Bab II Landasan Teori

Ukuran: px
Mulai penontonan dengan halaman:

Download "Bab II Landasan Teori"

Transkripsi

1 Bab II adaa eori Bab ii meyajika kajia item da teori-teori yag aka medaari da diguaka dalam mecari betuk model tereduki. Beberapa hal yag aka dikaji dalam bab ii adalah item PV da beberapa teori daar yag berkaita dega ketabila item da kierja item. Selajutya diajika teori ketakamaa matrik liear yag mempuyai pera petig ebagai jala utuk mecari betuk model tereduki. Di akhir bab dikaji metode pemotoga etimbag yag diperumum utuk item PV. II. Sitem iear Parameter Varyig (PV Berikut ii diberika repreetai dari item PV dega laju variai parameter tak terbata (PV ytem with ubouded parameter variatio rate. Defiii II.. Himpua Variai Parameter Diberika R adalah ruag vektor ata lapaga. R adalah himpua kompak. Himpua variai parameter F meotaika himpua dari emua fugi kotiu bagia demi bagia dari dikotiuita dalam uatu iterval : + (waktu ke dega ejumlah higga { :,,2,..., } F = ρ ρ ρ ρ. (II. + mi i max Defiii II.2. Sitem PV Diberika fugi-fugi kotiu berikut : A: R, m B : R, p C : R, p m D : R. (II.2

2 6 Himpua kompak R berama ama dega fugi kotiu A,B,C,D merepreetaika item PV berorde dega realiai ruag keadaa ebagai berikut : ( = ( ρ( ( + ( ρ( (, ( ( ( ( ( ( ( x& t A t x t B t u t y t = C ρ t x t + D ρ t u t, utuk etiap ρ F. (II.3 Realiai ruag keadaa dari item PV (II.3 diotaika ebagai (utuk meyigkat peulia, ketergatuga parameter ρ terhadap t tidak dituli ( F, A ( ρ, B ( ρ, C ( ρ, D ( ρ. Berikut diberika cotoh ketergatuga parameter dari data ruag keadaa pada item PV (II.3 [5]. Cotoh : Mialka A( t, ( B t adalah data ruag keadaa dari item PV dega ( t M ( t θ ( t 2 0 ω / At (: =, Bt ( = co( E( t M ( t. (II.4 + Aumika bahwa emua fugi berilai kalar adalah terbata, da didefiiika 4 ( t ( t ρ : = ω ω, ω,0 < ω < ω <, ρ2 ( t : = M ( t M, M,0 < M < M <, ρ3 t : = + E t + E, + E,0 < E < E <, ρ : = co -,, ( ( ( t θ( t ( [ ] 2 2 dega ω, ω maig-maig adalah bata bawah da bata ata dari ω 2 ( t. M, M maig-maig adalah bata bawah da bata ata dari M ( t. EE, maig-maig adalah bata bawah da bata ata dari E ( t.

3 7 Maka, ρ ρ ρ = ρ3 ρ ampai ρ 4. A da B dari item (II.4 mejadi, dega didefiiika oleh bata-bata dari ρ ( t / ρ ( t ρ ( t ρ ( t ρ 2 A( ρ( t : =, B( ρ( t : = 4 3 ρ2 ( t. Berikut ii diberika koep ketabila item PV dega laju variai parameter tak terbata. Diberika fugi kotiu A : R mauka ( = ( ρ ( (. Padag item PV tapa x& t A t x t, (II.5 dega ρ F. Fugi yapuov kuadratik berilai kalar V : didefiiika ebagai V ( x: = x Px, dega P, 0 P >. urua dari fugi yapuov kuadratik V ( x diberika oleh utuk etiap ρ F ( ( dv x t dt ( ( ( ( ( = x A ρ t P+ PA ρ t x t, (II.6, epajag variai parameter dari item (II.5. Defiii II.3. Ketabila kuadratik uatu fugi Fugi A dikataka tabil kuadratik ata jika terdapat matrik real P > 0 edemikia ehigga ( ( + ( ( < 0, utuk etiap A ρ t P PA ρ t ρ F. (II.7 Defiii II.4. Ketabila kuadratik item PV ( Sitem PV dega realiai ruag keadaa F, A ( ρ, B ( ρ, C ( ρ, D ( ρ dikataka tabil kuadratik jika A tabil kuadratik.

4 8 Defiii terebut megidikaika bahwa item PV dega realiai ruag ( keadaa F, A ( ρ, B ( ρ, C ( ρ, D ( ρ adalah tabil kuadratik [8] jika da haya jika terdapat P > 0 da Q > 0 ehigga memeuhi katakamaa ( ( ( ( ( ( ( ( 0 ( ρ( ( ρ( ( ρ( ( ρ( 0 A ρ t P+ PA ρ t + B ρ t B ρ t <, (II.8 utuk etiap ρ F. A t Q+ QA t + C t B t <, (II.9 Defiii II.5. ( Diberika realiai ruag keadaa F, A ( ρ, B ( ρ, C ( ρ, D ( ρ. Sitem PV (II.3 dikataka tertabilka ecara kuadratik jika terdapat fugi matrik kotiu m F : R da matrik kota real defiit poitif P, ehigga utuk etiap ρ F ( ( ( ( ( ( ( ( ( ( ( ( ( ( 0 A ρ t + B ρ t F ρ t P+ P A ρ t + B ρ t F ρ t <. (II.0 Defiii II.6 ( Diberika realiai ruag keadaa F, A ( ρ, B ( ρ, C ( ρ, D ( ρ. Sitem PV (II.3 dikataka terdeteki ecara kuadratik jika terdapat fugi matrik kotiu p : R da matrik kota real defiit poitif P, ehigga utuk etiap ρ F ( ( ( ( ( ( ( ( ( ( ( ( ( ( 0 A ρ t + ρ t C ρ t P+ P A ρ t + ρ t C ρ t <. (II. II.2 Sitem PV Politopik Matrik politop didefiiika ebagai kovek hull dari ejumlah berhigga matrik-matrik N i berdimei ama eperti berikut Co{ Ni i =.. } := αini αi 0, αi =. (II.2

5 9 Bila vektor parameter ρ ( t diambil ilaiya di dalam box dari R dega udut- udut { v i... } ( 2 i ρ = =, dega kata lai ( t dega vertek-vertek ρ,..., ρ, maka dapat dituli v v ( { } ρ t : = Co ρ,..., ρ, utuk etiap t 0. v v ρ ilaiya didalam politop Sitem PV diebut politopik bila dapat direpreetaika oleh matrik ruag keadaa A ρ( t, B ρ t, C ρ t, da D ρ t dega vektor parameter ( ( ( ( ( ( ( bervariai di dalam uatu politop tetap da ketergatuga dari A(, B(, C(, da D ( pada ρ adalah afi. Jadi matrik ruag keadaa dari item PV politopik dapat direpreetaika dalam betuk ( ρ( ( ρ( i i i i Co i ( ( ( ( Ci D ρ ρ i C i i D = i A t B t A B A B =,..., := αi αi 0, αi =. C t D t (II.3 Peulia diata dapat diartika bahwa ( ρ( ( ρ( ( ρ( ( ρ( A t B t C t D t Ai Bi kovek dari matrik-matrik item I Ci D, i =.... i Fugi trafer dari item PV politop (II.3 dapat dituli ebagai { } i i i i i i i ( ( ( α = α C I A B + D, α 0, α = adalah kombiai. (II.4 II.3 Ketakamaa Matrik iear (iear Matrix Iequality / MI Ketakamaa matrik liear (liear matrix iequality / MI adalah ketakamaa matrik dalam betuk F( x = F0 + xifi < 0, (II.5

6 0 dega F0, F,..., F adalah matrik real imetrik yag diberika, ( x, x = x, x2,..., x adalah vektor variabel yag biaa diebut ebagai variabel keputua. ada < meujukka defiit egatif, yaitu ilai eige terbear dari F( x adalah egatif. Sedagka tada ebalikya meujukka defiit poitif. Selai MI dalam betuk (II.5, terdapat pula otrict MI, yaitu MI dalam betuk Utuk item MI eperti dibawah ii F( x 0. (II.6 ( x F < 0 : : Fm ( x < 0 MI terebut dapat diyataka dalam betuk MI tuggal ( ( ( (, (II.7 F x = diag F x,..., F x < 0. (II.8 Himpua emua olui feaible dari MI (II.5 adalah kovek, yaitu { ( 0} xf x < kovek. Yag dimakud dega olui feaible adalah himpua emua vektor x yag memeuhi emua kedala yag diberika. Mialka x da 2 x adalah dua olui dari uatu maalah MI yag memeuhi ( < 0 da F( x2 < 0, maka uatu kombiai kovek x = ( α x + α x 2 F x dega 0 α memeuhi ( (( α α ( α ( α ( F x = F x + x = F x + F x < 0. (II Sebuah MI dapat mempreetaika berbagai macam kedala kovek dalam x, diataraya adalah ketakamaa yapuov da ketakamaa matrik kuadratik kovek dalam maalah teori kotrol. Dalam berbagai aplikai kotrol, MI lebih erig tampak tidak dalam betuk kaoik (II.5, tetapi dalam betuk dega ( da R ( m (,..., (,..., X X < R X X, (II.20 adalah fugi afi dari uatu variabel matrik X,..., X. Jadi variabel dari MI (II.20 adalah matrik-matrik X,..., X. Cotoh ederhaa dari betuk di ata adalah ketakamaa yapuov

7 A X + XA< 0, dega X adalah variabel matrik yag belum diketahui ilaiya. Betuk daar MI (II.5 dapat diperlua ke MI yag bergatug parameter ebagai berikut ρ ρ ρ dega : [,..., ] F( x, ρ = F0 ( ρ + xifi( ρ < 0, (II.2 = adalah parameter, ρ F. Beberapa maalah tadar MI yag petig adalah. Maalah feaibility yaitu medapatka olui x feaible edemikia ehigga (, 0 F x ρ <, utuk etiap ρ F. Cotoh: maalah ketabila dari item diamik x& ( t = A( ρ ( t x( t ekuivale dega maalah feaibility yaitu mecari matrik yapuov P= P edemikia ehigga ( ρ( + ( ρ( < 0, A t P PA t P > Maalah liear objective miimizatio yaitu memiimiai ebuah fugi liear x terhadap kedala MI berikut { ( } mi c x: F x, ρ < 0, utuk etiap ρ F. emma II. Kompleme Schur Padag matrik blok terpartii ebagai berikut M ( ρ ( ρ M ( ρ ( ρ M ( ρ M 2 =. M2 22 M ( ρ adalah defiit egatif jika da haya jika ( ( ρ ( ρ ( ρ ( ρ M ρ < da 22 0 M M M M <, utuk etiap ρ F.

8 2 II.4 Reformulai Maalah Optimiai ke dalam Betuk MI Ketakamaa matrik oliear (kovek dapat direformulai kedalam betuk MI dega megguaka kompleme Schur, yaitu MI ( S( x dega Q( x = Q( x, R( x = R( x, da ( x, ekuivale dega Q x 0 >, (II.22 S( x R( x ( ( ( ( ( S x ecara afi bergatug pada R x > 0, Q x S x R x S x > 0. (II.23 Jadi himpua ketakamaa matrik oliear (II.23 dapat direformulaika kedalam betuk MI (II.22. Sebagai cotoh, kedala berbetuk orm matrik (ilai igular makimum q Z( x <, dega Z( x direpreetaika dalam betuk MI Hal ii dikareaka ( dega c( x da P( x P( x da bergatug ecara afi pada x, dapat ( I Z x > 0. (II.24 Z( x I Z x < ekuivale dega I ZZ > 0. Kedala ( ( ( ( c x P x c x <, P x > 0, = bergatug ecara afi pada x, dapat diekpreika dalam betuk MI ebih umum, kedala ( c( x P x 0 >. (II.25 c( x ( ( ( ( ( ( ( ( S x P x S x < : = r S x P x S x <, P x > 0, p dega P( x P( x da S( x = bergatug ecara afi pada x, diformulaika dalam betuk MI (dalam x da Z dega medefiiika variabel baru p p Z = Z,

9 3 Z Z S ( ( x : = r Z <, > 0. (II.26 S( x P( x II.5 Metode Pemotoga Setimbag yag Diperumum (Geeralized Balaced rucatio Method Diberika item PV politopik yag tabil kuadratik ( ρ( ( ρ( ( ( ( ρ( (, ( ( ( ρ( ( ( 0 xt & = A t xt+ B t ut y t = C t x t + D t u t, x 0 = x, yag berkembag pada politop kovek (II.27 Ai Bi Ai Bi Ω= Co i,..., = αi αi 0, αi Ci D = = i C i i D = i. (II.28 Karea item (II.27 tabil kuadratik, maka terdapat matrik PQ, edemikia ehigga PQ>, 0, (II.29 i i i i PA + A P + B B < 0, i =,...,, (II.30 i i i i A Q+ QA + CC < 0,,...,. (II.3 Utuk kedala-kedala (II.29-(II.3 diata, terdapat matrik o igular edemikia ehigga,..., k 0 P = ( Q( = =, 0 2 =, dega = diag ( σ σ, diag ( σ,..., σ da σ σ2 σk σk+ σ 2 k+ > >... > > >... > > 0. raformai item PV (II.27 (II.28 megguaka matrik traformai o igular, yaitu A = A, B = B, C = C, meghailka politop kovek i i i i i i Ω bal yag ekuivale dega politop kovek Ω

10 4 Ai B i A i B i Ω bal = Co i =,..., = αi αi 0, αi = C i Di Ci Di ebih lajut, dalam politop kovek. (II.32 Ω bal berlaku 0 = > 0 0 2, (II.33 A + A + B B < 0,,...,, (II.34 i i i i A + A + CC < 0,,...,. (II.35 i i i i σ j, j =,.., diebut ilai igular Hakel yag diperumum dari item PV politopik (II.27-(II.28, da merupaka perumuma dari koep ilai igular Hakel dari item I. Demikia juga ruag keadaa Ω bal diebut realiai etimbag yag diperumum. Sebagaimaa dalam item I, ilai igular Hakel yag diperumum da realiai etimbag yag diperumum tuggal. Partii A, B, da C meyeuaika dega da 2 mejadi i i i A A 2 B A B C C C 2 22 i i i = i = i = 2 A i A i B 2 model tereduki didapat dega megabaika 2 yag data ruag keadaaya bereuaia dega (II.33 (II.35, ehigga didapat politop, A i B r i Ω bal = Co i =,..., C i D i A i B i = α i αi 0, αi. = C i D i (II.36 Sitem PV (II.36 berorde k yag dilambagka dega yag tabil kuadratik da etimbag. Notai r pada tereduki. r Ω bal adalah item r Ω bal melambagka politop

11 5 Setelah diajika kajia tetag item da teori-teori yag aka medaari da diguaka dalam membaha reduki orde model item PV, maka pada bab elajutya aka dibaha reduki orde model utuk item PV yag merupaka iti dari pembahaa dalam tei ii.

ANALISIS SISTEM NON LINEAR MELALUI PENDEKATAN SISTEM LINEAR DENGAN PARAMETER BERUBAH-UBAH

ANALISIS SISTEM NON LINEAR MELALUI PENDEKATAN SISTEM LINEAR DENGAN PARAMETER BERUBAH-UBAH ANALISIS SISEM NON LINEAR MELALUI PENDEKAAN SISEM LINEAR DENGAN PARAMEER BERUBAH-UBAH Widowati Jurua Matematika FMIPA UNDIP Jl Prof H Soedarto SH Semarag 5075 e-mail: wiwied_mathudip@yahoocom Abtrak Pada

Lebih terperinci

SIFAT SIFAT TRANSFORMASI LINEAR DARI R KE R

SIFAT SIFAT TRANSFORMASI LINEAR DARI R KE R SIF SIF RNSFORMSI LINER m DRI R KE R Diuu utuk memeuhi uga Mata Kuliah ljabar Liear Doe Pegampu : Dr. Suroo, M. Pd Diuu oleh : Kelompok. ge Chritie rii ( 84.55 ). dik Setyo Nugroho ( 84.65 ). Beti Lutvi

Lebih terperinci

BAB II LANDASAN TEORI. Pada bab ini akan dibahas dasar-dasar teori yang akan digunakan

BAB II LANDASAN TEORI. Pada bab ini akan dibahas dasar-dasar teori yang akan digunakan BAB II LANDASAN TEORI Pada bab ii aka dibaa daar-daar teori yag aka diguaka dalam peulia kripi ii, yaitu megeai metode peakira maximum likeliood, metode peakira oit maximum likeliood da fier iformatio..1

Lebih terperinci

SUMMABILITAS CESARO PADA OPERASI DERET DIVERGEN. Sangadji* 1

SUMMABILITAS CESARO PADA OPERASI DERET DIVERGEN. Sangadji* 1 Summabilita Cearo pada Operai Dere Diverge (Sagadji) SUMMABILITAS CESARO PADA OPERASI DERET DIVERGE Sagadji* ABSTRAK SUMMABILITAS CESARO PADA OPERASI DERET DIVERGE Bayak orag uka membicaraka tetag deret

Lebih terperinci

Mata Kuliah: Statistik Inferensial

Mata Kuliah: Statistik Inferensial STATISTIK INFERENSIAL Prof. Dr. H. Almadi Syahza, SE., MP Email: ayahza@yahoo.co.id PROGRAM STUDI PENDIDIKAN EKONOMI FKIP UNIVERSITAS RIAU DISTRIBUSI SAMPLING 2 Bagia I Statitik Iduktif Metode da Ditribui

Lebih terperinci

INTERVAL KEPERCAYAAN

INTERVAL KEPERCAYAAN INTERVAL KEPERCAYAAN Tujua utama diambil ebuah ampel dari ebuah populai adalah utuk memperoleh iformai megeai parameter populai.. Ada cara meetuka parameter populai yaitu peakira da pegujia hipotei. Peakira

Lebih terperinci

MENENTUKAN SPECTRUM SUATU GRAF BERBANTUAN MATLAB

MENENTUKAN SPECTRUM SUATU GRAF BERBANTUAN MATLAB LAPORAN PENELITIAN KOMPETITIF DOSEN BERSAMA MAHASISWA MENENTUKAN SPECTRUM SUATU GRAF BERBANTUAN MATLAB KETUA TIM PENELITI ABDUSSAKIR, M.Pd JURUSAN MATEMATIKA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM

Lebih terperinci

Bab IV Metode Alternating Projection

Bab IV Metode Alternating Projection Bab IV Metode Alteratig Projectio Metode alteratig projectio megubah masalah feasibility o koveks mejadi masalah feasibility koveks Pada bab ii aka dicari matriks defiit positif da simetri X,Y yag diguaka

Lebih terperinci

HOMOMORFISMA RING DERET PANGKAT TERITLAK MIRING

HOMOMORFISMA RING DERET PANGKAT TERITLAK MIRING J. Sai MIPA Agutu 2009 Vol. 5 No. 2 Hal.: 9-24 ISSN 978-873 HOMOMORFISMA RING DERET PANGKAT TERITLAK MIRING Ahmad Faiol Jurua Matematika FMIPA Uiverita Lampug Badar Lampug 3545 Idoeia Email: faiol_mathuila@yahoo.co.id

Lebih terperinci

Pendugaan. Parameter HAZMIRA YOZZA IZZATI RAHMI HG JURUSAN MATEMATIKA FMIPA UNIV. ANDALAS LOGO

Pendugaan. Parameter HAZMIRA YOZZA IZZATI RAHMI HG JURUSAN MATEMATIKA FMIPA UNIV. ANDALAS LOGO Pedugaa Parameter HAZMIRA YOZZA JURUSAN MATEMATIKA FMIPA UNIV. ANDALAS LOGO Kompetei meyebutka klp ifereia tatitika & ruag ligkupya mejelaka metode pedugaa klaik da yarat-yarat peduga yag baik pada pedugaa

Lebih terperinci

TINJAUAN PUSTAKA. 2.1 Ruang Vektor. Definisi (Darmawijaya, 2007) Diketahui (V, +) grup komutatif dan (F,,. ) lapangan dengan elemen identitas

TINJAUAN PUSTAKA. 2.1 Ruang Vektor. Definisi (Darmawijaya, 2007) Diketahui (V, +) grup komutatif dan (F,,. ) lapangan dengan elemen identitas II. TINJAUAN PUSTAKA 2.1 Ruag Vektor Defiisi 2.1.1 (Darmawijaya, 2007) Diketahui (V, +) grup komutatif da (F,,. ) lapaga dega eleme idetitas 1. V disebut ruag vektor (vector space) atas F jika ada operasi

Lebih terperinci

Analisis Rangkaian Listrik Di Kawasan s

Analisis Rangkaian Listrik Di Kawasan s Sudarato Sudirham Aalii agkaia Litrik Di Kawaa 6- Sudarato Sudirham, Aalii agkaia Litrik 3 BAB 6 Aalii Pada Sitem Pegeala pada item ii bertujua agar kita memahami ial dalam pegertia ag lebih lua; memahami

Lebih terperinci

STATISTICS. Confidence Intervals (Rentang Keyakinan) Confidence Intervals (1)

STATISTICS. Confidence Intervals (Rentang Keyakinan) Confidence Intervals (1) STATISTICS Cofidece Iterval (Retag Keyakia) Cofidece Iterval () Etimai Parameter Ditribui abilita memiliki ejumlah parameter. Parameter-parameter tb umumya tak diketahui. Nilai parameter terebut diperkiraka

Lebih terperinci

Diagram Kendali Simpangan Baku Eksak untuk Proses Berdistribusi Normal dengan Parameter σ Diketahui

Diagram Kendali Simpangan Baku Eksak untuk Proses Berdistribusi Normal dengan Parameter σ Diketahui Statitika, Vol. No., 5 6 Mei Diagram Kedali Simpaga Baku Ekak utuk Proe Berditribui Normal dega Parameter Diketahui Aceg Komarudi Mutaqi, Suwada Program Studi Statitika Fakulta MIPA Uiverita Ilam Badug,

Lebih terperinci

LANDASAN TEORI. Secara umum, himpunan kejadian A i ; i I dikatakan saling bebas jika: Ruang Contoh, Kejadian, dan Peluang

LANDASAN TEORI. Secara umum, himpunan kejadian A i ; i I dikatakan saling bebas jika: Ruang Contoh, Kejadian, dan Peluang 2 LANDASAN TEORI Ruag Cotoh, Kejadia, da Peluag Percobaa acak adalah suatu percobaa yag dapat diulag dalam kodisi yag sama, yag hasilya tidak dapat diprediksi secara tepat tetapi dapat diketahui semua

Lebih terperinci

BAB IV SEBARAN ASIMTOTIK PENDUGA DENGAN MENGGUNAKAN KERNEL SERAGAM. ) menyatakan banyaknya kejadian pada interval [ 0, n ] dan h

BAB IV SEBARAN ASIMTOTIK PENDUGA DENGAN MENGGUNAKAN KERNEL SERAGAM. ) menyatakan banyaknya kejadian pada interval [ 0, n ] dan h BAB IV SEBARAN ASIMTOTIK PENDUGA DENGAN MENGGUNAKAN KERNEL SERAGAM 4.1 Peduga dega Kerel Seragam Pada bab ii diguaka peduga dega kerel eragam. Hal ii karea aya belum berail memperole ebara aimtotik dari

Lebih terperinci

Watak Dinamis Sensor. Laila Katriani.

Watak Dinamis Sensor. Laila Katriani. Watak Diami Seor Laila Katriai laila_katriai@uy.ac.id Defiii Fugi Trafer uatu item liear didefiiika ebagai perbadiga traformai Laplace iyal output terhadap iyal iput dega aumi emua kodii awal ama dega

Lebih terperinci

BAB III RUANG HAUSDORFF. Pada bab ini akan dibahas mengenai ruang Hausdorff, kekompakan pada

BAB III RUANG HAUSDORFF. Pada bab ini akan dibahas mengenai ruang Hausdorff, kekompakan pada 8 BAB III RUANG HAUSDORFF Pada bab ii aka dibahas megeai ruag Hausdorff, kekompaka pada ruag Hausdorff da ruag regular legkap. Pembahasa diawali dega medefiisika Ruag Hausdorff da beberapa sifatya kemudia

Lebih terperinci

A.Interval Konfidensi pada Selisih Rata-rata

A.Interval Konfidensi pada Selisih Rata-rata A.Iterval Kofidei pada Seliih Rata-rata. Bila kita mempuyai da maig-maig adalah mea ample acak beba berukura da yag diambil dari populai dega ragam da diketahui, maka elag kepercayaa 00-% bagi - adalah

Lebih terperinci

LANDASAN TEORI. Pada bab ini akan diberikan beberapa konsep dasar (pengertian) yang akan digunakan dalam. pembahasan penelitian. 2.

LANDASAN TEORI. Pada bab ini akan diberikan beberapa konsep dasar (pengertian) yang akan digunakan dalam. pembahasan penelitian. 2. II. LANDASAN TEORI Pada bab ii aka diberika beberapa kosep dasar (pegertia) yag aka diguaka dalam pembahasa peelitia 2.1 Ruag Vektor Defiisi 3.1.1 (Darmawijaya, 2007) Diketahui (V, +) grup komutatif da

Lebih terperinci

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n LIMIT 4.. FUNGSI LIMIT Defiisi 4.. A R Titik c R adalah titik limit dari A, jika utuk setiap δ > 0 ada palig sedikit satu titik di A, c sedemikia sehigga c < δ. Defiisi diatas dapat disimpulka dega cara

Lebih terperinci

PERTEMUAN 13. VEKTOR dalam R 3

PERTEMUAN 13. VEKTOR dalam R 3 PERTEMUAN VEKTOR dalam R Pegertia Ruag Vektor Defiisi R Jika adalah sebuah bilaga bulat positif, maka tupel - - terorde (ordered--tuple) adalah sebuah uruta bilaga riil ( a ),a,..., a. Semua tupel - -terorde

Lebih terperinci

BARISAN TAK HINGGA DAN DERET TAK HINGGA

BARISAN TAK HINGGA DAN DERET TAK HINGGA BARIAN TAK HINGGA DAN DERET TAK HINGGA Bajar/Barisa Tak Higga Barisa tak higga { } adalah suatu fugsi dari dimaa daerah domaiya adalah himpua bilaga bulat positif (bilaga asli). Cotoh: Bila.. maka fugsi

Lebih terperinci

PENDUGAAN PARAMETER. Ledhyane Ika Harlyan

PENDUGAAN PARAMETER. Ledhyane Ika Harlyan PENDUGAAN PARAMETER Ledhyae Ika Harlya Jurua Pemafaata Sumberdaya Perikaa da Kelauta Uiverita Brawijaya 03 Statitik Ifereia Mecakup emua metode yag diguaka dalam pearika keimpula atau geeraliai megeai

Lebih terperinci

Fungsi Kompleks. (Pertemuan XXVII - XXX) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

Fungsi Kompleks. (Pertemuan XXVII - XXX) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya TKS 4007 Matematika III Fugsi Kompleks (Pertemua XXVII - XXX) Dr. AZ Jurusa Tekik Sipil Fakultas Tekik Uiversitas Brawijaya Pedahulua Persamaa x + 1 = 0 tidak memiliki akar dalam himpua bilaga real. Pertayaaya,

Lebih terperinci

2. Fungsi Bessel Persamaan Diferensial Bessel 2.2. Sifat-sifat Fungsi Bessel 2.3. Fungsi-fungsi Hankel, Bessel Orde-fraksional, Bessel Sferis

2. Fungsi Bessel Persamaan Diferensial Bessel 2.2. Sifat-sifat Fungsi Bessel 2.3. Fungsi-fungsi Hankel, Bessel Orde-fraksional, Bessel Sferis . Fugi Beel.. Peramaa Difereial Beel.. Sifat-ifat Fugi Beel.3. Fugi-fugi Hakel, Beel Orde-frakioal, Beel Sferi Pegguaa Fugi Beel Mecari olui eparai variabel dari peramaa Laplace da Helmholtz dalam koordiat

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, , Agustus 2003, ISSN : METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, , Agustus 2003, ISSN : METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT Vol. 6. No., 97-09, Agustus 003, ISSN : 40-858 METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT Robertus Heri Jurusa Matematika FMIPA UNDIP Abstrak Tulisa ii membahas peetua persamaa ruag

Lebih terperinci

Pedahulua Pedugaa Parameter Pedugaa Parameter Populai dilakuka dega megguaka ilai Statitik Sampel, Mial :. x diguaka ebagai peduga bagi µ. diguaka ebagai peduga bagi σ 3. p atau p$ diguaka ebagai peduga

Lebih terperinci

Secara umum, suatu barisan dapat dinyatakan sebagai susunan terurut dari bilangan-bilangan real:

Secara umum, suatu barisan dapat dinyatakan sebagai susunan terurut dari bilangan-bilangan real: BARISAN TAK HINGGA Secara umum, suatu barisa dapat diyataka sebagai susua terurut dari bilaga-bilaga real: u 1, u 2, u 3, Barisa tak higga merupaka suatu fugsi dega domai berupa himpua bilaga bulat positif

Lebih terperinci

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR Nur Aei Prodi Matematika, FST-UINAM uraeiatullah@gmail.com Ifo: Jural MSA Vol. 3 No. 2 Edisi: Juli Desember

Lebih terperinci

BAB IV DESKRIPSI ANALISIS DATA

BAB IV DESKRIPSI ANALISIS DATA BAB IV DESKRIPSI ANALISIS DATA A. Dekripi Data Peelitia ii megguaka peelitia ekperime, ubyek peelitiaya dibedaka mejadi dua kela, yaitu kela kotrol da kela ekperime. Kela kotrol pada peelitia ii merupaka

Lebih terperinci

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang 5. DERET

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang 5. DERET Pertemua 7. BAHAN AJAR ANALISIS REAL Matematika STKIP Tuaku Tambusai Bagkiag 5. da kekovergeaya 5. DERET Diberika sebuah barisa a, dapat didefeisika barisa bilaga real S N dega S N := N a = a + a 2 +...

Lebih terperinci

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya 5 BAB II LANDASAN TEORI Dalam tugas akhir ii aka dibahas megeai peaksira besarya koefisie korelasi atara dua variabel radom kotiu jika data yag teramati berupa data kategorik yag terbetuk dari kedua variabel

Lebih terperinci

Pendugaan Parameter. Selang Kepercayaan = Konfidensi Interval = Confidence Interval

Pendugaan Parameter. Selang Kepercayaan = Konfidensi Interval = Confidence Interval Pedugaa Parameter. Pedahulua Pedugaa Parameter Popoulai dilakuka dega megguaka ilai Statitik Sampel Mial :. x diguaka ebagai peduga bagi. diguaka ebagai peduga bagi 3. p atau p diguaka ebagai peduga bagi

Lebih terperinci

B a b 1 I s y a r a t

B a b 1 I s y a r a t 34 TKE 315 ISYARAT DAN SISTEM B a b 1 I s y a r a t (bagia 3) Idah Susilawati, S.T., M.Eg. Program Studi Tekik Elektro Fakultas Tekik da Ilmu Komputer Uiversitas Mercu Buaa Yogyakarta 29 35 1.5.2. Isyarat

Lebih terperinci

Institut Teknologi Sepuluh Nopember Surabaya. Model Sistem dalam Persamaan Keadaan

Institut Teknologi Sepuluh Nopember Surabaya. Model Sistem dalam Persamaan Keadaan Istitut Tekologi Sepuluh Nopember Surabaya Model Sistem dalam Persamaa Keadaa Pegatar Materi Cotoh Soal Rigkasa Latiha Pegatar Materi Cotoh Soal Rigkasa Istilah-istilah Dalam Persamaa Keadaa Aalisis Sistem

Lebih terperinci

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR Nur Aei Prodi Matematika, FST-UINAM uraeiatullah@gmail.com Ifo: Jural MSA Vol. 3 No. 2 Edisi: Juli Desember

Lebih terperinci

BAB II ESTIMASI STATISTIK 2.1 Pengertian Estimasi a. Estimasi merupakan suatu metode dimana kita dapat memperkirakan nilai Populasi dengan memakai

BAB II ESTIMASI STATISTIK 2.1 Pengertian Estimasi a. Estimasi merupakan suatu metode dimana kita dapat memperkirakan nilai Populasi dengan memakai 3 BAB II ESTIMASI STATISTIK. Pegertia Etimai a. Etimai merupaka uatu metode dimaa kita dapat memperkiraka ilai Populai dega memakai ilai ampel. b. Etimai merupaka kegiata pearika keimpula tatitik yag berawal

Lebih terperinci

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian BAB I PENDAHULUAN A. Latar Belakag Masalah Matematika merupaka suatu ilmu yag mempuyai obyek kajia abstrak, uiversal, medasari perkembaga tekologi moder, da mempuyai pera petig dalam berbagai disipli,

Lebih terperinci

BAB IV ENTROPI GAS SEMPURNA

BAB IV ENTROPI GAS SEMPURNA BAB IV ENROPI GAS SEMPURNA Itilah etroi ecara literatur berarti traformai, da dierkealka oleh lauiu. Etroi adalah ifat termodiamika yag etig dari ebuah zat, dimaa hargaya aka meigkat ketika ada eambaha

Lebih terperinci

I. DERET TAKHINGGA, DERET PANGKAT

I. DERET TAKHINGGA, DERET PANGKAT I. DERET TAKHINGGA, DERET PANGKAT. Pedahulua Pembahasa tetag deret takhigga sebagai betuk pejumlaha suku-suku takhigga memegag peraa petig dalam fisika. Pada bab ii aka dibahas megeai pegertia deret da

Lebih terperinci

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan REGRESI LINIER DAN KORELASI Variabel dibedaka dalam dua jeis dalam aalisis regresi: Variabel bebas atau variabel prediktor -> variabel yag mudah didapat atau tersedia. Dapat diyataka dega X 1, X,, X k

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 3 BAB II TINJAUAN PUSTAKA.1 Ruag Cotoh, Kejadia da Peluag Defiisi.1 (Ruag cotoh da kejadia) Suatu percobaa yag dapat diulag dalam kodisi yag sama, yag hasilya tidak bisa diprediksi secara tepat tetapi

Lebih terperinci

KELUARGA EKSPONENSIAL Untuk Memenuhi Tugas Mata Kuliah Statistika Inferensial Dosen Pengampu: Nendra Mursetya Somasih Dwipa, M.Pd

KELUARGA EKSPONENSIAL Untuk Memenuhi Tugas Mata Kuliah Statistika Inferensial Dosen Pengampu: Nendra Mursetya Somasih Dwipa, M.Pd KELUARGA EKSPONENSIAL Utuk Memeuhi Tugas Mata Kuliah Statistika Iferesial Dose Pegampu: Nedra Mursetya Somasih Dwipa, M.Pd Disusu Oleh : V A4 Kelompok. Nuuk Rohaigsih (444009). Rochayati (444000) 3. Siam

Lebih terperinci

KEKONVERGENAN MODEL BINOMIAL UNTUK PENENTUAN HARGA OPSI EROPA. Fitriani Agustina, Math, UPI

KEKONVERGENAN MODEL BINOMIAL UNTUK PENENTUAN HARGA OPSI EROPA. Fitriani Agustina, Math, UPI KEKONVERGENAN MODEL BINOMIAL UNTUK PENENTUAN HARGA OPSI EROPA Fitriai Agustia, Math, UPI 1 Fiacial Derivative Opsi Mafaat Opsi Opsi Eropa Peetua Harga Opsi Kekovergea Model Biomial Fitriai Agustia, Math,

Lebih terperinci

Fisika Statistik. Jumlah SKS : 3. Oleh : Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Mulawarman

Fisika Statistik. Jumlah SKS : 3. Oleh : Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Mulawarman Fiika Statitik Jumlah SKS : 3 Oleh : Rahmawati M, S.Si., M.Si. Jurua Fiika Fakulta Matematika da Ilmu Pegetahua Alam Uiverita Mulawarma Pertemua 2 da 3 Pedahulua (Termodiamika) 2. Statitik Maxwell-Boltzma.

Lebih terperinci

BAB VI BARISAN TAK HINGGA DAN DERET TAK HINGGA

BAB VI BARISAN TAK HINGGA DAN DERET TAK HINGGA BAB VI BARIAN TAK HINGGA DAN DERET TAK HINGGA Bajar/Barisa Tak Higga Barisa tak higga { },,,,, adalah suatu fugsi dari dimaa daerah domaiya adalah himpua bilaga bulat positif (bilaga asli). Cotoh: Bila,,,..,

Lebih terperinci

BARISAN PANGKAT TERURUT MATRIKS PADA ALJABAR MAX PLUS

BARISAN PANGKAT TERURUT MATRIKS PADA ALJABAR MAX PLUS BRISN PNGKT TERURUT MTRIKS PD LJBR MX PLUS Nurwa Jurusa Matematika FMIP Uiversitas Negeri Gorotalo E-mail: urwa_mat@ug.ac.id bstrak Diberika matriks R yag memeuhi = λ. Matriks adalah k + c c k taktereduksi

Lebih terperinci

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI IPA SMA Al Azhar-3

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI IPA SMA Al Azhar-3 III. METODOLOGI PENELITIAN A. Populai da Sampel Peelitia Populai dalam peelitia ii adalah emua iwa kela I IPA SMA Al Azhar-3 Badar Lampug tahu ajara 0/0 yag berjumlah 48 iwa da terebar dalam empat kela.

Lebih terperinci

III PEMBAHASAN. λ = 0. Ly = 0, maka solusi umum dari persamaan diferensial (3.3) adalah

III PEMBAHASAN. λ = 0. Ly = 0, maka solusi umum dari persamaan diferensial (3.3) adalah III PEMBAHASAN Pada bagia ii aka diformulasika masalah yag aka dibahas. Solusi masalah aka diselesaika dega Metode Dekomposisi Adomia. Selajutya metode ii aka diguaka utuk meyelesaika model yag diyataka

Lebih terperinci

terurut dari bilangan bulat, misalnya (7,2) (notasi lain 2

terurut dari bilangan bulat, misalnya (7,2) (notasi lain 2 Bab Bilaga kompleks BAB BILANGAN KOMPLEKS Defiisi Bilaga Kompleks Sebelum medefiisika bilaga kompleks, pembaca diigatka kembali pada permasalah dalam sistem bilaga yag telah dikeal sebelumya Yag pertama

Lebih terperinci

Homomorfisma Pada Semimodul Atas Aljabar Max-Plus

Homomorfisma Pada Semimodul Atas Aljabar Max-Plus Homomorfisma Pada Semimodul Atas Aljabar Max-Plus A 14 Oleh : Musthofa Jurusa Pedidika Matematika FMIPA UNY Abstrak Kosep homorfisma telah bayak dibahas pada beberapa struktur aljabar yaitu pada ruag vektor

Lebih terperinci

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4 Program Studi : Tekik Iformatika Miggu ke : 4 INDUKSI MATEMATIKA Hampir semua rumus da hukum yag berlaku tidak tercipta dega begitu saja sehigga diraguka kebearaya. Biasaya, rumus-rumus dapat dibuktika

Lebih terperinci

TEOREMA WEYL UNTUK OPERATOR HYPONORMAL

TEOREMA WEYL UNTUK OPERATOR HYPONORMAL Jural UJMC, Volume 3, Nomor, Hal. - 6 pissn : 460-3333 eissn : 579-907X TEOREMA WEYL UNTUK OPERATOR HYPONORMAL Guawa Uiversitas Muhammadiyah Purwokerto, gu.oge@gmail.com Abstract This paper aims at describig

Lebih terperinci

BAB I PENDAHULUAN. Integral adalah salah satu konsep penting dalam Matematika yang

BAB I PENDAHULUAN. Integral adalah salah satu konsep penting dalam Matematika yang BAB I PENDAHULUAN 1.1 Latar Belakag Masalah Itegral adalah salah satu kosep petig dalam Matematika yag dikemukaka pertama kali oleh Isac Newto da Gottfried Wilhelm Leibiz pada akhir abad ke-17. Selajutya

Lebih terperinci

Metode Statistika Pertemuan IX-X

Metode Statistika Pertemuan IX-X /7/0 Metode Statitika Pertemua IX-X Statitika Ifereia: Pedugaa Parameter Populai : Parameter Cotoh : Statitik Statitik merupaka PENDUGA bagi parameter populai Pegetahua megeai ditribui amplig PENDUGA TAK

Lebih terperinci

BAB II LANDASAN TEORI. Pada bagian ini akan dibahas tentang teori-teori dasar yang. digunakan untuk dalam mengestimasi parameter model.

BAB II LANDASAN TEORI. Pada bagian ini akan dibahas tentang teori-teori dasar yang. digunakan untuk dalam mengestimasi parameter model. BAB II LANDASAN TEORI Pada bagia ii aka dibahas tetag teori-teori dasar yag diguaka utuk dalam megestimasi parameter model.. MATRIKS DAN VEKTOR Defiisi : Trace dari matriks bujur sagkar A a adalah pejumlaha

Lebih terperinci

Pendugaan Parameter. Selang Kepercayaan = Konfidensi Interval = Confidence Interval

Pendugaan Parameter. Selang Kepercayaan = Konfidensi Interval = Confidence Interval Pedugaa Parameter Pedahulua Pedugaa Parameter Populai dilakuka dega megguaka ilai Statitik Sampel Mial :. x diguaka ebagai peduga bagi. diguaka ebagai peduga bagi 3. p atau p diguaka ebagai peduga bagi

Lebih terperinci

Bab 2. Sistem Bilangan Real Aksioma Bilangan Real Misalkan adalah himpunan bilangan real, P himpunan bilangan positif dan fungsi + dan.

Bab 2. Sistem Bilangan Real Aksioma Bilangan Real Misalkan adalah himpunan bilangan real, P himpunan bilangan positif dan fungsi + dan. Bab Sistem Bilaga Real.. Aksioma Bilaga Real Misalka adalah himpua bilaga real, P himpua bilaga positif da fugsi + da. dari ke da asumsika memeuhi aksioma-aksioma berikut: Aksioma Lapaga Utuk semua bilaga

Lebih terperinci

oleh hasil kali Jika dan keduanya fungsi yang dapat didiferensialkan, maka

oleh hasil kali Jika dan keduanya fungsi yang dapat didiferensialkan, maka Itegral etu Jika fugsi kotiu yag didefiisika utuk, kita bagi selag mejadi selag bagia berlebar sama Misalka berupa titik ujug selag bagia ii da pilih titik sampel di dalam selag bagia ii, sehigga terletak

Lebih terperinci

Solusi Numerik Persamaan Transport

Solusi Numerik Persamaan Transport Solusi Numerik Persamaa Trasport M. Jamhuri December 16, 2013 Diberika persamaa Trasport u t + 2u x = 0 1) Diberika persamaa Trasport u t + 2u x = 0 1) Diskretka persamaa trasport 1) dega megguaka persamaa

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 31-41, April 2004, ISSN :

JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 31-41, April 2004, ISSN : Vol. 7. No. 1, 31-41, April 24, ISSN : 141-8518 Peetua Kestabila Sistem Kotrol Lup Tertutup Waktu Kotiu dega Metode Trasformasi ke Betuk Kaoik Terkotrol Robertus Heri Jurusa Matematika FMIPA UNDIP Abstrak

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Didalam melakuka kegiata suatu alat atau mesi yag bekerja, kita megeal adaya waktu hidup atau life time. Waktu hidup adalah lamaya waktu hidup suatu kompoe atau uit pada

Lebih terperinci

BAB II TEORI DASAR. Definisi Grup G disebut grup komutatif atau grup abel jika berlaku hukum

BAB II TEORI DASAR. Definisi Grup G disebut grup komutatif atau grup abel jika berlaku hukum BAB II TEORI DASAR 2.1 Aljabar Liier Defiisi 2. 1. 1 Grup Himpua tak kosog G disebut grup (G, ) jika pada G terdefiisi operasi, sedemikia rupa sehigga berlaku : a. Jika a, b eleme dari G, maka a b eleme

Lebih terperinci

Pengujian Hipotesis untuk selisih dua nilai tengah populasi

Pengujian Hipotesis untuk selisih dua nilai tengah populasi Pegujia Hipotei utuk eliih dua ilai tegah populai Hipotei Hipotei atu arah: H 0 : - 0 v H : - < 0 H 0 : - 0 v H : - > 0 Hipotei dua arah: H 0 : - = 0 v H : - 0 Statitik uji z h ( ( ) ) 0 Formula klik diketahui

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Model Pertumbuha Betuk ugsi pertumbuha satu jeis spesies pada umumya megguaka otasi ugsi aalitik yag diyataka dalam satu persamaa. Secara umum ugsi pertumbuha meyataka hubuga

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Distribusi Ekspoesial Fugsi ekspoesial adalah salah satu fugsi yag palig petig dalam matematika. Biasaya, fugsi ii ditulis dega otasi exp(x) atau e x, di maa e adalah basis logaritma

Lebih terperinci

Bab 3 Metode Interpolasi

Bab 3 Metode Interpolasi Baha Kuliah 03 Bab 3 Metode Iterpolasi Pedahulua Iterpolasi serig diartika sebagai mecari ilai variabel tergatug tertetu, misalya y, pada ilai variabel bebas, misalya, diatara dua atau lebih ilai yag diketahui

Lebih terperinci

BAB III ANALISIS PEMODELAN ANTRIAN HAULER PENGANGKUTAN OVERBURDEN PADA JALAN 7F

BAB III ANALISIS PEMODELAN ANTRIAN HAULER PENGANGKUTAN OVERBURDEN PADA JALAN 7F BAB III AALISIS EMODELA ATRIA HAULER EGAGKUTA OVERBURDE ADA JALA 7F 3.. edahulua ada Bab II telah dijelaka beberapa teori yag diguaka utuk melakuka aalii yag tepat dalam memecahka maalah yag ada. ada bab

Lebih terperinci

MINGGU KE XII PENDUGAAN INTERVAL

MINGGU KE XII PENDUGAAN INTERVAL MINGGU KE XII PENDUGAAN INTERVAL Tujua Itrukioal Umum :. Mahaiwa mampu memahami apa yag dimakud dega pedugaa iterval. Mahaiwa mampu memahami pedugaa iterval utuk ample bear da utuk ample kecil 3. Mahaiwa

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 3 BAB II TINJAUAN PUSTAKA Pada bab ii aka dituliska beberapa aspek teoritis berupa defiisi, teorema da sifat-sifat yag berhubuga dega aljabar liear, struktur aljabar da teori kodig yag diguaka sebagai

Lebih terperinci

Distribusi Pendekatan (Limiting Distributions)

Distribusi Pendekatan (Limiting Distributions) Distribusi Pedekata (Limitig Distributios) Ada 3 tekik utuk meetuka distribusi pedekata: 1. Tekik Fugsi Distribusi Cotoh 2. Tekik Fugsi Pembagkit Mome Cotoh 3. Tekik Teorema Limit Pusat Cotoh Fitriai Agustia,

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 1, 41-48, April 2003, ISSN : MATRIKS STOKASTIK GANDA DAN SIFAT-SIFATNYA

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 1, 41-48, April 2003, ISSN : MATRIKS STOKASTIK GANDA DAN SIFAT-SIFATNYA JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No., 4-48, April 00, ISSN : 40-858 MATRIKS STOKASTIK GANDA DAN SIFAT-SIFATNYA Suryoto Jurusa Matematika F-MIPA Uiversas Dipoegoro Semarag Abstrak Suatu matriks tak

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Optimasi 2.1.1. Pegertia Optimasi Optimasi (Optimizatio) adalah aktivitas utuk medapatka hasil terbaik di bawah keadaa yag diberika. Tujua akhir dari semua aktivitas tersebut

Lebih terperinci

STUDI TRAVELLING SALESMAN PROBLEM (TSP) DENGAN MENGGUNAKAN PROGRAM DINAMIK

STUDI TRAVELLING SALESMAN PROBLEM (TSP) DENGAN MENGGUNAKAN PROGRAM DINAMIK TUDI TRAVELLING ALEMAN PROBLEM (TP) DENGAN MENGGUNAKAN PROGRAM DINAMIK KRIPI Diajuka utuk melegkapi tuga da memeuhi yarat mecapai gelar arjaa ai GOLTIANDY PANGARIBUAN 0080005 DEPARTEMEN MATEMATIKA FAKULTA

Lebih terperinci

Kestabilan Rangkaian Tertutup Waktu Kontinu Menggunakan Metode Transformasi Ke Bentuk Kanonik Terkendali

Kestabilan Rangkaian Tertutup Waktu Kontinu Menggunakan Metode Transformasi Ke Bentuk Kanonik Terkendali Jural Tekika ISSN : 285-859 Fakultas Tekik Uiversitas Islam Lamoga Volume No.2 Tahu 29 Kestabila Ragkaia Tertutup Waktu Kotiu Megguaka Metode Trasformasi Ke Betuk Kaoik Terkedali Suhariyato ) Dose Fakultas

Lebih terperinci

1 n MODUL 5. Peubah Acak Diskret Khusus

1 n MODUL 5. Peubah Acak Diskret Khusus ODUL 5 Peubah Acak Diskret Khusus Terdapat beberapa peubah acak diskret khusus yag serig mucul dalam aplikasi. Peubah Acak Seragam ( Uiform) Bila X suatu peubah acak diskret dimaa setiap eleme dari X mempuyai

Lebih terperinci

Statistika dibagi menjadi dua, yaitu: 1. Statistika Deskriftif 2. Statistik Inferensial Penarikan kesimpulan dapat dilakukan dengan dua cara, yaitu:

Statistika dibagi menjadi dua, yaitu: 1. Statistika Deskriftif 2. Statistik Inferensial Penarikan kesimpulan dapat dilakukan dengan dua cara, yaitu: Peaksira Parameter Statistika dibagi mejadi dua yaitu:. Statistika Deskriftif 2. Statistik Iferesial Pearika kesimpula dapat dilakuka dega dua cara yaitu:. Peaksira Parameter 2. Pegujia Hipotesis Peaksira

Lebih terperinci

HUBUNGAN ANTARA KONVERGEN HAMPIR PASTI, KONVERGEN DALAM PELUANG, DAN KONVERGEN DALAM SEBARAN

HUBUNGAN ANTARA KONVERGEN HAMPIR PASTI, KONVERGEN DALAM PELUANG, DAN KONVERGEN DALAM SEBARAN Jural Matematika UNAND Vol. 2 No. 2 Hal. 0 6 ISSN : 2303 290 c Jurusa Matematika FMIPA UNAND HUBUNGAN ANTARA KONVERGEN HAMPIR PASTI, KONVERGEN DALAM PELUANG, DAN KONVERGEN DALAM SEBARAN VIRA AGUSTA, DODI

Lebih terperinci

DIMENSI PARTISI PADA GRAF KINCIR PARTITION DIMENSION OF WINDMILL GRAPH

DIMENSI PARTISI PADA GRAF KINCIR PARTITION DIMENSION OF WINDMILL GRAPH PROPOAL TUGA AKHIR DIMENI PARTII PADA GRAF KINCIR PARTITION DIMENION OF WINDMILL GRAPH Oleh: CHANDRA IRAWAN NRP : 100 109 04 JURUAN MATEMATIKA FAKULTA MATEMATIKA DAN ILMU PENGETAHUAN ALAM INTITUT TEKNOLOGI

Lebih terperinci

2 BARISAN BILANGAN REAL

2 BARISAN BILANGAN REAL 2 BARISAN BILANGAN REAL Di sekolah meegah barisa diperkealka sebagai kumpula bilaga yag disusu meurut "pola" tertetu, misalya barisa aritmatika da barisa geometri. Biasaya barisa da deret merupaka satu

Lebih terperinci

BAB III PERUMUSAN PENDUGA DAN SIFAT SIFAT STATISTIKNYA

BAB III PERUMUSAN PENDUGA DAN SIFAT SIFAT STATISTIKNYA BAB III PERUMUSAN PENDUGA DAN SIFAT SIFAT STATISTIKNYA 3. Perumusa Peduga Misalka N adala proses Poisso o omoge pada iterval [, dega fugsi itesitas yag tidak diketaui. Fugsi ii diasumsika teritegralka

Lebih terperinci

BAB 6. DERET TAYLOR DAN DERET LAURENT Deret Taylor

BAB 6. DERET TAYLOR DAN DERET LAURENT Deret Taylor Bab 6 Deret Taylor da Deret Lauret BAB 6 DERET TAYLOR DAN DERET LAURENT 6 Deret Taylor Misal fugsi f aalitik pada - < R ligkara dega pusat di da jari-jari R Maka utuk setiap titik pada ligkara itu f dapat

Lebih terperinci

TINJAUAN PUSTAKA Pengertian

TINJAUAN PUSTAKA Pengertian TINJAUAN PUSTAKA Pegertia Racaga peelitia kasus-kotrol di bidag epidemiologi didefiisika sebagai racaga epidemiologi yag mempelajari hubuga atara faktor peelitia dega peyakit, dega cara membadigka kelompok

Lebih terperinci

ESTIMASI. Jika parameter populasi disimbolkan dengan θ maka θ yang tidak diketahui harganya ditaksir oleh harga

ESTIMASI. Jika parameter populasi disimbolkan dengan θ maka θ yang tidak diketahui harganya ditaksir oleh harga ESTIMASI Salah atu aek utuk mearik keimula megeai uatu oulai dega memakai amel yag diambil dari oulai terebut megguaka etimai (eakira) Jika arameter oulai diimbolka dega θ maka θ yag tidak diketahui hargaya

Lebih terperinci

Himpunan/Selang Kekonvergenan

Himpunan/Selang Kekonvergenan oki eswa (fmipa-itb) Deret Pagkat Kita aka mempelajari beberapa tehik utuk meyajika suatu fugsi f (x) dalam betuk deret pagkat (power series), yaitu meetuka derat pagkat c (x a) sehigga f (x) = c (x a)

Lebih terperinci

TUGAS ANALISIS REAL LANJUT. a b < a + A. b + B < A B.

TUGAS ANALISIS REAL LANJUT. a b < a + A. b + B < A B. TUGAS ANALISIS REAL LANJUT NOVEMBER 207 () (a) Jika b > 0, B > 0, da a b < A, buktika ab < ba. Kemudia buktika B a b < a + A b + B < A B. (b) Buktika [ 2 (a + b)] 2 2 (a2 + b 2 ). Kemudia tujukka bahwa

Lebih terperinci

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL BAB VIII MASAAH ESTIMASI SAT DAN DA SAMPE 8.1 Statistik iferesial Statistik iferesial suatu metode megambil kesimpula dari suatu populasi. Ada dua pedekata yag diguaka dalam statistik iferesial. Pertama,

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang Masalah

BAB I PENDAHULUAN. A. Latar Belakang Masalah BAB I PENDAHULUAN A. Latar Belakag Masalah Struktur alabar adalah suatu himpua yag di dalamya didefiisika suatu operasi bier yag memeuhi aksioma-aksioma tertetu. Gelaggag ( Rig ) merupaka suatu struktur

Lebih terperinci

Semigrup Matriks Admitting Struktur Ring

Semigrup Matriks Admitting Struktur Ring Semigrup Matriks dmittig Struktur ig K a r y a t i Jurusa Pedidika Matematika FMIP, Uiversitas Negeri Yogyakarta Email: yatiuy@yahoo.com bstrak Diberika adalah rig komutatif dega eleme satua da adalah

Lebih terperinci

Selang Kepercayaan dari Parameter Distribusi Log-Normal Menggunakan Metode Bootstrap Persentil

Selang Kepercayaan dari Parameter Distribusi Log-Normal Menggunakan Metode Bootstrap Persentil Statitika, Vol. 8 No. 1, 13 17 Mei 008 Selag Kepercayaa dari Parameter Ditribui Log-Normal Megguaka Metode Boottrap Peretil Akhmad Fauzy Jurua Statitika FMIPA Uiverita Ilam Idoeia Yogyakarta Abtract I

Lebih terperinci

PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT

PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT Prosidig Semiar Nasioal Matematika da Terapaya 06 p-issn : 0-0384; e-issn : 0-039 PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT Liatus

Lebih terperinci

A. Interval Konfidensi untuk Mean

A. Interval Konfidensi untuk Mean ESTIMASI INTERVAL A. Iterval Kofidei utuk Mea Defiii Jika ˆ merupaka etimator utuk parameter da P ˆ ˆ, maka ˆ ˆ diebut Dimaa iterval kofidei(-)00% utuk. :- koefiie kofidei ˆ, ˆ bata iterval tigkat kealaha

Lebih terperinci

BAB III PEMBAHASAN. Pada BAB III ini akan dibahas mengenai bentuk program linear fuzzy

BAB III PEMBAHASAN. Pada BAB III ini akan dibahas mengenai bentuk program linear fuzzy BAB III PEMBAHASAN Pada BAB III ii aka dibahas megeai betuk program liear fuzzy dega koefisie tekis kedala berbetuk bilaga fuzzy da pembahasa peyelesaia masalah optimasi studi kasus pada UD FIRDAUS Magelag

Lebih terperinci

Barisan Aritmetika dan deret aritmetika

Barisan Aritmetika dan deret aritmetika BARISAN DAN DERET BILANGAN Peyusu: Atmii Dhoruri, MS Kode: Jejag: SMP T/P: / A. Kompetesi yag diharapka. Meetuka suku ke- barisa aritmatika da barisa geometri. Meetuka jumlah suku pertama deret aritmatika

Lebih terperinci

Tetapi apabila n < 5% N maka digunakan :

Tetapi apabila n < 5% N maka digunakan : Jei- jei pedugaa Iterval:. Pedugaa Parameter dega ampel bear (>30) a. Pedugaa terhadap parameter rata-rata Diketahui; z Maka; Z Z Tetapi apabila tadard deviai populai tidak diketahui, maka diguaka tadar

Lebih terperinci

Bab IV. Penderetan Fungsi Kompleks

Bab IV. Penderetan Fungsi Kompleks Bab IV Pedereta Fugsi Kompleks Sebagaimaa pada fugsi real, fugsi kompleks juga dapat dideretka pada daerah kovergesiya. Semua watak kajia kovergesi pada fugsi real berlaku pula pada fugsi kompleks. Secara

Lebih terperinci

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika Wed 6/0/3 ETIMAI (PENDUGAAN TATITIK) Ir. Tito Adi Dewato tatistika Deskriptif Iferesi Estimasi Uji Hipotesis Titik Retag Estimasi da Uji Hipotesis Dilakuka setelah peelitia dalam tahap pegambila suatu

Lebih terperinci

MATHunesa (Volume 3 No 3) 2014

MATHunesa (Volume 3 No 3) 2014 MATHuesa (Volume 3 No 3) 014 MINIMUM PENUTUP TITIK DAN MINIMUM PENUTUP SISI PADA GRAF KOMPLIT DAN GRAF BIPARTIT KOMPLIT Yessi Riskiada Kusumawardai Program Studi S1 Matematika, Fakultas Matematika da Ilmu

Lebih terperinci

SOAL PELATIHAN 1. File_Imamgun_Statistik Inferensial

SOAL PELATIHAN 1. File_Imamgun_Statistik Inferensial SOAL PELATIHAN. Jelaka pegertia hipotei?. Seorag peeliti biaaya tertarik meguji atu hipotei dari eam alteratif hipotei. Sebutka eam alteratif hipotei terebut? 3. Apa yag dimakud dega pegujia hipotei? 4.

Lebih terperinci