No.1, Februari 2013 IfiityJural Ilmiah Program Studi Matematika STKIP Siliwagi Badug, Vol 2, No.1, Februari 2013 KEKONTINUAN FUNGSI PADA RUANG METRIK Oleh: Cece Kustiawa Jurusa Pedidika Matematika FPMIPA UPI, cecekustiawa@yahoo.com

Lebih terperinci

HUBUNGAN PELABELAN GRACEFUL PADA DIGRAF BIDIRECTIONAL G DAN GRAF UNDERLYING DARI G

HUBUNGAN PELABELAN GRACEFUL PADA DIGRAF BIDIRECTIONAL G DAN GRAF UNDERLYING DARI G J Sais MIPA Desember 7 Vol 1 No Hal: 197 - ISSN 1978-187 ABSTRACT HUBUNGAN PELABELAN GRACEFUL PADA DIGRAF BIDIRECTIONAL G DAN GRAF UNDERLYING DARI G Kristiaa Wijaya Jurusa Matematika FMIPA Uiversitas Jember

Lebih terperinci

TESIS KARAKTERISASI RING-RING DENGAN SIFAT JUMLAH BASIS TETAP DAN TOPIK-TOPIK YANG TERKAIT

TESIS KARAKTERISASI RING-RING DENGAN SIFAT JUMLAH BASIS TETAP DAN TOPIK-TOPIK YANG TERKAIT TESIS KAAKTEISASI ING-ING DENGAN SIFAT JUMLAH BASIS TETAP DAN TOPIK-TOPIK YANG TEKAIT CHAACTEISATION OF INGS WITH INVAIANT BASIS NUMBE AND ELATED TOPICS SAMSUL AIFIN 09/290722/PPA/02875 POGAM STUDI S2

Lebih terperinci

KETERKAITAN ANTARA MODUL BEBAS DENGAN MODUL DILIHAT DARI SIFAT-SIFAT HOMOMORFISME MODUL

KETERKAITAN ANTARA MODUL BEBAS DENGAN MODUL DILIHAT DARI SIFAT-SIFAT HOMOMORFISME MODUL KETERKAITAN ANTARA MODUL BEBAS DENGAN MODUL DILIHAT DARI SIFAT-SIFAT HOMOMORFISME MODUL Khusul Afifa 1, Abdussakir 2 1 Mahasiswa Jurusa Matematika UIN Maulaa Malik Ibrahim Malag 2 Dose Jurusa Matematika

Lebih terperinci

RUANG VEKTOR MATRIKS FUZZY

RUANG VEKTOR MATRIKS FUZZY RUANG VEKTOR MATRIKS FUZZY Siti Robiatul Adawiyah 1, Rade Sulaima 2 1 Jurusa Matematika, Fakultas Matematika da Ilmu Pegetahua Alam, Uiversitas Negeri Surabaya, 60231 2 Jurusa Matematika, Fakultas Matematika

Lebih terperinci

BAB III RUANG HAUSDORFF. Pada bab ini akan dibahas mengenai ruang Hausdorff, kekompakan pada

BAB III RUANG HAUSDORFF. Pada bab ini akan dibahas mengenai ruang Hausdorff, kekompakan pada 8 BAB III RUANG HAUSDORFF Pada bab ii aka dibahas megeai ruag Hausdorff, kekompaka pada ruag Hausdorff da ruag regular legkap. Pembahasa diawali dega medefiisika Ruag Hausdorff da beberapa sifatya kemudia

Lebih terperinci

Secara umum, suatu barisan dapat dinyatakan sebagai susunan terurut dari bilangan-bilangan real:

Secara umum, suatu barisan dapat dinyatakan sebagai susunan terurut dari bilangan-bilangan real: BARISAN TAK HINGGA Secara umum, suatu barisa dapat diyataka sebagai susua terurut dari bilaga-bilaga real: u 1, u 2, u 3, Barisa tak higga merupaka suatu fugsi dega domai berupa himpua bilaga bulat positif

Lebih terperinci

SKEMA PEMBAGIAN RAHASIA DENGAN KODE LINEAR

SKEMA PEMBAGIAN RAHASIA DENGAN KODE LINEAR SKEMA PEMBAGIAN RAHASIA DENGAN KODE LINEAR A- Riigsih, Idah Emilia Wijayati 2 Mahasiswa S Jurusa Matematika FMIPA Uiversitas Gadjah Mada 2 Jurusa Matematika FMIPA Uiversitas Gadjah Mada Abstrak Skema pembagia

Lebih terperinci

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai definisi suatu ring serta

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai definisi suatu ring serta BAB II LANDASAN TEORI Pada bab ii aka dibahas megeai defiisi suatu rig serta beberaa sifat yag dierluka dalam embahasa oliomial ermutasi Pejelasa megeai rig dimulai dega defiisi dari suatu sistem matematika

Lebih terperinci

TUGAS ANALISIS REAL LANJUT. a b < a + A. b + B < A B.

TUGAS ANALISIS REAL LANJUT. a b < a + A. b + B < A B. TUGAS ANALISIS REAL LANJUT NOVEMBER 207 () (a) Jika b > 0, B > 0, da a b < A, buktika ab < ba. Kemudia buktika B a b < a + A b + B < A B. (b) Buktika [ 2 (a + b)] 2 2 (a2 + b 2 ). Kemudia tujukka bahwa

Lebih terperinci

INVERS TERGENERALISASI MATRIKS ATAS ALJABAR MAXPLUS Musthofa Jurusan Pendidikan Matematika FMIPA UNY

INVERS TERGENERALISASI MATRIKS ATAS ALJABAR MAXPLUS Musthofa Jurusan Pendidikan Matematika FMIPA UNY INVERS TERGENERALISASI MATRIKS ATAS ALJABAR MAXPLUS Musthofa Jurusa Pedidika Matematika FMIPA UNY musthofa@uy.ac.id Abstrak Jika A matriks atas lapaga, maka pasti terdapat dega tuggal suatu matriks B yag

Lebih terperinci

II. TINJAUAN PUSTAKA. Secara umum apabila a bilangan bulat dan b bilangan bulat positif, maka ada tepat = +, 0 <

II. TINJAUAN PUSTAKA. Secara umum apabila a bilangan bulat dan b bilangan bulat positif, maka ada tepat = +, 0 < II. TINJAUAN PUSTAKA 2.1 Keterbagia Secara umum apabila a bilaga bulat da b bilaga bulat positif, maka ada tepat satu bilaga bulat q da r sedemikia sehigga : = +, 0 < dalam hal ii b disebut hasil bagi

Lebih terperinci

KEKONVERGENAN BARISAN DI DALAM RUANG

KEKONVERGENAN BARISAN DI DALAM RUANG KEKONVERGENAN BARISAN DI DALAM RUANG FUNGSI KONTINU C[a, b] Firdaus Ubaidillah 1, Soepara Darmawijaya, Ch. Rii Idrati 1 Jurusa Matematika FMIPA Uiversitas Gadjah Mada Yogyakarta e-mail: irdaus_u@yahoo.com

Lebih terperinci

I. DERET TAKHINGGA, DERET PANGKAT

I. DERET TAKHINGGA, DERET PANGKAT I. DERET TAKHINGGA, DERET PANGKAT. Pedahulua Pembahasa tetag deret takhigga sebagai betuk pejumlaha suku-suku takhigga memegag peraa petig dalam fisika. Pada bab ii aka dibahas megeai pegertia deret da

Lebih terperinci

Distribusi Pendekatan (Limiting Distributions)

Distribusi Pendekatan (Limiting Distributions) Distribusi Pedekata (Limitig Distributios) Ada 3 tekik utuk meetuka distribusi pedekata: 1. Tekik Fugsi Distribusi Cotoh 2. Tekik Fugsi Pembagkit Mome Cotoh 3. Tekik Teorema Limit Pusat Cotoh Fitriai Agustia,

Lebih terperinci

Definisi Integral Tentu

Definisi Integral Tentu Defiisi Itegral Tetu Bila kita megedarai kedaraa bermotor (sepeda motor atau mobil) selama 4 jam dega kecepata 50 km / jam, berapa jarak yag ditempuh? Tetu saja jawabya sagat mudah yaitu 50 x 4 = 200 km.

Lebih terperinci

GRUP TERURUT PARSIAL PADA MATRIKS SIMETRI BERUKURAN 2 2

GRUP TERURUT PARSIAL PADA MATRIKS SIMETRI BERUKURAN 2 2 Jural LOG!K@, Jilid 7, No, 7, Hal 46-5 ISSN 978 8568 GRU ERURU ARSIAL ADA MARIKS SIMERI BERUKURAN Irmatul Hasaah Uiversitas Islam Negeri Sulta Maulaa Hasauddi Bate Email: irmatulhasaah@uibateacid Abstract:

Lebih terperinci

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian BAB I PENDAHULUAN A. Latar Belakag Masalah Matematika merupaka suatu ilmu yag mempuyai obyek kajia abstrak, uiversal, medasari perkembaga tekologi moder, da mempuyai pera petig dalam berbagai disipli,

Lebih terperinci

Jurnal Matematika Murni dan Terapan Vol. 4 No.2 Desember 2010: 1-13 TEOREMA TITIK TETAP BANACH PADA RUANG METRIK-D

Jurnal Matematika Murni dan Terapan Vol. 4 No.2 Desember 2010: 1-13 TEOREMA TITIK TETAP BANACH PADA RUANG METRIK-D Jural Mateatika Muri da Terapa Vol 4 No Deseber : - 3 TEOREMA TITIK TETAP BANACH PADA RUANG METRIK-D Muhaad Ahsar Kari, Dewi Sri Susati, da Nurul Huda Progra Studi Mateatika Uiversitas Labug Magkurat Jl

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN JURAL MATEMATKA DA KOMPUTER Vol. 6. o., 77-85, Agustus 003, SS : 40-858 DSTRBUS WAKTU BERHET PADA PROSES PEMBAHARUA Sudaro Jurusa Matematika FMPA UDP Abstrak Dalam proses stokhastik yag maa kejadia dapat

Lebih terperinci

Jurnal Matematika Murni dan Terapan Vol. 6 No.1 Juni 2012: 9-16 KRITERIA KEKONVERGENAN CAUCHY PADA RUANG METRIK KABUR INTUITIONISTIC

Jurnal Matematika Murni dan Terapan Vol. 6 No.1 Juni 2012: 9-16 KRITERIA KEKONVERGENAN CAUCHY PADA RUANG METRIK KABUR INTUITIONISTIC Jural Matematika Muri da Teraa Vol. 6 No.1 Jui 01: 9-16 KRITERIA KEKONVERGENAN CAUCHY PADA RUANG METRIK KABUR INTUITIONISTIC Muhammad Ahsar Karim 1 Faisal Yui Yulida 3 [1,,3] PS Matematika FMIPA Uiversitas

Lebih terperinci

BAB II LANDASAN TEORI. Pada bagian ini akan dibahas tentang teori-teori dasar yang. digunakan untuk dalam mengestimasi parameter model.

BAB II LANDASAN TEORI. Pada bagian ini akan dibahas tentang teori-teori dasar yang. digunakan untuk dalam mengestimasi parameter model. BAB II LANDASAN TEORI Pada bagia ii aka dibahas tetag teori-teori dasar yag diguaka utuk dalam megestimasi parameter model.. MATRIKS DAN VEKTOR Defiisi : Trace dari matriks bujur sagkar A a adalah pejumlaha

Lebih terperinci

,n N. Jelas barisan ini terbatas pada dengan batas M =: 1, dan. barisan ini kovergen ke 0.

,n N. Jelas barisan ini terbatas pada dengan batas M =: 1, dan. barisan ini kovergen ke 0. PROGRAM STUDI PENDIDIKAN MATEMATIKA FKIP UNMUH PONOROGO SOAL UJIAN TENGAH SEMESTER GENAP TA 03/04 Mata Ujia : Aalisis Real Tipe Soal : REGULER Dose : Dr. Jula HERNADI Waktu : 90 meit Hari, Taggal : Selasa,

Lebih terperinci

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4 Program Studi : Tekik Iformatika Miggu ke : 4 INDUKSI MATEMATIKA Hampir semua rumus da hukum yag berlaku tidak tercipta dega begitu saja sehigga diraguka kebearaya. Biasaya, rumus-rumus dapat dibuktika

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No. 1, 41-45, April 2001, ISSN : KETERHUBUNGAN GALOIS FIELD DAN LAPANGAN PEMISAH

JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No. 1, 41-45, April 2001, ISSN : KETERHUBUNGAN GALOIS FIELD DAN LAPANGAN PEMISAH Vol. 4. No. 1, 41-45, Aril 2001, ISSN : 1410-8518 KETERHUBUNGAN GALOIS FIELD DAN LAPANGAN PEMISAH Bambag Irawato Jurusa Matematika FMIPA UNDIP Abstact I this aer, it was leared of the ecessary ad sufficiet

Lebih terperinci

HUBUNGAN VARIETY DAN IDEAL RADIKAL SKRIPSI. Oleh : Ambar Mujiarti J2A

HUBUNGAN VARIETY DAN IDEAL RADIKAL SKRIPSI. Oleh : Ambar Mujiarti J2A HUBUNGAN VARIETY DAN IDEAL RADIKAL SKRIPSI Oleh : Ambar Mujiarti J2A 004 003 PROGRAM STUDI MATEMATIKA JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS DIPONEGORO SEMARANG 2009

Lebih terperinci

Pendekatan Nilai Logaritma dan Inversnya Secara Manual

Pendekatan Nilai Logaritma dan Inversnya Secara Manual Pedekata Nilai Logaritma da Iversya Secara Maual Moh. Affaf Program Studi Pedidika Matematika, STKIP PGRI BANGKALAN affafs.theorem@yahoo.com Abstrak Pada pegaplikasiaya, bayak peggua yag meggatugka masalah

Lebih terperinci

MATERI PEMBEKALAN PESERTA OLIMPIADE NASIONAL MATEMATIKA PERGURUAN TINGGI BIDANG ALJABAR

MATERI PEMBEKALAN PESERTA OLIMPIADE NASIONAL MATEMATIKA PERGURUAN TINGGI BIDANG ALJABAR MATERI PEMBEKALAN PESERTA OLIMPIADE NASIONAL MATEMATIKA PERGURUAN TINGGI BIDANG ALJABAR Oleh: AGUS MAMAN ABADI JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI

Lebih terperinci

Bab 2. Sistem Bilangan Real Aksioma Bilangan Real Misalkan adalah himpunan bilangan real, P himpunan bilangan positif dan fungsi + dan.

Bab 2. Sistem Bilangan Real Aksioma Bilangan Real Misalkan adalah himpunan bilangan real, P himpunan bilangan positif dan fungsi + dan. Bab Sistem Bilaga Real.. Aksioma Bilaga Real Misalka adalah himpua bilaga real, P himpua bilaga positif da fugsi + da. dari ke da asumsika memeuhi aksioma-aksioma berikut: Aksioma Lapaga Utuk semua bilaga

Lebih terperinci

III PEMBAHASAN. λ = 0. Ly = 0, maka solusi umum dari persamaan diferensial (3.3) adalah

III PEMBAHASAN. λ = 0. Ly = 0, maka solusi umum dari persamaan diferensial (3.3) adalah III PEMBAHASAN Pada bagia ii aka diformulasika masalah yag aka dibahas. Solusi masalah aka diselesaika dega Metode Dekomposisi Adomia. Selajutya metode ii aka diguaka utuk meyelesaika model yag diyataka

Lebih terperinci

Fungsi Kompleks. (Pertemuan XXVII - XXX) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

Fungsi Kompleks. (Pertemuan XXVII - XXX) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya TKS 4007 Matematika III Fugsi Kompleks (Pertemua XXVII - XXX) Dr. AZ Jurusa Tekik Sipil Fakultas Tekik Uiversitas Brawijaya Pedahulua Persamaa x + 1 = 0 tidak memiliki akar dalam himpua bilaga real. Pertayaaya,

Lebih terperinci

SIFAT-SIFAT DASAR MATRIKS SKEW HERMITIAN Basic Properties of Skew Hermitian Matrices

SIFAT-SIFAT DASAR MATRIKS SKEW HERMITIAN Basic Properties of Skew Hermitian Matrices Jural Barekeg Vol. 7 No. 2 Hal. 19 26 (2013) SIFAT-SIFAT DASAR MATRIKS SKEW HERMITIAN Basic Properties of Skew Hermitia Matrices LIDIA SALAKA 1, HENRY W. M. PATTY 2, MOZART WINSTON TALAKUA 3 1 Mahasiswa

Lebih terperinci

Setelah mempelajari modul ini Anda diharapkan dapat: a. memeriksa apakah suatu pemetaan merupakan operasi;

Setelah mempelajari modul ini Anda diharapkan dapat: a. memeriksa apakah suatu pemetaan merupakan operasi; Modul 1 Operasi Dr. Ahmad Muchlis B PENDAHULUAN erapakah 97531 86042? Kalau Ada megguaka kalkulator, jawabaya amat bergatug pada tipe kalkulator yag Ada pakai. 9 Kalkulator ilmiah Casio fx-250 memberika

Lebih terperinci

Hendra Gunawan. 12 Februari 2014

Hendra Gunawan. 12 Februari 2014 MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2013/2014 12 Februari 2014 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 82 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg

Lebih terperinci

Ruang Vektor. Modul 1 PENDAHULUAN

Ruang Vektor. Modul 1 PENDAHULUAN Modul Ruag Vektor Dr. Irawati D PENDAHULUAN alam buku materi okok Aljabar II ii kita secara erlaha-laha mulai megubah edekata kita dari edekata secara komutasi mejadi edekata yag lebih umum. Yag dimaksud

Lebih terperinci

2 BARISAN BILANGAN REAL

2 BARISAN BILANGAN REAL 2 BARISAN BILANGAN REAL Di sekolah meegah barisa diperkealka sebagai kumpula bilaga yag disusu meurut "pola" tertetu, misalya barisa aritmatika da barisa geometri. Biasaya barisa da deret merupaka satu

Lebih terperinci

PEMBUKTIAN SIFAT RUANG BANACH PADA B 1/4 (K) Malahayati

PEMBUKTIAN SIFAT RUANG BANACH PADA B 1/4 (K) Malahayati Jural Matematika Muri da Terapa εpsilo Vol. 07, No.01, (2013), Hal. 33 44 PEMBUKTIAN SIFAT RUANG BANACH PADA B 1/4 (K) Malahayati Program Studi Matematika Fakultas Sais da Tekologi UIN Sua Kalijaga Yogyakarta

Lebih terperinci

Fungsi. Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B.

Fungsi. Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B. Fugsi Misalka A da B himpua. Relasi bier f dari A ke B merupaka suatu fugsi jika setiap eleme di dalam A dihubugka dega tepat satu eleme di dalam B. Jika f adalah fugsi dari A ke B kita meuliska f : A

Lebih terperinci

Himpunan Kritis Pada Graph Caterpillar

Himpunan Kritis Pada Graph Caterpillar 1 0 Himpua Kritis Pada Graph Caterpillar Chairul Imro, Budi Setiyoo, R. Simajutak, Edy T. Baskoro {imro-its,budi}@matematika.its.ac.id, {rio,ebaskoro}@ds.math.itb.ac.id Ues, Semarag, 4 7 Juli 006 Abstrak

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 71-76, Agustus 2003, ISSN :

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 71-76, Agustus 2003, ISSN : JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 71-76, Agustus 2003, ISSN : 1410-8518 SYARAT CUKUP AGAR SUATU FUNGSI TERINTEGRAL HENSTOCK MUTLAK DI DALAM RUANG METRIK KOMPAK LOKAL Mauharawati Jurusa Matematika

Lebih terperinci

SIFAT-SIFAT DAN STRUKTUR ALJABAR MATRIKS PENYAJIAN DARI PERSEGI AJAIB

SIFAT-SIFAT DAN STRUKTUR ALJABAR MATRIKS PENYAJIAN DARI PERSEGI AJAIB SIFAT-SIFAT DAN STRUKTUR ALJABAR MATRIKS PENYAJIAN DARI PERSEGI AJAIB Suryoto 1, Harjito 2, Titi Udjiai SRRM 3, Nikke Prima Puspita 4 1,2,3,4 Departeme Matematika FSM Uiversitas Dipoegoro Jl. Prof. H.

Lebih terperinci

PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT

PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT Prosidig Semiar Nasioal Matematika da Terapaya 06 p-issn : 0-0384; e-issn : 0-039 PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT Liatus

Lebih terperinci

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang 5. DERET

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang 5. DERET Pertemua 7. BAHAN AJAR ANALISIS REAL Matematika STKIP Tuaku Tambusai Bagkiag 5. da kekovergeaya 5. DERET Diberika sebuah barisa a, dapat didefeisika barisa bilaga real S N dega S N := N a = a + a 2 +...

Lebih terperinci

FOURIER Juni 2014, Vol. 3, No. 1, TEOREMA TITIK TETAP PADA RUANG QUASI METRIK TERASING TANPA MENGGUNAKAN SIFAT KEKONTINUAN FUNGSI

FOURIER Juni 2014, Vol. 3, No. 1, TEOREMA TITIK TETAP PADA RUANG QUASI METRIK TERASING TANPA MENGGUNAKAN SIFAT KEKONTINUAN FUNGSI FOURIER Jui 04, Vol. 3, No., 4 6 TEOREMA TITIK TETAP PADA RUANG QUASI METRIK TERASING TANPA MENGGUNAKAN SIFAT KEKONTINUAN FUNGSI Malahayati, Mutia Utami, Program Studi Matematika Fakultas Sais da tekologi

Lebih terperinci

B a b 1 I s y a r a t

B a b 1 I s y a r a t 34 TKE 315 ISYARAT DAN SISTEM B a b 1 I s y a r a t (bagia 3) Idah Susilawati, S.T., M.Eg. Program Studi Tekik Elektro Fakultas Tekik da Ilmu Komputer Uiversitas Mercu Buaa Yogyakarta 29 35 1.5.2. Isyarat

Lebih terperinci

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi 6. Pecacaha Lajut Relasi Rekuresi Relasi rekuresi utuk dereta {a } adalah persamaa yag meyataka a kedalam satu atau lebih suku sebelumya, yaitu a 0, a,, a -, utuk seluruh bilaga bulat, dega 0, dimaa 0

Lebih terperinci

KEKONVERGENAN PADA RUANG BERNORMA DAN RUANG HASIL KALI DALAM WINA DIANA

KEKONVERGENAN PADA RUANG BERNORMA DAN RUANG HASIL KALI DALAM WINA DIANA KEKONVERGENAN PADA RUANG BERNORMA DAN RUANG HASIL KALI DALAM WINA DIANA 055400597 Taggal Sidag: 04 Februari 0 Periode Wisuda: Februari 0 Jurusa Matematika Fakultas Sais da Tekologi Uiversitas Islam Negeri

Lebih terperinci

Model SIR Penyakit Tidak Fatal

Model SIR Penyakit Tidak Fatal Model SIR Peyakit Tidak Fatal Husi Tamri, M. Zaki Riyato *, Akhid, Ardhi Ardhia Jurusa Matematika FMIPA UGM Yogyakarta 2007 Itisari Model SIR dapat diguaka utuk memodelka peyebara suatu peyakit yag tidak

Lebih terperinci

REPRESENTASI KANONIK UNTUK FUNGSI KARAKTERISTIK DARI SEBARAN TERBAGI TAK HINGGA

REPRESENTASI KANONIK UNTUK FUNGSI KARAKTERISTIK DARI SEBARAN TERBAGI TAK HINGGA Jural Matematika UNAND Vol. 3 No. Hal. 7 34 ISSN : 33 9 c Jurusa Matematika FMIPA UNAND REPRESENTASI KANONIK UNTUK FUNGSI KARAKTERISTIK DARI SEBARAN TERBAGI TAK HINGGA EKA RAHMI KAHAR, DODI DEVIANTO Program

Lebih terperinci

MATEMATIKA DISKRIT FUNGSI

MATEMATIKA DISKRIT FUNGSI 1 MATEMATIKA DISKRIT FUNGSI Fugsi Misalka A da B himpua. Relasi bier f dari A ke B merupaka suatu fugsi jika setiap eleme di dalam A dihubugka dega tepat satu eleme di dalam B. Jika f adalah fugsi dari

Lebih terperinci

MATHunesa (Volume 3 No 3) 2014

MATHunesa (Volume 3 No 3) 2014 MATHuesa (Volume 3 No 3) 014 MINIMUM PENUTUP TITIK DAN MINIMUM PENUTUP SISI PADA GRAF KOMPLIT DAN GRAF BIPARTIT KOMPLIT Yessi Riskiada Kusumawardai Program Studi S1 Matematika, Fakultas Matematika da Ilmu

Lebih terperinci

Batas Bilangan Ajaib Pada Graph Caterpillar

Batas Bilangan Ajaib Pada Graph Caterpillar J. Math. ad Its Appl. ISSN: 189-605X Vol. 3, No., Nov 006, 49 56 Batas Bilaga Ajaib Pada Graph Caterpillar Chairul Imro Jurusa Matematika FMIPA ITS Surabaya imro-its@matematika.its.ac.id Abstrak Jika suatu

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 1, 41-48, April 2003, ISSN : MATRIKS STOKASTIK GANDA DAN SIFAT-SIFATNYA

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 1, 41-48, April 2003, ISSN : MATRIKS STOKASTIK GANDA DAN SIFAT-SIFATNYA JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No., 4-48, April 00, ISSN : 40-858 MATRIKS STOKASTIK GANDA DAN SIFAT-SIFATNYA Suryoto Jurusa Matematika F-MIPA Uiversas Dipoegoro Semarag Abstrak Suatu matriks tak

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 3 BAB II TINJAUAN PUSTAKA Pada bab ii aka dituliska beberapa aspek teoritis berupa defiisi, teorema da sifat-sifat yag berhubuga dega aljabar liear, struktur aljabar da teori kodig yag diguaka sebagai

Lebih terperinci

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa istilah, definisi serta konsep-konsep yang

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa istilah, definisi serta konsep-konsep yang II. LANDASAN TEORI Pada bab ii aka diberika beberapa istilah, defiisi serta kosep-kosep yag medukug dalam peelitia ii. 2.1 Kosep Dasar Teori Graf Berikut ii aka diberika kosep dasar teori graf yag bersumber

Lebih terperinci

ESSENTIALLY SMALL RIEMANN SUMS FUNGSI TERINTEGRAL HENSTOCK-DUNFORD PADA [a,b] Jl. Prof. H. Soedarto, S.H. Semarang 50275

ESSENTIALLY SMALL RIEMANN SUMS FUNGSI TERINTEGRAL HENSTOCK-DUNFORD PADA [a,b] Jl. Prof. H. Soedarto, S.H. Semarang 50275 ESSENTILLY SMLL RIEMNN SUMS FUNGSI TERINTEGRL HENSTOCK-DUNFORD PD [ab] Solikhi Sumato Siti Khabibah 3 3 Jurusa Matematika FSM Uiversitas Dioegoro Jl Prof H Soedarto SH Semarag 575 solikhi@liveudiacid khabibah_ku@yahoocoid

Lebih terperinci

MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR. Dosen Pengampu : Darmadi, S.Si, M.Pd

MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR. Dosen Pengampu : Darmadi, S.Si, M.Pd MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR Dose Pegampu : Darmadi, S.Si, M.Pd Disusu : Kelas 5A / Kelompok 5 : Dia Dwi Rahayu (084. 06) Hefetamala (084. 4) Khoiril Haafi (084. 70) Liaatul Nihayah (084. 74)

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, , Agustus 2003, ISSN : METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, , Agustus 2003, ISSN : METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT Vol. 6. No., 97-09, Agustus 003, ISSN : 40-858 METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT Robertus Heri Jurusa Matematika FMIPA UNDIP Abstrak Tulisa ii membahas peetua persamaa ruag

Lebih terperinci

BARISAN DAN DERET. Nurdinintya Athari (NDT)

BARISAN DAN DERET. Nurdinintya Athari (NDT) BARISAN DAN DERET Nurdiitya Athari (NDT) BARISAN Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) = a Fugsi tersebut dikeal sebagai barisa bilaga

Lebih terperinci

ANALISIS REAL I PENGANTAR. (Introduction to Real Analysis I) M. Zaki Riyanto, S.Si DIKTAT KULIAH ANALISIS

ANALISIS REAL I PENGANTAR. (Introduction to Real Analysis I) M. Zaki Riyanto, S.Si DIKTAT KULIAH ANALISIS DIKTAT KULIAH ANALISIS PENGANTAR ANALISIS REAL I (Itroductio to Real Aalysis I) M Zaki Riyato, SSi e-mail: zaki@mailugmacid http://zakimathwebid COPYRIGHT 008-009 Pegatar Aalisis Real I HALAMAN PERSEMBAHAN

Lebih terperinci

ESSENTIALLY SMALL RIEMANN SUMS FUNGSI TERINTEGRAL HENSTOCK-DUNFORD PADA [a,b]

ESSENTIALLY SMALL RIEMANN SUMS FUNGSI TERINTEGRAL HENSTOCK-DUNFORD PADA [a,b] ESSENTILLY SMLL RIEMNN SUMS FUNGSI TERINTEGRL HENSTOCK-UNFOR P [a,b] Solikhi, Sumato, Siti Khabibah 3,,3 Jurusa Matematika FSM Uiversitas ioegoro Jl Prof H Soedarto, SH Semarag 5075 solikhi@liveudiacid,

Lebih terperinci

Fungsi. Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B.

Fungsi. Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B. Fugsi Misalka A da B himpua. Relasi bier f dari A ke B merupaka suatu fugsi jika setiap eleme di dalam A dihubugka dega tepat satu eleme di dalam B. Jika f adalah fugsi dari A ke B kita meuliska f : A

Lebih terperinci

STUDI TENTANG BEBERAPA MODIFIKASI METODE ITERASI BEBAS TURUNAN

STUDI TENTANG BEBERAPA MODIFIKASI METODE ITERASI BEBAS TURUNAN STUDI TENTANG BEBERAPA MODIFIKASI METODE ITERASI BEBAS TURUNAN Supriadi Putra, M,Si Laboratorium Komputasi Numerik Jurusa Matematika FMIPA Uiversitas Riau e-mail : spoetra@yahoo.co.id ABSTRAK Makalah ii

Lebih terperinci

Aproksimasi Terbaik dalam Ruang Metrik Konveks

Aproksimasi Terbaik dalam Ruang Metrik Konveks Aprosimasi Terbai dalam Ruag etri Koves Oleh : Suharsoo S Jurusa atematia FIPA Uiversitas Lampug Abstra asalah esistesi da etuggala aprosimasi terbai suatu titi dalam ruag berorm telah dipelajari oleh

Lebih terperinci

HALAMAN Dengan definisi limit barisan buktikan limit berikut ini : = 0. a. lim PENYELESAIAN : jadi terbukti bahwa lim = 0 = 5. b.

HALAMAN Dengan definisi limit barisan buktikan limit berikut ini : = 0. a. lim PENYELESAIAN : jadi terbukti bahwa lim = 0 = 5. b. Didowload dari ririez.blog.us.ac.id HALAMAN 36 37 5. Dega defiisi limit barisa buktika limit berikut ii : a. lim = 0 lim 1 2 + 3 = 0 > 0 h 1 = 2 + 3 0 = 1 2 + 3 1 2 1 2 1 2 < jadi terbukti bahwa lim =

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret Program Perkuliaha Dasar Umum Sekolah Tiggi Tekologi Telkom Barisa da Deret Barisa Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) a Fugsi tersebut

Lebih terperinci

TUGAS MATA KULIAH TEORI RING LANJUT MODUL NOETHER

TUGAS MATA KULIAH TEORI RING LANJUT MODUL NOETHER TUGAS ATA KULIAH TEORI RING LANJUT ODUL NOETHER Da Aresta Yuwagsh (/364/PPA/03489) Sebelumya, telah dketahu bahwa sebaga rg dega eleme satua memeuh sfat rata ak utuk deal-deal d. Apabla dpadag sebaga modul,

Lebih terperinci

PENGGUNAAN METODE BAYESIAN OBYEKTIF DALAM PEMBUATAN GRAFIK PENGENDALI p-chart

PENGGUNAAN METODE BAYESIAN OBYEKTIF DALAM PEMBUATAN GRAFIK PENGENDALI p-chart Prosidig Semiar Nasioal Peelitia, Pedidika da Peerapa MIPA, Fakultas MIPA, Uiversitas Negeri Yogyakarta, 2 Jui 2012 PENGGUNAAN METODE BAYESIAN OBYEKTIF DALAM PEMBUATAN GRAFIK PENGENDALI p-chart Adi Setiawa

Lebih terperinci

DIMENSI PARTISI PADA GRAF KINCIR PARTITION DIMENSION OF WINDMILL GRAPH

DIMENSI PARTISI PADA GRAF KINCIR PARTITION DIMENSION OF WINDMILL GRAPH PROPOAL TUGA AKHIR DIMENI PARTII PADA GRAF KINCIR PARTITION DIMENION OF WINDMILL GRAPH Oleh: CHANDRA IRAWAN NRP : 100 109 04 JURUAN MATEMATIKA FAKULTA MATEMATIKA DAN ILMU PENGETAHUAN ALAM INTITUT TEKNOLOGI

Lebih terperinci

Deret Fourier. Modul 1 PENDAHULUAN

Deret Fourier. Modul 1 PENDAHULUAN Modul Deret Fourier Prof. Dr. Bambag Soedijoo P PENDAHULUAN ada modul ii dibahas masalah ekspasi deret Fourier Sius osius utuk suatu fugsi periodik ataupu yag diaggap periodik, da dibahas pula trasformasi

Lebih terperinci

Matematika Terapan Dosen : Zaid Romegar Mair, ST., M.Cs Pertemuan 3

Matematika Terapan Dosen : Zaid Romegar Mair, ST., M.Cs Pertemuan 3 Matematika Terapa Dose : Zaid Romegar Mair ST. M.Cs Pertemua 3 PROGRAM STUDI TEKNIK INFORMATIKA Jl. Koloel Wahid Udi Lk. I Kel. Kayuara Sekayu 30711 web:www.polsky.ac.id mail: polsky@polsky.ac.id Tel.

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2016/2017 3 Februari 2017 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg Batas

Lebih terperinci

BARISAN FIBONACCI DAN BILANGAN PHI

BARISAN FIBONACCI DAN BILANGAN PHI BARISAN FIBONACCI DAN BILANGAN PHI Fiboacci Matematikawa terbesar pada abad pertegaha adalah Leoardo dari Pisa, Italia (80 0). Ia lebih dikeal dega ama Fibo-acci. Artiya, aak Boaccio. Meara Pisa yag terkeal

Lebih terperinci

ANALISIS TENTANG GRAF PERFECT

ANALISIS TENTANG GRAF PERFECT Aalisis Tetag Graf Perfect ANALISIS TENTANG GRAF PERFET Nurul Imamah AH Fakultas Matematika da Ilmu Pegetahua Alam Uiversitas Pesatre Tiggi Darul Ulum Jombag urul.imamah86@gmail.com Abstrak Seirig perkembaga

Lebih terperinci

SOAL PENYISIHAN =. a. 11 b. 12 c. 13 d. 14 e. 15

SOAL PENYISIHAN =. a. 11 b. 12 c. 13 d. 14 e. 15 SOAL PENYISIHAN Petujuk pegerjaa soal : Jumlah soal 0 soal Piliha Gada da Uraia Utuk piliha gada diberi peilaia bear +, salah -, tidak diisi 0 Lama pegerjaa soal adalah 0 meit Kalau berai, silaka pilih

Lebih terperinci